EP0848165B1 - Internal gear pump - Google Patents

Internal gear pump Download PDF

Info

Publication number
EP0848165B1
EP0848165B1 EP97121424A EP97121424A EP0848165B1 EP 0848165 B1 EP0848165 B1 EP 0848165B1 EP 97121424 A EP97121424 A EP 97121424A EP 97121424 A EP97121424 A EP 97121424A EP 0848165 B1 EP0848165 B1 EP 0848165B1
Authority
EP
European Patent Office
Prior art keywords
bearing ring
internal gear
pump according
gear pump
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97121424A
Other languages
German (de)
French (fr)
Other versions
EP0848165A2 (en
EP0848165A3 (en
Inventor
Otto Eckerle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0848165A2 publication Critical patent/EP0848165A2/en
Publication of EP0848165A3 publication Critical patent/EP0848165A3/en
Application granted granted Critical
Publication of EP0848165B1 publication Critical patent/EP0848165B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/102Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member the two members rotating simultaneously around their respective axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0003Sealing arrangements in rotary-piston machines or pumps
    • F04C15/0007Radial sealings for working fluid
    • F04C15/0019Radial sealing elements specially adapted for intermeshing-engagement type machines or pumps, e.g. gear machines or pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0003Sealing arrangements in rotary-piston machines or pumps
    • F04C15/0023Axial sealings for working fluid
    • F04C15/0026Elements specially adapted for sealing of the lateral faces of intermeshing-engagement type machines or pumps, e.g. gear machines or pumps

Definitions

  • the invention relates to a filler-less Internal gear machine with the features according to the Preamble of claim 1.
  • the object of the invention is therefore a To create internal gear machine of this type, which at perfect function is more simple.
  • the cheapest Position for the swivel axis is thus on the side of the Pressure space between the line of the resultant R the hydraulic forces and the non-invasive Ring section of the bearing ring assigned to the ring gear region, with particular preference the pivot axis of the line of Resulting R closer than that of the non-invasive Ring section associated ring gear region.
  • the pivot bearing of the bearing ring is different Realizable, for example, by the bearing ring self-provided bearing journals, which in corresponding Engage recesses in the housing. More advantageous and However, a pivot bearing of the bearing ring is easier by a bearing pin fixed in the housing, which with a Part of its peripheral surface as a bearing surface in an axial groove is on the outer circumference of the bearing ring. Because the bearing ring through the forces prevailing in the pressure chamber at the above as expediently described embodiment with the axial groove is pressed against the bearing pin is the Partially cylindrical axial groove in its dimensions on the Bearing pin matched so that it is as uniform as possible Surface pressure occurs. The bearing pin prevents at the same time a rotation of the bearing ring in the housing bore.
  • the internal gear machine described can be in one simple embodiment be designed so that pinion, Ring gear and bearing ring with their respective end faces seal directly against the housing walls.
  • axial washers are provided by pressure fields in sealing contact with the end faces of at least pinion and ring gear are held.
  • the pressure fields can be in the Housing walls and / or in the teeth end faces of the axial disks formed his.
  • a further increase in the efficiency of the Internal gear machine according to the invention in which Axial disks are provided, can then be achieved if ensured by an appropriate construction is that the thrust washers together with the bearing ring and the ring gear the desired compensation movement for the Maintaining the sealing contact between the tooth heads can execute. Because this ensures that the Control of the hydraulic pressure conditions in the pressure or. Suction chamber, which in a known manner by control or Pre-filling slots in the axial washers are made independently optimally from the movements of the ring gear and the bearing ring remains.
  • the internal gear machine shown in FIGS. 1 and 2 comprises a housing designated as a whole by 1, which consists of a cup-shaped housing part 11 and one on the latter Front end of the housing cover 12 is constructed.
  • a pinion shaft 14 rotatably mounted on which a pinion 2 rotatably attached is.
  • the pinion 2 meshes with a ring gear 3, which in one Bearing ring 4 is added and rotatably mounted therein.
  • the Pinion 2 and the ring gear 3 are, as is apparent from Fig. 1, stored relative to each other with an eccentricity e.
  • the Eccentricity e d. H.
  • the distance between the pinion axis and the ring gear axis corresponds to the theoretical Gear geometry of pinion and ring gear and sets play-free rolling or sliding of the gears ahead of each other.
  • the teeth of the pinion 2 and Ring gear 3 mesh with each other in such a way that on the left in Fig. 1 in the region of the dividing line A Teeth of the pinion 2 fully into the tooth spaces of the ring gear 3 engage and rest on the tooth flanks while they are on the opposite, right in Fig. 1 from the tooth gaps of the ring gear 3 have emerged.
  • this non-meshing ring gear region E support several of the Tooth tips of the pinion 2 and the ring gear 3 (in the shown embodiment 3 tooth heads each) one after the other in the course of the rotation.
  • the Number of teeth and the geometry of the meshing Gears are chosen so that this type of combing can be effected.
  • the tooth flanks are formed as involute curves, whereby the tooth heads to achieve rolling and sliding contact are rounded for the purpose of sealing.
  • the number of teeth on the Ring gear 3 differs from that of pinion 2 at 1.
  • the bearing ring 4 is in a housing bore 15 of the pot-shaped housing part 11 with a radial clearance of about 0.2 mm added.
  • the wall of the housing bore 15 is partially penetrated by a bearing pin 16 which in the Bottom of the housing bore 15 is pressed firmly. With the protruding beyond the wall of the housing bore 15 is largely semi-cylindrical part of the bearing pin 16 this in an axially directed groove 17 of the bearing ring 4 added.
  • the axial groove 17 is the shape of the bearing pin 16 adapted and also partially cylindrical.
  • the bearing pin 16 engaging in the axial groove 17 forms for the bearing ring 4 one to the axes of pinion 2 and Ring gear 3 parallel pivot axis about which the Bearing ring 4 within the available Radial play in the housing bore 15 is pivotable. How 1, this pivot axis lies in one Quadrant of the bearing ring 4, which is between the non-meshing ring gear area E and the center of the Pressure chamber D extends.
  • the swivel axis is in one embodiment Angular distance of about 80 ° from the apex of the non-meshing ring gear area E. At this apex are two teeth of pinion and ring gear with their Tooth heads largely aligned with each other.
  • the mode of operation of the internal gear machine according to FIG. 1 and 2 is the following:
  • the bearing ring 4 has at a point that the Apex of the non-meshing ring gear region E is assigned a further axial groove 18 with a Rectangular cross section on its outer circumference.
  • This Axial groove 18 is in the bottom of the housing bore 15
  • Receiving hole 19 associated with a hairpin spring 20 is held.
  • the hairpin spring 20 protrudes into the axial groove 18 and loads the bearing ring 4 radially so that the teeth of the ring gear 3 in the non-meshing ring gear region E. their tooth heads are pressed against each other.
  • This Load direction largely corresponds to that Direction of movement that the bearing ring 4 as a result of Performs pivoting movement about the pivot axis 16, 17.
  • the force of the hairpin spring 20 can be kept relatively low as it only serves the necessary Sealing contact between the tooth heads in the non-invasive Ring gear area E during the startup process To ensure internal gear machine, d. H. at a time, in which no operating pressure has yet been built up in pressure chamber D. and therefore no compressive forces act.
  • the position and direction of the resultant R is largely predeterminable and corresponds essentially to that in Fig. 1 shown.
  • the pressure build-up in the pressure chamber D leaves in a known manner through pre-filling slots on the teeth of pinion 2 and / or ring gear 3, so that z. B. a largely over the tooth gaps of the pressure chamber D. same pressure exists.
  • the Resulting R drawn perpendicular to that in Fig. 1 line shown which is the vertex of the non-meshing ring gear region E with the pinion tooth fully engages in a tooth gap of the ring gear.
  • Embodiment according to FIGS. 1, 2 show FIGS. 3 to 18 embodiments of the invention Internal gear machine on the front of the gearing have sealing axial discs.
  • the housing bore corresponds to that of the Embodiment according to FIGS. 1, 2 and needs therefore no separate explanation.
  • the bearing ring 104 has on its inner circumference one pressed in and consequently one with the bearing ring Unit-forming race 105 made of a bearing metal, e.g. B. Bronze, in which the ring gear 103 is mounted.
  • a bearing metal e.g. B. Bronze
  • the bearing ring 104, 105 exceeds the Width of pinion 102 and ring gear 103 significantly and is with its end faces slidable on the walls of the Housing 111 or cover 112.
  • the Teeth of pinion and ring gear on both sides of the front Sides each an axial washer 130, the shape of which Fig.
  • Each of the two axial washers has a pressure field 107 on its surface facing the toothing on.
  • the axial disk 130 arranged on the side of the housing cover 112 is, three openings 108, which from the pressure chamber to the Pressure outlet channel, not shown, in the housing cover 112 to lead.
  • the housing cover 112 faces diametrically opposite Pressure outlet channel on a suction inlet channel 109, which is expanded at its mouth to a suction field 110.
  • each a pressure field 131 indicated by which the respective Axial disk 130 from the outside against the action of inner pressure field 107 is applied so that the Axial disc with all operating conditions sealing contact with Retains pinion 102 and ring gear 103. Training and Effect of the pressure fields on axial washers well-known and therefore need at this point no further explanation.
  • the Axial disks 130 prefill slots 132 through which the Pressure distribution in the pressure chamber of the gearing is controlled.
  • Each thrust washer 130 supports itself for the purpose of it Secure position on the one hand over the circumference of a bearing bore 133 on the associated bearing bush 113 and on the other on one in the housing 111 or the housing cover 112 inserted pin 134 from.
  • the pins 134 each protrude into a blind hole in the outer face of the Axial disks 130 and are thereby held axially.
  • FIGS. 6 and 7 differs from that according to FIGS. 3 to 5 only in that the axial washers 230 align with the inner circumference of their Bearing bore 233 not on the respectively assigned Support bushing 213, but directly on the Pinion shaft 214.
  • the bearing bushes 213 thus end in front of the Axial washers 230.
  • each thrust washer 330 provided two pins 334, 335 which in each case in the end regions of the axial disks 330 Blind hole on the one hand and in a corresponding hole of the housing on the other hand.
  • the bearing bushes 313 extend in this embodiment among the Axial disks 330 close to the toothing.
  • the axial disks are relative to the housing fixed. It follows that in operation the internal gear machine with the operational movement of pinion, ring gear and bearing ring relative to the housing due to the permitted pivoting movement of the bearing ring the pressure space in the toothing relative to that in the Axial disks provided control slots and pressure fields also changed its location. Because this inevitably Deviations from the optimal position set occur, the efficiency can be reduced. Around to prevent this; are in accordance with the embodiments 10 to 18, the thrust washers in a manner arranged that they together with pinion, ring gear and Bearing ring are movable together. Are in all Cases the thrust washers as part of the game, e.g. B. of Bearing play, sufficiently free with respect to the pinion shaft, that they can follow the pivoting movement of the bearing ring, in order not to achieve the desired sealing contact of the tooth heads hinder.
  • the Bearing ring 404 on the right (in FIG. 11) on both End faces a radial groove 440 on the groove bottom with the End faces, the toothing lies in one plane.
  • the Axial disks 430 have one on their outer edge Extension 441, which projects into the groove 440 with play and is performed in it.
  • the thrust washers 430 support themselves with a certain amount Bearing play on the circumference of the pinion shaft 413.
  • the respective pressure field 407 are the External pressure fields 431 assigned to axial disks 430 exclusively on the respective outer surface of the Axial disks 430 formed. With the operational Pivotal movements of the bearing ring 404 around the bearing pin 416 therefore remains the location of the pressure fields 407, 431 and the Control slots 432 largely relative to the pressure chamber unchanged.
  • the raceway pressed into the bearing ring 404 405 is limited to the width of the ring gear.
  • the embodiment according to FIGS. 13 to 15 differs from the embodiment described above 10 to 12 by the shape of the axial discs 530 and their type of position assurance.
  • the thrust washers 530 are in in this case with a circular border and between the pinion, Ring gear on the one hand and the associated housing wall on the other hand, fully absorbed in the space created by the Larger width of the bearing ring compared to the ring gear and pinion 504 is created. Again, the width of the in the Bearing ring 504 pressed race 505 to the width of the Ring gear limited.
  • the outer circumference of the axial washers 530 lies on the exposed inner circumference of the bearing ring 504 close and has a small extension 541 with which the axial disc 530 in the on each end face of the Bearing rings 504 engages provided radial groove 540. Since the Thrust washers 530 over their outer circumference in the bearing ring 504 are held, encompasses the circumference of their bearing bore 533 with the pinion shaft 513 in this embodiment clear game.
  • thrust washers 530 in this embodiment are pinions and completely cover the ring gear on the face is in the range of Suction space of the teeth a part-circular breakthrough 536 provided that the inflow of the medium from the Suction channel 509 allowed for toothing.
  • the axial washers 630 are circular, but have such a shape large outer diameter that they are beyond the ring gear overlap the bearing ring 604 on its end faces. For this is the width of the bearing ring 604 along with that in it Pressed race 605 to the width of the ring gear and Pinion limited.
  • the bearing ring 604 has an axially continuous Hole in which a pin 642 is received. This protrudes on both ends of the end faces of the bearing ring 604 out and into elongated holes 643 of the axial washers 630.
  • The are supported with the inner circumference of their bearing bore 633 Axial washers 630 in this case with a tight bearing clearance pinion shaft 613. Through this and through the pin 642 they are uniform in motion with the bearing ring 604 coupled. As described in the above Embodiments according to FIGS. 10 to 15 therefore remain the relative position of the control slots 632 and the pressure fields 607 or 631 received for the teeth.
  • the Axial washers 630 made a breakthrough in the area of the suction chamber 636 to ensure access to the pumped medium.
  • the invention is not based on the training of Internal gear machine according to those described above Embodiments limited. So it is basically possible instead of the one selected for pinion and ring gear Involute toothing with rounded tooth heads one Trochoid or cycloid toothing to choose.
  • Farther can also be a mirror image of the on the bearing ring Dividing line A one of the axial groove for the swivel axis appropriate axial groove may be provided in the event that the internal gear machine for both directions of rotation of the Pinion 2 should be designed. In this case the would Bearing pin determining the pivot axis is offset accordingly be arranged in the housing.
  • the grooves must be in the end faces of the bearing ring (Fig.
  • Axial disks are shown and described basically only one axial disk can be provided, where necessary control slots and Pressure fields are provided directly in the housing wall, rest on the front of the pinion and ring gear.
  • a pen Swivel axis of the bearing ring also through a ball be realized in a dome-shaped recess the housing bore is received. This is the Bearing ring not only around a parallel to the pinion axis Swivel axis, but swiveling on all sides to Adaptation movements to shape deviations of the individual To be able to execute components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Gears, Cams (AREA)

Abstract

The pump has a non-turnable bearing ring (4) in a bore (15) of its housing (1). The ring is pivoted relative to the bore about a pivot axis (16,17), which is parallel to its axis. The pivot axis is positioned, so that the bearing ring section facing the non-meshing part (E) of the internally geared wheel (3) is moved approximately radially towards the pinion axis by the pressure forces acting on the internally geared wheel in the pressure chamber (D). The pivot axis is formed by a housing-fastened bearing pin (16). The jacket surface of the pin is partially located in an axial groove (17) of the bearing ring jacket.

Description

Die Erfindung betrifft eine füllstücklose Innenzahnradmaschine mit den Merkmalen gemäß dem Oberbegriff des Patentanspruches 1.The invention relates to a filler-less Internal gear machine with the features according to the Preamble of claim 1.

Bei einer bekannten Innenzahnradmaschine dieser Art (DE 195 17 296 A1) ist der Lagerring, in dem das Hohlrad umläuft, in einer Gehäusebohrung mit einem Radialspiel von etwa 0,2 mm aufgenommen. Im Ausmaß dieses Radialspiels ist der Lagerring quer zu seiner Achse bewegbar, jedoch durch eine Stiftschraube, die auf der Saugseite des Gehäuses angeordnet ist, an einer Drehung gehindert. Auf der Druckseite ist in der Wand der Gehäusebohrung eine flache Ausnehmung ausgebildet, in der eine Anzahl von Druckfeldern definiert ist, die über radiale Durchbrüche des Lagerrings sowie radiale Durchbrüche des Hohlrads mit dem Druckraum der Verzahnung in Verbindung stehen.In a known internal gear machine of this type (DE 195 17 296 A1) is the bearing ring in which the ring gear rotates, in a housing bore with a radial clearance of approximately 0.2 mm added. To the extent of this radial play is the Bearing ring movable across its axis, but through a Stud screw on the suction side of the housing is arranged, prevented from rotating. On the The pressure side is a flat one in the wall of the housing bore Recess formed in a number of pressure fields is defined by radial openings in the bearing ring as well as radial breakthroughs of the ring gear with the pressure chamber the teeth are connected.

Die im Druckraum der Verzahnung herrschenden Druckkräfte wirken so, daß das Hohlrad sich von dem Ritzel zu entfernen sucht. Dadurch besteht die Neigung, daß der zur Abgrenzung des Druckraums vom Saugraum bestehende Dichtkontakt zwischen den Zahnköpfen von Ritzel und Hohlrad in dem eingriffsfreien Hohlradbereich, in welchem die Ritzelzähne praktisch völlig aus den Zahnlücken des Hohlrads ausgetreten sind, abnimmt oder ganz verloren geht. Dieser Neigung wirkt jedoch die von den Druckfeldern erzeugte Druckkraft entgegen, durch die der Lagerring und zusammen mit diesem das Hohlrad im Rahmen des zur Verfügung stehenden Radialspiels zur Saugseite hin verschoben wird. Aufgrund dieser Bewegbarkeit des Lagerrings mit dem Hohlrad wird proportional zu dem auf der Druckseite herrschenden Druck der Dichtkontakt zwischen den Zahnköpfen von Ritzel und Hohlrad aufrecht erhalten.The pressure forces prevailing in the pressure space of the gearing act so that the ring gear is removed from the pinion is looking for. As a result, there is a tendency for delimitation of the pressure chamber from the suction chamber existing sealing contact between the tooth tips of pinion and ring gear in the non-meshing ring gear area in which the pinion teeth practically completely from the tooth gaps of the ring gear leaked, decreased or lost entirely. This However, the slope created by the pressure fields acts Opposing compressive force through which the bearing ring and together with this the ring gear as part of the available radial play is shifted towards the suction side. Because of this mobility of the bearing ring with the ring gear becomes proportional to that on the print side Pressure of the sealing contact between the tooth heads of the pinion and ring gear maintained.

Die Ausbildung von Druckfeldern in einer Ausnehmung des Gehäuses und deren Verbindung mit dem Druckraum der Verzahnung ist relativ aufwendig und erhöht daher die Herstellungskosten der Innenzahnradmaschine. Darüberhinaus bilden die auf der Druckseite in dem Lagerring vorgesehenen Durchbrüche, über welche die Druckfelder mit Druck beaufschlagt sind, bezüglich der Beanspruchung und Verformung des Lagerrings eine Inhomogenität, die den Umlauf des Hohlrades im Lagerring beeinträchtigen kann.The formation of pressure fields in a recess of the Housing and their connection to the pressure chamber of the Gearing is relatively complex and therefore increases the Manufacturing cost of the internal gear machine. Furthermore form those provided on the pressure side in the bearing ring Breakthroughs over which the pressure fields with pressure are subjected to stress and Deformation of the bearing ring an inhomogeneity that the Circulation of the ring gear in the bearing ring can impair.

Aufgabe der Erfindung ist es daher, eine Innenzahnradmaschine dieser Art zu schaffen, die bei einwandfreier Funktion einfacher aufgebaut ist.The object of the invention is therefore a To create internal gear machine of this type, which at perfect function is more simple.

Erfindungsgemäß wird diese Aufgabe gelöst durch eine Gestaltung der gattungsgemäßen Innenzahnradmaschine gemäß dem Kennzeichen des Patentanspruches 1.According to the invention, this object is achieved by Design of the generic internal gear machine according to the characteristic of claim 1.

Auch bei der erfindungsgemäßen Innenzahnradmaschine ist der Lagerring mit einem Radialspiel (beispielsweise von 0,2 mm) in der Gehäusebohrung aufgenommen, jedoch nicht darin verschiebbar, sondern um eine achsparallele Schwenkachse innerhalb der Gehäusebohrung schwenkbar. Die Schwenkachse ist so gelegt, daß einerseits der dem eingriffsfreien Hohlradbereich zugeordnete Ringabschnitt - und damit der eingriffsfreie Hohlradbereich selbst - bei der Schwenkbewegung des Lagerrings sich möglichst radial bezüglich der Ritzelachse bewegt. Dadurch werden die Zahnköpfe von Ritzel und Hohlrad im eingriffsfreien Hohlradbereich gegeneinander zum Dichtkontakt beaufschlagt. Eine solche Bewegungsrichtung wird am besten erreicht, wenn die Schwenkachse bezüglich des eingriffsfreien Hohlradbereichs grob angenähert um einen rechten Winkel auf dem Umfang versetzt liegt. Andererseits muß die Schwenkachse aber auch so bezüglich der Resultierenden R der im Druckraum herrschenden hydraulischen Kräfte liegen, daß diese um die Schwenkachse ein Drehmoment erzeugt, welches die Annäherung der Zahnköpfe von Ritzel und Hohlrad im eingriffsfreien Hohlradbereich bewirkt. Die günstigste Lage für die Schwenkachse ist somit auf der Seite des Druckraums zwischen der Linie der Resultierenden R der hydraulischen Kräfte und dem dem eingriffsfreien Hohlradbereich zugeordneten Ringabschnitt des Lagerrings, wobei besonders bevorzugt die Schwenkachse der Linie der Resultierenden R näher als dem dem eingriffsfreien Hohlradbereich zugeordneten Ringabschnitt liegt.This is also the case with the internal gear machine according to the invention Bearing ring with a radial clearance (for example of 0.2 mm) accommodated in the housing bore, but not in it movable, but about an axis-parallel pivot axis swiveling within the housing bore. The pivot axis is laid so that on the one hand the non-invasive Ring section assigned to the ring gear region - and thus the non-intrusive ring gear area itself - at the Pivotal movement of the bearing ring is as radial as possible moved with respect to the pinion axis. This will make the Toothed heads of pinion and ring gear in non-meshing Ring gear area acted against each other for sealing contact. Such a direction of movement is best achieved when the pivot axis with respect to the non-invasive Ring gear area roughly approximated by a right angle the circumference is offset. On the other hand, the Pivot axis but also with respect to the resulting R the hydraulic forces in the pressure chamber are that this generates a torque about the pivot axis, which is the approximation of the tooth tips of pinion and ring gear in the non-meshing ring gear area. The cheapest Position for the swivel axis is thus on the side of the Pressure space between the line of the resultant R the hydraulic forces and the non-invasive Ring section of the bearing ring assigned to the ring gear region, with particular preference the pivot axis of the line of Resulting R closer than that of the non-invasive Ring section associated ring gear region.

Im Unterschied zu der eingangs beschriebenen bekannten Innenzahnradmaschine bedarf es somit keines auf den Lagerring wirkenden Druckfelds, durch das der Lagerring zusammen mit dem Hohlrad gegen die im Druckraum herrschenden Kräfte abgestützt ist, um den durch die Verzahnungsgeometrie gegebenen Dichtkontakt der Zahnköpfe im eingriffsfreien Hohlradbereich aufrecht zu erhalten. Vielmehr werden die im Druckraum herrschenden Druckkräfte selbst dazu herangezogen, über das Hohlrad den Lagerring um die Schwenkachse so zu schwenken, daß der eingriffsfreie Hohlradbereich nachgeführt und proportional zur Größe der herrschenden Druckkräfte der Dichtkontakt beibehalten wird.In contrast to the known one described at the beginning Internal gear machine is therefore not required on the Bearing ring acting pressure field through which the bearing ring together with the ring gear against those in the pressure chamber prevailing forces is supported by the Gearing geometry given sealing contact of the tooth tips in the non-intrusive ring gear area. Rather, the pressure forces prevailing in the pressure chamber even used the ring around the bearing ring to pivot the pivot axis so that the non-intrusive Ring gear area tracked and proportional to the size of the prevailing pressure forces the sealing contact is maintained.

Die Schwenklagerung des Lagerrings ist auf unterschiedliche Weise realisierbar, zum Beispiel durch an dem Lagerring selbst vorgesehene Lagerzapfen, die in entsprechende Ausnehmungen des Gehäuses eingreifen. Vorteilhafter und einfacher ist jedoch eine Schwenklagerung des Lagerrings durch einen im Gehäuse fixierten Lagerstift, der mit einem Teil seiner Umfangsfläche als Lagerfläche in einer Axialnut am Außenumfang des Lagerrings liegt. Da der Lagerring durch die im Druckraum herrschenden Kräfte bei der vorstehend als zweckmäßig geschilderten Ausführungsform mit der Axialnut gegen den Lagerstift gedrückt wird, ist die teilzylindrische Axialnut in ihren Abmessungen auf den Lagerstift so abgestimmt, daß eine möglichst gleichmäßige Flächenpressung auftritt. Der Lagerstift verhindert zugleich eine Drehung des Lagerrings in der Gehäusebohrung.The pivot bearing of the bearing ring is different Realizable, for example, by the bearing ring self-provided bearing journals, which in corresponding Engage recesses in the housing. More advantageous and However, a pivot bearing of the bearing ring is easier by a bearing pin fixed in the housing, which with a Part of its peripheral surface as a bearing surface in an axial groove is on the outer circumference of the bearing ring. Because the bearing ring through the forces prevailing in the pressure chamber at the above as expediently described embodiment with the axial groove is pressed against the bearing pin is the Partially cylindrical axial groove in its dimensions on the Bearing pin matched so that it is as uniform as possible Surface pressure occurs. The bearing pin prevents at the same time a rotation of the bearing ring in the housing bore.

Die beschriebene Innenzahnradmaschine kann in einer einfachen Ausführungsform so ausgestaltet sein, daß Ritzel, Hohlrad und Lagerring mit ihren jeweiligen Stirnflächen dichtend unmittelbar an Gehäusewandungen anliegen. Jedoch können zur Verbesserung des Wirkungsgrades in bekannter Weise Axialscheiben vorgesehen sein, die durch Druckfelder in Dichtkontakt mit den Stirnseiten von zumindest Ritzel und Hohlrad gehalten werden. Die Druckfelder können in den Gehäusewandungen und/oder in den der Verzahnung abgewendeten Stirnflächen der Axialscheiben ausgebildet sein.The internal gear machine described can be in one simple embodiment be designed so that pinion, Ring gear and bearing ring with their respective end faces seal directly against the housing walls. However can improve efficiency in known Way axial washers are provided by pressure fields in sealing contact with the end faces of at least pinion and ring gear are held. The pressure fields can be in the Housing walls and / or in the teeth end faces of the axial disks formed his.

Eine weitere Steigerung des Wirkungsgrades der erfindungsgemäßen Innenzahnradmaschine, bei der Axialscheiben vorgesehen sind, läßt sich dann erzielen, wenn durch eine entsprechende Konstruktion dafür gesorgt ist, daß die Axialscheiben gemeinsam mit dem Lagerring und dem Hohlrad die erwünschte Ausgleichsbewegung für die Beibehaltung des Dichtkontakts zwischen den Zahnköpfen ausführen können. Denn hierdurch ist gewährleistet, daß die Steuerung der hydraulischen Druckverhältnisse im Druck-bzw. Saugraum, die in bekannter Weise durch Steuer- bzw. Vorfüllschlitze in den Axialscheiben erfolgt, unabhängig von den Bewegungen des Hohlrads und des Lagerrings optimal bleibt.A further increase in the efficiency of the Internal gear machine according to the invention, in which Axial disks are provided, can then be achieved if ensured by an appropriate construction is that the thrust washers together with the bearing ring and the ring gear the desired compensation movement for the Maintaining the sealing contact between the tooth heads can execute. Because this ensures that the Control of the hydraulic pressure conditions in the pressure or. Suction chamber, which in a known manner by control or Pre-filling slots in the axial washers are made independently optimally from the movements of the ring gear and the bearing ring remains.

Weitere Vorteile und Merkmale der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen anhand der beiliegenden Zeichnungen. In den Zeichnungen zeigen:

  • Fig. 1 eine erste Ausführungsform im Querschnitt längs der Linie I-I in Fig. 2;
  • Fig. 2 einen Axialschnitt längs der Linie II-II in Fig. 1;
  • Fig. 3 eine zweite Ausführungsform im Querschnitt längs der Linie III-III in Fig. 4;
  • Fig. 4 einen Axialschnitt längs der Linie IV-IV in Fig. 3;
  • Fig. 5 eine Innenansicht des Gehäusedeckels, geschnitten längs der Linie V-V in Fig. 4, mit einer Darstellung der zugeordneten Axialscheibe;
  • Fig. 6 eine dritte Ausführungsform in einem Axialschnitt analog zu Fig. 4;
  • Fig. 7 eine Innenansicht des Gehäusedeckels, geschnitten längs der Linie VII-VII in Fig. 6, entsprechend Fig. 5;
  • Fig. 8 eine vierte Ausführungsform in einem Axialschnitt analog zu Fig. 4;
  • Fig. 9 einen Fig. 5 entsprechenden Querschnitt längs der Linie IX-IX in Fig. 8;
  • Fig. 10 eine fünfte Ausführungsform im Querschnitt längs der Linie X-X in Fig. 11;
  • Fig. 11 einen Axialschnitt längs der Linie XI-XI in Fig. 10;
  • Fig. 12 einen Fig. 5 entsprechenden Querschnitt längs der Linie XII-XII in Fig. 11;
  • Fig. 13 eine sechste Ausführungsform im Querschnitt längs der Linie XIII-XIII in Fig. 14;
  • Fig. 14 einen Axialschnitt längs der Linie XIV-XIV in Fig. 13;
  • Fig. 15 einen Fig. 5 entsprechenden Querschnitt längs der Linie XV-XV in Fig. 14;
  • Fig. 16 eine siebte Ausführungsform im Querschnitt längs der Linie XVI-XVI in Fig. 17;
  • Fig. 17 einen Axialschnitt längs der Linie XVII-XVII in Fig. 16, und
  • Fig. 18 einen der Fig. 5 entsprechenden Querschnitt längs der Linie XVIII-XVIII in Fig. 17.
  • Further advantages and features of the invention result from the following description of exemplary embodiments with reference to the accompanying drawings. The drawings show:
  • Figure 1 shows a first embodiment in cross section along the line II in Fig. 2.
  • Fig. 2 is an axial section along the line II-II in Fig. 1;
  • Fig. 3 shows a second embodiment in cross section along the line III-III in Fig. 4;
  • Figure 4 is an axial section along the line IV-IV in Fig. 3.
  • 5 shows an interior view of the housing cover, cut along the line VV in FIG. 4, with a representation of the associated axial disk;
  • 6 shows a third embodiment in an axial section analogous to FIG. 4;
  • Fig. 7 is an interior view of the housing cover, cut along the line VII-VII in Fig. 6, corresponding to Fig. 5;
  • 8 shows a fourth embodiment in an axial section analogous to FIG. 4;
  • FIG. 9 shows a cross section corresponding to FIG. 5 along the line IX-IX in FIG. 8;
  • 10 shows a fifth embodiment in cross section along the line XX in FIG. 11;
  • FIG. 11 shows an axial section along the line XI-XI in FIG. 10;
  • FIG. 12 shows a cross section corresponding to FIG. 5 along the line XII-XII in FIG. 11;
  • Fig. 13 shows a sixth embodiment in cross section along the line XIII-XIII in Fig. 14;
  • Fig. 14 is an axial section along the line XIV-XIV in Fig. 13;
  • FIG. 15 shows a cross section corresponding to FIG. 5 along the line XV-XV in FIG. 14;
  • 16 shows a seventh embodiment in cross section along the line XVI-XVI in FIG. 17;
  • Fig. 17 is an axial section along the line XVII-XVII in Fig. 16, and
  • FIG. 18 shows a cross section corresponding to FIG. 5 along the line XVIII-XVIII in FIG. 17.
  • Die in den Fig. 1 und 2 dargestellte Innenzahnradmaschine umfaßt ein im Ganzen mit 1 bezeichnetes Gehäuse, das aus einem topfförmigen Gehäuseteil 11 und einem an dessen Stirnseite befestigten Gehäusedeckel 12 aufgebaut ist. In dem topfförmigen Gehäuseteil 11 ist eine Ritzelwelle 14 drehbar gelagert, auf der ein Ritzel 2 drehfest befestigt ist. Das Ritzel 2 kämmt mit einem Hohlrad 3, das in einem Lagerring 4 aufgenommen und darin drehbar gelagert ist. Das Ritzel 2 und das Hohlrad 3 sind, wie aus Fig. 1 hervorgeht, relativ zueinander mit einer Exzentrizität e gelagert. Die Exzentrizität e, d. h. der Abstand zwischen der Ritzelachse und der Hohlradachse, entspricht der theoretischen Verzahnungsgeometrie von Ritzel und Hohlrad und setzt spielfreies Abwälzen bzw. Gleiten der Verzahnungen aneinander voraus. Die Verzahnungen des Ritzels 2 und des Hohlrads 3 kämmen in einer Weise miteinander, daß auf der linken Seite in Fig. 1 im Bereich der Trennlinie A die Zähne des Ritzels 2 voll in die Zahnlücken des Hohlrads 3 eingreifen und an den Zahnflanken anliegen, während sie auf der gegenüberliegenden, in Fig. 1 rechten Seite ganz aus den Zahnlücken des Hohlrads 3 ausgetreten sind. In diesem eingriffsfreien Hohlradbereich E stützen sich mehrere der Zahnköpfe des Ritzels 2 und des Hohlrads 3 (in dem gezeigten Ausführungsbeispiel jeweils 3 Zahnköpfe) nacheinander im Verlauf der Umdrehung aufeinander ab. Die Zähnezahlen und die Geometrie der miteinander kämmenden Verzahnungen sind so gewählt, daß diese Art des Kämmens bewirkt werden kann. In dem gezeigten Ausführungsbeispiel sind die Zahnflanken als Evolventen-Kurven gebildet, wobei die Zahnköpfe zur Erzielung eines Wälz- und Gleitkontakts zum Zweck der Abdichtung gerundet sind. Die Zähnezahl des Hohlrads 3 unterscheidet sich von derjenigen des Ritzels 2 um 1.The internal gear machine shown in FIGS. 1 and 2 comprises a housing designated as a whole by 1, which consists of a cup-shaped housing part 11 and one on the latter Front end of the housing cover 12 is constructed. In the cup-shaped housing part 11 is a pinion shaft 14 rotatably mounted on which a pinion 2 rotatably attached is. The pinion 2 meshes with a ring gear 3, which in one Bearing ring 4 is added and rotatably mounted therein. The Pinion 2 and the ring gear 3 are, as is apparent from Fig. 1, stored relative to each other with an eccentricity e. The Eccentricity e, d. H. the distance between the pinion axis and the ring gear axis, corresponds to the theoretical Gear geometry of pinion and ring gear and sets play-free rolling or sliding of the gears ahead of each other. The teeth of the pinion 2 and Ring gear 3 mesh with each other in such a way that on the left in Fig. 1 in the region of the dividing line A Teeth of the pinion 2 fully into the tooth spaces of the ring gear 3 engage and rest on the tooth flanks while they are on the opposite, right in Fig. 1 from the tooth gaps of the ring gear 3 have emerged. In this non-meshing ring gear region E support several of the Tooth tips of the pinion 2 and the ring gear 3 (in the shown embodiment 3 tooth heads each) one after the other in the course of the rotation. The Number of teeth and the geometry of the meshing Gears are chosen so that this type of combing can be effected. In the embodiment shown the tooth flanks are formed as involute curves, whereby the tooth heads to achieve rolling and sliding contact are rounded for the purpose of sealing. The number of teeth on the Ring gear 3 differs from that of pinion 2 at 1.

    Bei der Drehung des Ritzels 2 in der durch Pfeil angedeuteten Richtung vergrößert sich der frei werdende Zahnlückenraum, ausgehend von dem vollen Eingriff der Ritzelverzahnung in die Hohlradverzahnung über der Trennlinie A, zunehmend bis zum Erreichen des aus Fig. 1 ersichtlichen Zustandes beim erneuten Überschreiten der Trennlinie A (auf der rechten Seite in Fig. 1). Hierdurch ist über der Trennlinie der Saugraum S der Innenzahnradmaschine gebildet. Unter der Trennlinie verringert sich der freie Zahnlückenraum wieder zunehmend, so daß dadurch der Druckraum D gebildet ist. In Fig. 1 sind der Saugraum S und der Druckraum D in ihrer Projektion angedeutet; es versteht sich jedoch, daß der Saugraum S und der Druckraum D sich jeweils in Umfangsrichtung innerhalb der Verzahnung erstrecken.When rotating the pinion 2 in the direction of the arrow indicated direction increases the released Tooth gap space, based on the full engagement of the Pinion toothing in the ring gear toothing above the Dividing line A, increasing until reaching that of FIG. 1 visible state when the Dividing line A (on the right side in Fig. 1). Hereby is the suction space S above the dividing line Internal gear machine formed. Under the dividing line the free space between the teeth decreases again, so that the pressure chamber D is formed. 1 are the suction space S and the pressure space D in their projection hinted at; however, it is understood that the suction space S and the pressure chamber D is in the circumferential direction within extend the toothing.

    Der Lagerring 4 ist in einer Gehäusebohrung 15 des topfförmigen Gehäuseteils 11 mit einem Radialspiel von etwa 0,2 mm aufgenommen. Die Wand der Gehäusebohrung 15 wird teilweise von einem Lagerstift 16 durchsetzt, der in den Boden der Gehäusebohrung 15 fest eingepreßt ist. Mit dem über die Wand der Gehäusebohrung 15 überstehenden weitgehend halbzylindrischen Teil des Lagerstifts 16 ist dieser in einer axial gerichteten Nut 17 des Lagerrings 4 aufgenommen. Die Axialnut 17 ist der Form des Lagerstifts 16 angepaßt und ebenfalls teilzylindrisch.The bearing ring 4 is in a housing bore 15 of the pot-shaped housing part 11 with a radial clearance of about 0.2 mm added. The wall of the housing bore 15 is partially penetrated by a bearing pin 16 which in the Bottom of the housing bore 15 is pressed firmly. With the protruding beyond the wall of the housing bore 15 is largely semi-cylindrical part of the bearing pin 16 this in an axially directed groove 17 of the bearing ring 4 added. The axial groove 17 is the shape of the bearing pin 16 adapted and also partially cylindrical.

    Der in die Axialnut 17 eingreifende Lagerstift 16 bildet für den Lagerring 4 eine zu den Achsen von Ritzel 2 und Hohlrad 3 parallel verlaufende Schwenkachse, um welche der Lagerring 4 im Rahmen des zur Verfügung stehenden Radialspiels in der Gehäusebohrung 15 schwenkbar ist. Wie aus Fig. 1 hervorgeht, liegt diese Schwenkachse in einem Quadrant des Lagerrings 4, der sich zwischen dem eingriffsfreien Hohlradbereich E und der Mitte des Druckraums D erstreckt. In dem gezeigten Ausführungsbeispiel befindet sich die Schwenkachse in einem Winkelabstand von etwa 80° von dem Scheitelpunkt des eingriffsfreien Hohlradbereichs E. In diesem Scheitelpunkt stehen zwei Zähne von Ritzel und Hohlrad mit ihren Zahnköpfen weitgehend zueinander ausgerichtet aufeinander.The bearing pin 16 engaging in the axial groove 17 forms for the bearing ring 4 one to the axes of pinion 2 and Ring gear 3 parallel pivot axis about which the Bearing ring 4 within the available Radial play in the housing bore 15 is pivotable. How 1, this pivot axis lies in one Quadrant of the bearing ring 4, which is between the non-meshing ring gear area E and the center of the Pressure chamber D extends. In the shown The swivel axis is in one embodiment Angular distance of about 80 ° from the apex of the non-meshing ring gear area E. At this apex are two teeth of pinion and ring gear with their Tooth heads largely aligned with each other.

    Die Wirkungsweise der Innenzahnradmaschine gemäß den Fig. 1 und 2 ist folgende:The mode of operation of the internal gear machine according to FIG. 1 and 2 is the following:

    Bei Drehung des Ritzels 2 in der gezeigten Drehrichtung wird Fördermedium durch einen nicht gezeigten Saugkanal in den Saugraum S zwischen den Verzahnungen des Ritzels 2 und des Hohlrads 3 eingefördert. Aus dem Druckraum D wird das Fördermedium mit erhöhtem Druck durch einen nicht gezeigten Druckkanal gedrückt. Der diesbezügliche Aufbau einer Innenzahnradmaschine ist hinreichend bekannt und bedarf daher hier keiner gesonderten Erläuterung.When rotating the pinion 2 in the direction of rotation shown is conveyed medium through a suction channel, not shown the suction space S between the teeth of the pinion 2 and promoted the ring gear 3. From the pressure room D that Pumped medium with increased pressure by a not shown Pressure channel pressed. The related structure of a Internal gear machine is well known and required therefore no separate explanation here.

    Die im Druckraum D herrschenden Druckkräfte zwischen den miteinander kämmenden Verzahnungen wirken längs einer Resultierenden R so, daß das Hohlrad 3 sich von dem Ritzel 2 zu entfernen sucht, d. h. es besteht die Neigung, daß der aufgrund der Verzahnungsgeometrie vorhandene Kontakt zwischen den Zähnen von Ritzel 2 und Hohlrad 3, insbesondere der Dichtkontakt zwischen den Zahnköpfen in dem eingriffsfreien Hohlradbereich E, verloren geht. Die durch den Lagerstift 16 bzw. dessen Eingriff in die Axialnut 17 gebildete Schwenkachse des Lagerrings 4 liegt jedoch dem eingriffsfreien Hohlradbereich E näher als die Linie der Resultierenden R. Da die Resultierende R über das Hohlrad 3 auf den Lagerring 4 wirkt, entsteht somit ein Drehmoment um die Schwenkachse 16, 17 in Fig. 1 im Gegenuhrzeigersinn. Durch dieses Drehmoment wird der Lagerring 4 um die Schwenkachse 16, 17 geschwenkt, wodurch der dem eingriffsfreien Hohlradbereich E entsprechende Ringabschnitt annähernd radial bezüglich der Ritzelachse und zu dieser hin bewegt wird. Folglich werden in dem eingriffsfreien Hohlradbereich E die Zahnköpfe von Ritzel 2 und Hohlrad 3 mit einer der Größe der Resultierenden R proportionalen Kraft gegeneinander bewegt. Dadurch ist der Dichtkontakt in diesem Verzahnungsbereich druckproportional aufrecht erhalten.The pressure forces prevailing in the pressure chamber D between the intermeshing teeth work along one Resulting R so that the ring gear 3 is separated from the pinion 2 seeks to remove, d. H. there is a tendency that the existing contact due to the tooth geometry between the teeth of pinion 2 and ring gear 3, especially the sealing contact between the tooth tips in the non-meshing ring gear area E is lost. The through the bearing pin 16 or its engagement in the Axial groove 17 formed pivot axis of the bearing ring 4 is however closer to the non-meshing ring gear region E than that Line of the resultant R. Since the resultant R over the ring gear 3 acts on the bearing ring 4, thus arises Torque about the pivot axis 16, 17 in Fig. 1 in Counterclockwise. Through this torque the Bearing ring 4 pivoted about the pivot axis 16, 17, whereby the corresponding to the non-meshing ring gear region E. Ring section approximately radially with respect to the pinion axis and is moved towards it. Consequently, in the non-meshing ring gear area E the tooth heads of pinion 2 and ring gear 3 with a size of the resultant R proportional force moves against each other. This is the Sealing contact in this toothing area proportional to pressure maintained.

    Der Lagerring 4 weist an einer Stelle, die dem Scheitelpunkt des eingriffsfreien Hohlradbereichs E zugeordnet ist, eine weitere Axialnut 18 mit einem Rechteckquerschnitt an seinem Außenumfang auf. Dieser Axialnut 18 ist in dem Boden der Gehäusebohrung 15 eine Aufnahmebohrung 19 zugeordnet, in der eine Haarnadelfeder 20 gehalten ist. Die Haarnadelfeder 20 ragt in die Axialnut 18 und belastet den Lagerring 4 radial so, daß die Zähne des Hohlrads 3 in dem eingriffsfreien Hohlradbereich E mit ihren Zahnköpfen gegeneinander gedrückt werden. Diese Belastungsrichtung entspricht weitgehend der Bewegungsrichtung, die der Lagerring 4 infolge der Schwenkbewegung um die Schwenkachse 16, 17 ausführt. Die Kraft der Haarnadelfeder 20 kann relativ gering gehalten werden, da sie lediglich dazu dient, den notwendigen Dichtkontakt zwischen den Zahnköpfen in dem eingriffsfreien Hohlradbereich E beim Anlaufvorgang der Innenzahnradmaschine zu gewährleisten, d. h. zu einer Zeit, in der im Druckraum D noch kein Betriebsdruck aufgebaut ist und daher auch noch keine Druckkräfte wirken.The bearing ring 4 has at a point that the Apex of the non-meshing ring gear region E is assigned a further axial groove 18 with a Rectangular cross section on its outer circumference. This Axial groove 18 is in the bottom of the housing bore 15 Receiving hole 19 associated with a hairpin spring 20 is held. The hairpin spring 20 protrudes into the axial groove 18 and loads the bearing ring 4 radially so that the teeth of the ring gear 3 in the non-meshing ring gear region E. their tooth heads are pressed against each other. This Load direction largely corresponds to that Direction of movement that the bearing ring 4 as a result of Performs pivoting movement about the pivot axis 16, 17. The The force of the hairpin spring 20 can be kept relatively low as it only serves the necessary Sealing contact between the tooth heads in the non-invasive Ring gear area E during the startup process To ensure internal gear machine, d. H. at a time, in which no operating pressure has yet been built up in pressure chamber D. and therefore no compressive forces act.

    Die Lage und Richtung der Resultierenden R ist weitgehend vorherbestimmbar und entspricht im wesentlichen der in Fig. 1 eingezeichneten. Der Druckaufbau in dem Druckraum D läßt sich in bekannter Weise durch Vorfüllschlitze an den Zähnen von Ritzel 2 und/oder Hohlrad 3 beeinflussen, so daß z. B. über die Zahnlücken des Druckraums D hinweg ein weitgehend gleicher Druck besteht. In diesem Fall steht die Resultierende R senkrecht auf der in Fig. 1 ausgezogen dargestellten Linie, die den Scheitelpunkt des eingriffsfreien Hohlradbereichs E mit dem Ritzelzahn bei vollem Eingriff in eine Zahnlücke des Hohlrads verbindet.The position and direction of the resultant R is largely predeterminable and corresponds essentially to that in Fig. 1 shown. The pressure build-up in the pressure chamber D leaves in a known manner through pre-filling slots on the teeth of pinion 2 and / or ring gear 3, so that z. B. a largely over the tooth gaps of the pressure chamber D. same pressure exists. In this case the Resulting R drawn perpendicular to that in Fig. 1 line shown which is the vertex of the non-meshing ring gear region E with the pinion tooth fully engages in a tooth gap of the ring gear.

    Im Unterschied zu der vorstehend beschriebenen Ausführungsform gemäß den Fig. 1, 2 zeigen die Fig. 3 bis 18 Ausführungsformen der erfindungsgemäßen Innenzahnradmaschine, die an den Stirnseiten der Verzahnung dichtend anliegende Axialscheiben aufweisen. Das Zusammenwirken von Ritzel und Hohlrad, deren Aufnahme in einem Lagerring und dessen Beweglichkeit relativ zu der Gehäusebohrung stimmt jedoch mit denjenigen der Ausführungsform gemäß den Fig. 1, 2 überein und bedarf daher keiner gesonderten Erläuterung.In contrast to the one described above Embodiment according to FIGS. 1, 2 show FIGS. 3 to 18 embodiments of the invention Internal gear machine on the front of the gearing have sealing axial discs. The Interaction of pinion and ring gear, their inclusion in a bearing ring and its mobility relative to the However, the housing bore corresponds to that of the Embodiment according to FIGS. 1, 2 and needs therefore no separate explanation.

    Bei dem Ausführungsbeispiel gemäß den Fig. 3 bis 5 ist die Ritzelwelle 114 sowohl in dem topfförmigen Gehäuse 111 als auch in dem Gehäusedeckel 112 über Lagerbuchsen 113 gelagert. Der Lagerring 104 weist an seinem Innenumfang einen eingepreßten und folglich mit dem Lagerring eine Einheit bildenden Laufring 105 aus einem Lagermetall, z. B. Bronze, auf, in dem das Hohlrad 103 gelagert ist. Wie aus Fig. 4 hervorgeht, übersteigt der Lagerring 104, 105 die Breite von Ritzel 102 und Hohlrad 103 erheblich und liegt mit seinen Stirnflächen verschiebbar an den Wandungen des Gehäuses 111 bzw. des Deckels 112 an. Hingegen liegt an der Verzahnung von Ritzel und Hohlrad stirnseitig zu beiden Seiten je eine Axialscheibe 130 dichtend an, deren Form aus Fig. 5 hervorgeht. Jede der beiden Axialscheiben weist auf ihrer der Verzahnung zugewendeten Fläche ein Druckfeld 107 auf. Im Bereich des Druckfelds 107 weist die Axialscheibe 130, die auf der Seite des Gehäusedeckels 112 angeordnet ist, drei Durchbrüche 108 auf, die von dem Druckraum zu dem nicht dargestellten Druck-Auslaßkanal im Gehäusedeckel 112 führen. Der Gehäusedeckel 112 weist diametral gegenüber dem Druck-Auslaßkanal einen Saug-Einlaßkanal 109 auf, der sich an seiner Einmündung zu einem Saugfeld 110 erweitert. In der Wand des Gehäuses 111 und des Gehäusedeckels 112 ist je ein Druckfeld 131 angedeutet, durch das die jeweilige Axialscheibe 130 von außen her gegen die Wirkung des inneren Druckfelds 107 so beaufschlagt ist, daß die Axialscheibe bei allen Betriebszuständen Dichtkontakt mit Ritzel 102 und Hohlrad 103 beibehält. Ausbildung und Wirkungsweise der Druckfelder an Axialscheiben sind einschlägig bekannt und bedürfen deshalb an dieser Stelle keiner näheren Erläuterung.3 to 5 is the Pinion shaft 114 both in the cup-shaped housing 111 and also in the housing cover 112 via bushings 113 stored. The bearing ring 104 has on its inner circumference one pressed in and consequently one with the bearing ring Unit-forming race 105 made of a bearing metal, e.g. B. Bronze, in which the ring gear 103 is mounted. How from Fig. 4 shows, the bearing ring 104, 105 exceeds the Width of pinion 102 and ring gear 103 significantly and is with its end faces slidable on the walls of the Housing 111 or cover 112. On the other hand, is due to the Teeth of pinion and ring gear on both sides of the front Sides each an axial washer 130, the shape of which Fig. 5 emerges. Each of the two axial washers has a pressure field 107 on its surface facing the toothing on. In the area of the pressure field 107, the axial disk 130 arranged on the side of the housing cover 112 is, three openings 108, which from the pressure chamber to the Pressure outlet channel, not shown, in the housing cover 112 to lead. The housing cover 112 faces diametrically opposite Pressure outlet channel on a suction inlet channel 109, which is expanded at its mouth to a suction field 110. In the wall of the housing 111 and the housing cover 112 is each a pressure field 131 indicated by which the respective Axial disk 130 from the outside against the action of inner pressure field 107 is applied so that the Axial disc with all operating conditions sealing contact with Retains pinion 102 and ring gear 103. Training and Effect of the pressure fields on axial washers well-known and therefore need at this point no further explanation.

    Auf der der Verzahnung zugewendeten Fläche weisen die Axialscheiben 130 Vorfüllschlitze 132 auf, durch die die Druckverteilung im Druckraum der Verzahnung gesteuert wird. Jede Axialscheibe 130 stützt sich zum Zweck ihrer Lagesicherung einerseits über den Umfang einer Lagerbohrung 133 auf der zugeordneten Lagerbuchse 113 und andererseits an einem in dem Gehäuse 111 bzw. dem Gehäusedeckel 112 eingesetzten Stift 134 ab. Die Stifte 134 ragen jeweils in eine Sackbohrung in der äußeren Stirnfläche der Axialscheiben 130 und sind dadurch axial gehalten.On the surface facing the toothing, the Axial disks 130 prefill slots 132 through which the Pressure distribution in the pressure chamber of the gearing is controlled. Each thrust washer 130 supports itself for the purpose of it Secure position on the one hand over the circumference of a bearing bore 133 on the associated bearing bush 113 and on the other on one in the housing 111 or the housing cover 112 inserted pin 134 from. The pins 134 each protrude into a blind hole in the outer face of the Axial disks 130 and are thereby held axially.

    Die Ausführungsform gemäß den Fig. 6 und 7 unterscheidet sich von derjenigen gemäß den Fig. 3 bis 5 nur dadurch, daß die Axialscheiben 230 sich mit dem Innenumfang ihrer Lagerbohrung 233 nicht auf der jeweils zugeordneten Lagerbuchse 213 abstützen, sondern unmittelbar auf der Ritzelwelle 214. Die Lagerbuchsen 213 enden somit vor den Axialscheiben 230. The embodiment according to FIGS. 6 and 7 differs differs from that according to FIGS. 3 to 5 only in that the axial washers 230 align with the inner circumference of their Bearing bore 233 not on the respectively assigned Support bushing 213, but directly on the Pinion shaft 214. The bearing bushes 213 thus end in front of the Axial washers 230.

    Bei der Ausführungsform gemäß den Fig. 8 und 9 haben die Axialscheiben 330 angenähert eine Sichelform und umgreifen die zugeordneten Lagerbuchsen 313, ohne sich darauf abzustützen. Zu ihrer Lagesicherung sind in diesem Fall für jede Axialscheibe 330 zwei Stifte 334, 335 vorgesehen, die jeweils in den Endbereichen der Axialscheiben 330 in eine Sackbohrung einerseits und in eine entsprechende Bohrung des Gehäuses andererseits eingreifen. Die Lagerbuchsen 313 erstrecken sich bei dieser Ausführungsform unter den Axialscheiben 330 bis nahe an die Verzahnung.In the embodiment according to FIGS. 8 and 9, the Axial disks 330 approximate a sickle shape and embrace the associated bushings 313 without relying on it to support. In this case, to secure their position each thrust washer 330 provided two pins 334, 335 which in each case in the end regions of the axial disks 330 Blind hole on the one hand and in a corresponding hole of the housing on the other hand. The bearing bushes 313 extend in this embodiment among the Axial disks 330 close to the toothing.

    Bei den vorstehend beschriebenen Ausführungsbeispielen gemäß den Fig. 3 bis 9 sind die Axialscheiben relativ zu dem Gehäuse fest angeordnet. Daraus folgt, daß im Betrieb der Innenzahnradmaschine mit der betriebsbedingten Bewegung von Ritzel, Hohlrad und Lagerring relativ zu dem Gehäuse aufgrund der zugelassenen Schwenkbewegung des Lagerrings der Druckraum in der Verzahnung relativ zu den in den Axialscheiben vorgesehenen Steuerschlitzen und Druckfeldern ebenfalls seine Lage verändert. Da hierdurch zwangsläufig Abweichungen von der eingestellten optimalen Lage auftreten, kann der Wirkungsgrad herabgesetzt werden. Um dies zu verhindern; sind bei den Ausführungsformen gemäß den Fig. 10 bis 18 die Axialscheiben in einer Weise angeordnet, daß sie zusammen mit Ritzel, Hohlrad und Lagerring gemeinsam beweglich sind. Dabei sind in allen Fällen die Axialscheiben im Rahmen des Spiels, z. B. des Lagerspiels, gegenüber der Ritzelwelle hinreichend frei, daß sie der Schwenkbewegung des Lagerrings folgen können, um den angestrebten Dichtkontakt der Zahnköpfe nicht zu behindern.In the exemplary embodiments described above 3 to 9, the axial disks are relative to the housing fixed. It follows that in operation the internal gear machine with the operational movement of pinion, ring gear and bearing ring relative to the housing due to the permitted pivoting movement of the bearing ring the pressure space in the toothing relative to that in the Axial disks provided control slots and pressure fields also changed its location. Because this inevitably Deviations from the optimal position set occur, the efficiency can be reduced. Around to prevent this; are in accordance with the embodiments 10 to 18, the thrust washers in a manner arranged that they together with pinion, ring gear and Bearing ring are movable together. Are in all Cases the thrust washers as part of the game, e.g. B. of Bearing play, sufficiently free with respect to the pinion shaft, that they can follow the pivoting movement of the bearing ring, in order not to achieve the desired sealing contact of the tooth heads hinder.

    Bei der Ausführungsform gemäß den Fig. 10 bis 12 weist der Lagerring 404 auf der (in Fig. 11) rechten Seite an beiden Stirnflächen eine Radialnut 440 auf deren Nutgrund mit den Stirnflächen, der Verzahnung in einer Ebene liegt. Die Axialscheiben 430 besitzen an ihrem äußeren Rand einen Fortsatz 441, der mit Spiel in die Nut 440 hineinragt und darin geführt ist. Mit dem Innenumfang ihrer Lagerbohrung 433 stützen sich die Axialscheiben 430 mit einem gewissen Lagerspiel auf dem Umfang der Ritzelwelle 413 ab. Durch diese Abstützung einerseits und die Führung des Fortsatzes 441 in der Nut 440 andererseits ist jede Axialscheibe 430 mit der Bewegungseinheit Ritzel/Hohlrad/Lagerring gekoppelt und führt daher deren Bewegungen mit aus.In the embodiment according to FIGS. 10 to 12, the Bearing ring 404 on the right (in FIG. 11) on both End faces a radial groove 440 on the groove bottom with the End faces, the toothing lies in one plane. The Axial disks 430 have one on their outer edge Extension 441, which projects into the groove 440 with play and is performed in it. With the inner circumference of your bearing bore 433, the thrust washers 430 support themselves with a certain amount Bearing play on the circumference of the pinion shaft 413. By this support on the one hand and the guidance of the extension 441 in groove 440, on the other hand, is each thrust washer 430 with the movement unit pinion / ring gear / bearing ring coupled and therefore carries out their movements.

    Weiterhin sind die dem jeweiligen Druckfeld 407 der Axialscheiben 430 zugeordneten äußeren Druckfelder 431 ausschließlich auf der jeweiligen Außenfläche der Axialscheiben 430 ausgebildet. Bei den betriebsbedingten Schwenkbewegungen des Lagerrings 404 um den Lagerstift 416 bleibt daher die Lage der Druckfelder 407, 431 sowie der Steuerschlitze 432 relativ zum Druckraum weitgehend unverändert. Der in den Lagerring 404 eingepreßte Laufring 405 ist auf die Breite des Hohlrads beschränkt.Furthermore, the respective pressure field 407 are the External pressure fields 431 assigned to axial disks 430 exclusively on the respective outer surface of the Axial disks 430 formed. With the operational Pivotal movements of the bearing ring 404 around the bearing pin 416 therefore remains the location of the pressure fields 407, 431 and the Control slots 432 largely relative to the pressure chamber unchanged. The raceway pressed into the bearing ring 404 405 is limited to the width of the ring gear.

    Die Ausführungsform gemäß den Fig. 13 bis 15 unterscheidet sich von der vorstehend beschriebenen Ausführungsform gemäß den Fig. 10 bis 12 durch die Form der Axialscheiben 530 und deren Art der Lagesicherung. Die Axialscheiben 530 sind in diesem Fall kreisförmig berandet und zwischen Ritzel, Hohlrad einerseits und der zugeordneten Gehäusewandung andererseits voll in dem Raum aufgenommen, der durch die gegenüber Hohlrad und Ritzel größere Breite des Lagerrings 504 geschaffen ist. Auch hier ist die Breite des in den Lagerring 504 eingepreßten Laufrings 505 auf die Breite des Hohlrads beschränkt. Der Außenumfang der Axialscheiben 530 liegt an dem freiliegenden Innenumfang des Lagerrings 504 eng an und weist einen kleinen Fortsatz 541 auf, mit dem die Axialscheibe 530 in die auf jeder Stirnfläche des Lagerrings 504 vorgesehene Radialnut 540 eingreift. Da die Axialscheiben 530 über ihren Außenumfang in dem Lagerring 504 gehalten sind, umgreift der Umfang ihrer Lagerbohrung 533 die Ritzelwelle 513 bei dieser Ausführungsform mit deutlichem Spiel. The embodiment according to FIGS. 13 to 15 differs differs from the embodiment described above 10 to 12 by the shape of the axial discs 530 and their type of position assurance. The thrust washers 530 are in in this case with a circular border and between the pinion, Ring gear on the one hand and the associated housing wall on the other hand, fully absorbed in the space created by the Larger width of the bearing ring compared to the ring gear and pinion 504 is created. Again, the width of the in the Bearing ring 504 pressed race 505 to the width of the Ring gear limited. The outer circumference of the axial washers 530 lies on the exposed inner circumference of the bearing ring 504 close and has a small extension 541 with which the axial disc 530 in the on each end face of the Bearing rings 504 engages provided radial groove 540. Since the Thrust washers 530 over their outer circumference in the bearing ring 504 are held, encompasses the circumference of their bearing bore 533 with the pinion shaft 513 in this embodiment clear game.

    Da die Axialscheiben 530 bei dieser Ausführungsform Ritzel und Hohlrad stirnseitig völlig abdecken, ist im Bereich des Saugraums der Verzahnung ein teilkreisförmiger Durchbruch 536 vorgesehen, der den Zustrom des Fördermediums aus dem Saugkanal 509 zur Verzahnung gestattet.Because the thrust washers 530 in this embodiment are pinions and completely cover the ring gear on the face is in the range of Suction space of the teeth a part-circular breakthrough 536 provided that the inflow of the medium from the Suction channel 509 allowed for toothing.

    Auch bei der Ausführungsform gemäß den Fig. 16 bis 18 sind die Axialscheiben 630 kreisförmig, haben jedoch einen so großen Außendurchmesser, daß sie über das Hohlrad hinaus den Lagerring 604 an dessen Stirnseiten übergreifen. Hierzu ist die Breite des Lagerrings 604 zusammen mit dem darin eingepreßten Laufring 605 auf die Breite von Hohlrad und Ritzel beschränkt. Um die Axialscheiben 630 wiederum zu einem Teil der Bewegungseinheit Ritzel/Hohlrad/Lagerring zu machen, weist der Lagerring 604 eine axial durchgehende Bohrung auf, in der ein Stift 642 aufgenommen ist. Dieser ragt beidendig über die Stirnseiten des Lagerrings 604 hinaus und in Langlöcher 643 der Axialscheiben 630 hinein. Mit dem Innenumfang ihrer Lagerbohrung 633 stützen sich die Axialscheiben 630 in diesem Fall mit engem Lagerspiel auf der Ritzelwelle 613 ab. Hierdurch und durch den Stift 642 sind sie mit dem Lagerring 604 bewegungseinheitlich gekoppelt. Wie in den vorstehend beschriebenen Ausführungsbeispielen gemäß den Fig. 10 bis 15 bleibt daher die Relativlage der Steuerschlitze 632 und der Druckfelder 607 bzw. 631 zur Verzahnung erhalten. Auch hier weisen die Axialscheiben 630 im Bereich des Saugraums einen Durchbruch 636 auf, um den Zutritt des Fördermediums zu gewährleisten.Also in the embodiment according to FIGS. 16 to 18 the axial washers 630 are circular, but have such a shape large outer diameter that they are beyond the ring gear overlap the bearing ring 604 on its end faces. For this is the width of the bearing ring 604 along with that in it Pressed race 605 to the width of the ring gear and Pinion limited. To turn the axial washers 630 part of the movement unit pinion / ring gear / bearing ring make, the bearing ring 604 has an axially continuous Hole in which a pin 642 is received. This protrudes on both ends of the end faces of the bearing ring 604 out and into elongated holes 643 of the axial washers 630. The are supported with the inner circumference of their bearing bore 633 Axial washers 630 in this case with a tight bearing clearance pinion shaft 613. Through this and through the pin 642 they are uniform in motion with the bearing ring 604 coupled. As described in the above Embodiments according to FIGS. 10 to 15 therefore remain the relative position of the control slots 632 and the pressure fields 607 or 631 received for the teeth. Here too, the Axial washers 630 made a breakthrough in the area of the suction chamber 636 to ensure access to the pumped medium.

    Die Erfindung ist nicht auf die Ausbildung der Innenzahnradmaschine gemäß den vorstehend beschriebenen Ausführungsbeispielen beschränkt. So ist es grundsätzlich möglich, anstelle der für Ritzel und Hohlrad gewählten Evolventenverzahnung mit abgerundeten Zahnköpfen eine Trochoiden- oder Zykloidenverzahnung zu wählen. Weiterhin kann an dem Lagerring auch spiegelbildlich zu der Trennlinie A eine der Axialnut für die Schwenkachse entsprechende Axialnut vorgesehen sein für den Fall, daß die Innenzahnradmaschine für beide Drehrichtungen des Ritzels 2 ausgelegt sein soll. In diesem Fall würde der die Schwenkachse bestimmende Lagerstift entsprechend versetzt im Gehäuse angeordnet sein. Schließlich müssen die Nuten in den Stirnseiten des Lagerrings (Fig. 10,13) nicht radial dessen Umfangsfläche durchsetzen, was nur zur Vereinfachung der Herstellung bevorzugt ist, sondern können auf den Innenumfang beschränkte Ausnehmungen sein. Auch kann die Lage von Vorsprung und Ausnehmung zur Erzielung des erwünschten Formschlusses zwischen Axialscheibe und Lagerring auch vertauscht sein.The invention is not based on the training of Internal gear machine according to those described above Embodiments limited. So it is basically possible instead of the one selected for pinion and ring gear Involute toothing with rounded tooth heads one Trochoid or cycloid toothing to choose. Farther can also be a mirror image of the on the bearing ring Dividing line A one of the axial groove for the swivel axis appropriate axial groove may be provided in the event that the internal gear machine for both directions of rotation of the Pinion 2 should be designed. In this case the would Bearing pin determining the pivot axis is offset accordingly be arranged in the housing. Finally, the grooves must be in the end faces of the bearing ring (Fig. 10,13) is not radial enforce its peripheral surface, which is only for simplification the production is preferred, but can on the Internal circumference should be limited recesses. It can also Location of projection and recess to achieve the desired positive locking between the axial washer and Bearing ring may also be interchanged.

    Obwohl in den vorstehenden Ausführungsbeispielen stets zwei Axialscheiben dargestellt und beschrieben sind, kann grundsätzlich auch nur eine Axialscheibe vorgesehen sein, wobei dann gegebenenfalls erforderliche Steuerschlitze und Druckfelder unmittelbar in der Gehäusewand vorgesehen sind, an der Ritzel und Hohlrad stirnseitig anliegen. Schließlich kann die durchgehend als Stift gezeigte und beschriebene Schwenkachse des Lagerrings auch durch eine Kugel realisiert sein, die in einer kalottenförmigen Ausnehmung der Gehäusebohrung aufgenommen ist. Hierdurch ist der Lagerring nicht nur um eine zur Ritzelachse parallele Schwenkachse, sondern allseitig schwenkbar, um Anpassungsbewegungen an Gestaltabweichungen der einzelnen Komponenten ausführen zu können.Although there are always two in the above exemplary embodiments Axial disks are shown and described basically only one axial disk can be provided, where necessary control slots and Pressure fields are provided directly in the housing wall, rest on the front of the pinion and ring gear. Finally can be shown and described throughout as a pen Swivel axis of the bearing ring also through a ball be realized in a dome-shaped recess the housing bore is received. This is the Bearing ring not only around a parallel to the pinion axis Swivel axis, but swiveling on all sides to Adaptation movements to shape deviations of the individual To be able to execute components.

    Claims (19)

    1. Unlined internal gear pump having a housing (1), a bearing ring (4) which is non-rotatably accommodated in a bore (15) in the housing and which can be pivoted about a pivot axis parallel to its axis, an internally toothed hollow gear (3) mounted so as to revolve in the bearing ring, and a pinion (2) which is rotatably mounted in the housing, meshes with the hollow gear and whose teeth, as a result of full engagement in tooth gaps in the hollow gear, on the one hand, and sealing contact with the tooth tips of the hollow gear in a non-engaging region (E) of the hollow gear that is approximately diametrically opposite the tooth-gap engagement, on the other hand, define a suction space (S) and a pressure space (D) in the toothing, characterized in that in order to maintain a substantially equal pressure over the entire pressure space (D), sealing contact between the teeth of pinion and hollow gear is restricted to the region of the full tooth engagement and of the non-engaging region (E) of the hollow gear, and in the pressure space, on a wall of the housing (11, 12) that rests on the side faces of the teeth of the pinion and/or hollow gear, or on an axial disc (130, 230, 330, 430, 530, 630), at least one control slot (132, 432, 632) is provided, and in that the pivot axis (16, 17; 416) of the bearing ring is arranged with respect to the resultant (R) of the hydraulic pressure prevailing in the pressure space (D) such that a torque generated by the resultant effects pivoting of the bearing ring with the effect of mutual approach of the tooth tips of pinion and hollow gear in the non-engaging region (E) of the hollow gear.
    2. Internal gear pump according to Claim 1, characterized in that the pivot axis (16, 17) is located on the side of the pressure space (D) between the line of the resultant (R) of the pressure forces and the annular section of the bearing ring associated with the non-engaging region (E) of the hollow gear.
    3. Internal gear pump according to Claim 2, characterized in that the pivot axis is located closer to the line of the resultant (R) than to the annular section associated with the non-engaging region (E) of the hollow gear.
    4. Internal gear pump according to one of Claims 1 to 3, characterized in that the pivot axis is arranged on the outer circumference of the bearing ring.
    5. Internal gear pump according to Claim 1, characterized in that the pivot axis is formed by a bearing pin (16) which is fixed to the housing and which is accommodated with its circumferential face partially in an axial groove (17) in the outer circumferential face of the bearing ring.
    6. Internal gear pump according to one of Claims 1 to 5, characterized in that the annular section associated with the non-engaging region (E) of the hollow gear is spring-loaded radially towards the pinion shaft.
    7. Internal gear pump according to Claim 6, characterized in that the annular section associated with the non-engaging region (E) of the hollow gear has, on the outer circumference, a recess (18) in which a spring (20) supported on the housing (1) engages.
    8. Internal gear pump according to one of Claims 1 to 7, characterized in that the pressure space (D) is sealed off by axial discs (130 to 630) resting on the side faces of the toothing of pinion and hollow gear.
    9. Internal gear pump according to Claim 8, characterized in that each axial disc (130, 230) is supported by at least one protrusion (pin 134) on the housing and by a bearing bore (133, 233) on the pinion shaft (113, 114; 214).
    10. Internal gear pump according to Claim 8, characterized in that each axial disc (330) is supported by at least two protrusions (pins 334, 335) on the housing.
    11. Internal gear pump according to Claim 8, characterized in that the axial discs (430, 530, 630), together with the bearing ring (404, 504, 604) and the hollow gear, can be pivoted relative to the housing.
    12. Internal gear pump according to Claim 11, characterized in that the bearing ring is connected to the axial discs by a form fit.
    13. Internal gear pump according to Claim 12, characterized in that the bearing ring (404, 504) has at least one recess (440, 540), in which a protrusion (441, 541) formed on each axial disc (430, 530) engages.
    14. Internal gear pump according to Claim 13, characterized in that each protrusion on the axial discs is associated with a separate recess in the bearing ring.
    15. Internal gear pump according to Claim 13 or 14, characterized in that the protrusion is guided with play in the recess in the bearing ring, and the axial disc is supported with a bearing bore (433, 533) on the pinion shaft.
    16. Internal gear pump according to Claim 11 or 12, characterized in that each axial disc (530) is circular and is accommodated with its outer circumference in the bearing ring (504).
    17. Internal gear pump according to Claim 11, characterized in that each axial disc (630) is circular and is supported on the associated end face of the bearing ring (604) and with a bearing bore (633) on the pinion shaft.
    18. Internal gear pump according to Claim 17, characterized in that the axial disc is connected to the bearing ring by a form fit.
    19. Internal gear pump according to Claim 18, characterized in that the form-fitting connection comprises a pin (642) which engages in a bore in the bearing ring and in a slot (643) in the axial disc.
    EP97121424A 1996-12-12 1997-12-05 Internal gear pump Expired - Lifetime EP0848165B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19651683A DE19651683A1 (en) 1996-12-12 1996-12-12 Internal gear pump without filler
    DE19651683 1996-12-12

    Publications (3)

    Publication Number Publication Date
    EP0848165A2 EP0848165A2 (en) 1998-06-17
    EP0848165A3 EP0848165A3 (en) 1999-08-18
    EP0848165B1 true EP0848165B1 (en) 2001-09-26

    Family

    ID=7814476

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP97121424A Expired - Lifetime EP0848165B1 (en) 1996-12-12 1997-12-05 Internal gear pump

    Country Status (6)

    Country Link
    US (1) US6074189A (en)
    EP (1) EP0848165B1 (en)
    JP (1) JP3323432B2 (en)
    KR (1) KR100325593B1 (en)
    AT (1) ATE206183T1 (en)
    DE (3) DE19651683A1 (en)

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102018222173A1 (en) 2018-12-18 2020-06-18 Eckerle Technologies GmbH Internal gear fluid machine without filler
    DE102020111435A1 (en) 2020-04-27 2021-10-28 Eckerle Technologies GmbH No filler piece internal gear fluid machine

    Families Citing this family (25)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19804133A1 (en) * 1998-02-03 1999-08-12 Voith Turbo Kg Sickle-free internal gear pump
    DE19815421A1 (en) 1998-04-07 1999-10-14 Eckerle Ind Elektronik Gmbh Internal gear machine
    US6152717A (en) * 1998-06-11 2000-11-28 Unisia Jecs Corporation Internal gear pumps
    DE10004518A1 (en) * 2000-02-02 2001-08-09 Continental Teves Ag & Co Ohg Braking system
    DE10013760A1 (en) * 2000-03-20 2001-10-04 Continental Teves Ag & Co Ohg Internal cog pump whose internal gear runs on roller bearings
    DE10027811A1 (en) * 2000-06-05 2001-12-13 Luk Fahrzeug Hydraulik Cellular pump with housing and pressure plates uses distance piece between pressure plate and chamber ring surfaces plus seal round between pressure-side plate and housing.
    DE10035900A1 (en) * 2000-07-21 2002-01-31 Bosch Gmbh Robert Internal gear pump
    DE10052779A1 (en) 2000-10-25 2002-05-08 Eckerle Ind Elektronik Gmbh Internal gear pump without filler
    DE10109769A1 (en) * 2001-03-01 2002-09-05 Eckerle Ind Elektronik Gmbh Internal gear pump without filler
    DE10109770A1 (en) 2001-03-01 2002-09-05 Eckerle Ind Elektronik Gmbh Internal gear pump without filler
    DE10114148C1 (en) * 2001-03-22 2002-06-06 Dieter Brox Self-centering gearwheel pump, especially for flowable pastes and fluids, includes driving gearwheel axially fitted non-positively on smooth drive shaft and with eccentric hollow wheel to compensate radial heat expansions
    DE10150653A1 (en) * 2001-10-13 2003-04-30 Bosch Gmbh Robert Internal gear pump
    US7278841B2 (en) * 2001-12-13 2007-10-09 Performance Pumps, Llc Gerotor pump
    US20050063851A1 (en) * 2001-12-13 2005-03-24 Phillips Edward H Gerotor pumps and methods of manufacture therefor
    WO2006133590A1 (en) * 2005-06-17 2006-12-21 Gotec Sa Compensated gear pump with modular components
    JP4369940B2 (en) * 2006-07-12 2009-11-25 アイシン・エーアイ株式会社 Lubricating structure of rotary shaft oil seal
    DE102009028148A1 (en) * 2009-07-31 2011-02-03 Robert Bosch Gmbh gear pump
    US9394893B2 (en) 2010-02-26 2016-07-19 Mahle International Gmbh Oscillating slide machine that pumps different fluid mediums at different pressures
    DE102010009471A1 (en) * 2010-02-26 2011-09-01 Mahle International Gmbh Controllable hydraulic oscillating slide machine e.g. oil pump, for use in motor vehicle, has slide drivers coupled with piston, where pressure level in chambers is adjusted different than pressure level in other chambers
    DE102011082578A1 (en) 2011-09-13 2013-03-14 Robert Bosch Gmbh Gear pump for conveying fluid, particularly for delivering fuel in high-pressure fuel injection system, has internally toothed ring, which has multiple tooth heads, where externally toothed gear has multiple other tooth heads
    DE102012211229A1 (en) 2012-06-29 2014-01-02 Robert Bosch Gmbh Rotary piston pump, particularly gear pump, has chamber having maximum chamber volume that is limited by portions of pump housing, such that two of pump housings are provided with separate filling bodies with different volumes
    JP6507998B2 (en) * 2015-11-03 2019-05-08 株式会社デンソー Fuel pump
    DE102015225734A1 (en) * 2015-12-17 2017-06-22 Robert Bosch Gmbh Internal gear pump
    DE102017108888A1 (en) 2017-04-26 2018-10-31 Schaeffler Technologies AG & Co. KG Connecting rod of a reciprocating engine
    DE102018222179A1 (en) * 2018-12-18 2020-06-18 Eckerle Technologies GmbH Gear fluid machine

    Family Cites Families (46)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US2792788A (en) * 1957-05-21 eames
    US1460487A (en) * 1921-09-16 1923-07-03 Wilford J Hawkins Rotary compressor, expander, motor, and pump
    US1442828A (en) * 1921-10-04 1923-01-23 William F Rotermund Rotary pump
    US1970146A (en) * 1926-03-01 1934-08-14 Myron F Hill Reversible liquid pump
    US1719639A (en) * 1926-09-03 1929-07-02 James B Tuthill Rotary machine
    US1719640A (en) * 1926-10-30 1929-07-02 James B Tuthill Rotary machine
    US1700818A (en) * 1926-12-29 1929-02-05 James B Tuthill Rotary machine
    US1990750A (en) * 1931-03-02 1935-02-12 Gulf Res & Dev Corp Variable volume pump and hydraulic transmission
    US2076664A (en) * 1932-06-04 1937-04-13 William H Nichols Pump
    US2132813A (en) * 1933-06-10 1938-10-11 Gunnar A Wahlmark Rotary engine
    US2246279A (en) * 1935-06-26 1941-06-17 Davidson Mfg Corp Compressor
    US2291354A (en) * 1940-07-29 1942-07-28 Franklin D Dougherty Rotary pump
    US2380783A (en) * 1941-04-07 1945-07-31 Gerotor May Company Pump structure
    US2340787A (en) * 1941-04-11 1944-02-01 Linde Air Prod Co Means for balancing rotary pumps
    US2405061A (en) * 1942-12-02 1946-07-30 Eaton Mfg Co Pump structure
    GB587684A (en) * 1944-07-18 1947-05-02 Eaton Mfg Co Improvements in or relating to rotary pumps
    US2502173A (en) * 1946-04-09 1950-03-28 Linde Air Prod Co Fluid balancing means
    US2654532A (en) * 1946-10-30 1953-10-06 Nichols Thomas Winter Rotary compressor
    US2600477A (en) * 1947-08-21 1952-06-17 Procter & Gamble Proportioning pump
    US2823615A (en) * 1949-12-03 1958-02-18 Borg Warner Pump with pressure loaded bushings
    US2787963A (en) * 1953-05-05 1957-04-09 Sundstrand Machine Tool Co Pump
    US2809595A (en) * 1954-01-26 1957-10-15 American Brake Shoe Co Pump casing construction
    FR1127162A (en) * 1954-07-02 1956-12-10 vane pump
    US3034446A (en) * 1957-09-06 1962-05-15 Robert W Brundage Hydraulic pump or motor
    US3198127A (en) * 1959-05-19 1965-08-03 Robert W Brundage Hydraulic pump or motor
    US3034447A (en) * 1959-05-19 1962-05-15 Robert W Brundage Hydraulic pump or motor
    US3034448A (en) * 1959-05-19 1962-05-15 Robert W Brundage Hydraulic pump
    GB963736A (en) * 1959-08-12 1964-07-15 Merritt & Company Engineering Improvements in rotary fluid pumps of the n and n+1 type
    GB1233376A (en) * 1967-11-17 1971-05-26
    US3551079A (en) * 1969-05-05 1970-12-29 Emerson Electric Co Pressure sealed hydraulic pump or motor
    FR2107685A5 (en) * 1970-09-16 1972-05-05 Masch F Reichert
    DE2110779A1 (en) * 1971-03-06 1972-09-21 Friedrich Reichert Gmbh Maschf Internally toothed gear pump for high pressures
    US4013388A (en) * 1975-10-06 1977-03-22 Safe Way Hydraulics, Inc. Support means for floating rotary ring member
    DE2742821C2 (en) * 1977-09-23 1982-11-25 Zahnradfabrik Friedrichshafen Ag, 7990 Friedrichshafen Gear pump with constant flow direction when the drive direction changes
    DE2942417A1 (en) * 1979-10-19 1981-05-14 Otto Eckerle GmbH & Co KG, 7502 Malsch INTERNAL GEAR MACHINE
    US4413960A (en) * 1981-04-02 1983-11-08 Specht Victor J Positionable control device for a variable delivery pump
    JPS5979083A (en) * 1982-10-27 1984-05-08 Sumitomo Electric Ind Ltd Rotor for rotary pump
    US4619588A (en) * 1984-04-25 1986-10-28 Facet Enterprises, Incorporated Wet motor gerotor fuel pump with vapor vent valve and improved flow through the armature
    DE3500139A1 (en) * 1985-01-04 1986-07-10 Robert Bosch Gmbh, 7000 Stuttgart AGGREGATE FOR PROMOTING FUEL FROM A STORAGE TANK TO AN INTERNAL COMBUSTION ENGINE
    JPS61232395A (en) * 1985-04-05 1986-10-16 Yamada Seisakusho:Kk Method of setting side clearance in internal gear pump
    GB2215401B (en) * 1988-02-26 1992-04-15 Concentric Pumps Ltd Gerotor pumps
    DE3912965A1 (en) * 1989-04-20 1990-10-25 Bosch Gmbh Robert AGGREGATE FOR CONVEYING FUEL
    US4978282A (en) * 1989-09-18 1990-12-18 Industrial Technology Research Institute Electrical fuel pump for small motorcycle engine
    US5122039A (en) * 1990-05-29 1992-06-16 Walbro Corporation Electric-motor fuel pump
    US5219277A (en) * 1990-05-29 1993-06-15 Walbro Corporation Electric-motor fuel pump
    DE4135725C2 (en) * 1991-10-30 1994-05-26 Voith Gmbh J M Internal gear pump with two ring gears and a common pinion

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102018222173A1 (en) 2018-12-18 2020-06-18 Eckerle Technologies GmbH Internal gear fluid machine without filler
    DE102020111435A1 (en) 2020-04-27 2021-10-28 Eckerle Technologies GmbH No filler piece internal gear fluid machine

    Also Published As

    Publication number Publication date
    US6074189A (en) 2000-06-13
    DE59704716D1 (en) 2001-10-31
    EP0848165A2 (en) 1998-06-17
    EP0848165A3 (en) 1999-08-18
    DE29703656U1 (en) 1997-05-15
    ATE206183T1 (en) 2001-10-15
    JP3323432B2 (en) 2002-09-09
    JPH10281079A (en) 1998-10-20
    KR19980064065A (en) 1998-10-07
    KR100325593B1 (en) 2002-07-08
    DE19651683A1 (en) 1998-06-18

    Similar Documents

    Publication Publication Date Title
    EP0848165B1 (en) Internal gear pump
    EP0918961A1 (en) Step-down gear unit
    DE112007002103B4 (en) Rolling element screw
    DE10133230A1 (en) Wave transmission unit
    CH679062A5 (en)
    EP0949419B1 (en) Internal gear pump
    DE4112291C2 (en)
    EP1328730B1 (en) Internal geared wheel pump without a filler piece
    EP3441613B1 (en) Hydrostatic gearwheel rotary piston machine
    EP1831590B1 (en) Device, especially a planet gear, comprising an annular base body
    WO2006058743A1 (en) Gear mechanism
    DE19517296C2 (en) Internal gear pump without filler
    DE4421255C1 (en) Packing pieceless inner gearwheel pump
    DD294763A5 (en) TRANSMISSION
    DE3827880C2 (en)
    EP2655802B1 (en) Gear machine with a small diameter-to-length ratio
    EP1643159A2 (en) Eccentric gearing
    EP0469135B1 (en) Gear pump or motor
    DE3346519C2 (en)
    DE19542779A1 (en) Compact and potentially very small, mass-produced, plastic epicyclic gear unit
    DE3327772A1 (en) Positive displacement machine, in particular epicyclic gear with integrated hydraulic motor
    EP3420193B1 (en) Compressor
    EP1364127A1 (en) Internal gear pump that does not contain any filler elements
    EP0867640B1 (en) Device to convert a rotation into a translation
    EP1364126A1 (en) Internal gear pump that does not contain any filler elements

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT CH DE ES FR GB IT LI SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 19991002

    AKX Designation fees paid

    Free format text: AT CH DE ES FR GB IT LI SE

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    17Q First examination report despatched

    Effective date: 20010302

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT CH DE ES FR GB IT LI SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20010926

    REF Corresponds to:

    Ref document number: 206183

    Country of ref document: AT

    Date of ref document: 20011015

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 59704716

    Country of ref document: DE

    Date of ref document: 20011031

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20011205

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20011231

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20011231

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    ET Fr: translation filed
    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20011213

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020326

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    26N No opposition filed
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20071205

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20071228

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20071221

    Year of fee payment: 11

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20081205

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20090831

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20081205

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20081231

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20081205

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20141218

    Year of fee payment: 18

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 59704716

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59704716

    Country of ref document: DE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160701