EP0843750B1 - Verfahren zur herstellung von polyestergarne mit einer hohen anzahl von feinfilamenten - Google Patents

Verfahren zur herstellung von polyestergarne mit einer hohen anzahl von feinfilamenten Download PDF

Info

Publication number
EP0843750B1
EP0843750B1 EP95929383A EP95929383A EP0843750B1 EP 0843750 B1 EP0843750 B1 EP 0843750B1 EP 95929383 A EP95929383 A EP 95929383A EP 95929383 A EP95929383 A EP 95929383A EP 0843750 B1 EP0843750 B1 EP 0843750B1
Authority
EP
European Patent Office
Prior art keywords
yarn
filaments
rdr
filament
denier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95929383A
Other languages
English (en)
French (fr)
Other versions
EP0843750A1 (de
Inventor
David George Bennie
Robert James Collins
Hans Rudolf Edward Frankfort
Stephen Buckner Johnson
Benjamin Hughes Knox
Joe Forrest London, Jr.
Elmer Edwin Most, Jr.
Girish Anant Pai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Publication of EP0843750A1 publication Critical patent/EP0843750A1/de
Application granted granted Critical
Publication of EP0843750B1 publication Critical patent/EP0843750B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/082Melt spinning methods of mixed yarn
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch

Definitions

  • the invention concerns improvements in and relating to melt-spinning fine continuous filament polyester yarns and particularly to an improved process for preparing such yarns of high filament count (HFC) having improved uniformity such as makes these yarns especially suitable for textile end-uses that may require downstream processing without breaking filaments and for use in dye-critical textile applications.
  • HFC high filament count
  • Polyester filament yarns of denier per filament (dpf) less than about 1 are commercially available, but are more costly to make than filament yarns of more conventional dpf (similar to that of cotton).
  • Our so-called "parent” application No. 07/647,371 (now abandoned in favor of a continuation-in-part application now issued as U.S. Patent No. 5,250,245, as was a companion case, now issued as U.S. Patent No. 5,288,553, the disclosure of both of which are hereby incorporated herein by reference) was concerned with the preparation of such fine filaments by a novel direct melt-spinning process.
  • an incumbent yarn has filaments of denier 1.5 dpf (and we shall refer to this incumbent yarn as a low filament count (LFC) yarn) is to be replaced by a finer filament yarn whose filaments are of half the dpf of the LFC yarn, i.e., 0.75 dpf
  • the number of filaments in the finer filament (0.75 dpf) yarn needs to be approximately twice that of the incumbent LFC yarn to be a direct replacement in existing textile end-uses, i.e., to provide the same fabric weight (grams/meters 2 ).
  • Some fiber producers have, therefore, spun two (or more) separate smaller fine filament "bundles” and have then co-mingled (interlaced) the separate smaller bundles to provide a single HFC yarn of the desired total yarn denier (D Y ) equal to that of the larger dpf LFC yarn that is to be replaced.
  • QF (quench factor) [(Q a /W) +0.2 ][(FED)(L q ) -0.7 ] W(g/
  • capillary dimensions herein and in the art can be extremely important. Such dimensions are preferably such that the L/D ratio is at least 2, and the L/D 4 value is at least 335 mm -3 .
  • melt-spinning productivity P s
  • V s withdrawal speed
  • RDR residual spun draw ratio
  • the resulting interlaced multi-filament yarns are believed new, as will be indicated, because they number at least 150 filaments of fine denier, up to 2.2 spun dpf (dpf) s , and up to 1 dpf, when drawn, and yet their filament entanglement shows unitary interlace. They show desirable uniformity, as expressed for the filaments by low DTV values, and desirably by low DS, and for the yarns by high (T B ) n values, as indicated.
  • spin-oriented yarns may be used as such, i.e., in as-spun condition as "direct-use" yarns, and most of them may be drawn in a coupled or split process, single-end or in a form of a sheet of few ends, or in the form of a weftless warp sheet, to provide drawn flat multi-filament yarns having a residual elongation as desired, generally between about 15% to about 40%, and normalized (T B )n values of at least 5 g/dd, preferably of at least 5.5 g/dd, and especially of at least 6 g/dd.
  • Such drawing may be incorporated as part of a split or coupled draw-texturing process, such as draw air-jet texturing or draw false-twist texturing, in which case the yarns may be drawn to somewhat higher elongation, e.g. up to about 45%.
  • the yarns may, if desired, be subjected to a compression crimping process (e.g., stuffer-box crimping).
  • the HFC yarns of the invention (whether spun or drawn, flat or textured yarns) have unitary interlace and have at least 150 filaments, preferably at least 175 filaments and especially at least 200 filaments.
  • the spun denier (dpf) s of the as-spun filaments is desirably 0.5 to 2.2, and preferably 0.6, 0.65 or 0.7 on up, e.g., to about 2 (dpf) s .
  • the denier per filament of the drawn (e.g., flat or draw-textured) HFC yarns of the invention desirably have a filament denier of about 1 or less and generally up to about 0.8, e.g. 0.2 to 0.8 dpf.
  • Draw-textured HFC yarns of the invention are further characterized by an elongation-to-break of 15% to 45%, a normalized tenacity-at-break-denier of at least 4 g/dd, preferably at least 4.5 g/dd, and a Toray Fray Count of less than 10 per 1000 meters, preferably less than 5 per 1000 meters. Indeed, as may be seen in the Examples, Fray Counts of 0 have been achieved according to the invention.
  • High filament count (HFC) post-bulkable yarns may be prepared by spinning and gently heat-setting an HFC mixed-filament yarn comprised of two or more types of filaments that differ in denier and/or cross-section under conditions selected such as to provide a potential differential shrinkage (because of differential crystallinity) between the filament types, i.e.
  • the surface filaments after boil-off shrinkage (ABO) desirably have a (dpf) ABO of less than 1, and preferably less than 0.8; and the total yarn average (dpf) Y (after boil-off) should generally be less than 1 (as shown, e.g., in Example 5).
  • the polyester polymer used for preparing spin-oriented filament yarns of the invention is the same as for the "parent" application; that is, the polyester polymer is an ethylene terephthalate polymer selected to have a relative viscosity (LRV) in the range about 13 to about 23, a zero-shear melting point (T m o ) in the range about 240°C to about 265°C; and desirably a glass-transition temperature (T g ) in the range about 40°C to about 80°C (wherein T m o and T g are measured from the second DSC heating cycle under nitrogen gas at a heating rate of 20°C per minute).
  • LDV relative viscosity
  • T m o zero-shear melting point
  • T g glass-transition temperature
  • the said polyester polymer is a linear condensation polymer composed of alternating A and B structural units, where the A's are hydrocarbylene dioxy units of formula [-O-R'-O-] and the B's are hydrocarbylenedicarbonyl units of formula [-C(O)-R''-C(O)-], wherein R' is primarily [-C 2 H 4 -], as in the ethylenedioxy (glycol) unit [-O-C 2 H 4 -O-], and R'' is primarily [-C 6 H 4 -], as in the 1,4-phenylenedicarbonyl unit [-C(O)-C 6 H 4 -C(O)-], such as to provide sufficient ethylene terephthalate [-O-C 2 H 4 -O-C(O)-C 6 H 4 -C(O)-] repeat groups so as to maintain the T m o between about 240°C and about 280°C.
  • PET poly(ethylene terephthalate)-based polymer
  • 2GT Suitable poly(ethylene terephthalate)-based polymer
  • DMT-process e.g., as described by H. Ludewig in his book “Polyester Fibers, Chemistry and Technology", John Wiley and Sons Limited (1971), or by a TPA-process, e.g., as described in Edging U. S. Patent No. 4,110,316.
  • copolyesters in which, for example, up to about 15 percent (or even 20 percent) of the hydrocarbylenedioxy and/or hydrocarbylenedicarbonyl units are replaced with different hydrocarbylenedioxy and hydrocarbylenedicarbonyl units to provide enhanced low temperature disperse dyeability, comfort, and aesthetic properties.
  • Suitable replacement units are disclosed, e.g., in Most U. S. Patent No. 4,444,710 (Example VI), Pacofsky U. S. Patent No. 3,748,844 (Col. 4), and Hancock, et al. U. S. Patent No. 4,639,347 (Col. 3).
  • Polyester polymers used herein, may, if desired, be modified by incorporating ionic dye sites, such as ethylene-5-M-sulfo-isophthalate residues, where M is an alkali metal cation, for example in the range of about 1 to about 3 mole percent.
  • ionic dye sites such as ethylene-5-M-sulfo-isophthalate residues, where M is an alkali metal cation, for example in the range of about 1 to about 3 mole percent.
  • DEG diethylene glycol
  • copolyesters may be used as mentioned in Most U. S.
  • Patent 4,444,710 Pacofsky U. S. Patent 3,748,844, Hancock U. S. Patent 4,639,347, and Frankfort and Knox U. S. Patents 4,134,882 and 4,195,051.
  • representative branching agents may be used to reduce shrinkage as mentioned in Knox U. S. Patent 4,156,071 , MacLean U. S. Patent 4,092,229, and Reese U. S.
  • Patents 4,883,032, 4,996,740, and 5,034,174; and polymer of higher viscosity may be used to control yarn shrinkage (e.g., the extent of crystallization).
  • untextured filaments and yarns are referred to herein as "flat”, and as-spun (undrawn) flat yarns intended for drawing as “feed” or as “draw-feed” yarns.
  • As-spun (undrawn) yarns which can be used as a "textile” yarn without need for further drawing and/or heat treatment are referred to herein as "direct-use” yarns.
  • a "textile" yarn should generally have certain minimum properties, such as sufficiently high modulus and yield point, and sufficiently low shrinkage, which distinguish such "textile” yarns from conventional feed yarns that require further processing before they have the minimum properties for processing into textiles and subsequent use.
  • polyester filaments in other forms such as bundles or tows, which may then be converted into staple fiber, and used as such in accordance with the balance of properties that is desirable and may be achieved as taught hereinafter.
  • a main purpose of the present invention has been to solve the productivity problems and disadvantages of the prior art, namely having to melt spin separate filament bundles of lower number of filaments and having to combine 2 or more such separate filament bundles to provide the desired total yarn denier (D Y ) by interlacing or co-mingling such lesser bundles (having less filaments) to provide the desired total yarn denier (D Y ) prior to draw-warping or after draw-texturing and, in doing this, to provide filaments of sufficient along-end structural uniformity, measured herein by along-end draw tension variation (DTV,%), along-end denier spread (DS,%), which indicates sufficient physical uniformity, and mechanical quality, as measured by the yarn tenacity-at-break-denier normalized to a polymer LRV of 20.8, for use in textile processing (i.e., providing uniform textile yarns with essentially no broken filaments, herein referred to as "frays").
  • Fine filament yarns of this invention may be subjected to warp drawing, air-jet texturing, false-twist texturing, gear crimping, and stuffer-box crimping, for example.
  • Process B is far preferable to more expensive solutions, such as modifying the "bent configuration” to eliminate this "twist trap” phenomenon by moving the heater and/or spindle, or replacing the existing "bent” machines and buying “tall” linear configuration FTT machines, or buying Murata belt machines, which are more costly solutions than Process B (one aspect of this invention).
  • Our new filaments (and bundles/tows made therefrom) may be crimped, if desired, and cut into staple and flock. Fabrics made from these improved yarns may be surface-treated by conventional sanding and brushing to give suede-like tactility.
  • Our new low shrinkage filament yarns may be used as direct-use flat textile yarns. The new yarns may be used as feed yarns for air-jet texturing and stuffer-box crimping, wherein no drawing need be carried out.
  • the improved combination of filament strength and uniformity makes these filaments especially suited for end-use processes that require fine filament yarns without broken filaments (or filament breakage), and/or require uniform dyeing with critical dyes.
  • Fine denier filament polyester yarns of the invention are especially suitable for making high-end density moisture-barrier fabrics, such as rainwear and medical garments.
  • the surface of the knit and woven fabrics can be napped (brushed or sanded).
  • the filaments may be treated (preferably in fabric form) with conventional alkali procedures.
  • Our new fine filaments may also be used as coverings for elastomeric yarns (and strips), preferably by air entanglement as described by Strachan in U. S. Patent No. 3,940,917.
  • the fine filaments of the invention may be co-mingled on-line during spinning or off-line with higher denier polyester (or nylon) filaments to provide for cross-dyed effects and/or mixed-shrinkage post-bulkable potential, where the bulk may be developed off-line, such as overfeeding in presence of heat while beaming/slashing or in fabric form, such as in the dye bath.
  • the degree of interlace and type/amount of finish applied during spinning may generally be selected based on the textile processing needs and final desired yarn/fabric aesthetics.
  • the filament surface frictional characteristics may be changed by selection of cross-section, delusterants, and through such treatments as alkali-etching Further, the frictional characteristics may be enhanced to be more silk-like by use of silicon dioxide versus titanium dioxide delusterants. Other inert metal oxides may be used as delusterants.
  • the spin-oriented polyester filaments, used herein, may advantageously be treated with caustic applied to freshly-extruded filaments, as described by Grindstaff and Reese U.S. Patents Nos. 5,069844, 5069,845 and 5,069,846 to provide the polyester filaments with improved moisture-wicking properties, more akin to those of the nylon filaments.
  • any type of draw winding machine may be used; post heat treatment of the feed and/or drawn yarns, if desired, may be applied by any type of heating device (such as heated godets, hot air and/or steam jet, passage through a heated tube, microwave heating, etc.); finish application may be applied by convention roll application, herein metered finish tip applicators are preferred and finish may be applied in several steps, for example during spinning prior to drawing and after drawing prior to winding; interlace may be developed by using heated or unheated entanglement air-jets and may be developed in several steps, such as during spinning and during drawing and other devices may be used, such as use of tangle-reeds on a weftless sheet of yarns.
  • any type of draw winding machine may be used; post heat treatment of the feed and/or drawn yarns, if desired, may be applied by any type of heating device (such as heated godets, hot air and/or steam jet, passage through a heated tube, microwave heating, etc.); finish application may be applied by convention
  • feed filaments may be supplied and/or processed according to the invention in the form of a yarn or as a bundle of filaments that does not necessarily have the coherency of a true "yarn", but for convenience herein a plurality of filaments may often be referred to as a yarn or bundle, without intending specific limitation by such term.
  • the draw tension variation was measured on the DuPont "Draw Tension Instrument”at a draw-ratio of 1.707X for as-spun yarns having elongations of at least 90% at 185°C over a heater length of 1 meter at 185 ypm (169.2 mpm) wherein casablanca type rolls (vs. nip rolls) are used to control tension.
  • DTV draw tension variation
  • DYNAFIL DYNAFIL
  • TEXTECHNO a fixed-strain device which uses a non-contact heater (length about 30 inches), and normal set up is a 1.6X draw ratio.
  • Yarns having denier spread (DS) values in the range of 2 to 2.5% are denoted by the letter “N” (indicating not preferred but according to the invention).
  • Yarns having a preferred normalized tenacity-at-break-denier (T B ) n of at least 6 g/dd are denoted by a letter "T”.
  • Yarns having elongation-to-break (E B ) values in the range of 160 to 175% are noted by the letter “E”, as such yarns have lower age-stability than draw-feed yarns of lower elongation-to-break, e.g., of 90-160%, (preferably 90-140%).
  • Yarns 1 to 46, 84 to 150, and 159 to 185 were melt-spun using spinneret capillaries of length (L) 36 mil (0.914 mm) and diameter (D) 9 mil (0.229 mm).
  • Yarns 47 to 83 were melt-spun using spinneret capillaries of LxD 21 mil x 7 mil (0.533 mm x 0.178 mm).
  • Yarns 151 to 158 were melt-spun using spinneret capillaries of LxD 18 mil x 6 mil (0.457 mm x0.152 mm).
  • Yarns 1 to 46 were 168 filament yarns spun from a spinneret having a FED of 6.54 #/cm 2 ; yarns 47 to 150 were 200 filament yarns spun from a spinneret having a FED of 7.7 #/cm 2 ; yarns 151 to 158 were 204 filament yarns spun from a spinneret having a FED of 7.94 #/cm 2 ; and yarns 159 to 185 were 250 filament yarns spun from a spinneret having a FED of 9.74 #/cm 2 .
  • capillaries of LxD 21 x 7 mil gave an over all better spinning process than the capillaries of LxD 36 x 9 mil (0.914 x 0.229 mm) at the same mass flow rate.
  • Capillaries have previously been characterized by their [L/D 4 ] ratio (e.g. in USP. No 4,134,882).
  • the 6x18 mil, 7x21 mil, and 9x36 mil capillaries have [L/D 4 , mm -3 ] values of 848, 534 and 335, respectively.
  • [L/D 4 ] metric values of at least 335 are preferred, and at least 500 is especially preferred.
  • the filament arrays were optimized for uniform quenching (as described in relation to Figure 3 and in more detail in allowed application No. 08/214,717 (DP-4555-H), referred to above).
  • spin factor those process parameters not included in Table I may be calculated as described hereinbefore.
  • the type and level of spin finish and interlace were selected based on intended end-use; for example, feed yarns for false-twist texturing have lower levels of interlace than those used as feed yarns for draw-warping.
  • All these yarns are characterized by "random" unitary interlace, i.e., along-end filament entanglement, because all the filaments in each yarn were spun from a single spinneret.
  • Yarns that have been plied have generally contained sections where the original filament bundles have less overall intra-bundle entanglement, i.e., the separately spun bundles retain some of their separate "bundle integrity". This phenomenon has been recognized.
  • the HFC yarns of the invention have shown more unitary interlace because all the filaments of the HFC yarn were spun from a single spinneret; they do not have residual "bundle integrity" from having been spun from different spinnerets.
  • This difference between a plied yarn and a yarn of unitary interlace is demonstrated in Example 6, hereinafter.
  • Table II summarizes process conditions; namely draw ratio; disc-to-yarn (DY) surface speed ratio was 1.707; heater temperature (Temp, in degrees centigrade); disc stack configuration (C denotes a ceramic disc was used instead of a polyurethane disc); pre/post disc tensions in grams (T1/T2) (no value was measured in some instances); and numbers of broken filaments (Frays per 1000 meters).
  • the draw feed yarns of the invention drawn at a 1.575X draw-ratio at 180°C using a 1/7/1 disc stack (process B) gave a textured yarn having a yarn denier of 164 (0.82 dpf), a tenacity of 3.69 g/d, and elongation-to-break of 43.5%, giving a normalized (T B ) n of 5.3 g/dd, according to the invention.
  • a 220 denier/325 filament yarn and a 220 denier/250 filament yarn were prepared (essentially as in Example 2, except that the 325 filaments were spun at a FED of 10.3 filaments per cm 2 , and the 250 filaments at a FED of 9.74 filaments per cm 2 ) and were draw false-twist textured on a Barmag FK900 (which has a "bent" double heater configuration) at 450-500 meters per minute at 160°C, using polyurethane discs (D-ring) with a 1.707 disc/yarn ratio (D/Y), other details being given in Table III.
  • the quality of the textured yarns is represented by the normalized tenacity-at-break-denier (T B ) n and in the number of "Frays" per 1000 meters.
  • the yarns were textured using the commercial threadline path (Process A) and by a modified threadline path using Process B, discussed hereinbefore.
  • the yarns textured by Process A had (T B ) n values less than 4 g/dd and fray values significantly greater than 100, in contrast to significantly improved values from Process B (higher (T B ) n values and very low Fray Counts, less than 10).
  • HFC as-spun yarns of filament deniers less than 1 were spun from 2G-T polyester polymer of nominal 21.2 LRV and having a zero-shear melting point T m o of 255 C.
  • Process and product details are summarized in Table IV.
  • Yarns having a DTV less than 0.75% are denoted by a letter "P" for preferred.
  • Yarns having a preferred normalized tenacity at break denier (T B ) n of at least 6 g/dd are denoted by a letter "T".
  • Yarns 1-5 were of 168 filaments and spun from spinnerets having a FED of 6.54/cm 2 ; yarns 6-27 were of 200 filaments and spun from spinnerets having a FED of 7.8/cm 2 ; yarns 28-74 were of 250 filaments and spun from spinnerets having a FED of 9.73/cm 2 .
  • Yarns 1, 6-17, and 28-50 were spun using 7 x 21 mil (0.178 x 0.0.533 mm) spinneret capillaries and yarns 2-5, 18-27, and 50-74 were melt-spun using 9 x 36 mil (0.229 x 0.914 mm) spinneret capillaries.
  • the high filament count yarns in this Example 4 have filament deniers less than 1. Many may be drawn to filament deniers of less than 0.5, and even less than 0.3 dpf.
  • Yarns #s 3 and 5 have boil-off shrinkages of 11.4 and 4.2, respectively, and may be used, if desired, without drawing and heat setting as direct-use yarns, or the yarns may be used as draw-feed yarns, as described in U.S. Patents. Nos. 5,067,447, 5,244,616, 5,145,616, 5,223,197, and 5,250,245.
  • Soft bulky yarns are provided from use of mixed-filament yarns comprised of filaments of differing shrinkages, typically from differences in denier, and/or surface to volume ratio (i.e., cross-sectional shape), with low shrinkage fine filaments (A) providing a desirable soft surface of the bulky yarn and higher denier filaments (B) providing the fabric with improved "body” and “drape” (i.e., less “mushy”).
  • Mixed-shrinkage high filament count yarns of the invention are illustrated for simplicity as being comprised of two filament types of differing (dpf) s .
  • the two filament types should differ in their spun (dpf) s , with the high shrinkage filaments (B) being of higher dpf than of the low shrinkage filaments (A).
  • the above mixed-filament micro-denier HFC yarns may be air-jet textured without drawing, or a drawing step may be part of a draw-air-jet (+ optional heat relaxation) texturing process.
  • a 225 denier, 200 filament draw-feed HFC "unitary" yarn according to the invention was prepared by melt-spinning 21.5 LRV polyester at 288°C from a single 200-capillary spinneret having a FED of 7.8 filaments per cm 2 , through capillaries of DxL dimensions of 9 x 36 mil (0.229 mm x 0.914 mm), the freshly-extruded filaments being protected by a short 4.3 cm shroud and then quenched using a radial unit having a laminar air flow rate of 22.8 m/min, the quenched filaments being converged into a unitary bundle by use of a metered finish applicator guide, withdrawn at a speed of 2446 m/min, and the filaments interlaced using an air entanglement jet operating at 36 psig.
  • the air jet used for interlacing the filaments was a standard "stacked" jet, as illustrated generally in Figs. XI and XII of Christini et al. U.S. Pat. No. 3,936,577, that has been in commercial use for some years.
  • a 255 denier 200 filament draw-feed "plied" yarn was prepared by melt-spinning 21.7 LRV polyester at 287°C through two separate spinnerets, each having a FED of 4.4 filaments per cm 2 , through capillaries of DxL dimensions of 12 x 50 mil (0.305 mm x 1.27 mm), the freshly extruded filaments being air quenched, and separately converged into two 100-filament bundles by use of metered finish tip applicator guides, and both withdrawn at the same speed of 2624 m/min, and the separate 100-filament bundles were then plied into a 200 filament bundle using the same type of air entanglement jet used for the HFC yarn, said jet operating at 42 psig to achieve a similar average interlace nodes/meter as for the HFC yarn.
  • This yarn is referred to below as the "Plied" yarn.

Claims (15)

  1. Verfahren zur Herstellung eines verflochtenen Multifilgarnes mit einer Anzahl von mindestens 150 feinen Elementarfäden und mit 0,5 bis 2,2 ersponnenem Denier pro Elementarfaden (dpf)s aus einem Polyesterpolymer mit einer relativen Viskosität (LRV) von 13 bis 23 und einem Schmelzpunkt (Tm o) bei Nullscherung von 240°C bis 265°C, das aufweist:
    (i) Schmelzen des Polyesterpolymers, Erwärmen der resultierenden Schmelze auf eine Polymertemperatur (Tp), die 25°C bis 55°C über der Tm o liegt, und Filtrieren der erwärmten Schmelze;
    (ii) Extrudieren der filtrierten Schmelze durch mindestens 150 Kapillaren in der Oberfläche einer Spinndüse, um mindestens 150 Elementarfadenströme mit einer Elementarfadenextrudierdichte (FED) von mindestens 6 Elementarfäden/cm2 und einer Strömungsmenge W der gesamten Schmelzmasse in g/min. zu bilden, worin sind: W = (dpf)s(Vs)/9000 mal der Anzahl der Elementarfäden und Vs die Spinnabsauggeschwindigkeit, und sie beträgt mindestens 2 km/min.;
    (iii) Schützen der frisch extrudierten Elementarfadenströme unmittelbar unterhalb der Oberfläche der Spinndüse durch eine Verzögerungsabdeckung (mit der Länge Lq cm unterhalb der Oberfläche), danach Abkühlen dieser durch Abschreckluft mit einer laminaren Geschwindigkeit (Qa m/min.), so daß der Spinnfaktor (SF) 0,2 bis 1 beträgt, wobei der Spinnfaktor (SF) gemäß dem folgenden Ausdruck berechnet wird: SF = k{(LRV)[(Tmo+25)/(TP)]6[(Vs)2/(dpf)s)][(Qa/W)0.2][(FED)(Lq)]-0.7]}n worin sind: "k" = 2,4 x 10+5 und 'n' = minus (-) 0,8;
    (iv) Abkühlen der Elementarfadenströme auf eine Temperatur unterhalb der Glasumwandlungstemperatur (Tg), Konvergieren der resultierenden abgekühlten Elementarfäden zu einem einzelnen Multifilbündel von mindestens 150 Elementarfäden bei einem Konvergenzabstand (Lc, in cm) von der Oberfläche der Spinndüse, und Verflechten des einzelnen Multifilbündels, um ein verflochtenes spinnorientiertes Garn zu liefern;
    und worin das verflochtene Garn mit einer Aufwickelgeschwindigkeit von 2 bis 5 km/min. aufgewickelt wird, um einen Wickelkörper zu bilden.
  2. Verfahren nach Anspruch 1, bei dem das Polymer und die Verfahrensbedingungen so ausgewählt werden, daß ein spinnorientiertes Garn geliefert wird, das aufweist: eine Reckspannungsabweichung (DTV,%) längs des Fadens von weniger als 1%; einen normalisierten Bruchfestigkeitsdenier (TB)n von mindestens 5 Gramm/gerecktem Denier (g/dd), worin ist (TB)n = Festigkeit (g/d)(RDR)s(20,8/LRV)0,75 , worin (RDR)s das Restspinnreckverhältnis ist und definiert wird durch (RDR)s = [1+(EB)/100], worin (EB) die prozentuale Bruchdehnung ist; und eine Denierstreuung (DS) längs des Fadens von weniger als 2,5%.
  3. Verfahren nach Anspruch 1, bei dem das Polymer und die Verfahrensbedingungen so ausgewählt werden, daß ein spinnorientiertes Garn geliefert wird, das aufweist: eine Reckspannungsabweichung (DTV,%) längs des Fadens von weniger als 1 und zwischen [SF+0,2] und [SF-0,2], wobei SF der Spinnfaktor ist, wie er definiert wird; ein Restreckverhältnis (RDR)s zwischen etwa 1,9 und 2,6, worin (RDR)s das Restspinnreckverhältnis ist und definiert wird durch (RDR)s = [1+(EB)/100], worin (EB) die prozentuale Bruchdehnung ist; und einen (1-S/Sm)-Wert von mehr als 0,05, worin S die Abkochschrumpfung und Sm das maximale Schrumpfungspotential sind.
  4. Verfahren nach einem der Ansprüche 1 bis 3, bei dem die Elementarfadenextrudierdichte (FED) mindestens 6,5 Elementarfäden pro cm2 beträgt.
  5. Verfahren nach einem der Ansprüche 1 bis 4, bei dem das spinnorientierte Garn mittels eines Reckverhältnisses so gereckt wird, daß ein gerecktes Garn mit einer Bruchdehnung (EB) von 15 bis 40% und mit einem gereckten Elementarfadendenier von etwa 1 oder Meiner bereitgestellt wird.
  6. Verfahren nach Anspruch 5, bei dem eine Vielzahl derartiger spinnorientierter Garne in der Form eines schußlosen Kettfadenflächengebildes gereckt wird.
  7. Verfahren nach Anspruch 5, bei dem das Recken des spinnorientierten Garnes mit dem Schmelzspinnen verbunden ist, wobei das resultierende gereckte Garn mit einer Aufwickelgeschwindigkeit von 3 bis 5 km/min. aufgewickelt wird, um einen Wickelkörper zu bilden.
  8. Verfahren nach einem der vorhergehenden Ansprüche, bei dem das Polymer und die Verfahrensbedingungen so ausgewählt werden, daß ein Garn bereitgestellt wird, das einen (1-S/Sm)-Wert von mehr als 0,85 aufweist, worin S die Abkochschrumpfung und Sm das maximale Schrumpfungspotential sind.
  9. Verfahren nach einem der vorhergehenden Ansprüche, bei dem das spinnorientierte Garn mit einem Reckverhältnis so recktexturiert wird, daß ein bauschiges Garn geliefert wird mit: einem Bruchfestigkeitsdenier (TB)n von mindestens 4 g/dd, worin (TB)n = Festigkeit (g/d)(RDR)s(20,8/LRV)0,75 , worin (RDR)s das Restspinnreckverhältnis ist und durch (RDR)s = [1+(EB)/100] definiert wird, worin (EB) die prozentuale Bruchdehnung ist; einer Bruchdehnung (EB) von 20 bis 45%; und einer Ausfransungszahl von weniger als 10 Ausfransungen pro 1000 Meter.
  10. Verfahren nach Anspruch 9, bei dem eine Vorrichtung mit geringer Reibung bereitgestellt wird, um das durch die Drehung herbeigeführte Recken im Recktexturierfadenverlauf zwischen der ersten stromaufwärts gelegenen Kontaktstelle und der ersten Reibungsdrehungseinbringungsstelle so zu verringern, daß ein "Bruchwinkel" von weniger als 15 Grad bewirkt und der Krümmungsradius des stromaufwärts gelegenen Kontaktes aufmehr als 2,5 mm vergrößert wird.
  11. Verfahren nach einem der vorhergehenden Ansprüche, bei dem Elementarfäden mit unterschiedlichem Denier oder unterschiedlichen Querschnitten gemeinsam aus der gleichen Extrudierspinndüse ersponnen werden.
  12. Multifilpolyestergarn, bei dem das Polyesterpolymer eine relative Viskosität (LRV) von 13 bis 23 und einen Schmelzpunkt (Tm o) bei Nullscherung von 240 bis 265°C aufweist; das mindestens 150 flache Elementarfäden aufweist, die einen Denier von 0,5 bis 2,2 und eine Bruchdehnung (EB) von 40 bis 160% sowie einen normalisierten Garnbruchfestigkeitsdenier (TB)n von mindestens 5 g/dd zeigen, worin (TB)n = Festigkeit (g/d)(RDR)s(20,8/LRV)0,75 , worin (RDR)s das Restspinnreckverhältnis ist und durch (RDR)s = [1+(EB)/100] definiert wird, dadurch gekennzeichnet, daß die Elementarfadenverhakung des Garnes eine unitäre Verflechtung zeigt, und das Garn einen Reckspannungsvariationskoeffizienten (DTV,%) längs des Fadens von weniger als 1% aufweist.
  13. Garn nach Anspruch 12, das eine Bruchdehnung (EB) von 40 bis 90% und einen (1-S/Sm)-Wert von mindestens 0,85 zeigt, worin S die Abkochschrumpfung und Sm das maximale Schrumpfungspotential sind.
  14. Multifilpolyestergarn, bei dem das Polyesterpolymer eine relative Viskosität (LRV) von 13 bis 23 und einen Schmelzpunkt (Tm o) bei Nullscherung von 240 bis 265°C aufweist; das mindestens 150 flache Elementarfäden aufweist, die einen Denier von 0,2 bis 1 und eine Bruchdehnung (EB) von 15 bis 40% sowie einen normalisierten Garnbruchfestigkeitsdenier (TB)n von mindestens 5 g/dd zeigen, worin (TB)n = Festigkeit (g/d)(RDR)s(20,8/LRV)0,75 , worin (RDR)s das Restspinnreckverhältnis ist und durch (RDR)s = [1+(EB)/100] definiert wird, dadurch gekennzeichnet, daß die Elementarfadenverhakung des Garnes eine unitäre Verflechtung zeigt, und das Garn einen Reckspannungsvariationskoeffizienten (DTV, %) längs des Fadens von weniger als 1% aufweist.
  15. Multifilpolyestergarn, bei dem das Polyester eine relative Viskosität (LRV) von 13 bis 23 und einen Schmelzpunkt (Tm o) bei Nullscherung von 240 bis 265°C aufweist; das mindestens 150 texturierte Elementarfäden aufweist, die einen Denier von 0,2 bis 1 und eine Bruchdehnung (EB) von 15 bis 45% sowie einen normalisierten Bruchfestigkeitsdenier (TB)n von mindestens 4 g/dd zeigen, worin (TB)n = Festigkeit (g/d)(RDR)s(20,8/LRV)0,75 , worin (RDR)s das Restspinnreckverhältnis ist und durch (RDR)s = [1+(EB)/100] definiert wird, dadurch gekennzeichnet, daß die Elementarfadenverhakung des Garnes eine unitäre Verflechtung zeigt, und das Garn eine Ausfransungszahl von weniger als 10 pro 1000 Meter aufweist.
EP95929383A 1995-08-04 1995-08-04 Verfahren zur herstellung von polyestergarne mit einer hohen anzahl von feinfilamenten Expired - Lifetime EP0843750B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1995/009909 WO1997006295A1 (en) 1995-08-04 1995-08-04 Making high filament count fine filament polyester yarns

Publications (2)

Publication Number Publication Date
EP0843750A1 EP0843750A1 (de) 1998-05-27
EP0843750B1 true EP0843750B1 (de) 2000-05-10

Family

ID=22249601

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95929383A Expired - Lifetime EP0843750B1 (de) 1995-08-04 1995-08-04 Verfahren zur herstellung von polyestergarne mit einer hohen anzahl von feinfilamenten

Country Status (6)

Country Link
EP (1) EP0843750B1 (de)
JP (1) JP3346575B2 (de)
KR (1) KR100488381B1 (de)
DE (1) DE69516910T2 (de)
ES (1) ES2147613T3 (de)
WO (1) WO1997006295A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2218811B1 (de) 2003-12-20 2016-05-25 Fitesa Germany GmbH Weiche Vliesstoffe aus Polyäthylenfasern

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488316A (en) * 1977-12-21 1979-07-13 Toray Ind Inc Method of melt spinning of extremely fine fiber
US5250245A (en) * 1991-01-29 1993-10-05 E. I. Du Pont De Nemours And Company Process for preparing polyester fine filaments
US5288553A (en) * 1991-01-29 1994-02-22 E. I. Du Pont De Nemours And Company Polyester fine filaments
US5356582A (en) * 1986-01-30 1994-10-18 E. I. Du Pont De Nemours And Company Continuous hollow filament, yarns, and tows
JPS62243824A (ja) * 1986-04-16 1987-10-24 Teijin Ltd ポリエステル極細繊維の製造方法
KR930003356B1 (ko) * 1990-12-24 1993-04-26 주식회사 코오롱 폴리에스터 극세사 제조용 용융 방사장치
KR0181183B1 (ko) * 1991-01-29 1999-02-01 미리암 디. 메코너헤이 폴리에스테르 미세 필라멘트의 제조
WO1992013119A1 (en) * 1991-01-29 1992-08-06 E.I. Du Pont De Nemours And Company Preparing polyester fine filaments
JP2549778B2 (ja) * 1991-09-18 1996-10-30 日本エステル株式会社 ポリエステル極細マルチフィラメントの溶融紡糸方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2218811B1 (de) 2003-12-20 2016-05-25 Fitesa Germany GmbH Weiche Vliesstoffe aus Polyäthylenfasern
EP2341174B1 (de) 2003-12-20 2017-08-02 Fitesa Germany GmbH Weiche vliesstoffe aus polyäthylenfasern

Also Published As

Publication number Publication date
KR19990036123A (ko) 1999-05-25
ES2147613T3 (es) 2000-09-16
DE69516910T2 (de) 2000-12-07
DE69516910D1 (de) 2000-06-15
JP3346575B2 (ja) 2002-11-18
KR100488381B1 (ko) 2006-04-21
WO1997006295A1 (en) 1997-02-20
EP0843750A1 (de) 1998-05-27

Similar Documents

Publication Publication Date Title
US7790282B2 (en) Self-crimping fully drawn high bulky yarns and method of producing thereof
US6752945B2 (en) Process for making poly(trimethylene terephthalate) staple fibers
CA1125488A (en) Heat bulkable polyester yarn
US4059950A (en) Multifilament yarn having novel configuration and a method for producing the same
US5250245A (en) Process for preparing polyester fine filaments
US5356582A (en) Continuous hollow filament, yarns, and tows
US5417902A (en) Process of making polyester mixed yarns with fine filaments
EP0646189B1 (de) Herstellung von feinen polyesterfilamenten
US8153253B2 (en) Conjugate fiber-containing yarn
US4115989A (en) Product and process
EP0804640B1 (de) Endlosfilamente, faden und kabel
US20020077013A1 (en) Poly(trimethylene terephthalate) tetrachannel cross-section staple fiber
US3967441A (en) Yarns and process for production thereof
US5585182A (en) Process for polyester fine hollow filaments
US4242862A (en) Multifilament yarn having novel configuration and a method for producing the same
US5288553A (en) Polyester fine filaments
US3956878A (en) High speed texturing
US5691057A (en) Polyester mixed yarns with fine filaments
EP0207489A2 (de) Polyesterfaser mit hohem Schrumpf und Verfahren zur Herstellung desselben; Polyester-Mischgarn und Verfahren zur Herstellung desselben
US5827464A (en) Making high filament count fine filament polyester yarns
US5741587A (en) High filament count fine filament polyester yarns
US5487859A (en) Process of making fine polyester hollow filaments
EP0843750B1 (de) Verfahren zur herstellung von polyestergarne mit einer hohen anzahl von feinfilamenten
US6572967B1 (en) Poly(trimethylene terephthalate) multifilament yarn
WO1994003660A1 (en) Polyester mixed yarns with fine filaments

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971218

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB IE IT LI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PAI, GIRISH, ANANT

Inventor name: MOST, ELMER, EDWIN, JR.

Inventor name: LONDON, JOE, FORREST, JR.

Inventor name: KNOX, BENJAMIN, HUGHES

Inventor name: JOHNSON, STEPHEN, BUCKNER

Inventor name: FRANKFORT, HANS, RUDOLF, EDWARD

Inventor name: COLLINS, ROBERT, JAMES

Inventor name: BENNIE, DAVID, GEORGE

17Q First examination report despatched

Effective date: 19980717

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IE IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69516910

Country of ref document: DE

Date of ref document: 20000615

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RITSCHER & SEIFERT

ITF It: translation for a ep patent filed

Owner name: MARIETTI E GISLON S.R.L.

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2147613

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: ADVANSA BV

Free format text: E.I. DU PONT DE NEMOURS AND COMPANY#1007 MARKET STREET#WILMINGTON DELAWARE 19898 (US) -TRANSFER TO- ADVANSA BV#HOLLAND OFFICE CENTRE KRUISWEG 829#2132 NG HOOFDDORP (NL)

Ref country code: CH

Ref legal event code: NV

Representative=s name: RITSCHER & PARTNER AG

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060831

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070803

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070810

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20070814

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20070803

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070801

Year of fee payment: 13

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: RITSCHER & PARTNER AG;RESIRAIN 1;8125 ZOLLIKERBERG (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070806

Year of fee payment: 13

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080804

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080901

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070804

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080805