EP0842309B1 - Process for deposition of sols into microporous coating layers - Google Patents

Process for deposition of sols into microporous coating layers Download PDF

Info

Publication number
EP0842309B1
EP0842309B1 EP96922737A EP96922737A EP0842309B1 EP 0842309 B1 EP0842309 B1 EP 0842309B1 EP 96922737 A EP96922737 A EP 96922737A EP 96922737 A EP96922737 A EP 96922737A EP 0842309 B1 EP0842309 B1 EP 0842309B1
Authority
EP
European Patent Office
Prior art keywords
lyosol
cover layer
pores
capillaries
microporous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96922737A
Other languages
German (de)
French (fr)
Other versions
EP0842309A1 (en
EP0842309A4 (en
Inventor
Ulrich Reininghaus
Peter Kurze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electro Chemical Engineering GmbH
Original Assignee
Electro Chemical Engineering GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electro Chemical Engineering GmbH filed Critical Electro Chemical Engineering GmbH
Publication of EP0842309A4 publication Critical patent/EP0842309A4/en
Publication of EP0842309A1 publication Critical patent/EP0842309A1/en
Application granted granted Critical
Publication of EP0842309B1 publication Critical patent/EP0842309B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/30Anodisation of magnesium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/024Anodisation under pulsed or modulated current or potential
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/026Anodisation with spark discharge

Definitions

  • the anodically produced coating consists, for example, of a coherent sub-layer (barrier layer) about 0.15 ⁇ m thick and a microporous cover layer, which is made up of capillaries perpendicular to the metal from 0.01 to 0.05 ⁇ m (10 - 50 nm) is penetrated at a distance of about 0.3 ⁇ m.
  • the microporous cover layer has an inner surface of about 100 m 2 / g after its production and is very chemically reactive. This high chemical reactivity is caused by active centers that are formed by OH groups in the near-surface area of the microporous cover layer (cf. Peri, JB: J.Phsy.Chem. 69 (1965), p. 220). With newer methods of anodic oxidation, microporous cover layers down to about 200 ⁇ m can be created on Al materials.
  • Anodic oxidation of magnesium can also be used to make microporous Cover layers that are oxidic in nature and, if appropriate Contain fluoride or phosphate, with a thickness up to 30 microns and produce good wear resistance (DE-A-38 08 610).
  • Anodic oxidation of titanium also creates microporous ones Cover layers with different oxidic composition (see Simon & Thoma).
  • Plasma chemical anodic oxidation as microporous cover layers Generate oxide ceramic layers with high reactivity (EP-B-280 886, 333 048, 545 230).
  • the pores here are different Size. They range in size from 10 nm to 30 ⁇ m.
  • EP-A-410 003 describes an insulated wire strand, the Base material made of an electrical conductor made of aluminum or there is at least one aluminum layer on its surface, the has received an anodized layer by anodic oxidation on which then another oxidic insulation layer was applied.
  • the glassy The anodized layer is not resistant to bending and tears easily when Bending, which is important for wire strands.
  • this insulating layer be produced by a so-called sol-gel process.
  • the high molecular weight polymers but cannot penetrate the capillaries of an anodized layer, how this is required according to the invention.
  • By heating several times the applied coating solution to a temperature of at least The film formed by the sol-gel method then becomes 500 ° C. transferred the ceramic state.
  • EP-B-333 048 discloses a magnesium alloy with a magnesium phosphate and magnesium fluoride-containing oxidic protective layer certain thickness and wear resistance known in the pores may contain silicon dioxide, which can be obtained by immersing the Workpiece in an alkali silicate bath and subsequent treatment with an atmosphere rich in carbon dioxide is generated. Because the alkali silicate when entering the capillaries with that from the Remaining anodized sulfuric acid reacts, it does not occur for an even filling of the capillaries and with the The following exposure to carbon dioxide inevitably produces sodium carbonate as a by-product.
  • Purpose of this procedure is due to the sealing treatment with a coating agent Use drying or curing temperature of 140 ° C or above to be able to deal with problems of cracking and insufficient liability occurred.
  • the sealing treatment of the Oxide film by immersing the aluminum objects in the silica or aqueous sealing liquid containing silicate also close the micropores so that e.g. remaining in it Sulfuric acid can no longer escape; but it was not possible or intends to close the vertical capillaries with the silica to fill.
  • the aim of the invention is to reduce the corrosion caused by the pores avoid and a stable bond between the microporous oxidic top layer and at least one an inorganic Establish network forming connection.
  • the invention relates to a process for the treatment of microporous cover layers produced by anodic oxidation or by plasma chemical anodic oxidation on objects made of aluminum, magnesium, titanium or their alloys, in which silica in the pores or capillaries of the freshly produced microporous cover layer which is not older than 24 hours is introduced in the form of a lyosol, in which the colloidally distributed SiO 2 particles are at least one dimension smaller than the diameter of the pores or capillaries, the object immersed in the lyosol being exposed to changing pressure conditions and the silica -Lyosol is then coagulated or reacted with the top layer.
  • a lyosol is a colloidal solution in which a solid substance is dispersed in a finely divided form in a liquid.
  • Organosols and hydrosols can also be used for the purposes of the invention, depending on whether it is a suspension of the silica in organic liquids, such as alcohols, preferably C 1 -C 6 -alcohols, or water.
  • the silica lyosol is a silica sol (see Römpp, chemistry lexicon, keywords brine and silica sol).
  • the sol In order to achieve an incorporation of the sol into the pores or capillaries, it is introduced according to the invention in a form in which the SiO 2 particles are at least one dimension smaller than the diameter of the pores or capillaries of the microporous oxide cover layer.
  • the size of the particles of colloidal silica in the sol is accordingly about 1 to 50 nm, preferably 1 to 10 nm.
  • the particles of the colloidal silica to be introduced are advantageously present as an aqueous and / or organic dispersion.
  • film formers such as alcohols and / or silanes and / or salts of organic acids, which tend to polymerize or polycondense, are added to the SiO 2 sols.
  • Silica sols suitable for the purposes of the invention are known. They are produced by in situ growth of SiO 2 micro-germs and are then present as a concentrated aqueous dispersion of colloidally distributed, pore-free amorphous SiO 2 particles. These SiO 2 dispersions generally contain small amounts of alkali, which negatively charge the surface of the SiO 2 particles. As a result, the particles repel each other and bring about the stability of the solution. Silica sols which are suitable for the purposes of the invention are commercially available, for example, under the name KLEBOSOL. These can also be modified by other film-forming oxides of the third to eighth group of the periodic system of the elements, for example aluminum, indium, zirconium, titanium, iron, nickel and rare earths.
  • Modification with mono- or polyhydric alcohols is also possible.
  • Substances, in particular alcohols and silanes can be added to the silica lyosols which form films with the silica.
  • the sols can also contain fillers, corrosion inhibitors, dyes, lubricants, surface-active substances and UV stabilizers in amounts which do not affect the sol's reactivity with the microporous top layer.
  • the solids concentration of the silica sol is advantageously 15 to 60%, preferably 30 to 50%.
  • the objects with such oxide cover layers are immersed in the lyosol, in particular silica sol, the object provided with the oxide layer being immersed in the lyosol being exposed to changing pressure conditions becomes.
  • An impregnation system is suitable for this, in which the air is first removed from the pores or capillaries using a vacuum.
  • the lyosol penetrates into the pores and, after the vacuum is released, is pressed into the pores by atmospheric pressure and thus also reaches the bottom of the vertical capillaries of the anodically produced coatings of aluminum or the finest branches of the microporous cover layers on magnesium or titanium materials or the oxide ceramic layers produced by plasma chemical oxidation.
  • the change from vacuum and pressure, which can also exceed atmospheric pressure, is repeated one or more times if necessary.
  • Devices suitable for introducing the particles into the microporous cover layer of the objects are available, for example, in the form of the Maldaner impregnation system.
  • the silica-lyosol is coagulated according to the sol-gel process (sol-gel Technology for thin Films, Fibers, Preforms, Electronics, and Specialty Shapes, edited by Lisa Klein, Noyes Publications, p. 50 ff., Sect. 4, Helmut Dislich, Thin Films from the Sol-Gel Process). Coagulation takes place by withdrawing the liquid from the lyosol, in particular the silica sol.
  • SiO 2 layers are presumably glass-like and amorphous and have a thickness of up to 5 ⁇ m, in particular 0.5 to 2 ⁇ m.
  • This silicate glass layer formed on the surface of the microporous cover layer from the SiO 2 particles is provided with pins of 10 to 50 nm in diameter which protrude vertically into the capillaries of the anodized layer or in the manner of roots which protrude into the capillaries of other oxide layers, in particular ceramic layers. firmly anchored in the microporous top layer. That is probably the reason for the high corrosion and scratch resistance.
  • the invention also relates to components made of aluminum, Magnesium or titanium materials with anodic oxidation or plasma chemical anodic generated microporous Top layer according to claims 14 to 17, their pores or Capillaries according to one of the methods of claims 1 to 4 essentially were filled with silicon dioxide.
  • aluminum materials are pure aluminum and alloys AlMn; AlMnCu; AlMg1; AlMg1,5; E-AlMgSi; AlMgSi0,5; AlZnMgCu0.5, AlZnMgCu1.5; G-AlSi12; G-AlSi5Mg; G-AlSi8Cu3; G-AlCu4Ti; G-AlCu4TiMg understood.
  • magnesium cast alloys with the ASTM designation AS41; AM60; AZ61; AZ63; AZ81; AZ91; AZ92; HK31; QE22; ZE41; ZH62, ZK51; ZK61, EZ33; HZ33 and the wrought alloys AZ31; AZ61; AZ80; M1, ZK60; ZK40.
  • Pure titanium are suitable as titanium materials or the alloy TiAl6V4.
  • AZ91HP magnesium alloy plates of size 100 x 50 x 2 mm, anodic on both sides by plasma chemical Oxidation with a microporous top layer of 20 ⁇ m after Methods of EP-B-333 084 had been provided treated according to the invention with Klebosol® to the capillaries and Fill pores and superficially cover the microporous top layer to seal.
  • a scanning electron micrograph on one Cross section shows that the pores and capillaries with the after thermal treatment formed silica or its Reaction products are filled.
  • the outer sealing layer has a thickness of about 5 ⁇ m.
  • the plate thus obtained was subjected to the neutral salt spray test according to DIN Subjected to SS 50021. It had a service life of 1500 hours. Even when the test was canceled, some plates still had not even a single point of corrosion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Chemical Vapour Deposition (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Paints Or Removers (AREA)
  • Saccharide Compounds (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Materials For Medical Uses (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Physical Vapour Deposition (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

A process is disclosed for treating microporous coating layers deposited by anodic oxidation or plasmachemical anodic oxidation on objects made of aluminium, magnesium, titanium or their alloys. The process is useful to permanently seal the microporous coating layer and thus to protect the base material against corrosion and wear. For that purpose, silicic acid in the form of a silicic acid lyosol is deposited into the pores or capillaries of the microporous coating layer. In the silicic acid lyosol, the colloidally distributed SiO2 particles have at least one dimension smaller than the diameter of the pores or capillaries. The sol thus deposited into the pores is then coagulated or made to react with the coating layer.

Description

Aluminium ist trotz der hohen Affinität gegenüber Sauerstoff an der Luft relativ korrosionsbeständig, weil sich die Metalloberfläche an der Luft sofort mit einer 5 bis 20 nm dicken, festhaftenden und sehr dichten Oxidschicht bedeckt, die den weiteren Sauerstoffzutritt verhindert. Auch Magnesium und Titanium und deren Legierungen sind durch eine dünne Oxidschicht bei normaler Temperatur gegen weitere Oxidation geschützt.Despite the high affinity for oxygen, aluminum is at the Air relatively corrosion-resistant because the metal surface on the Air immediately with a 5 to 20 nm thick, firmly adhering and very dense Covered oxide layer, which prevents further oxygen access. Magnesium and titanium and their alloys are also through a thin layer of oxide at normal temperature against others Protected against oxidation.

Es ist bekannt, die natürlichen Oxidschichten der genannten Metalle durch anodische Oxidation erheblich zu verstärken. Dabei bilden sich Konversionsschichten.It is known the natural oxide layers of the metals mentioned by anodic oxidation. Thereby form Conversion layers.

Bei Aluminium besteht der anodisch erzeugte Überzug zum Beispiel aus einer etwa 0,15 µm dicken zusammenhängenden Unterschicht (barrier layer) und einer mikroporösen Deckschicht, die von senkrecht zum Metall stehenden Kapillaren von 0,01 bis 0,05 µm (10 - 50 nm) in einem Abstand von etwa 0,3 µm durchsetzt ist. Die mikroporöse Deckschicht hat nach ihrer Erzeugung eine innere Oberfläche von etwa 100 m2/g und ist chemisch sehr reaktionsfähig. Diese hohe chemische Reaktivität wird durch aktive Zentren, die durch OH-Gruppen im oberflächennahen Bereich der mikroporösen Deckschicht gebildet sind, verursacht (vgl. Peri, J.B.: J.Phsy.Chem. 69 (1965), S. 220). Mit neueren Verfahren der anodischen Oxidation gelingt es, auf Al-Werkstoffen mikroporöse Deckschichten bis etwa 200 µm zu erzeugen.In the case of aluminum, the anodically produced coating consists, for example, of a coherent sub-layer (barrier layer) about 0.15 µm thick and a microporous cover layer, which is made up of capillaries perpendicular to the metal from 0.01 to 0.05 µm (10 - 50 nm) is penetrated at a distance of about 0.3 µm. The microporous cover layer has an inner surface of about 100 m 2 / g after its production and is very chemically reactive. This high chemical reactivity is caused by active centers that are formed by OH groups in the near-surface area of the microporous cover layer (cf. Peri, JB: J.Phsy.Chem. 69 (1965), p. 220). With newer methods of anodic oxidation, microporous cover layers down to about 200 µm can be created on Al materials.

Auch durch anodische Oxidation von Magnesium lassen sich mikroporöse Deckschichten, die oxidischer Natur sind und gegebenenfalls Fluorid oder Phosphat enthalten, mit einer Dicke bis zu 30 µm und guter Verschleißbeständigkeit erzeugen (DE-A-38 08 610). Bekannt sind hierbei auch das HAE- und DOW 17-Verfahren (vgl. H. Simon, M. Thoma "Angewandte Oberflächentechnik für metallische Werkstoffe", Carl Hanser Verlag, München Wien 1985, S. 68/69).Anodic oxidation of magnesium can also be used to make microporous Cover layers that are oxidic in nature and, if appropriate Contain fluoride or phosphate, with a thickness up to 30 microns and produce good wear resistance (DE-A-38 08 610). Known are also the HAE and DOW 17 method (see H. Simon, M. Thoma "Applied Surface Technology for Metallic Materials", Carl Hanser Verlag, Munich Vienna 1985, pp. 68/69).

Durch anodische Oxidation von Titanium bilden sich auch mikroporöse Deckschichten mit verschieden oxidischer Zusammensetzung (vgl. Simon & Thoma).Anodic oxidation of titanium also creates microporous ones Cover layers with different oxidic composition (see Simon & Thoma).

Auf Aluminium-, Magnesium- oder Titanwerkstoffen lassen sich durch plasmachemische anodische Oxidation mikroporöse Deckschichten als Oxidkeramikschichten mit hoher Reaktionsfähigkeit erzeugen (EP-B-280 886, 333 048, 545 230). Die Poren sind hier von unterschiedlicher Größe. Sie reichen von einer Größe von 10 nm bis 30 µm.On aluminum, magnesium or titanium materials, Plasma chemical anodic oxidation as microporous cover layers Generate oxide ceramic layers with high reactivity (EP-B-280 886, 333 048, 545 230). The pores here are different Size. They range in size from 10 nm to 30 µm.

In der EP-A-410 003 ist eine isolierte Drahtlitze beschrieben, deren Grundmaterial aus einem elektrischen Leiter aus Aluminium oder wenigstens einer Aluminiumschicht an seiner Oberfläche besteht, der durch anodische Oxidation eine Eloxalschicht erhalten hat, auf die dann noch eine weitere oxidische Iolierschicht aufgebracht wurde. Die Eloxalschicht mit ihrer mikroporösen, die Kapillaren enthaltenen Deckschicht und der an das Grundmaterial (Aluminium) angrenzenden nicht porösen Deckschicht, ist ein ausgezeichneter Isolator. Die glasartige Eloxalschicht ist nicht biegewechselfest und reißt leicht beim Biegen, was bei Drahtlitzen von Bedeutung ist. Um die dadurch entstehenden Löcher oder Risse, die sich von der Oberfläche des Oxidfilms bis zum Grundmaterial erstrecken sollen, auszufüllen, die rauhe Oberfläche zu glätten und eine bessere Isolation zu erreichen, soll auf der Eloxalschicht noch eine keramische Oxidisolierschicht von etwa gleicher Dicke wie die Aluminiumoxidschicht ausgebildet werden. Nach einem möglichen Verfahren kann diese Isolierschicht nach einem sogenannten Sol-Gel-Verfahren hergestellt werden. Das geschieht mit gelförmiger Beschichtungslösung aus einem polykondensierten Hydrolyseprodukt von Tetrabutylorthosilikat, das erhebliche Mengen Salpetersäure enthält. Die hochmolekularen Polymeren können aber nicht in die Kapillaren einer Eloxalschicht eindringen, wie das erfindungsgemäß gefordert wird. Durch mehrfaches Erhitzen der aufgetragenen Beschichtungslösung auf Temperatur von wenigstens 500 °C wird dann der durch die Sol-Gel-Methode gebildete Film in den keramischen Zustand übergeführt.EP-A-410 003 describes an insulated wire strand, the Base material made of an electrical conductor made of aluminum or there is at least one aluminum layer on its surface, the has received an anodized layer by anodic oxidation on which then another oxidic insulation layer was applied. The Anodized layer with its microporous, which contain capillaries Top layer and that adjacent to the base material (aluminum) non-porous top layer, is an excellent insulator. The glassy The anodized layer is not resistant to bending and tears easily when Bending, which is important for wire strands. To that Holes or cracks that arise from the surface of the Oxide film should extend to the base material to fill out the smooth rough surface and achieve better insulation, a ceramic oxide insulation layer from about the same thickness as the aluminum oxide layer become. According to a possible procedure, this insulating layer be produced by a so-called sol-gel process. The happens with gel-like coating solution from a polycondensed Hydrolysis product of tetrabutyl orthosilicate, the substantial Contains quantities of nitric acid. The high molecular weight polymers but cannot penetrate the capillaries of an anodized layer, how this is required according to the invention. By heating several times the applied coating solution to a temperature of at least The film formed by the sol-gel method then becomes 500 ° C. transferred the ceramic state.

Aus der EP-B-333 048 ist eine Magnesiumlegierung mit einer Magnesiumphosphat und Magnesiumfluorid enthaltenden oxidischen Schutzschicht bestimmter Dicke und Verschleißbeständigkeit bekannt, die in den Poren Siliciumdioxid enthalten kann, das durch Eintauchen des Werkstücks in ein Alkalisilikatbad und anschließende Behandlung mit einer kohlendioxidreichen Atmosphäre erzeugt wird. Weil das Alkalisilikat beim Eindringen in die Kapillaren schon mit der dort aus dem Eloxalverfahren verbliebenen Schwefelsäure reagiert, kommt es nicht zu einer gleichmäßigen Ausfüllung der Kapillaren und bei der folgenden Einwirkung von Kohlendioxid entsteht zwangsläufig Natriumcarbonat als Nebenprodukt.EP-B-333 048 discloses a magnesium alloy with a magnesium phosphate and magnesium fluoride-containing oxidic protective layer certain thickness and wear resistance known in the pores may contain silicon dioxide, which can be obtained by immersing the Workpiece in an alkali silicate bath and subsequent treatment with an atmosphere rich in carbon dioxide is generated. Because the alkali silicate when entering the capillaries with that from the Remaining anodized sulfuric acid reacts, it does not occur for an even filling of the capillaries and with the The following exposure to carbon dioxide inevitably produces sodium carbonate as a by-product.

Es hat nicht an Versuchen gefehlt, die mikroporöse Deckschicht dauerhaft zu versiegeln, um den Grundwerkstoff gegen Korrosion und Verschleiß zu schützen. Dazu sind verschiedene Verfahren, wie Sealing in heißem Wasser, Tränken in Ölen und Wachsen bis hin zu einem Auftrag von organischen Lacken, bekannt. Diese Verfahren genügen keineswegs den heutigen Anforderungen. Das gleiche gilt für das aus der DE-A-28 12 116 bekannte Verfahren zur Herstellung eines Überzugfilms auf dem korrosionsbeständigen anodisch oxidierten Oberflächenfilm von Aluminiumerzeugnissen, bei dem dieser u.a. einer Versiegelungsbehandlung der Mikroporen in dem Oxidfilm durch Eintauchen in eine dispergierte Kieselsäure enthaltende wäßrige Versiegelungsflüssigkeit unterworfen und anschließend mit einem wärmehärtenden Acrylharz überzogen wird. Zweck dieses Verfahrens ist es, aufgrund der Versiegelungsbehandlung Überzugsmittel mit einer Trocknungs- oder Härtungstemperatur von 140 °C oder darüber verwenden zu können, bei denen vorher Probleme der Rißbildung und ungenügende Haftung auftraten. Die Versiegelungsbehandlung des Oxidfilms durch Eintauchen der Aluminiumgegenstände in die Kieselsäure oder Silikat enthaltende wäßrige Versiegelungsflüssigkeit soll zwar auch die Mikroporen verschließen, damit z.B. darin verbliebene Schwefelsäure nicht mehr austreten kann; es war aber nicht möglich oder beabsichtigt, die senkrechten Kapillaren mit der Kieselsäure zu füllen.There has been no shortage of attempts, the microporous top layer permanently sealed to protect the base material against corrosion and To protect wear. There are various procedures for this, such as Sealing in hot water, soaking in oils and waxes right up to an order of organic paints. This procedure by no means meet today's requirements. The same applies the method known from DE-A-28 12 116 for producing a Plating film on the corrosion-resistant anodized Surface film of aluminum products, in which this sealing treatment of the micropores in the oxide film by immersion in an aqueous dispersed silica Subjected sealing liquid and then with a thermosetting acrylic resin is coated. Purpose of this procedure is due to the sealing treatment with a coating agent Use drying or curing temperature of 140 ° C or above to be able to deal with problems of cracking and insufficient liability occurred. The sealing treatment of the Oxide film by immersing the aluminum objects in the silica or aqueous sealing liquid containing silicate also close the micropores so that e.g. remaining in it Sulfuric acid can no longer escape; but it was not possible or intends to close the vertical capillaries with the silica to fill.

Ziel der Erfindung ist es, die durch die Poren bedingte Korrosion zu vermeiden und einen stabilen Verbund zwischen der mikroporösen oxidischen Deckschicht und mindestens einer ein anorganisches Netzwerk bildenden Verbindung herzustellen.The aim of the invention is to reduce the corrosion caused by the pores avoid and a stable bond between the microporous oxidic top layer and at least one an inorganic Establish network forming connection.

Gegenstand der Erfindung ist ein Verfahren zur Behandlung von mikroporösen, durch anodische Oxidation oder durch plasmachemische anodische Oxidation hergestellten Deckschichten auf Gegenständen aus Aluminium, Magnesium, Titanium oder deren Legierungen, bei dem Kieselsäure in die Poren oder Kapillaren der frisch hergestellten mikroporösen Deckschicht, die nicht älter als 24 Stunden ist, in Form eines Lyosols eingebracht wird, in dem die kolloidal verteilten SiO2-Teilchen wenigstens in einer Dimension kleiner sind, als der Durchmesser der Poren oder Kapillaren, wobei der in das Lyosol eingetauchte Gegenstand wechselnden Druckbedingungen ausgesetzt wird und das Kieselsäure-Lyosol anschließend koaguliert oder mit der Deckschicht zur Reaktion gebracht wird.
Ein Lyosol ist definitionsgemäß eine kolloidale Lösung, in der ein fester Stoff in feinster Verteilung in einer Flüssigkeit dispergiert ist. Auch für die Zwecke der Erfindung sind Organosole und Hydrosole brauchbar, je nachdem, ob es sich um eine Suspension der Kieselsäure in organischen Flüssigkeiten, wie z.B. Alkoholen, bevorzugt C1-bis C6-Alkoholen, oder Wasser handelt. In diesem Fall ist das Kieselsäure-Lyosol ein Kieselsol (s. Römpp, Chemie-Lexikon, Stichworte Sole und Kieselsol).
The invention relates to a process for the treatment of microporous cover layers produced by anodic oxidation or by plasma chemical anodic oxidation on objects made of aluminum, magnesium, titanium or their alloys, in which silica in the pores or capillaries of the freshly produced microporous cover layer which is not older than 24 hours is introduced in the form of a lyosol, in which the colloidally distributed SiO 2 particles are at least one dimension smaller than the diameter of the pores or capillaries, the object immersed in the lyosol being exposed to changing pressure conditions and the silica -Lyosol is then coagulated or reacted with the top layer.
By definition, a lyosol is a colloidal solution in which a solid substance is dispersed in a finely divided form in a liquid. Organosols and hydrosols can also be used for the purposes of the invention, depending on whether it is a suspension of the silica in organic liquids, such as alcohols, preferably C 1 -C 6 -alcohols, or water. In this case, the silica lyosol is a silica sol (see Römpp, chemistry lexicon, keywords brine and silica sol).

Um eine Einlagerung des Sols in die Poren oder Kapillaren zu erreichen, wird es erfindungsgemäß in einer Form eingeführt, in der die SiO2-Teilchen wenigstens in einer Dimension kleiner sind als der Durchmesser der Poren oder Kapillaren der mikroporösen oxidischen Deckschicht. Die Größe der Teilchen kolloidaler Kieselsäure im Sol beträgt demzufolge etwa 1 bis 50 nm, vorzugsweise 1 bis 10 nm. Die einzubringenden Teilchen der kolloidalen Kieselsäure liegen zweckmäßig als wäßrige und/oder organische Dispersion vor. Um eine gute Filmbildung zu erreichen, sind den SiO2-Solen zur Polymerisation bzw. Polykondensation neigende Filmbildner wie Alkohole und/oder Silane und/oder Salze organischer Säuren zugesetzt.In order to achieve an incorporation of the sol into the pores or capillaries, it is introduced according to the invention in a form in which the SiO 2 particles are at least one dimension smaller than the diameter of the pores or capillaries of the microporous oxide cover layer. The size of the particles of colloidal silica in the sol is accordingly about 1 to 50 nm, preferably 1 to 10 nm. The particles of the colloidal silica to be introduced are advantageously present as an aqueous and / or organic dispersion. In order to achieve good film formation, film formers such as alcohols and / or silanes and / or salts of organic acids, which tend to polymerize or polycondense, are added to the SiO 2 sols.

Für die Zwecke der Erfindung geeignete Kieselsole sind bekannt. Sie werden durch in situ Wachstum von SiO2-Mikrokeimen hergestellt und liegen dann als konzentrierte wäßrige Dispersion von kolloidal verteilten porenfreien amorphen SiO2-Teilchen vor. Diese SiO2-Dispersionen enthalten in der Regel geringfügige Alkalimengen, die die Oberfläche der SiO2-Partikel negativ laden. Dadurch stoßen sich die Teilchen gegenseitig ab und bewirken die Stabilität der Lösung. Für die Zwecke der Erfindung geeignete Kieselsole sind beispielsweise unter der Bezeichnung KLEBOSOL im Handel. Diese können auch durch andere filmbildende Oxide der dritten bis achten Gruppe des periodischen Systems der Elemente, z.B. des Aluminiums, Indiums, Zirkons, Titaniums, Eisens, Nickels und der Seltenen Erden modifiziert sein. Ebenso ist die Modifizierung mit ein- oder mehrwertigen Alkoholen, z.B. Diethylenglycol, möglich. Den Kieselsäure-Lyosolen können Substanzen, insbesondere Alkohole und Silane, zugesetzt werden, die mit der Kieselsäure Filme bilden. Die Sole können auch Füllstoffe, Korrosionsinhibitoren, Farbstoffe, Gleitmittel, oberflächenaktive Substanzen, UV-Stabilisatoren in Mengen enthalten, die das Sol in seiner Reaktivität mit der mikroporösen Deckschicht nicht beeinflussen. Die Feststoffkonzentration des Kieselsols beträgt zweckmäßig 15 bis 60 %, vorzugsweise 30 bis 50 %.Silica sols suitable for the purposes of the invention are known. They are produced by in situ growth of SiO 2 micro-germs and are then present as a concentrated aqueous dispersion of colloidally distributed, pore-free amorphous SiO 2 particles. These SiO 2 dispersions generally contain small amounts of alkali, which negatively charge the surface of the SiO 2 particles. As a result, the particles repel each other and bring about the stability of the solution. Silica sols which are suitable for the purposes of the invention are commercially available, for example, under the name KLEBOSOL. These can also be modified by other film-forming oxides of the third to eighth group of the periodic system of the elements, for example aluminum, indium, zirconium, titanium, iron, nickel and rare earths. Modification with mono- or polyhydric alcohols, eg diethylene glycol, is also possible. Substances, in particular alcohols and silanes, can be added to the silica lyosols which form films with the silica. The sols can also contain fillers, corrosion inhibitors, dyes, lubricants, surface-active substances and UV stabilizers in amounts which do not affect the sol's reactivity with the microporous top layer. The solids concentration of the silica sol is advantageously 15 to 60%, preferably 30 to 50%.

Zum Einbringen der kolloidal verteilten SiO2-Teilchen des Lyosols in die Poren oder Kapillaren der mikroporösen Deckschicht werden die Gegenstände mit solchen oxidischen Deckschichten in das Lyosol, insbesondere Kieselsol, getaucht, wobei der mit der Oxidschicht versehene, in das Lyosol eingetauchte Gegenstand wechselnden Druckbedingungen ausgesetzt wird. Hierfür eignet sich ein Imprägniersystem, bei dem zunächst mittels Vakuum die Luft aus den Poren oder Kapillaren entfernt wird. Unter Einwirkung des Vakuums dringt das Lyosol in die Poren ein und wird, nachdem das Vakuum aufgehoben ist, durch den atmosphärischen Druck in die Poren gepreßt und erreicht so auch den Boden der senkrechten Kapillaren der anodisch erzeugten Überzüge von Aluminium oder die feinsten Verästelungen der mikroporösen Deckschichten auf Magnesium- oder Titanwerkstoffen bzw. der durch plasmachemische Oxidation hergestellten Oxidkeramikschichten. Der Wechsel vom Vakuum und Druck, der auch über den atmosphärischen Druck hinausgehen kann, wird erforderlichenfalls ein oder mehrmals wiederholt. Für dieses Einbringen der Teilchen in die mikroporöse Deckschicht der Gegenstände geeignete Vorrichtungen stehen z.B. in Form des Maldaner-Imprägniersystems zur Verfügung.In order to introduce the colloidally distributed SiO 2 particles of the lyosol into the pores or capillaries of the microporous cover layer, the objects with such oxide cover layers are immersed in the lyosol, in particular silica sol, the object provided with the oxide layer being immersed in the lyosol being exposed to changing pressure conditions becomes. An impregnation system is suitable for this, in which the air is first removed from the pores or capillaries using a vacuum. Under the action of the vacuum, the lyosol penetrates into the pores and, after the vacuum is released, is pressed into the pores by atmospheric pressure and thus also reaches the bottom of the vertical capillaries of the anodically produced coatings of aluminum or the finest branches of the microporous cover layers on magnesium or titanium materials or the oxide ceramic layers produced by plasma chemical oxidation. The change from vacuum and pressure, which can also exceed atmospheric pressure, is repeated one or more times if necessary. Devices suitable for introducing the particles into the microporous cover layer of the objects are available, for example, in the form of the Maldaner impregnation system.

Überraschenderweise hat sich gezeigt, daß durch anodische Oxidation oder durch plasmachemische anodische Oxidation frisch hergestellte mikroporöse Deckschichten, wie Harteloxalschichten oder Oxidkeramikschichten, die weniger als 24 Stunden alt sind, die Einlagerung des Kieselsols bis an den Grund der Kapillaren und Poren beschleunigen.Surprisingly, it has been shown that by anodic oxidation or freshly produced by plasma chemical anodic oxidation microporous cover layers, such as hard anodized layers or oxide ceramic layers, that are less than 24 hours old, the storage of the Accelerate silica sol to the bottom of the capillaries and pores.

Wenn die Poren oder Kapillaren der Deckschichten so gut wie möglich mit den kolloidalen SiO2-Teilchen gefüllt sind, sorgt man für eine Koagulation des Kieselsäure-Lyosols, nach dem für die Filmbildung solcher Sole an sich bekannten Sol-Gel-Prozeß (Sol-Gel Technology for thin Films, Fibers, Preforms, Electronics, and Specialty Shapes, edited by Lisa Klein, Noyes Publications, S. 50 ff., Abschn. 4, Helmut Dislich, Thin Films from the Sol-Gel Process). Die Koagulation erfolgt durch Entzug der Flüssigkeit des Lyosols, insbesondere des Kieselsols. Schon aufgrund der bevorzugten Reaktion frisch hergestellter oxidischer Deckschichten wird angenommen, daß es bei der Koagulation durch Erwärmen auf Temperaturen bis zu 300 °C, vorzugsweise bis zu 150 °C, zugleich zu Reaktionen zwischen den mikroporösen oxidischen Deckschichten und den sehr feinen und damit auch sehr reaktionsfähigen SiO2-Teilchen in den Poren und an der Oberfläche der Deckschichten kommt. Die SiO2-Schichten sind vermutlich glasähnlich und amorph und haben eine Dicke bis zu 5 µm, insbesondere 0,5 bis 2 µm. Diese an der Oberfläche der mikroporösen Deckschicht aus den SiO2-Partikeln gebildete Silikatglasschicht ist mit senkrecht in die Kapillaren der Eloxalschicht hineinragenden Stiften von 10 bis 50 nm Durchmesser bzw. nach Art von Wurzeln, die in die Kapillaren anderer Oxidschichten, insbesondere Keramikschichten, hineinragen, fest in der mikroporösen Deckschicht verankert. Das ist vermutlich die Ursache für die hohe Korrosions- und Kratzfestigkeit. If the pores or capillaries of the outer layers are filled as well as possible with the colloidal SiO 2 particles, the silica-lyosol is coagulated according to the sol-gel process (sol-gel Technology for thin Films, Fibers, Preforms, Electronics, and Specialty Shapes, edited by Lisa Klein, Noyes Publications, p. 50 ff., Sect. 4, Helmut Dislich, Thin Films from the Sol-Gel Process). Coagulation takes place by withdrawing the liquid from the lyosol, in particular the silica sol. Already due to the preferred reaction of freshly produced oxidic cover layers, it is assumed that during coagulation by heating to temperatures up to 300 ° C, preferably up to 150 ° C, there are also reactions between the microporous oxidic cover layers and the very fine and therefore also very reactive SiO 2 particles in the pores and on the surface of the outer layers. The SiO 2 layers are presumably glass-like and amorphous and have a thickness of up to 5 μm, in particular 0.5 to 2 μm. This silicate glass layer formed on the surface of the microporous cover layer from the SiO 2 particles is provided with pins of 10 to 50 nm in diameter which protrude vertically into the capillaries of the anodized layer or in the manner of roots which protrude into the capillaries of other oxide layers, in particular ceramic layers. firmly anchored in the microporous top layer. That is probably the reason for the high corrosion and scratch resistance.

Gegenstand der Erfindung sind auch Bauteile aus Aluminium-, Magnesium- oder Titanwerkstoffen mit einer durch anodische Oxidation oder plasmachemische anodische Oxidation erzeugten mikroporösen Deckschicht nach den Ansprüchen 14 bis 17, deren Poren oder Kapillaren nach einem der Verfahren der Ansprüche 1 bis 4 im wesentlichen mit Siliciumdioxid gefüllt wurden. Vorzugsweise ist auch die Oberfläche der mikroporösen Deckschicht mit einem Film dieser Gele überzogen und mit den Gelen in den Poren oder Kapillaren verbunden. The invention also relates to components made of aluminum, Magnesium or titanium materials with anodic oxidation or plasma chemical anodic generated microporous Top layer according to claims 14 to 17, their pores or Capillaries according to one of the methods of claims 1 to 4 essentially were filled with silicon dioxide. Preferably, too Surface of the microporous top layer with a film of these gels coated and with the gels in the pores or capillaries connected.

Unter Aluminiumwerkstoffen werden im Rahmen der Erfindung Reinstaluminium und Legierungen AlMn; AlMnCu; AlMg1; AlMg1,5; E-AlMgSi; AlMgSi0,5; AlZnMgCu0,5, AlZnMgCu1,5; G-AlSi12; G-AlSi5Mg; G-AlSi8Cu3; G-AlCu4Ti; G-AlCu4TiMg verstanden.Within the scope of the invention, aluminum materials are pure aluminum and alloys AlMn; AlMnCu; AlMg1; AlMg1,5; E-AlMgSi; AlMgSi0,5; AlZnMgCu0.5, AlZnMgCu1.5; G-AlSi12; G-AlSi5Mg; G-AlSi8Cu3; G-AlCu4Ti; G-AlCu4TiMg understood.

Für die Zwecke der Erfindung eignen sich ferner außer Reinmagnesium, insbesondere Magnesiumgußlegierungen der ASTM-Bezeichnung AS41; AM60; AZ61; AZ63; AZ81; AZ91; AZ92; HK31; QE22; ZE41; ZH62, ZK51; ZK61, EZ33; HZ33 sowie die Knetlegierungen AZ31; AZ61; AZ80; M1, ZK60; ZK40. Als Titanwerkstoffe eignen sich Reintitanium oder die Legierung TiAl6V4.In addition to pure magnesium, the following are also suitable for the purposes of the invention: in particular magnesium cast alloys with the ASTM designation AS41; AM60; AZ61; AZ63; AZ81; AZ91; AZ92; HK31; QE22; ZE41; ZH62, ZK51; ZK61, EZ33; HZ33 and the wrought alloys AZ31; AZ61; AZ80; M1, ZK60; ZK40. Pure titanium are suitable as titanium materials or the alloy TiAl6V4.

Beispielexample

Platten aus der Magnesiumlegierung AZ91HP der Größe 100 x 50 x 2 mm, die beidseitig durch plasmachemische anodische Oxidation mit einer mikroporösen Deckschicht von 20 µm nach dem Verfahren der EP-B-333 084 versehen worden waren, wurden erfindungsgemäß mit Klebosol® behandelt, um die Kapillaren und Poren auszufüllen und die mikroporöse Deckschicht oberflächlich zu versiegeln. Eine raster-elektronenmikroskopische Aufnahme an einem Querschliff zeigt, daß die Poren und Kapillaren mit dem nach der thermischen Behandlung gebildeten Siliciumdioxid oder dessen Reaktionsprodukten gefüllt sind. Die äußere Versiegelungsschicht hat eine Dicke von etwa 5 µm.AZ91HP magnesium alloy plates of size 100 x 50 x 2 mm, anodic on both sides by plasma chemical Oxidation with a microporous top layer of 20 µm after Methods of EP-B-333 084 had been provided treated according to the invention with Klebosol® to the capillaries and Fill pores and superficially cover the microporous top layer to seal. A scanning electron micrograph on one Cross section shows that the pores and capillaries with the after thermal treatment formed silica or its Reaction products are filled. The outer sealing layer has a thickness of about 5 µm.

Die so erhaltene Platte wurde dem neutralen Salznebeltest nach DIN SS 50021 unterworfen. Sie hatte eine Standzeit von 1500 Stunden. Auch als der Test abgebrochen wurde, hatten einige Platten noch nicht einmal einen einzigen Korrosionspunkt. The plate thus obtained was subjected to the neutral salt spray test according to DIN Subjected to SS 50021. It had a service life of 1500 hours. Even when the test was canceled, some plates still had not even a single point of corrosion.

Die gleichen, mit der gleichen oxidischen Deckschicht versehenen Platten hatten nach dem Tauchen in Natronwasserglas und anschließender Auskieselung in einer CO2-Atmosphäre gleichfalls eine etwa 5 µm dicke Versiegelungsschicht und in dem erwähnten neutralen Salznebeltest nur eine Standzeit von ca. 200 Stunden.The same plates, provided with the same oxidic top layer, also had an approximately 5 µm thick sealing layer after immersion in soda water glass and subsequent silicification in a CO 2 atmosphere and only a service life of approx. 200 hours in the neutral salt spray test mentioned.

Claims (18)

  1. A method of treating microporous cover layers produced by anodic oxidation on objects made of aluminum or alloys thereof, characterized in that silicic acid in the form of a lyosol in which the colloidally dispersed SiO2 particles are smaller in at least one dimension than the diameter of the capillaries is introduced into the pores or capillaries of the freshly prepared microporous cover layer which is no more than 24 hours old, whereby the object immersed in the lyosol is exposed to alternating pressure conditions, and the silicic acid lyosol is coagulated or reacted with the cover layer.
  2. A method of treating microporous cover layers produced by plasma chemical anodic oxidation on objects made of aluminum or alloys thereof, characterized in that the silicic acid in the form of a lyosol in which the colloidally dispersed SiO2 particles are smaller in at least one dimension than the diameter of the pores is introduced into the pores or capillaries of the freshly prepared microporous cover layer which is no more than 24 hours old, whereby the object immersed in the lyosol is exposed to alternating pressure conditions and the silicic acid lyosol is coagulated or reacted with the cover layer.
  3. A method of treating microporous cover layers produced by anodic oxidation on objects made of magnesium, titanium or alloys thereof, characterized in that silicic acid in the form of a lyosol in which the colloidally dispersed SiO2 particles are smaller in at least one dimension than the diameter of the pores or capillaries is introduced into the pores or capillaries of the freshly prepared microporous cover layer which is no more than 24 hours old, whereby the object immersed in the lyosol is exposed to alternating pressure conditions and the silicic acid lyosol is coagulated or reacted with the cover layer.
  4. A method of treating microporous cover layers produced by plasma chemical anodic oxidation on objects made of magnesium, titanium or alloys thereof, characterized in that silicic acid in the form of a lyosol in which the colloidally dispersed SiO2 particles are smaller in at least one dimension than the diameter of the pores or capillaries is introduced into the pores or capillaries of the freshly prepared microporous cover layer which is no more than 24 hours old, whereby the object immersed in the lyosol is exposed to alternating pressure conditions, and the silicic acid lyosol is coagulated or reacted with the cover layer.
  5. A method according to one of claims 1 through 4, characterized in that in the silicic acid lyosol is a silica sol.
  6. A method according to one of claims 1 through 4, characterized in that the liquid medium of the lyosol is an alcohol.
  7. A method according to claim 6, characterized in that the alcohol is an aliphatic C1-C6-alcohol.
  8. A method according to one of claims 1 through 7, characterized in that the diameter of the SiO2 particles in the lyosol is 1 to 50 nm, preferably 1 to 10 nm.
  9. A method according to one of claims 1 through 8, characterized in that the coagulation or reaction with the cover layer takes place by heating to temperatures up to 300 °C, preferably up to 150 °C.
  10. A method according to one of claims 1 through 9, characterized in that the solids concentration of the silica sol is 15 % to 60 %, preferably 30 % to 50 %.
  11. A method according to one of claims 1 through 10, characterized in that substances, in particular alcohols and silanes which form films with the silicic acid are added to the silicic acid lyosol.
  12. A method according to one of claims 1 through 11, characterized in that fillers, corrosion inhibitors, coloring agents, lubricants, surfactants or UV stabilizers are added to the silicic acid lyosol.
  13. A method according to one of claims 1 through 12, characterized in that the treatment of the microporous layer with the lyosol after coagulation is repeated several times.
  14. Objects made of aluminum or alloys thereof with a microporous cover layer produced by anodic oxidation, characterized in that the pores or capillaries of the cover layer are essentially filled with silicon dioxide according to the method of claim 1.
  15. Objects made of aluminum or alloys with a microporous cover layer produced by plasma chemical anodic oxidation, characterized in that the pores or capillaries of the cover layer are essentially filled with silicon dioxide by the method of claim 2.
  16. Objects made of magnesium, titanium or alloys thereof with a microporous cover layer produced by anodic oxidation, characterized in that the pores or capillaries of the cover layer are filled essentially with silicon dioxide by the method of claim 3.
  17. Objects made of magnesium, titanium or alloys thereof with a microporous cover layer produced by a plasma chemical anodic oxidation, characterized in that the pores or capillaries of the cover layer are filled essentially with silicon dioxide according to the method of claim 4.
  18. Objects according to one of claims 15 through 17, characterized in that the surface of the microporous layer is covered with a silicate glass layer formed from the SiO2 particles.
EP96922737A 1995-07-28 1996-07-02 Process for deposition of sols into microporous coating layers Expired - Lifetime EP0842309B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19527688 1995-07-28
DE19527688 1995-07-28
PCT/DE1996/001188 WO1997005302A1 (en) 1995-07-28 1996-07-02 Process for depôtsols into microporous coating layers

Publications (3)

Publication Number Publication Date
EP0842309A4 EP0842309A4 (en) 1996-09-30
EP0842309A1 EP0842309A1 (en) 1998-05-20
EP0842309B1 true EP0842309B1 (en) 2002-01-16

Family

ID=7768067

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96922737A Expired - Lifetime EP0842309B1 (en) 1995-07-28 1996-07-02 Process for deposition of sols into microporous coating layers

Country Status (7)

Country Link
EP (1) EP0842309B1 (en)
AT (1) ATE212075T1 (en)
AU (1) AU6352796A (en)
DE (3) DE19680596C1 (en)
ES (1) ES2168491T3 (en)
PT (1) PT842309E (en)
WO (1) WO1997005302A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017207589A1 (en) * 2017-05-05 2018-11-08 Federal-Mogul Nürnberg GmbH Thermally insulating coating for an aluminum piston

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19741580A1 (en) * 1997-09-20 1999-04-01 Bosch Gmbh Robert Composite
WO2001012883A1 (en) * 1999-08-17 2001-02-22 Isle Coat Limited Light alloy-based composite protective multifunction coating
DE102006045617B4 (en) * 2006-09-22 2010-06-10 Innovent E.V. Technologieentwicklung Process for producing an inorganic-inorganic gradient composite layer
DE102008011296A1 (en) 2007-03-16 2008-09-18 Süddeutsche Aluminium Manufaktur GmbH Motor vehicle component with sol-gel coating
DE102007027628B3 (en) * 2007-06-12 2008-10-30 Siemens Ag Method of introducing nanoparticles into anodized aluminum surface
EP2166200A1 (en) 2008-09-23 2010-03-24 Franz Rübig & Söhne GmbH & Co. KG Valve spring disc and method for its manufacture
GB2469115B (en) 2009-04-03 2013-08-21 Keronite Internat Ltd Process for the enhanced corrosion protection of valve metals
CN102199785B (en) * 2011-06-29 2012-12-12 上海理工大学 Microarc oxidation solution of titanium alloy wear-resistant coating and application thereof
GB2513575B (en) 2013-04-29 2017-05-31 Keronite Int Ltd Corrosion and erosion-resistant mixed oxide coatings for the protection of chemical and plasma process chamber components
CN106435685B (en) * 2016-09-18 2018-09-07 佛山科学技术学院 The method that aluminium surface electro-deposition prepares low absorptivity and high hemispherical emissivity oxidation film
US11312107B2 (en) * 2018-09-27 2022-04-26 Apple Inc. Plugging anodic oxides for increased corrosion resistance
FR3101361B1 (en) * 2019-09-27 2022-01-14 Liebherr Aerospace Toulouse Sas METHOD FOR MANUFACTURING A FIRE-RESISTANT PART OF AN AIR CONDITIONING SYSTEM AND PART OBTAINED BY SUCH A PROCESS

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR802421A (en) * 1936-02-26 1936-09-04 Protection of magnesium against corrosion by vitrification
JPS582596A (en) * 1981-06-30 1983-01-08 Nippon Parkerizing Co Ltd Surface treatment for heat exchanger made of aluminum
JPS5959896A (en) * 1982-09-28 1984-04-05 Nippon Light Metal Co Ltd Sealing of anodic oxidized film of aluminum
JPS59179798A (en) * 1983-03-30 1984-10-12 Mitsubishi Heavy Ind Ltd Aluminum and its alloy member
JPS61250193A (en) * 1985-04-26 1986-11-07 Pentel Kk Surface treatment of formed aluminum or aluminum alloy body to provide antislipping property
DE3808610A1 (en) * 1988-03-15 1989-09-28 Electro Chem Eng Gmbh PROCESS FOR SURFACE FINISHING OF MAGNESIUM AND MAGNESIUM ALLOYS
US5091609A (en) * 1989-02-14 1992-02-25 Sumitomo Electric Industries, Ltd. Insulated wire
JPH0327043A (en) * 1989-06-23 1991-02-05 Fuji Photo Film Co Ltd Photosensitive planographic printing plate requiring no dampening water
JPH04311595A (en) * 1991-04-08 1992-11-04 Nippon Parkerizing Co Ltd Ceramic coating method for aluminium
JPH06316787A (en) * 1993-04-28 1994-11-15 Kojundo Chem Lab Co Ltd Treatment of surface of anodized alminum layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017207589A1 (en) * 2017-05-05 2018-11-08 Federal-Mogul Nürnberg GmbH Thermally insulating coating for an aluminum piston

Also Published As

Publication number Publication date
EP0842309A1 (en) 1998-05-20
AU6352796A (en) 1997-02-26
PT842309E (en) 2002-07-31
WO1997005302A1 (en) 1997-02-13
DE59608600D1 (en) 2002-02-21
DE19680596D2 (en) 1997-09-18
EP0842309A4 (en) 1996-09-30
DE19680596C1 (en) 2001-08-23
ES2168491T3 (en) 2002-06-16
ATE212075T1 (en) 2002-02-15
DE29680628U1 (en) 1998-11-05

Similar Documents

Publication Publication Date Title
EP0842309B1 (en) Process for deposition of sols into microporous coating layers
DE102007057777B4 (en) Method for producing a component from aluminum and / or an aluminum alloy and use of the method
DE102008062881B4 (en) Process for the production of a hollow molded glass body
DE102013109394B4 (en) Anodic oxide layer and method of making the same
DE3309891C2 (en)
EP2204199B1 (en) Method for manufacturing an anti-infection coating on implants
EP3019644B1 (en) Method for producing a corrosion-resistant, wear-resistant aluminium substrate
EP2511401A2 (en) Method for producing a coating on the surface of a substrate on the basis of light metals by means of plasma electrolytic oxidation
WO2013139899A2 (en) Treatment of an anodically oxidized surface
DE102014110922A1 (en) Metallic workpiece with a porous surface, method for its production and use of the metallic workpiece with a porous surface
EP1050518B1 (en) Silicate composition
Menchaca-Campos et al. Smart protection of polymer-inhibitor doped systems
AT398753B (en) PYROLYTICALLY COATED FLAT GLASS AND METHOD FOR THE PRODUCTION THEREOF
EP2504862B1 (en) Substrate with a metal sheet for producing photovoltaic cells
DE2413055B2 (en) METHOD OF PERFORMING ELECTROLYSIS IN A DIAPHRAGMA CELL
DE10127494A1 (en) Production of inorganic layers on metallic, enameled and/or glass substrates used as a scratch resistant coating comprises mixing boron nitride with solvent and inorganic binder, applying substrate, drying and sealing
DE810097C (en) Process for the production of an oxide coating on aluminum
DE102007004570A1 (en) Shiny coatings for car wheels made from light metal alloys or steel comprises at least one layer of aluminum or aluminum alloy applied directly to surface of wheel
DE102009004402A1 (en) Surface treatment material for semiconductor manufacture system, comprises a substrate made of aluminum or aluminum alloy, anodic oxidation coating formed over the surface of the substrate with a sealing, and a fluorine-enriched layer
DE102011077021A1 (en) Method for producing electrically-insulated ceramic coating on piston or bearing component i.e. rolling body, of needle cage, involves applying mixture on component, and drying mixture with temperature between specific degrees Celsius
DE102007027628B3 (en) Method of introducing nanoparticles into anodized aluminum surface
EP2292878A2 (en) Handle with surface coating and method for its manufacturing
DE10357540B4 (en) Process for the electrochemical deposition of aerogels on metallic surfaces, anisotropic coating and their use
EP2904131A1 (en) Method for producing a sol-gel coating on a surface to be coated of a component and corresponding component
DE102008038671B3 (en) Surface compression process for automotive aluminium or aluminium alloy components in a hot mixture of distilled water and alcohol

Legal Events

Date Code Title Description
A4 Supplementary search report drawn up and despatched
AK Designated contracting states

Kind code of ref document: A4

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980117

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 19980708

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RTI1 Title (correction)

Free format text: PROCESS FOR DEPOSITION OF SOLS INTO MICROPOROUS COATING LAYERS

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020116

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020116

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020116

REF Corresponds to:

Ref document number: 212075

Country of ref document: AT

Date of ref document: 20020215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KELLER & PARTNER PATENTANWAELTE AG

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59608600

Country of ref document: DE

Date of ref document: 20020221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020416

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020416

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020406

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2168491

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020731

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20020415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: *ELECTRO CHEMICAL ENGINEERING G.M.B.H.

Effective date: 20020731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030630

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20030703

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030704

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030711

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040131

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20040131

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040702

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050331

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020702

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090106

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100202