EP0838012A1 - Refrigerateur ou pompe a chaleur a tube de pulsation alimente par un generateur de pression - Google Patents

Refrigerateur ou pompe a chaleur a tube de pulsation alimente par un generateur de pression

Info

Publication number
EP0838012A1
EP0838012A1 EP96925775A EP96925775A EP0838012A1 EP 0838012 A1 EP0838012 A1 EP 0838012A1 EP 96925775 A EP96925775 A EP 96925775A EP 96925775 A EP96925775 A EP 96925775A EP 0838012 A1 EP0838012 A1 EP 0838012A1
Authority
EP
European Patent Office
Prior art keywords
machine according
eccentric
movable portion
fixed
movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP96925775A
Other languages
German (de)
English (en)
Inventor
Gérard Claudet
Alain Ravex
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0838012A1 publication Critical patent/EP0838012A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C17/00Arrangements for drive of co-operating members, e.g. for rotary piston and casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
    • F02G2243/30Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders
    • F02G2243/50Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders having resonance tubes
    • F02G2243/54Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders having resonance tubes thermo-acoustic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1417Pulse-tube cycles without any valves in gas supply and return lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1419Pulse-tube cycles with pulse tube having a basic pulse tube refrigerator [PTR], i.e. comprising a tube with basic schematic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1421Pulse-tube cycles characterised by details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir
    • F25B2309/14241Pulse tubes with basic schematic including an orifice reservoir multiple inlet pulse tube

Definitions

  • the invention relates to a refrigerator or heat pump machine with a pulsation tube supplied by a pressure generator driven by a circular translational movement.
  • thermal machines whose role is to transport thermal energy (heat) from a lower temperature level (cold source) to a higher temperature level (hot source), making gain the energy transferred in quality.
  • thermodynamics The machine which realizes any transfer of thermal energy and therefore values the heat transferred is subject to the general principles of thermodynamics according to which the transformation considered consumes clean energy which can be communicated to it in any form, most often mechanical, thermal or electromagnetic.
  • the machine is called a heat pump.
  • the same principles or the same procedures can always be used for these devices.
  • the most commonly used methods use fluids chosen according to the temperature levels considered and which are subjected to operations intended to vary their temperature or their entropy.
  • the fluids generally used belong to the family of chlorofluorocarbons (CFCs) and they are used in the range of temperatures where they can exist in the state of saturated fluid.
  • CFCs chlorofluorocarbons
  • the reverse Rankine cycle is used, represented in FIG. 1 and which consists of compression of the gas phase on the line AB, expansion of the liquid phase on the line CD, condensation of the compressed gas on line BC and evaporation of the liquid on line DA. It is a classic diagram of entropy on the abscissa and temperature on the ordinate.
  • Curve E traces the limit of change of state between the liquid and vapor phases (start and end of vaporization). Heat is released when the gas condenses and is absorbed when the liquid evaporates.
  • the refrigerant is in heat exchange relationship with the hot source in the first case and with the cold source in the second case.
  • gas cycles are mainly used which successively include compression, cooling, expansion and heating. As indicated in FIG. 2, the compression, associated with the generation of heat, is carried out at the hot source in accordance with the line FG, for a diagram of the same nature as that of the preceding figure.
  • the expansion which is accompanied by heat absorption, takes place at the cold source in accordance with the line HI.
  • the cooling operations along the GH lines and the heating along the IF line allow the fluid to pass from one temperature level to the other in the most reversible way possible, that is to say ie by transferring the heat to one or the other of the GH and IF lines with the smallest possible temperature differences.
  • the gas exchanges heat with a thermal accumulator or a thermal regenerator which retains the heat when the gas circulates in one direction and releases it when returning in the opposite direction.
  • FIG. 3 representing a Stirling machine
  • the compressor 1 or pressure oscillator is made of a mechanically actuated piston.
  • FIG. 4 which represents a machine according to the Vuilleumier cycle
  • a piston 3 called a displacer because the pressures on its opposite faces are always equal to each other except for the pressure drops, moves in a tube 4 of the thermal compressor 2 in an alternating movement between a hot source at temperature Tl and a source at intermediate temperature T2. Gas is expelled from the compressed source in favor of that which expands with each movement of the piston 3 passing through the clearance around the piston 3 or in a thermal regenerator l ⁇ , and it changes temperature in contact with the other source , and therefore pressure and volume, which affects the rest of the device, namely the refrigeration machine.
  • the Gifford and Mac Mahon machine is characterized by a gas compressor 5 with a low pressure inlet 6 and a high pressure outlet 7, permanent and connected to the refrigeration machine proper 10 by a valve 'Entrance
  • the refrigerating machine 10 which is connected to these compressors 1, 2 and 5 is the same in the three figures. It consists of a tube 11 in which slides a displacement piston 12 which divides the contents of the tube 11 into two chambers with variable volume, connected to each other by a bypass 13 on which a thermal regenerator 14 is installed.
  • the chamber connected to compressor 1, 2 or 5 is at temperature T2 (corresponding to the hot source for Figures 3 and 5 and at the intermediate temperature source for FIG. 4: the Vuilleumier cycle in fact involves three temperature levels), and the other chamber is at the temperature T3 of the cold source.
  • the displacer piston 12 passes the compressed gas from the chamber at temperature T2 to the chamber at temperature T3 by exchanging its heat with the thermal regenerator 14 in response to the pressure increases in the compressor.
  • the expansion of the gas is produced when it mainly occupies the chamber at temperature T3, then the gas is reheated by passing through the thermal regenerator 14 towards the chamber at temperature T2 before undergoing a new cycle.
  • the thermal regenerator 14 has the property of restoring to the gas flowing therein in one direction the heat which it previously took from the gas flowing in the opposite direction.
  • the temperature chamber T2 communicates with the compressor 5 by the inlet 6 and the outlet 7 as, as we have seen; in the embodiments of FIGS. 3 and 4, the connection of the compressor 1 to the chamber of the compressor 2 at the temperature T2 is carried out by a single pressure tapping pipe 15.
  • the machines thus alternative are the seat of two periodic waves in the expansion volume 17, one of pressure and the other of flow. It is possible to control the phase shift of these two waves by mechanical means which control the movements of the compressor piston 1, 2 or 5, generally at room temperature, and of the displacing piston 12 which may, for cryogenic applications, have to function at very low temperatures. We then actually arrive at the desired situation where the maximum relaxation, that is to say say the maximum heat absorption, is simultaneous with the maximum gas flow in the cold source T3.
  • FIGS. 6A, 6B and 6C illustrate three variants of machines with a pulsation tube.
  • Each includes a pressure oscillator 18, symbolized by a mechanical compressor, a thermal regenerator 19 connected to the compressor 18 by a pressure tapping duct 20 and a pulsation tube 21 which branches at the end of the thermal regenerator 19 opposite to the pressure oscillator 18.
  • the pulsation tube 21 is closed at the end opposite the thermal regenerator 19; in Figure 6B which may allow better results, it is extended by an orifice 22 which leads to a reservoir 23; and in FIG.
  • the pulsation tube 21 is throttled near the thermal regenerator 19, where the cold source SF is located, while the hot source SC is located at the opposite end of the pulsation tube 21, at the end of an enlarged portion of any shape, possibly cylindrical thereof, against the orifice 22 when it exists.
  • the gas column is maintained oscillations, and the dimensions and the shape of the various elements of the apparatus make it possible to choose the operating frequency to obtain the phase shift of the flow and pressure waves which makes it possible to effectively extract heat from the cold source for transfer it to the hot spring.
  • the pressure wave can also be controlled by valve switching leading to two sources of unequal pressure, as in US Pat. No. 3,237,421; by a rotating distributor driven by a motor, as in French patent 1,444,558, which amounts to a materialization of the solution sketched in the previous patent; or by eccentric rotors rotating in a larger housing and on which pallets rub which delimit pressure generation chambers in the housing.
  • the object of the invention is therefore to produce the pressure wave in a simpler manner and with less technological disadvantages, and the characteristic means, for this machine for transferring heat from a cold source to a hot source comprising as previously a pulsation tube, free and occupied by a column of gas and passing through the two sources, a pressure oscillator composed of a fixed portion and a movable portion delimiting a pressure generation chamber with variable volume communicating with the tube pulsation by a thermal regenerator, consists in that the movable portion is driven in circular translation by a motor and an eccentric transmission. It is also possible not to resort to pistons and to ensure the variation in volume of the chamber by means almost or entirely devoid of contact and friction.
  • Friction is inevitable along the transmission or at its junction with the mobile part, but one generally has bearings, which produce only little losses and also have a long service life while providing good precision.
  • these may be sealed or dry bearings, gas or magnetic. Even if the bearings are lubricated, the risks of contamination of the machine by the lubricant are low because the bearings are, unlike the compression pistons, far from it.
  • Another advantage is that the gas pulse frequency can be controlled much more easily thanks to the speed of rotation or the frequency of oscillation of the mechanical crew. Finally, energy consumption is reduced, because the inertia or resonance effects of moving parts tend to equalize over a cycle. It is advantageous for the fixed and mobile portions to delimit the pressure generation chamber by curvilinear profiles at two points of tangency or quasi-tangency which approach each other during part of the circular translation, since the gas volume transferred is greater , and the waves more intense but less violent.
  • the transmission may simply consist of a drive shaft with an eccentric part connected to the movable portion by a bearing, or an eccentric surrounding the movable portion and, here again, connected to it by a bearing.
  • the latter solution easily lends itself to a reduction or elimination of the overall inertia forces.
  • FIGS. 1 and 2 describe certain thermodynamic cycles
  • FIGS. 3 to 5 illustrate certain machines with a displacement piston at the cold source
  • FIGS. 6A, 6B and 6C illustrate machines with a pulsation tube
  • Figures 7A to 7D illustrate the operating principle of the invention
  • Figure 8 illustrates a first embodiment of the invention
  • Figures 9A and 9B illustrate two possible modifications for this embodiment
  • Figure 10 illustrates a second embodiment of l he invention
  • FIG. 11 illustrates a third embodiment of the invention
  • FIGS. 12 and 13 represent two possible arrangements of compound machines.
  • each of the parts which is oriented towards the chamber 30 and which results from the juxtaposition of the lobe 33 or 34 with the rounded hollow 35 or 36 therefore has substantially the shape of a sinusoid.
  • the pressure generation chamber 30, composed of surface portions of the hollows
  • the profiles of the fixed and moving parts 31 and 32 are chosen so that, for a circular translation of the moving part 32, the points of tangency remain in moving and sliding towards each other along the profiles, to take for example the position represented in FIG. 7B after a quarter turn, where we observe that the points of tangency (then PB, QB) are at the top of the lobes 33 and 34, or at the bottom of the hollows 35 and 36.
  • the chamber 30 has been significantly reduced both in length and in width, which implies that its contents have been largely pushed back towards the pulsation tube through the orifice 37.
  • Another quarter turn imposed on the moving part 32 and the assembly takes the arrangement of FIG. 7C, where the points of tangency (then PC and QC) are re] o ⁇ gn at the location of the orifice 37.
  • the entire contents of chamber 30 were then expelled.
  • the circular translational movement is then accompanied by the separation of the fixed and mobile parts 31 and 32, which is shown after a third quarter turn in FIG. 7D, and the chamber 30 opens and takes a maximum volume which - favors the admission of gas.
  • FIG. 7A where the chamber 30 closes at the points of tangency and where the delivery begins again.
  • FIG. 8 A concrete implementation of this principle is described in Figure 8.
  • the fixed part 31 is screwed to an enclosure 40 which houses a movable assembly 41.
  • the latter consists of a motor 42 whose motor shaft 43 is extended by an eccentric part 44 carrying, by means of a pair of bearings 45, a movable block 46 to which the movable part 32 is screwed.
  • the movable block 46 is therefore suspended from the motor shaft 43 with a freedom to rotate, which is countered by a bellows 47 uniting an external collar 48 to the movable block 46 with a cover 49 of the enclosure 40: the bellows 47 is has torsional rigidity sufficient to reduce almost completely the rotations of the movable block 46 and of the movable part 32, to a sufficiently low level so that it can be estimated that the movable part 32 is only subjected to a circular translation produced by the rotation of the part eccentric 44 of the motor shaft 43.
  • the bellows 47 has the advantage of enclosing the bearings 45 and another pair of bearings 50, disposed between a descending tab 51 of the cover 49 and a pair of eccentrics 52 of the motor shaft 43, which maintain the eccentric position of the eccentric part 44: the grease of the bearings cannot end up in the pressure generation chamber 30 nor in the other thermally active parts of the machine, where its intrusion could be very damaging .
  • the orifice 37 opens into a thermal regenerator 53, then, after a neck 54, into a pulsation tube 55.
  • the regenerator and the pulsation tube 55 pass through an insulating wall 56 of a cold room inside which finds the neck 54, to which a cold source 57 is attached.
  • a hot source 58 is located against the bottom of the pulsation tube 55, outside the heat-insulating wall 56 and the cold room; a pipe 59 connects the pulsation tube 55 inside the enclosure 40 which forms the reservoir 23 of FIGS. 6B and 6C.
  • the gas which is the subject of back-ups and admissions in alternating directions through orifice 37, between the refrigerating machine and the pressure generation chamber 30, can be helium at 5 bars and at ambient temperature, and the cold room can be at a temperature of -20 ° C. Nitrogen or air can also be considered.
  • the bellows 47 may contain air, but it is preferable that its pressure is similar to that of the rest of the contents of the enclosure 40 so that it is not not stiff.
  • the pressure generation chamber 30 can in this example have a maximum volume of 30 cm J , and the motor 42 can rotate at 1500 rpm.
  • thermometer 60 controls the starting of the motor 42 by means of an electrical box 61 as soon as a rise in the temperature in the cold room is observed.
  • the movable block 46 takes a different shape and the reference 70; it is suspended from the eccentric part 44 of the motor shaft 43 by a single bearing 45, but it is also suspended from an axis 71 of another eccentric 72 suspended from the descending tab 51 (of slightly modified shape).
  • Bearings 73 and 74 are arranged between the axis 71 and the movable block 70, and between the eccentric 72 and the descending tab 51, to tolerate the relative rotations of these parts.
  • bearings 50, 45, 73 and 74 in a closed volume, but as it would not have any other utility, one can consider not to use it but to use dry bearings or bearings closed by sealing lips .
  • FIG. 9B shows a movable block 80 joined, by two opposite ends 81 and 82, at the top and at the bottom of the enclosure 40 by four springs 83.
  • the springs 83 are arranged symmetrically; for example, their points of attachment to the enclosure 40 may be located in a plane passing through the axis of the motor shaft 43. When the latter rotates, the springs 83 are stretched sideways but maintain a state of equilibrium in rotation of the movable block 80.
  • FIG. 10 A very different design of this driving part of the refrigerating machine is illustrated in FIG. 10: the moving part 32 is not connected to a drive shaft and the internal face of the cylindrical wall 91 of the enclosure 40 carries the windings 92 an electric motor, the poles 93 of which are fixed in a crown to an eccentric 94 in the form of a socket surrounding the moving part 32. Sealed and concentric bearings 95 and 96 which respectively connect the eccentric 94 to the moving part 32 and to the cylindrical wall 91 allow these to be suspended therefrom; a bellows 90 connecting the moving part 32 to the cover 49 is intended to maintain the moving part 32 in an almost unchanging angular position, as in previous embodiments.
  • Such a device makes it possible to very substantially reduce the radial inertial forces which appear when the motor rotates and strongly load the motor shaft, those of the eccentric 94 counterbalancing those of the moving part 32.
  • FIG. 11 illustrates a slightly different embodiment intended to operate in cryogenics, by thermally insulating the driving parts of the machine, which work at room temperature or a little lower, from the thermally active parts which use a gas very cooled throughout the thermodynamic cycle.
  • An external enclosure 100 is lined on three sides (except on a cover 115) by an internal enclosure 101, the fixed part 31 of which forms the bottom.
  • the moving part 32 like the other moving elements, is housed in the internal enclosure 101: there is a motor 103, a motor shaft 104 terminated by an eccentric part 105, a pair of bearings 106, installed in a tubular part 116 descending from the cover 115 to support the motor shaft 104, a third bearing 107 to suspend a movable block 108 from the eccentric part 105 and a bellows 109 uniting the movable block 108 to the cover 115 to hold it in rotation with the movable part 32 , which is suspended from it by a mast 117.
  • This mast 117 and the cylindrical wall 110 of the internal enclosure 101 are constructed of a material which is poor conductor of heat such as stainless steel so that the fixed and mobile parts 31 and 32 remain at a very low temperature, maintained by a circulation of nitrogen liquid in a coil 111 wound around the fixed part 31 and the bottom of the internal enclosure 101.
  • All the elements of the refrigerating machine are suspended from the fixed part 31 and extend under the internal enclosure 101, and the cold source carries an element 112 to be cooled, which can be a radiation detector from an astronomical telescope oriented towards a porthole 113 of the external enclosure 100. This device makes it possible to reach temperatures of 4 Kelvin.
  • each chamber 130 communicates through an orifice 137 with a particular machine 138 similar to that of FIG. 8 and comprising in particular a tube to. pulsation, a thermal regenerator and hot and cold sources.
  • the vertical profiles 133 and 134 are similar to those of FIGS. 7A to 7D or to those derived therefrom and have similar properties.
  • the fixed and mobile parts 131 and 132 can be constructed in one piece or formed from superimposed plates, each of which carries one of the vertical profiles 133 or 134. Another embodiment with a similar effect is illustrated in FIG. 13.
  • Each of the fixed and mobile parts 231 and 232 carries vertical profiles 233a, 233b. and 234a, 234b successive at the same height and which are cut on opposite faces of projections of the parts 231 and 232; these projections penetrate between projections neighboring the other of the parts.
  • particular chambers 230a are formed between the profiles 233a and 234a and other particular chambers 230b, which alternate with the previous ones, are formed between the profiles 233b and 234b.
  • the profiles 233a, 233b and 234a, 234b are also similar to those of FIGS. 7A to 7D or their equivalents.
  • the private rooms 230a have volumes which vary together and in phase opposition with the volumes of the private rooms 230b.
  • the particular chambers 230a are provided with orifices 237a which communicate with a common collector 235a and with a single refrigerating machine 238a.
  • the other particular chambers 230b are provided with orifices 237b which communicate with another common manifold 235b and with another single refrigerating machine 238b.
  • each of the orifices 237a and 237b could lead to a particular refrigerating machine, and conversely the orifices 137 in FIG. 12 could lead to a single refrigerating machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Reciprocating Pumps (AREA)

Abstract

Cette machine frigorifique est composée d'une chambre de génération de pression (30) à volume variable pour créer, par l'intermédiaire d'un régénérateur thermique (53), des ondes de pression dans un tube à pulsation (55). De la chaleur est extraite d'une source froide (57) et apportée à une source chaude (58) pour un réglage correct de l'installation. Selon l'invention, le volume de la chambre (30) varie en conséquence d'une translation circulaire d'une pièce mobile (32), ce qui permet d'éviter les problèmes d'usure et de lubrification associés aux pistons couramment utilisés pour obtenir le même effet. La pièce mobile (32) et une pièce fixe (31) en regard peuvent avoir des parois à profil en arcs de cercle, sinusoïdaux ou spiraux.

Description

REFRIGERATEUR OU POMPE A CHALEUR A TUBE DE PULSATION ALIMENTE PAR UN GENERATEUR DE PRESSION
DESCRIPTION L'invention concerne une machine réfrigérateur ou pompe à chaleur à tube de pulsation alimenté par un générateur de pression animé d'un mouvement de translation circulaire.
Selon le domaine d'application considéré ou selon la gamme de température concernée, le vocabulaire utilisé pour décrire certaines machines peut prendre des formes différentes.
C'est notamment vrai pour les machines thermiques dont le- rôle est de transporter de l'énergie thermique (de la chaleur) depuis un niveau inférieur de température (source froide) jusqu'à un niveau supérieur de température (source chaude) , faisant gagner l'énergie transférée en qualité.
La machine qui .réalise tout transfert d'énergie thermique et donc valorise la chaleur transférée est assujettie aux principes généraux de la thermodynamique selon lesquels la transformation considérée consomme une énergie propre qui peut lui être communiquée sous une forme quelconque, le plus souvent mécanique, thermique ou électromagnétique.
Quand la machine considérée a pour but essentiel d'enlever de la 'chaleur à une source froide, il s'agit d'un réfrigérateur, quel que soit le niveau de température considéré. Quand la source froide est comprise entre quelques kelvins et environ 100 kelvins, on parle de réfrigérateur cryogénique. Quand la température de la source froide est de 200 à 250 kelvins (-70°C à -20°C environ) et surtout si l'installation est de grande taille, on parle de machine frigorifique ou de réfrigérateur industriel. Pour les températures voisines de 0°C ou légèrement inférieures, on parle couramment de réfrigérateur ménager ou domestique. Enfin, si la source froide doit être maintenue entre 10 et 20°C afin de rester à un niveau agréable, la machine est appelée un climatiseur.
Si au contraire le but recherché est l'apport de chaleur à la source chaude, la machine est appelée pompe à chaleur.
Mais les mêmes principes ou les mêmes procédés pourront toujours être utilisés pour ces appareils. Les procédés les plus couramment utilisés mettent en oeuvre des fluides choisis en fonction des niveaux de température considérés et qui sont soumis à des opérations destinées à faire varier leur température ou leur entropie. Pour les applications frigorifiques industrielles ou domestiques, les fluides généralement utilisés appartiennent à la famille des chlorofluorocarbon.es (CFC) et ils sont utilisés dans la gamme.des températures où ils -peuvent exister à l'état de fluide saturé. On utilise alors fréquemment le cycle de Rankine inversé, représenté sur la figure 1 et qui se compose d'une compression de la phase gazeuse sur la ligne AB, d'une détente de la phase liquide sur la ligne CD, d'une condensation du gaz comprimé sur la ligne BC et d'une évaporation du liquide sur la ligne DA. Il s'agit d'un diagramme classique d'entropie en abscisses et de température en ordonnées. La courbe E trace la limite de changement d'état entre les phases liquide et de vapeur (début et fin de vaporisation) . De la chaleur est dégagée à la condensation du gaz et absorbée à l'évaporation du liquide. Le fluide réfrigérant est en relation d'échange thermique avec la source chaude dans le premier cas et avec la source froide dans le second cas. Pour les applications en cryogénie, on utilise surtout des cycles à gaz qui comportent successivement une compression, un refroidissement, une détente et un échauffement. Comme on l'indique sur la figure 2, la compression, associée à un dégagement de chaleur, se fait à la source chaude conformément à la ligne FG, pour un diagramme de même nature que celui de la figure précédente. La détente, qui s'accompagne d'une absorption de chaleur, se fait à la source froide conformément à la ligne HI. Les opérations de refroidissement le long des lignes GH et de réchauffement le long de la ligne IF (isobares ou isochores) permettent au fluide de passer d'un niveau de température à l'autre de la manière la plus réversible possible, c'est-à-dire en transférant la chaleur sur l'une ou l'autre des lignes GH et IF avec les plus faibles écarts de température possibles.
Dans les cycles à circulation continue, ces opérations sont réalisées dans des échangeurs de chaleur à contre-courant. C'est par exemple le cas dans les cycles cryogéniques de Claude ou de Brayton utilisant l'hélium, l'hydrogène ou l'azote comme gaz en fonction de la température visée.
Dans les cycles à circulation alternée, le gaz échange de la chaleur avec un accumulateur thermique ou un régénérateur thermique qui retient la chaleur lorsque le gaz circule dans un sens et la restitue lors du retour en sens inverse.
Les cycles à circulation alternés les plus connus sont ceux de Stirling, de Vuilleumier, de Gifford et Mac Mahon ainsi que le cycle à tube de pulsation, pour lesquels une description plus complète quoique schématique de dispositifs correspondants est donnée par les figures suivantes 3 à 5. Sur la figure 3 représentant une machine de Stirling, le compresseur 1 ou oscillateur de pression est fait d'un piston actionné mécaniquement.
Sur la figure 4, qui représente une machine selon le cycle de Vuilleumier, un compresseur thermique
2 est utilisé. Un piston 3, appelé déplaceur car les pressions sur ses faces opposées sont toujours égales entre elles aux pertes de charge près, se déplace dans un tube 4 du compresseur thermique 2 d'un mouvement alternatif entre une source chaude à la température Tl et une source à température intermédiaire T2. Du gaz est chassé de la source comprimée au profit de celle qui s'agrandit à chaque mouvement du piston 3 en passant par le jeu autour du piston 3 ou dans un régénérateur thermique lβ, et il change de température au contact de l'autre source, et donc de pression et de volume, ce qui se répercute sur le reste de l'appareil, à savoir la machine frigorifique.
Sur la figure 5, -la machine de Gifford et Mac Mahon se caractérise par un compresseur de gaz 5 avec une entrée à basse pression 6 et une sortie à haute pression 7, permanentes et reliées à la machine frigorifique proprement dite 10 par un clapet d'entrée
3 et un clapet de sortie 9 respectivement, qui sont ouverts à tour de rôle pour engendrer les cycles de pression nécessaires.
La machine frigorifique 10 qui est reliée à ces compresseurs 1, 2 et 5 est la même dans les trois figures. Elle consiste en un tube 11 dans lequel coulisse un piston déplaceur 12 qui divise le contenu eu tube 11 en deux chambres à volume variable, reliées entre elles par une dérivation 13 sur laquelle un régénérateur thermique 14 est installé. La chambre reliée au compresseur 1, 2 ou 5 est à la température T2 (correspondant à la source chaude pour les figures 3 et 5 et à la source à température intermédiaire pour la figure 4 : le cycle de Vuilleumier implique en effet trois niveaux de température), et l'autre chambre est à la température T3 de la source froide. Le piston déplaceur 12 fait passer le gaz comprimé de la chambre à la température T2 vers la chambre à la température T3 en échangeant sa chaleur avec le régénérateur thermique 14 en réponse aux élévations de pression dans le compresseur. La détente du gaz est produite lorsqu'il occupe principalement la chambre à la température T3, puis le gaz est réchauffé en traversant le régénérateur thermique 14 vers la chambre à température T2 avant de subir un nouveau cycle. Le régénérateur thermique 14 a en effet la propriété de restituer au gaz y circulant dans un sens la chaleur qu'il a prise précédemment au gaz circulant en sens inverse. Dans la réalisation de la figure 5, la chambre à la température T2 communique avec le compresseur 5 par l'entrée 6 et la sortie 7 comme,on l'a vu ; dans les réalisations des figures 3 et 4, la liaison du compresseur 1 à la chambre du compresseur 2 à la température T2 est réalisée par un conduit unique de prise de pression 15.
A partir de l'illustration de la figure 3, on conçoit que les machines ainsi alternatives sont le siège de deux ondes périodiques dans le volume de détente 17, l'une de pression et l'autre de débit. Il est possible de contrôler le déphasage de ces deux ondes par des moyens mécaniques qui commandent les mouvements du piston compresseur 1, 2 ou 5, généralement à la température ambiante, et du piston déplaceur 12 qui peut, pour les applications en cryogénie, devoir fonctionner à de très basses températures. On arrive alors effectivement à la situation recherchée où la détente maximale, c'est-à- dire l'absorption de chaleur maximale, est simultanée au débit de gaz maximal dans la source froide T3.
Les figures 6A, 6B et 6C illustrent trois variantes de machines à tube de pulsation. Chacune comprend un oscillateur de pression 18, symbolisé par un compresseur mécanique, un régénérateur thermique 19 relié au compresseur 18 par un conduit de prise de pression 20 et un tube de pulsation 21 qui s'embranche à l'extrémité du régénérateur thermique 19 opposée à l'oscillateur de pression 18. Dans la figure 6A qui illustre une réalisation de base, le tube de pulsation 21 est fermé à l'extrémité opposée au régénérateur thermique 19 ; dans la figure 6B qui peut permettre de meilleurs résultats, il est prolongé par un orifice 22 qui aboutit à un réservoir 23 ; et dans la figure 6C, qui comprend également un orifice 22 et un réservoir 23, un perfectionnement supplémentaire existe sous forme d'une dérivation 24 entre l'orifice 22 et le conduit de prise de pression -20 afin d'envoyer l'onde de pression dans les deux extrémités du tube de pulsation 21. Il est alors usuel qu'une valve soit placée sur la dérivation 24 pour contrôler le débit. Par l'effet combiné des différents volumes et étranglements, le déphasage nécessaire à l'effet frigorifique des ondes de débit et de pression est obtenu par des moyens totalement statiques dans le tube de pulsation 21, qui est donc libre ou dépourvu de tout objet mobile tel qu'un piston déplaceur. Plus précisément, le tube de pulsation 21 est étranglé près du régénérateur thermique 19, où la source froide SF est située, alors que la source chaude SC est située à l'extrémité opposée du tube de pulsation 21, au bout d'une portion élargie de forme quelconque, éventuellement cylindrique de celui-ci, contre l'orifice 22 quand il existe. La colonne de gaz est mise en oscillations entretenues, et les dimensions et la forme des différents éléments de l'appareil permettent de choisir la fréquence de fonctionnement pour obtenir le déphasage des ondes de débit et de pression qui permet d'extraire effectivement de la chaleur à la source froide pour la transférer vers la source chaude.
Ces machines présentent avec celles qui exploitent un cycle de Rankine la ressemblance qu'elles n'ont qu'une pièce mobile, à l'endroit du compresseur, et donc ont la même simplicité de construction et la même fiabilité, mais l'absence de changement d'état permet d'utiliser un gaz neutre comme l'hélium ou l'azote, ou même l'air, à la place des chlorofluorocarbones polluants.
On a en effet vérifié expérimentalement que les machines à tube de pulsation 21, jusque-là exclusivement proposées pour des applications cryogéniques, étaient aussi-, aptes à fonctionner jusqu'au voisinage de la température ambiante. Pourtant, elles n'ont jamais été appliquées industriellement, même en cryogénie, à cause de leur manque d'efficacité thermique ou à cause de la difficulté de réaliser des générateurs de pression suffisamment fiables, malgré de nombreux essais dont on trouve trace dans l'art antérieur.
Le brevet soviétique 4378 91 datant de 1974 décrit un compresseur à piston associé à un tube à pulsation qui peut être composé de deux étages. Le brevet américain 3 817 044 de la même année décrit un compresseur à adsorption d'hydrogène sur du nitrure de lanthane. Un compresseur thermo-acoustique est proposé dans le brevet américain 4 953 36δ ; on trouve un piston, commandé par une source de chaleur, dans le brevet américain 4 584 840 ; enfin, un jet de gaz dont on utilise l'énergie mécanique est imaginé comme source de pression dans le brevet soviétique 10863 18.
L'onde de pression peut aussi être commandée par des commutations de vannes menant à deux sources de pressions inégales, comme dans le brevet américain 3 237 421 ; par un distributeur tournant et entraîné par un moteur, comme dans le brevet français 1 444 558, ce qui revient à une matérialisation de la solution esquissée dans le brevet précédent ; ou par des rotors excentrés tournant dans un logement plus grand et sur lesquels frottent des palettes qui délimitent des chambres de génération de pression dans le logement.
Les perfectionnements de la machine visibles notamment sur les figures 6B et 6C ont pour but essentiel, dans la littérature connue, d'abaisser la température de la source froide à des niveaux très bas, de quelques dizaines de kelvins. On citera les articles de Zhu (ICEC 13, Péfcin 1990) et Ravex (ICEC 14, Kiev 1992) .
Ce sont principalement les moyens de production de l'onde de pression qui sont envisagés dans cette invention, pour les rendre bien adaptés à cette application de tube à pulsation. En effet, parmi les solutions connues dé]à, les systèmes à piston doivent être lubrifiés pour obtenir une durée de vie suffisante, ce qui provoque le risque de pollution par migration d'huile ou de graisse. Les pistons secs subissent des frottements et de l'usure importants et leur durée de fonctionnement sans maintenance est donc limitée. Les solutions thermiques ou thermo-acoustiques imposent des fréquences d'oscillation qui doivent être rendues compatibles avec celles qu'on recherche dans le tube à pulsation, ce qui peut être difficile, et les déperditions de chaleur sont importantes, ce qui réduit le rendement général de la machine.
Le même reproche de frottements importants peut être adressé aux systèmes tournants à distributeur ou rotor excentré.
L'objet de l'invention est donc de produire l'onde de pression de façon plus simple et avec de moindres inconvénients technologiques, et le moyen caractéristique, pour cette machine de transfert de chaleur d'une source froide à une source chaude comprenant comme précédemment un tube de pulsation, libre et occupé par une colonne de gaz et passant par les deux sources, un oscillateur de pression composé d'une portion fixe et d'une portion mobile délimitant une chambre de génération de pression à volume variable communiquant au tube de pulsation par un régénérateur thermique, consiste en ce que la portion mobile est entraînée en translation circulaire par un moteur et une transmission à excentrement. On peut aussi ne pas recourir aux pistons et assurer la variation de volume de la chambre par des moyens presque ou entièrement dépourvus de contact et de frottement. Des frottements sont inévitables le long de la transmission ou à sa jonction à la partie mobile, mais on dispose en général des paliers, qui ne produisent que peu de pertes et ont par ailleurs une longue durée de vie tout en offrant une bonne précision. Il peut s'agir, dans certaines réalisations de paliers étanchés ou secs, à gaz ou magnétiques. Même si les paliers sont lubrifiés, les risques de contamination de la machine par le lubrifiant sont faibles car les paliers sont, contrairement aux pistons de compression, éloignés d'elle. Un autre avantage est que la fréquence de pulsation du gaz peut être commandée beaucoup plus facilement grâce à la vitesse de rotation ou la fréquence d'oscillation de l'équipage mécanique. Enfin la consommation d'énergie est réduite, car les effets d'inertie ou de résonance des pièces en mouvement tendent à s'égaliser sur un cycle. II est avantageux que les portions fixe et mobile délimitent la chambre de génération de pression par des profils curvilignes à deux points de tangence ou quasi-tangence qui s'approchent mutuellement pendant une partie de la translation circulaire, car le volume gazeux transféré est plus grand, et les ondes plus intenses mais moins violentes.
La transmission peut simplement consister en un arbre moteur à partie excentrée reliée à la portion mobile par un palier, ou en un excentrique entourant la portion mobile et, ici encore, relié à elle par un palier. Cette dernière solution se prête aisément à une réduction ou une suppression des forces d'inertie globales.
Des dispositifs -- indépendants de la transmission peuvent être prévus pour s'opposer à la rotation de la portion mobile ou la contrarier. Il peut s'agir de soufflets, de ressorts, d'éléments élastiques en général ou d'une transmission rigide supplémentaire à excentrique. L'invention va maintenant être décrite dans certaines de ses réalisations à l'aide des figures suivantes annexées à titre illustratif et non limitatif : les figures 1 et 2 décrivent certains cycles thermodynamiques, les figures 3 à 5 illustrent certaines machines à piston déplaceur à la source froide, les figures 6A, 6B et 6C illustrent des machines à tube de pulsation, les figures 7A à 7D illustrent le principe de fonctionnement de l'invention, la figure 8 illustre une première réalisation de l' invention, - les figures 9A et 9B illustrent deux modifications possibles pour cette réalisation, la figure 10 illustre une deuxième réalisation de l' invention, la figure 11 illustre une troisième réalisation de l'invention, et les figures 12 et 13 représentent deux agencements possibles de machines composées.
Le principe de fonctionnement de la machine de transfert thermique selon l'invention et en particulier de sa chambre d'oscillation ou de génération de pression va être décrit en liaison aux figures 7A à 7D. La chambre de génération de pression
30 est délimitée par une pièce fixe 31 et une pièce mobile 32 qui ont des formes, à la fois sensiblement complémentaires et sensiblement identiques : chacune comprend un lobe arrondi (respectivement 33 et 34) qui pénètre dans un creux arrondi (respectivement 35 et 36) plus large de l'autre des pièces. Le profil de chacune des pièces qui est orienté vers la chambre 30 et qui résulte de la juxtaposition du lobe 33 ou 34 au creux arrondi 35 ou 36 a donc sensiblement la forme d'une sinusoïde. A la figure 7A, la chambre de génération de pression 30, composée de portions de surface des creux
.arrondis 35 et 36 laissées libres par les lobes 33 et 34, est fermée, car les pièces fixe et mobile 31 et 32 se touchent en deux points de tangence PA et QA situés presque à leurs extrémités latérales. Les profils des pièces fixe et mobile 31 et 32 sont choisis de telle façon que, pour une translation circulaire de la pièce mobile 32, les points de tangence subsistent en se déplaçant et glissent l'un vers l'autre le long des profils, pour prendre par exemple la position représentée à la figure 7B après un quart de tour, où on observe que les points de tangence (alors PB, QB) sont au sommet des lobes 33 et 34, ou au fond des creux 35 et 36. La chambre 30 s'est sensiblement réduite à la fois en longueur et en largeur, ce qui implique que son contenu a été largement refoulé vers le tube à pulsation par l'orifice 37. Encore un quart de tour infligé à la pièce mobile 32 et l'ensemble prend la disposition de la figure 7C, où les points de tangence (alors PC et QC) se re]oιgnent à l'emplacement de l'orifice 37. Tout le contenu de la chambre 30 a alors été refoulé. Le mouvement de translation circulaire s'accompagne ensuite de la séparation des pièces fixe et mobile 31 et 32, ce qui est représenté après un troisième quart de tour sur la figure 7D, et la chambre 30 s'ouvre et prend un volume maximal qui -.favorise l'admission du gaz. On revient ensuite à l'état de la figure 7A, où la chambre 30 se ferme aux points de tangence et où le refoulement recommence.
Une réalisation concrète de mise en oeuvre de ce principe est décrite à la figure 8. La pièce fixe 31 est vissée à une enceinte 40 qui abrite un ensemble mobile 41. Ce dernier est compose d'un moteur 42 dont l'arbre moteur 43 est prolongé par une partie excentrée 44 porteuse, par l'intermédiaire d'une paire de roulements 45, d'un bloc mobile 46 auquel la pièce mobile 32 est vissée. Le bloc mobile 46 est donc suspendu à l'arbre moteur 43 avec une liberté de tourner, qu'on contrarie par un soufflet 47 unissant une collerette extérieure 48 au bloc mobile 46 à un couvercle 49 de l'enceinte 40 : le soufflet 47 est doté d'une rigidité en torsion, suffisante pour réduire presque complètement les rotations du bloc mobile 46 et de la pièce mobile 32, jusqu'à un niveau suffisamment faible pour qu'on puisse estimer que la pièce mobile 32 n'est soumise qu'à une translation circulaire produite par la rotation de la partie excentrée 44 de l'arbre moteur 43. De plus, le soufflet 47 présente l'avantage d'enfermer les roulements 45 et une autre paire de roulements 50, disposés entre une patte descendante 51 du couvercle 49 et une paire d'excentriques 52 de l'arbre moteur 43, qui maintiennent la position excentrée de la partie excentrée 44 : la graisse des roulements ne peut pas aboutir à la chambre de génération de pression 30 ni aux autres parties thermiquement actives de la machine, où son intrusion pourrait être très dommageable.
L'orifice 37 débouche dans un régénérateur thermique 53, puis, après un col 54, dans un tube de pulsation 55. Le régénérateur et le tube de pulsation 55 traversent une paroi calorifuge 56 d'une chambre froide à l'intérieur de laquelle on trouve le col 54, auquel est attachée une source froide 57. Une source chaude 58 est située contre le fond du tube de pulsation 55, hors de la paroi calorifuge 56 et de la chambre froide ; une canalisation 59 relie le tube de pulsation 55 à l'intérieur de l'enceinte 40 qui forme le réservoir 23 des figures 6B et 6C. Le gaz objet des refoulements et des admissions en sens alternés par l'orifice 37, entre la machine frigorifique et la chambre 30 de génération de pression, peut être de l'hélium à 5 bars et à température ambiante, et la chambre froide peut être à une température de -20°C. De l'azote ou de l'air peuvent aussi être envisagés. Le soufflet 47 peut contenir de l'air, mais il est préférable que sa pression soit analogue à celle du reste du contenu de l'enceinte 40 pour qu'il ne soit pas raidi. La chambre de génération de pression 30 peut avoir sur cet exemple un volume maximal de 30 cmJ, et le moteur 42 peut tourner à 1500 tr/mn. On a supposé jusqu'ici que le contact était effectif entre les profils en regard des pièces fixe 31 et mobile 32, ce qui est possible s'ils sont revêtus d'un produit à faible frottement tel que le plastique ou le graphite, mais de petits jeux (0,1 mm par exemple) sont tolérables, les points de tangence P et Q étant alors des points de quasi-tangence.
Comme dans les machines frigorifiques usuelles, un thermomètre 60 commande la mise en marche du moteur 42 par l'intermédiaire d'un boîtier électrique 61 dès qu'une élévation de la température dans la chambre froide est constatée.
Les deux figures suivantes 9A et 9B sont des vues partielles qui montrent que le soufflet 47 n'est pas le seul moyen convenable pour arrêter ou réduire la rotation de la pièce mobile 32 : dans la réalisation de la figure 9A, le bloc mobile 46 prend une forme différente et la référence 70 ; il est suspendu à la partie excentrique 44 de l'arbre moteur 43 par un seul roulement 45, mais il est aussi suspendu à un axe 71 d'un autre excentrique 72 suspendu à la patte descendante 51 (de forme légèrement modifiée) . Des roulements 73 et 74 sont disposés entre l'axe 71 et le bloc mobile 70, et entre l'excentrique 72 et la patte descendante 51, pour tolérer les rotations relatives de ces pièces. Comme l'excentrique 72 est exactement semblable aux excentriques 52, parallèle à eux et en phase avec eux, la rotation de l'arbre moteur 43 entraine des rotations concomitantes des excentriques 52 et 72 et donc une translation circulaire absolument pure du bloc mobile 70. Un soufflet peut encore être ajouté pour confiner les 7 »Λ1,-«
PCT/FR96/01084
15
roulements 50, 45, 73 et 74 dans un volume clos, mais comme il n'aurait pas d'autre utilité, on peut envisager de ne pas y recourir mais d'utiliser des paliers secs ou des roulements clos par des lèvres d'étanchéité.
La figure 9B montre un bloc mobile 80 réuni, par deux extrémités opposées 81 et 82, au sommet et au fond de l'enceinte 40 par quatre ressorts 83. Les ressorts 83 sont disposés symétriquement ; par exemple, leur points d'attache à l'enceinte 40 peuvent être situés dans un plan passant par l'axe de l'arbre moteur 43. Quand ce dernier tourne, les ressorts 83 sont étirés de côté mais maintiennent un état d'équilibre en rotation du bloc mobile 80. Dans cette réalisation, il n' y a qu'un excentrique 52 et qu'un roulement 45 et 50 de chaque espèce pour soutenir l'arbre moteur 43 et suspendre le bloc mobile 80.
Une conception fort différente de cette partie motrice de la machine frigorifique est illustrée à la figure 10 : la pièce mobile 32 n'est pas reliée à un arbre moteur et la face interne de la paroi cylindrique 91 de l'enceinte 40 porte les enroulements 92 d'un moteur électrique dont les pôles 93 sont fixés en couronne à un excentrique 94 en forme de douille entourant la pièce mobile 32. Des roulements 95 et 96 étanches et concentriques qui unissent respectivement l'excentrique 94 à la pièce mobile 32 et à la paroi cylindrique 91 permettent de suspendre ceux-là à celle- ci ; un soufflet 90 reliant la pièce mobile 32 au couvercle 49 a pour but de maintenir la pièce mobile 32 à une position angulaire immuable ou presque, comme dans des réalisations précédentes. Un tel dispositif permet de réduire très sensiblement les forces d' inertie radiales qui apparaissent à la rotation du moteur et chargent fortement l'arbre moteur, celles de l'excentrique 94 contrebalançant celles de la pièce mobile 32.
Un équilibrage des composantes linéaires des forces d'inertie dans le plan de rotation des pièces peut être entrepris pour les rendre égales et annuler totalement leur résultante. Les roulements 95 et 96 peuvent alors être remplacés par des paliers à gaz ou magnétiques. Si des roulements ordinaires, lubrifiés à la graisse, sont employés, il est préférable de les isoler des pièces thermiquement actives par un second soufflet 97 à dimensionner convenablement reliant la pièce mobile 32 au fond 98 de l'enceinte 40, se substituant ainsi au premier soufflet 90 et entourant la pièce fixe 31. La figure 11 illustre une réalisation un peu différente prévue pour fonctionner en cryogénie, en isolant thermiquement les parties motrices de la machine, qui travaillent à température ambiante ou un peu inférieure, des parties thermiquement actives qui utilisent un gaz très refroidi sur tout le cycle thermodynamique.
Une enceinte externe 100 est doublée sur trois côtés (sauf sur un couvercle 115) par une enceinte interne 101 dont la partie fixe 31 forme le fond. La pièce mobile 32, de même que les autres éléments mobiles, est logée dans l'enceinte interne 101 : on retrouve un moteur 103, un arbre moteur 104 terminé par une partie excentrée 105, une paire de roulements 106, installés dans une partie tubulaire 116 descendant du couvercle 115 pour soutenir l'arbre moteur 104, un troisième roulement 107 pour suspendre un bloc mobile 108 à la partie excentrée 105 et un soufflet 109 unissant le bloc mobile 108 au couvercle 115 pour le retenir en rotation avec la pièce mobile 32, qui lui est suspendue par un mât 117. Ce mât 117 et la paroi cylindrique 110 de l'enceinte interne 101 sont construits en un matériau mauvais conducteur de la chaleur tel que l'acier inoxydable pour que les pièces fixe et mobile 31 et 32 demeurent à une température très basse, entretenue par une circulation d'azote liquide dans un serpentin 111 enroulé autour de la pièce fixe 31 et du bas de l'enceinte interne 101.
Tous les éléments de la machine frigorifique sont suspendus à la pièce fixe 31 et s'étendent sous l'enceinte interne 101, et la source froide porte un élément 112 à refroidir, qui peut être un détecteur de rayonnement d'un télescope astronomique orienté vers un hublot 113 de l'enceinte externe 100. Ce dispositif permet d'atteindre des températures de 4 kelvins.
D'autres aménagements peuvent être proposés. Ainsi, les profils des pièces fixe et mobile peuvent être différents. Une possibilité est de les façonner en arcs de spirale ou en arcs de cercle. Une autre possibilité est de les multiplier selon le principe des figures 12 et 13.
A la figure 12, les pièces fixe et mobile, ici référencées 131 et 132, sont étagées pour former des profils verticaux 133 et 134 successifs. Chaque profil vertical 133 de la pièce fixe 131 fait face à un des profils verticaux 134 de la pièce mobile 132 et forme avec lui une chambre de génération de pression particulière 130. Une telle disposition permet de multiplier le volume refoulé sans causer les difficultés d'usinage associés à l'agrandissement d'une chambre de génération de pression unique ; ou bien de commander des machines frigorifiques différentes, comme on l'a représenté : chaque chambre 130 communique par un orifice 137 à une machine particulière 138 semblable à celle de la figure 8 et comprenant en particulier un tube à. pulsation, un régénérateur thermique et des sources chaude et froide.
Les profils verticaux 133 et 134 sont semblables à ceux des figures 7A à 7D ou à ceux qui en dérivent et présentent des propriétés analogues. Les pièces fixe et mobile 131 et 132 peuvent être construites d'une pièce ou formées de plateaux superposés dont chacun porte un des profils verticaux 133 ou 134. Une autre réalisation à effet analogue est illustrée à la figure 13. Chacune des pièces fixe et mobile 231 et 232 porte des profils verticaux 233a, 233b. et 234a, 234b successifs à même hauteur et qui sont taillés sur des faces opposées de saillies des pièces 231 et 232 ; ces saillies pénètrent entre des saillies voisines de l'autre des pièces. Ainsi, des chambres particulières 230a sont formées entre les profils 233a et 234a et d'autres chambres particulières 230b, qui alternent avec les précédentes, sont formées entre les profils 233b et 234b.
Les profils 233a, 233b et 234a, 234b sont encore semblables à ceux des figures 7A à 7D ou à leurs équivalents. Les chambres particulières 230a ont des volumes qui varient ensemble et en opposition de phase avec les volumes des chambres particulières 230b. Les chambres particulières 230a sont munies d'orifices 237a qui communiquent à un collecteur commun 235a et à une machine frigorifique unique 238a. De même, les autres chambres particulières 230b sont munies d'orifices 237b qui communiquent à un autre collecteur commun 235b et à une autre machine frigorifique unique 238b. Bien sûr, chacun des orifices 237a et 237b pourrait mener à une machine frigorifique particulière, et réciproquement les orifices 137 de la figure 12 pourraient mener à une machine frigorifique unique.

Claims

7 PC17FR96/01084
1 9
REVENDICATIONS 1. Machine de transfert de chaleur d'une source froide (57) à une source chaude (58), comprenant un tube de pulsation (55) , libre et occupé par une colonne de gaz passant par les deux sources, un oscillateur de pression composé d'une portion fixe (31) et d'une portion mobile (32) délimitant une chambre de génération de pression (30) à volume variable communiquant au tube de pulsation par un régénérateur thermique (53) selon des alternatives de refoulement et d'admission du gaz, caractérisée en ce que la portion mobile est entraînée en translation circulaire par un moteur (42, 92, 93, 103) et une transmission à excentrement (43, 44, 52, 14, 104, 105).
2. Machine frigorifique selon la revendication 1, caractérisée en ce que les portions fixe et mobile délimitent plusieurs chambres de génération de pression, qui communiquent à des tubes de pulsation distincts.
3. Machine selon la revendication 1, caractérisée en ce que les portions fixe et mobile délimitent plusieurs chambres de génération de pression, qui communiquent à un même tube de pulsation.
4. Machine selon l'une quelconque des revendications 1 à 3, caractérisée en ce que les portions fixe et mobile délimitent la chambre de génération de pression par des profils curvilignes à deux points de tangence ou quasi-tangence (P, Q) qui s'approchent mutuellement pendant une partie de la translation circulaire.
5. Machine selon la revendication 4, caractérisée en ce que les points de tangence ou de quasi-tangence se joignent devant un orifice de communication (37) au tube de pulsation (55) .
6. Machine selon l'une quelconque des revendications 4 ou 5, caractérisée en ce que les profils curvilignes sont sensiblement en forme de sinusoïde et comprennent au moins un lobe arrondi (33, 34) adjacent à un creux arrondi (35, 36) plus large.
7. Machine selon l'une quelconque des revendications 1 à 6, caractérisée en ce que la portion mobile (32) est reliée au moteur (42, 103) par un arbre moteur (43, 104) à partie excentrée (44, 105) et au moins un palier (45) .
8. Machine selon la revendication 7, caractérisée en ce que la portion mobile est reliée au moteur (92, 93) par un excentrique (94) qui entoure la portion mobile (32) .
9. Machine selon la revendication 8, caractérisée en ce que le moteur (92, 93) entraîne l'excentrique en rotation et un palier (97) relie la portion mobile à l'excentrique.
10. Machine selon la revendication 9, caractérisée en ce que la portion mobile et l'excentrique sont équilibrés de façon à réduire des composantes linéaires de force d' inertie dans un plan de rotation de la portion mobile.
11. Machine selon l'une quelconque des revendications 1 à 10, caractérisée en ce que la portion mobile est unie à une partie fixe (49) de la machine par une liaison (47, 71, 72, 83, 90) s'opposant à des rotations de la portion mobile (32) .
12. Machine selon la revendication 11, caractérisée en ce que la liaison comprend un soufflet
(47, 97, 109) séparant la chambre de génération de pression (30) des paliers (45, 50, 95, 96, 106) .
13. Machine selon la revendication 11, caractérisée en ce que la liaison comprend des ressorts (83) .
14. Machine selon les revendications 8 et 11, caractérisée en ce que la liaison comprend un second excentrique (72), passif, parallèle et semblable au premier et en phase avec lui.
15. Machine selon l'une quelconque des revendications 1 à 14, caractérisée en ce qu'elle comprend des paliers secs ou étanches (73, 74) .
16. Machine selon l'une quelconque des revendications 1 à 14, caractérisée en ce qu'elle comprend des paliers à gaz ou magnétiques (95, 96) .
17. Machine selon l'une quelconque des revendications 1 à 16, caractérisée en ce que la portion fixe (31) est refroidie (111) à une température différente de la température ambiante.
18. Machine selon l'une quelconque des revendications 1 à 17, caractérisée en ce que les portions fixe et mobile (31, 32) sont en contact par des surfaces revêtues d'une matière à faible coefficient de frottement.
19. Machine selon l'une quelconque des revendications 1 à 17, caractérisée en ce que les portions fixe et mobile (31, 32) sont séparées par un faible jeu.
EP96925775A 1995-07-12 1996-07-11 Refrigerateur ou pompe a chaleur a tube de pulsation alimente par un generateur de pression Ceased EP0838012A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9508439A FR2736710B1 (fr) 1995-07-12 1995-07-12 Refrigerateur ou pompe a chaleur a tube de pulsation alimente par un generateur de pression
FR9508439 1995-07-12
PCT/FR1996/001084 WO1997003327A1 (fr) 1995-07-12 1996-07-11 Refrigerateur ou pompe a chaleur a tube de pulsation alimente par un generateur de pression

Publications (1)

Publication Number Publication Date
EP0838012A1 true EP0838012A1 (fr) 1998-04-29

Family

ID=9480930

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96925775A Ceased EP0838012A1 (fr) 1995-07-12 1996-07-11 Refrigerateur ou pompe a chaleur a tube de pulsation alimente par un generateur de pression

Country Status (4)

Country Link
EP (1) EP0838012A1 (fr)
JP (1) JPH11508991A (fr)
FR (1) FR2736710B1 (fr)
WO (1) WO1997003327A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2773392B1 (fr) * 1998-01-06 2000-03-24 Cryotechnologies Procede et dispositif de climatisation par tubes a gaz pulse
US6378312B1 (en) 2000-05-25 2002-04-30 Cryomech Inc. Pulse-tube cryorefrigeration apparatus using an integrated buffer volume
JP4520676B2 (ja) * 2001-08-31 2010-08-11 アイシン精機株式会社 冷却装置
CN102095277B (zh) * 2011-01-24 2012-05-23 北京理工大学 基于行驻波正交叠加声场的热声发动机驱动热声制冷机

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH124195A (de) * 1926-11-15 1928-01-16 Hermann Weber Rotationskompressor für hohe Drucke.
FR93048E (fr) * 1966-10-06 1969-01-31 Vulliez Paul Appareil columétrique tel que pompe ou analogue a cycle de translation circulaire.
US3817664A (en) * 1972-12-11 1974-06-18 J Bennett Rotary fluid pump or motor with intermeshed spiral walls
US3817044A (en) * 1973-04-04 1974-06-18 Philips Corp Pulse tube refrigerator
DE3017045A1 (de) * 1979-05-14 1980-11-27 Aginfor Ag Kreiskolben-maschine sowie verwendung derselben
JPS59110894A (ja) * 1982-12-15 1984-06-26 Hitachi Ltd スクロ−ル式流体機械
JPS59142484U (ja) * 1983-03-15 1984-09-22 サンデン株式会社 スクロ−ル型流体装置における耐摩耗性板の構造
JPS63113195A (ja) * 1986-10-30 1988-05-18 Toshiba Corp スクロ−ル圧縮機
DE4234678C2 (de) * 1991-10-15 2003-04-24 Aisin Seiki Reversible Schwingrohr-Wärmekraftmaschine
FR2702269B1 (fr) * 1993-03-02 1995-04-07 Cryotechnologies Refroidisseur muni d'un doigt froid du type tube pulsé.
JPH07109983A (ja) * 1993-10-13 1995-04-25 Nippondenso Co Ltd スクロール型圧縮機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9703327A1 *

Also Published As

Publication number Publication date
FR2736710A1 (fr) 1997-01-17
FR2736710B1 (fr) 1997-08-08
JPH11508991A (ja) 1999-08-03
WO1997003327A1 (fr) 1997-01-30

Similar Documents

Publication Publication Date Title
EP1702183B1 (fr) Dispositif de generation de flux thermique a materiau magneto-calorique
WO2007068134A2 (fr) Dispositif de generation de froid et de chaleur par effet magneto-calorique
CH695836A5 (fr) Procédé et dispositif pour générer en continu du froid et de la chaleur par effet magnetique.
FR2672642A1 (fr) Appareil a volutes a co-rotation.
CH697852B1 (fr) Dispositif à spirale de compression ou d'expansion.
EP0279739B1 (fr) Réfrigérateur, notamment à cycle de Vuilleumier, comportant des pistons suspendus par des paliers à gaz
CH664799A5 (fr) Ensemble moteur-pompe a chaleur stirling a piston libre.
EP1165955B1 (fr) Procede et dispositif pour transmettre une energie mecanique entre une machine stirling et un generateur ou un moteur electrique
EP0838012A1 (fr) Refrigerateur ou pompe a chaleur a tube de pulsation alimente par un generateur de pression
FR2668551A1 (fr) Appareil et compresseur a volutes et systeme de refrigeration.
EP4010645A1 (fr) Membrane semi-perméable avec des pores résultant d'une substance volatile
AU2019226434B2 (en) Roticulating thermodynamic apparatus
FR3099820A1 (fr) Dispositif et installation de réfrigération
FR2566887A1 (fr) Refrigerateurs cryogeniques a etages multiples, capables d'obtenir une refrigeration a une temperature se situant entre 4,5 et 10o kelvin
FR2946100A1 (fr) Procede et dispositif d'echeance thermique diphasique a pompe a engrenages sur roulements
EP0778452A1 (fr) Refroidisseur stirling à pilotage rotatif
WO1997004215A1 (fr) Dispositif de detente a spirales pour des temperatures cryogeniques
EP4010644A1 (fr) Dispositif et installation de réfrigération
EP0803687A1 (fr) Cryostat pour refroidisseur cryogenique et refroidisseurs comportant un tel cryostat
FR2935155A1 (fr) Machines a piston rotatif annulaire trilobique avec cycles thermodynamiques de stirling
FR2773392A1 (fr) Procede et dispositif de climatisation par tubes a gaz pulse
OA20258A (en) Roticulating thermodynamic apparatus.
BE524334A (fr)
BE444675A (fr)
JPH0674587A (ja) 膨張機

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971212

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19990531

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19991121