EP1165955B1 - Procede et dispositif pour transmettre une energie mecanique entre une machine stirling et un generateur ou un moteur electrique - Google Patents
Procede et dispositif pour transmettre une energie mecanique entre une machine stirling et un generateur ou un moteur electrique Download PDFInfo
- Publication number
- EP1165955B1 EP1165955B1 EP00912325A EP00912325A EP1165955B1 EP 1165955 B1 EP1165955 B1 EP 1165955B1 EP 00912325 A EP00912325 A EP 00912325A EP 00912325 A EP00912325 A EP 00912325A EP 1165955 B1 EP1165955 B1 EP 1165955B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- piston
- volume
- transfer
- transfer piston
- resonator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G1/00—Hot gas positive-displacement engine plants
- F02G1/04—Hot gas positive-displacement engine plants of closed-cycle type
- F02G1/043—Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
- F02G1/0435—Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines the engine being of the free piston type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G1/00—Hot gas positive-displacement engine plants
- F02G1/04—Hot gas positive-displacement engine plants of closed-cycle type
- F02G1/043—Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G2243/00—Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
- F02G2243/30—Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders
- F02G2243/40—Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders with free displacers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G2243/00—Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
- F02G2243/30—Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders
- F02G2243/50—Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders having resonance tubes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G2243/00—Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
- F02G2243/30—Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders
- F02G2243/50—Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders having resonance tubes
- F02G2243/52—Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders having resonance tubes acoustic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G2243/00—Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
- F02G2243/30—Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders
- F02G2243/50—Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders having resonance tubes
- F02G2243/54—Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders having resonance tubes thermo-acoustic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G2270/00—Constructional features
- F02G2270/45—Piston rods
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G2280/00—Output delivery
- F02G2280/10—Linear generators
Definitions
- the present invention relates to a method for transmit mechanical energy between a transfer piston of a Stirling machine and a moving part of a generator or an electric motor, the transfer piston being mounted in a cylinder, which moves periodically using said transfer piston a working gas between an expansion chamber and a compression chamber associated respectively with two working faces of said piston transfer by passing said gas through a heat exchanger, alternately cold, connected to a source of heat, a regenerator and a cooling exchanger connected to a heat sink and one exerts a force elastic return on this transfer piston.
- EP-A-0 218 554 has proposed a machine for free piston comprising a transfer piston mounted in a engine compartment, a seal separating expansion volumes and compression, which itself is delimited by a second piston surrounded by a joint. An axial passage crosses this second piston and allows a rod secured to the piston transfer to access a crankshaft also connected to the second piston, to supply mechanical energy to a machine press.
- a resonance tube is connected to the volume compression and increases the pressure ratio between expansion and compression volumes to increase the yield.
- the purpose of the present invention is to remedy the less in part to the aforementioned disadvantages.
- the object of this invention is firstly a method for transmitting mechanical energy between a transfer piston of a Stirling machine and a movable member a generator or an electric motor as defined by claim 1.
- This invention also object a device for implementing this method, according to claim 10.
- the device illustrated in Figure 1 comprises an elongated housing 1 formed of two cylindrical compartments 2, 3, assembled on an intermediate element 4, acting as a frame.
- the cylindrical compartment 2 comprises a cylindrical housing 5, constituting a working volume of a Stirling engine, in which a two-part transfer piston 6, 6a is mounted, free to move in the longitudinal axis of the cylindrical housing 5.
- the volume located between the portion 6 of the transfer piston 6, 6a and the outer end of the housing 5 is the one that is in contact with a hot heat exchanger 7 connected to a hot source (not shown) and constitutes the chamber hot or expansion volume V E Stirling engine, while at the other end of this cylindrical housing 5, there is a volume in contact with a cold heat exchanger 8 connected to a cold source (not shown), which is the cold room or compression volume V C of the Stirling engine.
- a regenerator 9 is disposed between the heat exchanger 7 and cold 8.
- the portion 6a of the transfer piston 6, 6a adjacent to the compression chamber V C is engaged in a closed volume filled with working gas, which constitutes an elastic return means of the transfer piston 6, 6a.
- the cylindrical compartment 3 encloses a volume in which a movable element of an electric generator, here the inductor 11 constituted by a cylindrical element carrying permanent magnets, is attached to the periphery of a annular member 12, whose inner edge is integral with a elastic suspension member 14, constituted by springs annular plates whose peripheral edges are fixed to the frame 4 and whose inner edges are secured a rod 17 whose end is fixed to the part 6a of transfer piston 6, 6a.
- the inner edge of a second organ of elastic suspension 15 similar to the organ 14, is attached to the other end of the rod 17, while its periphery is attached to a support 13 secured to the frame 4.
- the armature of the generator is formed by windings 16.
- the portion 6a of the transfer piston 6, 6a and the rod 17 cross the bottom of the closed volume 10 formed in the element intermediate 4 with a clearance of between 30 and 50 ⁇ m.
- Such game is perfectly acceptable as well from the point of view manufacturing tolerances that the influence of leaks of working gas on energy efficiency and on the return force of the compressed gas in the closed volume 10.
- This resonator has the role of replacing the second piston, which according to the method of the invention is no longer used to produce energy, all the energy being produced by the transfer piston 6, 6a as will be explained. below, but serves to amplify the pressure wave and to ensure an appropriate phase shift between the displacement of the transfer piston 6, 6a and the pressure variations p in the working volume.
- this tubular resonator 18 ends advantageously in a Helmholtz volume 19.
- the of this resonator found in the Helmholtz volume ends with a flare 18a.
- the transfer piston 6, 6a then plays the double role of transferring the working gas between the expansion chamber V ⁇ and the compression chamber Vc and producing all the motive energy transmitted to the inductor 11, provided that that certain conditions, of which we will speak now, are fulfilled.
- the operation of the motor is possible only if the surface ratio at C / a E is greater than this limit, that is to say the displacement of the transfer piston 6, 6a must induce a pressure component p x (FIG. 4) which must be opposed to the displacement X of this piston 6, 6a.
- the displacement of the transfer piston 6, 6a is positive if it moves towards the volume V E.
- the variation of the amount of working gas WG in the working volume of the Stirling engine gives rise to a pressure variation p w , which is in phase with the variation of the quantity WG of working gas.
- the variation of the pressure p in the working volume of the Stirling engine corresponds to the vector sum of the two partial pressures p x and p w .
- Figure 5 shows the variation of the X position of the transfer piston 6, 6a and the variation of the pressure in function of time (or angle ⁇ ). This representation schematically corresponds to that of Figure 4.
- the pressure decreases, the working gas is in large party in the room warm or relaxing; when increases, the working gas is essentially in the cold room or compression. To produce energy, it is necessary that the displacement X of the piston 6 precedes the pressure variation p.
- Figure 6 shows the variation of the quantity WG of working gas in the Stirling work volume and the pressure p in this volume.
- the quantity WG of gas decreases, the pressure is greater than during his return where the quantity WG of gas increases. So there is a transport of energy from the Stirling volume to the tube, which offsets the friction losses in this tubular resonator 18.
- Fig. 4 shows that p x must be opposite to X. If p x becomes null, or oriented in the direction of X, no energy is transmitted. to the tubular resonator 18 to compensate for friction losses. As a result, the pressure wave can not be maintained and the machine stops working.
- the ratio of the sections to C / a E must be between 0.4 and 0.6, preferably between 0.45 and 0.55.
- FIG. 7 gives an example of efficiency of the cycle ⁇ C calculated as a function of the work supplied by cycle E, with the wall temperature T H of the expansion chamber V E and the amplitude X of the transfer piston 6, 6a as parameter.
- the temperature of the cold exchanger T, close to the temperature T C is approximately at 50 ° C.
- the net efficiency of the generator can be obtained by multiplying the efficiency of the cycle by the efficiency of the heating means and that of the alternator.
- the Stirling engine should always operate at expansion chamber temperatures between 600 ° and 700 ° C. In this range, the temperature T H of the expansion chamber V E mainly influences the power, to a lesser extent the efficiency. But by lowering the temperature to 400-500 ° C, the efficiency and power decrease sharply, mainly because, under these conditions, the pressure variation p x induced by the movement of the piston becomes small and finally disappears completely.
- the lateral rigidity of the mechanical suspension of the transfer piston 6, 6a is provided by flat springs 14, 15 of the type of those described in "Recent developments in cryocoolers” Ray Radebaugh 19 TH International Congress of Refrigeration 1995 Proceedings Volume IIIb, allows it to oscillate perfectly along the longitudinal axis of the cylindrical housing 5, so that it is not necessary to use pneumatic bearings to center it.
- the transfer piston 6, 6a can be centered with great precision. Due to the pneumatic suspension of this transfer piston and consequently the low forces required for the elastic suspension elements constituted by the annular flat springs 14 and 15, the amplitude of the transfer piston 6, 6a of 25 can be increased. % to 50% compared to the device described in "Free-piston Stirling Design Features" Neill W. Lane et al. 8 TH International Stirling Engine Conference and Exhibition May 27-30, 1997 Ancona. This increase in amplitude leading to an increase in linear speeds makes it possible to reduce the dimensions of the alternator. Under unchanged operating conditions, similar amounts of energy can be achieved.
- the use of a single mobile piston simplifies the initial setting, starting and power control of significantly compared to conventional Stirling systems free piston.
- the rigidity of the suspension of transfer piston 6, 6a and therefore the angle of phase can be adjusted by adjusting the gas pressure of work in the work volume of the Stirling engine.
- the natural frequency of the tubular resonator 18 can be adjusted by varying the composition of the working gas, i.e. its molecular mass.
- Starting the engine is then performed by first raising the temperature of the working gas in the expansion chamber V E to a value T H at which the working gas pressure becomes independent of the position of the transfer piston.
- the Stirling engine load is thus reduced to a minimum (losses by internal friction of the motor and by the periodic flow through the exchangers and the regenerator).
- the temperature T H will be adjusted to the optimum working temperature.
- the amplitude of the transfer piston 6, 6a and consequently the power of the Stirling engine is adjusted by adjusting the braking force exerted by the electric generator to a determined value.
- the output power varies proportionally to the amplitude of the transfer piston 6, 6a.
- the heating power of the burner (not shown) for heating the working gas of the expansion chamber V E is continuously adjusted to maintain the desired temperature T H in this expansion chamber V E.
- the amplitude of the transfer piston can therefore be precisely controlled. It is therefore not necessary to provide additional dead volume to avoid shocks in case of overshoot accidental amplitude of the transfer piston. It is only necessary to prevent the transfer piston from exceeding a maximum amplitude in the event of a failure in the electrical network associated with the electrical generator.
- the natural frequency of the tubular resonator 18 depends only on the average temperature of the working gas therein. This temperature can be accurately set to the desired value by means of an additional heat exchanger 20 disposed in the Helmholtz volume 19 and controlling the thermal energy extracted. This makes it possible to adjust the phase angle of the resonator with respect to the other variables of the system.
- the extraction of heat from the tubular resonator 18 makes it possible to reduce the cooling of the working gas situated in the compression chamber V C , which makes it possible to simplify the cold exchanger of the Stirling engine. Its dead volume and / or its losses by pneumatic friction can be reduced, bringing an additional advantage to the device object of the present invention.
- the tubular resonator 18 may have a total length including the Helmholtz volume 19, of about 1.6 m, and a temperature T of 40 ° C.
- the average pressure p o of the gas is 4 MPa and the resonant frequency of this resonator is 50 Hz.
- a working gas whose molecular weight is higher than that of helium such as a mixture of helium and argon or carbon dioxide with a molecular weight M of gas of 14 kg / kmol.
- the minimum section S min of the tubular resonator 18 is, in this example, 4.75 cm 2 .
- the working gas volume V s of the Stirling 2 engine is 1000 cm 3
- that of the Helmholtz 19 volume is 6000 cm 3 .
- the tubular resonator can be prolonged inside the volume Helmholtz 19. Given that this portion of the tube is only exposed to differences limited pressure, its wall can be thin and can easily be put in conical form 18a preventing the formation of steep pressure waves.
- FIG. 8 An example of distribution of the section along the tube 18 of the resonator is shown in the diagram of the figure 8.
- the left end of the diagram corresponds to the end of the tube 18 in communication with the Stirling compartment 2, while the right end corresponds to the one that communicates with the volume Helmholtz 19.
- the diagram in Figure 9 represents nine values at regular intervals of the gas flow velocity of working in tube 18 related to the speed of sound (so the Mach number) according to the position in the tube 18 during a cycle, while the diagram in Figure 10 shows the distribution of the pressure of the working gas relative to the average pressure during the same cycle.
- the pressure diagram clearly shows that with a appropriate sizing of the tube, no shock occurs to the resonance conditions of the tube 18.
- the pressure in the Stirling volume 2 varies in a sinusoidal way.
- the pressure and velocity are orthogonal functions, that is to say that if the pressure takes an extreme value, the speed of the gas of work is null and vice versa.
- the range indicated takes into account that, on the one hand, the coefficient of friction of the unsteady working gas may differ from that of an established regime, on the other hand that the roughness of the tubes is known only approximately.
- the volumes of displaced working gas are of the order of a hundred cm 3 .
- the cylindrical parts of the tube typically have diameters of 2.5 to 4 cm. It can easily be bent or rolled so that the entire device occupies as small a volume as possible.
- the device illustrated in FIG. 3 can have a height of 90 cm, a width of 60 cm and a depth of 40 cm.
- FIG. 11 Such a variant is illustrated in FIG. 11 on which is found the end of the free transfer piston 6a 'and that of the resonance tube 18' communicating with the cold chamber or compression volume Vc .
- a rod 21 is slidably mounted in a cylindrical guide 22 by linear bearings 31.
- a connecting rod 23 is articulated at one end to the rod 21 and at its other end to a crankshaft 24 secured to the axis of a rotary electric generator. for example, mounted in an enclosure 25.
- tubular resonator 18 may be constituted by two identical tubular elements arranged in opposition diametrically with respect to said transfer piston 6, 6a in order to balance the lateral forces that are exercised on this transfer piston.
- the tubular resonator 18 may be connected to the expansion volume V E or hot compartment of the Stirling engine, provided that the entire tube is kept warm and does not constitute a heat sink.
- FIG. 12 illustrates a variant in which the Helmholtz volume 19 is placed in a heating chamber 26, heated by gaseous, liquid or solid fuels, while the tube 18 is surrounded by a thermal insulation 27. It is thus possible to increase the temperature of the working gas contained in the tubular resonator 18 above the temperature T H of this gas in the expansion volume V E. The tubular resonator 18, 19 can then replace part or all of the hot exchanger 7 of the Stirling engine.
- the tubular resonator 18, 19 has a considerable exchange surface and thanks to the periodic flow that is established in it, the internal heat transfer is favorable. Due to the standing wave regime that is established in this resonator, its internal volume is not part of the dead volume of the Stirling engine.
- FIG. 13 shows a configuration in which the tubular resonator 18 is integrated in a high temperature solar collector.
- the tube 18 of the resonator is placed in a helical form, placed inside a cylindrical or conical cavity 28.
- One end of this tubular resonator 18 opens in a volume of Helmholtz 19, while that the other end communicates with the expansion volume V E of the Stirling engine, which has been shown the transfer piston 6 and the regenerator 9.
- FIG. 14 very schematically illustrates the combination of four Stirling engines whose respective compression volumes V CA , V CB , V CC , V CD have been shown to be alternately the respective expansion volumes V EA , V EB , V EC , V ED , connected by four tubular resonators, of symmetrical shapes T 1 , T 2 , T 3 and T 4 .
- the assembly forms a closed loop, each volume V being connected to two other neighboring volumes, the whole forming a square whose resonance tubes T 1 to T 4 constitute the sides, the volumes V CA to V CD , alternatively V EA to V ED being arranged at the corners.
- This configuration makes it possible to increase the thermal power by associating machines with each other according to a modular design.
- FIG. 15 simply shows two pairs of Stirling engines whose compression volumes V CA , V CB , respectively V CC , V CD , alternatively the expansion volumes V ⁇ A , V EB , respectively V EC , V ED , are connected by two tubular resonators T 1 , respectively T 2 , while the compression volumes V CA and V CC on the one hand, and the compression volumes V CB and V CD , on the other hand, alternatively the volumes of expansion V EA and V EC on the one hand and expansion volumes V EB and V ED , on the other hand, are connected to each other by T C1 and T C2 connecting tubes whose role is to ensure that the pressures of compression volumes, alternatively expansion, thus connected are the same since the motors arranged diagonally are in phase.
- FIG. 16 shows two Stirling engines illustrated by their only compression volumes V CI , V CII , alternatively their expansion volumes V EI , V EII connected by a tubular resonator 18.
- FIG. 17 shows the heating of a tubular resonator 18 connecting two Stirling motors as illustrated by FIGS. 14 to 16, disposed in a heating chamber 26.
- the respective ends of the tube 18 of this resonator communicate with the expansion volumes V EI , V EII of two Stirling engines.
- V EI , V EII expansion volumes
- the resonance tube used Since in this mode of operation, the resonance tube used is entirely passive, it can only work if it is supplied with energy by the Stirling cycle. This implies that for a cryogenic machine, the section a E of the transfer piston 6, 6a delimiting the expansion volume V E is smaller than the section a C of the transfer piston 6, 6a delimiting the compression volume V C .
- the ratio of these two sections to E / a C determines the lowest temperature level that can theoretically be reached.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
- Control Of Electric Motors In General (AREA)
- Control Of Multiple Motors (AREA)
Description
Claims (17)
- Procédé pour transmettre de l'énergie mécanique entre un piston de transfert (6, 6a) d'une machine Stirling et un organe mobile d'induction (11) d'un générateur ou d'un moteur électrique, le piston de transfert (6, 6a) étant monté dans un cylindre (2), selon lequel on déplace périodiquement à l'aide dudit piston de transfert (6, 6a) un gaz de travail entre une chambre d'expansion (VE) et une chambre de compression (VC) constituant le volume de travail de ladite machine Stirling, associées respectivement à deux faces de travail dudit piston de transfert (6, 6a) en faisant passer ledit gaz à travers un échangeur chaud (7), alternativement froid, relié à une source de chaleur, un régénérateur (9) et un échangeur de refroidissement (8) relié à un puits de chaleur et on exerce une force élastique de rappel sur ce piston de transfert (6, 6a), caractérisé en ce que l'on dispose dans ledit cylindre (2) ledit seul piston de transfert (6, 6a), on relie l'une desdites chambres de compression (Vc), d'expansion (VE) à un résonateur pneumatique (18), on ajuste la fréquence de ce résonateur pneumatique qui joue le rôle de second piston consistant à amplifier l'onde de pression et à assurer un déphasage entre le déplacement dudit piston de transfert (6, 6a) selon un axe X orienté vers le volume d'expansion VE et les variations de pression dudit gaz de travail dans ledit volume de travail, dont une composante de pression px est de phase opposée au déplacement dudit piston (6, 6a) de manière à compenser les pertes par frottement dans ce résonateur tubulaire 18, on associe une partie (6a) dudit piston orientée vers le volume de compression à des moyens de rappel élastique (10 ; 3) pour exercer une force de rappel et on choisit le rapport de section (aC/aE) entre la partie restante de la face de travail dudit piston (6, 6a) associée audit volume de compression (VC), et la face de travail de ce piston associée audit volume d'expansion (VE) ≥0,35, de manière à entretenir le mouvement périodique du piston de transfert (6,6a) à une amplitude contrôlée en ajustant la force de freinage et à transmettre entre ce piston (6, 6a) et ledit organe mobile d'induction (11) la totalité de ladite énergie mécanique produite.
- Procédé selon la revendication 1, caractérisé en ce que, pour transmettre ladite énergie mécanique dudit piston de transfert (6, 6a) audit organe mobile d'induction (11) d'un générateur électrique, le rapport (aC/aE) que l'on crée entre la section (ac) de la face de travail dudit piston de transfert associée audit volume de compression (Vc) et celle (aE) de la face de travail de ce piston de transfert associée audit volume d'expansion (VE) est compris entre 40 et 60%.
- Procédé selon l'une des revendications précédentes, caractérisé en ce que l'on fait sortir de manière étanche dudit cylindre (2), une extrémité (6a) dudit piston (6, 6a) pour la mettre en communication avec un volume fermé (3) dans lequel on dispose ledit générateur électrique et on exerce ladite force de rappel élastique à l'aide des variations de pression du gaz de travail contenu dans ledit volume fermé (3), consécutivement aux déplacements dudit piston (6, 6a).
- Procédé selon l'une des revendications précédentes, caractérisé en ce que pour éviter la formation d'ondes à fronts raides, on fait varier la section d'un conduit tubulaire (18) destiné à former ledit résonateur pneumatique.
- Procédé selon la revendication 4, caractérisé en ce que l'on dispose un volume de Helmholtz (19) à l'extrémité dudit conduit tubulaire (18) opposée à celle reliée à l'une desdites chambres de compression (VC), d'expansion (VE) de ladite machine Stirling.
- Procédé selon l'une des revendications 4 et 5, caractérisé en ce que l'on dispose une partie (18a) du conduit tubulaire (18) à section variable à l'intérieur du volume Helmholtz (19).
- Procédé selon l'une des revendications 5 et 6, caractérisé en ce que l'on refroidit, respectivement on chauffe, de manière contrôlée le gaz de travail contenu dans ledit volume Helmholtz (19).
- Procédé selon l'une des revendications précédentes, caractérisé en ce que l'on ajuste la fréquence propre dudit résonateur (18) en formant ledit gaz de travail par un mélange de gaz de différentes masses moléculaires dans une proportion déterminée.
- Procédé selon la revendication 1, caractérisé en ce que, pour transmettre ladite énergie mécanique dudit organe mobile (11) d'un moteur électrique audit piston de transfert (6, 6a), on dimensionne la section (aE) de l'extrémité (6) dudit piston de transfert (6, 6a) associée à la chambre d'expansion (VE), plus petite que la section (aC) de l'extrémité (6a) de ce piston de transfert (6, 6a) associée à la chambre de compression (VC).
- Dispositif pour la mise en oeuvre du procédé selon la revendication 1, caractérisé en ce que ledit piston (6, 6a) est cinématiquement solidaire dudit organe mobile d'induction (11).
- Dispositif selon la revendication 10, caractérisé en ce que ladite force de rappel élastique exercée sur ledit piston (6, 6a) est engendrée par un espace fermé (10, 3) contenant du gaz, d'un volume déterminée en fonction de la fréquence propre désirée pour ledit piston (6, 6a) et dont une des parois est constituée par une face dudit piston (6, 6a) dont la surface correspond à la différence entré lesdites surfaces de travail.
- Dispositif selon l'une des revendications précédentes, caractérisé en ce que ledit organe mobile est un organe rotatif, relié audit piston (6'a, 21) par un embiellage (23, 24), des moyens de guidage linéaires (31) étant associés audit piston (6'a, 21).
- Dispositif selon l'une des revendications précédentes, caractérisé en ce que ledit résonateur est constitué par deux éléments tubulaires (T1, T2) identiques disposés en opposition diamétrale par rapport audit piston de transfert (6, 6a).
- Dispositif selon l'une des revendications précédentes, caractérisé en ce que ledit résonateur tubulaire (18) est relié à la chambre d'expansion (VE) de la machine Stirling et qu'il est associé à des moyens de chauffage constituant la source chaude de ladite machine Stirling.
- Dispositif selon l'une des revendications 10, 11 et 14, caractérisé en ce que quatre dispositifs Stirling sont reliés les uns aux autres au moyen de quatre résonateurs tubulaires (T1-T4), les pistons de transfert de deux dispositifs Stirling non adjacents travaillant en phase et les deux autres en opposition de phase.
- Dispositif selon l'une des revendications 10, 11, 12 et 14, caractérisé en ce que chaque extrémité du résonateur tubulaire (18) est relié à l'une des chambres froide (VC), chaude (VE) d'une machine Stirling.
- Dispositif selon l'une des revendications précédentes, caractérisé en ce que lesdits moyens de chauffage présentent la forme d'un collecteur de rayonnement solaire (28, 29).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP00912325A EP1165955B1 (fr) | 1999-04-07 | 2000-04-05 | Procede et dispositif pour transmettre une energie mecanique entre une machine stirling et un generateur ou un moteur electrique |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP99810286 | 1999-04-07 | ||
EP99810286A EP1043491A1 (fr) | 1999-04-07 | 1999-04-07 | Procédé pour générer et transmettre une énergie mécanique d'un moteur stirling à un organe consommateur d'énergie et dispositif pour la mise en oeuvre de ce procédé |
EP00912325A EP1165955B1 (fr) | 1999-04-07 | 2000-04-05 | Procede et dispositif pour transmettre une energie mecanique entre une machine stirling et un generateur ou un moteur electrique |
PCT/CH2000/000199 WO2000061936A1 (fr) | 1999-04-07 | 2000-04-05 | Procede et dispositif pour transmettre une energie mecanique entre une machine stirling et un generateur ou un moteur electrique |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1165955A1 EP1165955A1 (fr) | 2002-01-02 |
EP1165955B1 true EP1165955B1 (fr) | 2005-08-10 |
Family
ID=8242753
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99810286A Withdrawn EP1043491A1 (fr) | 1999-04-07 | 1999-04-07 | Procédé pour générer et transmettre une énergie mécanique d'un moteur stirling à un organe consommateur d'énergie et dispositif pour la mise en oeuvre de ce procédé |
EP00912325A Expired - Lifetime EP1165955B1 (fr) | 1999-04-07 | 2000-04-05 | Procede et dispositif pour transmettre une energie mecanique entre une machine stirling et un generateur ou un moteur electrique |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99810286A Withdrawn EP1043491A1 (fr) | 1999-04-07 | 1999-04-07 | Procédé pour générer et transmettre une énergie mécanique d'un moteur stirling à un organe consommateur d'énergie et dispositif pour la mise en oeuvre de ce procédé |
Country Status (5)
Country | Link |
---|---|
US (1) | US6510689B2 (fr) |
EP (2) | EP1043491A1 (fr) |
AT (1) | ATE301773T1 (fr) |
DE (1) | DE60021863T2 (fr) |
WO (1) | WO2000061936A1 (fr) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6701708B2 (en) | 2001-05-03 | 2004-03-09 | Pasadena Power | Moveable regenerator for stirling engines |
GB0130380D0 (en) * | 2001-12-19 | 2002-02-06 | Bg Intellectual Pty Ltd | A heat appliance |
WO2003100240A1 (fr) * | 2002-05-24 | 2003-12-04 | Stm Power Inc. | Moteur stirling multi-cylindre destine a la production d'energie electrique |
JP3769751B2 (ja) * | 2003-02-19 | 2006-04-26 | ツインバード工業株式会社 | スターリングサイクル機関 |
US7017344B2 (en) * | 2003-09-19 | 2006-03-28 | Pellizzari Roberto O | Machine spring displacer for Stirling cycle machines |
US7677039B1 (en) * | 2005-12-20 | 2010-03-16 | Fleck Technologies, Inc. | Stirling engine and associated methods |
US7417331B2 (en) * | 2006-05-08 | 2008-08-26 | Towertech Research Group, Inc. | Combustion engine driven electric generator apparatus |
US8011183B2 (en) * | 2007-08-09 | 2011-09-06 | Global Cooling Bv | Resonant stator balancing of free piston machine coupled to linear motor or alternator |
US8215112B2 (en) * | 2007-11-28 | 2012-07-10 | Tiax Llc | Free piston stirling engine |
ITLI20080007A1 (it) * | 2008-07-08 | 2010-01-08 | Fabio Prosperi | Generatore elettrico alimentato mediante fonti di calore |
US8590300B2 (en) * | 2008-10-20 | 2013-11-26 | Sunpower, Inc. | Balanced multiple groupings of beta stirling machines |
US8096118B2 (en) * | 2009-01-30 | 2012-01-17 | Williams Jonathan H | Engine for utilizing thermal energy to generate electricity |
US8967136B2 (en) * | 2009-10-14 | 2015-03-03 | Jeffrey Lee | Solar collector system |
CH702965A2 (fr) | 2010-04-06 | 2011-10-14 | Jean-Pierre Budliger | Machine stirling. |
DE102011107802B4 (de) * | 2011-07-11 | 2013-05-02 | Rhp Gmbh | Wärmekraftmaschine mit äußerer Verbrennung oder der Nutzung von Solarenergie |
CN104500262B (zh) * | 2014-12-19 | 2016-02-03 | 中国科学院理化技术研究所 | 自由活塞斯特林发电机 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1412935A (en) * | 1971-10-05 | 1975-11-05 | Stobart A F | Fluid heating systems |
FR2510181A1 (fr) * | 1981-07-21 | 1983-01-28 | Bertin & Cie | Convertisseur d'energie thermique en energie electrique a moteur stirling et generateur electrique integre |
US4458495A (en) * | 1981-12-16 | 1984-07-10 | Sunpower, Inc. | Pressure modulation system for load matching and stroke limitation of Stirling cycle apparatus |
US4475335A (en) * | 1982-02-12 | 1984-10-09 | National Research Development Corporation | Free piston heat engines |
CH664799A5 (fr) * | 1985-10-07 | 1988-03-31 | Battelle Memorial Institute | Ensemble moteur-pompe a chaleur stirling a piston libre. |
US5174130A (en) * | 1990-03-14 | 1992-12-29 | Sonic Compressor Systems, Inc. | Refrigeration system having standing wave compressor |
JPH04295167A (ja) * | 1991-03-26 | 1992-10-20 | Aisin Seiki Co Ltd | ディスプレーサー型スターリング機関 |
DE69809978T2 (de) | 1997-02-19 | 2003-08-28 | Yordak Ltd., Haifa | Gleichlauf-Kreuzgelenk |
-
1999
- 1999-04-07 EP EP99810286A patent/EP1043491A1/fr not_active Withdrawn
-
2000
- 2000-04-05 AT AT00912325T patent/ATE301773T1/de not_active IP Right Cessation
- 2000-04-05 EP EP00912325A patent/EP1165955B1/fr not_active Expired - Lifetime
- 2000-04-05 DE DE60021863T patent/DE60021863T2/de not_active Expired - Fee Related
- 2000-04-05 WO PCT/CH2000/000199 patent/WO2000061936A1/fr active IP Right Grant
-
2001
- 2001-10-05 US US09/972,263 patent/US6510689B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
DE60021863T2 (de) | 2006-05-24 |
WO2000061936A1 (fr) | 2000-10-19 |
ATE301773T1 (de) | 2005-08-15 |
EP1043491A1 (fr) | 2000-10-11 |
EP1165955A1 (fr) | 2002-01-02 |
US6510689B2 (en) | 2003-01-28 |
US20020096884A1 (en) | 2002-07-25 |
DE60021863D1 (de) | 2005-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1165955B1 (fr) | Procede et dispositif pour transmettre une energie mecanique entre une machine stirling et un generateur ou un moteur electrique | |
EP0218554B1 (fr) | Machine stirling | |
EP1366280B1 (fr) | Groupe electrogene a mouvement lineaire alternatif a base de moteur stirling, et procede mis en oeuvre dans ce groupe electrogene | |
EP2556236B1 (fr) | Machine stirling | |
EP0070780A1 (fr) | Convertisseur d'énergie thermique en énergie électrique à moteur Stirling et générateur électrique intégré | |
FR2505035A1 (fr) | Compresseur hermetique de refrigeration equipe d'un silencieux, notamment pour refrigerateurs menagers | |
US4077216A (en) | Stirling cycle thermal devices | |
US20030000210A1 (en) | Moveable regenerator for stirling engines | |
JPH09509710A (ja) | エネルギー発生装置 | |
WO2009103871A2 (fr) | Machine thermodynamique, en particulier de type carnot et/ou stirling | |
EP2808528B1 (fr) | Moteur à détente de fluide | |
EP0803687A1 (fr) | Cryostat pour refroidisseur cryogenique et refroidisseurs comportant un tel cryostat | |
WO2015110726A1 (fr) | Moteur a combustion externe | |
FR3078997A1 (fr) | Perfectionnement a un moteur stirling de type beta ou gamma | |
FR2913458A1 (fr) | Architecture innovante pour moteurs stirling,moteur stirling ainsi dispose. | |
WO1997003327A1 (fr) | Refrigerateur ou pompe a chaleur a tube de pulsation alimente par un generateur de pression | |
FR2913459A1 (fr) | Dispositifs pour moteurs stirling,notamment pour diminuer les pertes thermiques,et moteur comprenant de tels dispositifs | |
FR2536788A2 (fr) | Moteur thermique intrinsequement irreversible | |
BE530323A (fr) | ||
FR2913461A1 (fr) | Regenerateur,notamment pour moteurs stirling,moteur stirling comprenant un tel regenerateur. | |
EP2318785A2 (fr) | Generateur thermique magnetocalorique | |
FR2913460A1 (fr) | Culasse pour moteurs stirling,moteur equipe d'une telle culasse. | |
FR2930679A1 (fr) | Dispositif de generation de flux thermique a materiau magnetocalorique | |
Watanabe et al. | Experimental studies on atmospheric Stirling engine NAS-2 | |
FR2805566A1 (fr) | Moteur a combustion interne |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20011006 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
17Q | First examination report despatched |
Effective date: 20040917 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050810 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050810 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050810 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050810 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050810 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REF | Corresponds to: |
Ref document number: 60021863 Country of ref document: DE Date of ref document: 20050915 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: MOINAS & SAVOYE SA |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051110 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051110 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051121 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20051107 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060110 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060430 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060430 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20060511 |
|
BERE | Be: lapsed |
Owner name: BUDLIGER, JEAN-PIERRE Effective date: 20060430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060405 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20080424 Year of fee payment: 9 Ref country code: DE Payment date: 20080408 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050810 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20080424 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090405 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20091231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090430 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091103 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091222 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090405 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20080429 Year of fee payment: 9 |