WO2000061936A1 - Procede et dispositif pour transmettre une energie mecanique entre une machine stirling et un generateur ou un moteur electrique - Google Patents

Procede et dispositif pour transmettre une energie mecanique entre une machine stirling et un generateur ou un moteur electrique Download PDF

Info

Publication number
WO2000061936A1
WO2000061936A1 PCT/CH2000/000199 CH0000199W WO0061936A1 WO 2000061936 A1 WO2000061936 A1 WO 2000061936A1 CH 0000199 W CH0000199 W CH 0000199W WO 0061936 A1 WO0061936 A1 WO 0061936A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
volume
transfer piston
transfer
resonator
Prior art date
Application number
PCT/CH2000/000199
Other languages
English (en)
Inventor
Jean-Pierre Budliger
Original Assignee
Budliger Jean Pierre
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Budliger Jean Pierre filed Critical Budliger Jean Pierre
Priority to DE60021863T priority Critical patent/DE60021863T2/de
Priority to AT00912325T priority patent/ATE301773T1/de
Priority to EP00912325A priority patent/EP1165955B1/fr
Publication of WO2000061936A1 publication Critical patent/WO2000061936A1/fr
Priority to US09/972,263 priority patent/US6510689B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/0435Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines the engine being of the free piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
    • F02G2243/30Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders
    • F02G2243/40Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders with free displacers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
    • F02G2243/30Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders
    • F02G2243/50Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders having resonance tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
    • F02G2243/30Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders
    • F02G2243/50Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders having resonance tubes
    • F02G2243/52Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders having resonance tubes acoustic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
    • F02G2243/30Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders
    • F02G2243/50Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders having resonance tubes
    • F02G2243/54Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders having resonance tubes thermo-acoustic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2270/00Constructional features
    • F02G2270/45Piston rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2280/00Output delivery
    • F02G2280/10Linear generators

Definitions

  • the present invention relates to a method for transmitting mechanical energy between a transfer piston of a Stirling machine and a movable member of a generator or an electric motor, the transfer piston being mounted in a cylinder, according to which a working gas is periodically displaced using said transfer piston between an expansion chamber and a compression chamber associated respectively with two working faces of said transfer piston by passing said gas through an exchanger hot, alternately cold, connected to a heat source, a regenerator and a cooling exchanger connected to a heat sink and an elastic restoring force is exerted on this transfer piston.
  • the object of the present invention is to remedy at least in part the above-mentioned drawbacks.
  • this invention firstly relates to a method for transmitting mechanical energy between a transfer piston of a Stirling machine and a movable member of a generator or an electric motor such as nor by claim 1.
  • This invention also relates to a device for implementing this method, according to claim 10.
  • Figure 1 is a diametrical sectional view of this embodiment
  • Figure 2 is a view of a variant of Figure 1
  • Figure 3 is an elevational view of the device according to Figures 1 or 2
  • FIG. 4 is a vector diagram
  • FIGS. 5 and 6 are explanatory diagrams relating to the method
  • FIG. 7 is a diagram relating to the performance of the cycle in relation to the work per cycle
  • Figures 8 to 10 are diagrams relating to the dimensioning and the behavior of the resonator
  • Figure 11 is an elevational view, partially in section of the second embodiment
  • Figures 12 and 13 partially illustrate two variants for heating a Stirling engine
  • Figures 14 to 16 illustrate three variants in which Stirling engines are coupled by resonance tubes
  • FIG. 17 illustrates a heating mode applicable to the variants of FIGS. 14 to 16.
  • the device illustrated in FIG. 1 comprises an elongated casing 1 formed by two cylindrical compartments 2, 3, assembled on an intermediate element 4, playing the role of frame.
  • the cylindrical compartment 2 comprises a cylindrical housing 5, constituting a working volume of a Stirling engine, in which a two-part transfer piston 6, 6a is mounted, free to move in the longitudinal axis of the cylindrical housing 5.
  • the volume located between the part 6 of the transfer piston 6, 6a and the external end of the housing 5 is that which is in contact with a hot exchanger 7 connected to a hot source
  • the cylindrical compartment 3 contains a volume in which a mobile element of an electric generator, here the inductor 11 constituted by a cylindrical element carrying permanent magnets, is integral with the periphery of an annular member 12, the internal edge of which is integral with an elastic suspension member 14, constituted by annular flat springs, the peripheral edges of which are fixed to the frame 4 and the internal edges of which are integral with a rod 17, one end of which is fixed to the part 6a of the piston transfer 6, 6a.
  • the internal edge of a second elastic suspension member 15 similar to the member 14, is fixed to the other end of the rod 17, while its periphery is fixed to a support 13 integral with the frame 4.
  • the armature of the generator is formed by windings 16.
  • Part 6a of the transfer piston 6, 6a and the rod 17 pass through the bottom of the closed volume 10 formed in the intermediate element 4 with a clearance between 30 and 50 ⁇ m.
  • Such a clearance is perfectly acceptable both from the point of view of manufacturing tolerances and of the influence of leaks from the working gas on the energy yield and on the restoring force of the compressed gas in the closed volume 10.
  • This resonator has the role of replacing the second piston, which according to the process which is the subject of the invention, is no longer used to produce energy, all the energy being produced by the transfer piston 6, 6a as will be explained. below, but serves to amplify the pressure wave and to ensure an appropriate phase shift between the displacement of the transfer piston 6, 6a and the pressure variations p in the working volume.
  • this tubular resonator 18 advantageously ends in a Helmholtz volume 19.
  • the part of this resonator which is in the Helmholtz volume ends in a flaring 18a.
  • the transfer piston 6, 6a then plays the double role of transferring the working gas between the expansion chamber V E and the compression chamber V c and for producing all the motive energy transmitted to the inductor 11, for as long as certain conditions, which we will talk about now, are fulfilled. To achieve this objective, it is necessary to determine the ratio between the surface a c , delimiting the compression chamber of the transfer piston 6, 6a and that a E of this same piston, delimiting the expansion chamber.
  • the variation in the quantity WG of working gas in the working volume of the Stirling engine gives rise to a variation in pressure p w , which is in phase with the variation in the quantity WG of working gas.
  • the variation of the pressure p in the volume of Stirling engine work corresponds to the vector sum of the two partial pressures p x and p w .
  • FIG. 5 shows the variation of the position X of the transfer piston 6, 6a and the variation of the pressure as a function of time (or of the angle ⁇ ). This representation corresponds schematically to that of FIG. 4.
  • the pressure decreases, the working gas is largely in the hot or expansion chamber; when it increases, the working gas is mainly in the cold or compression chamber.
  • the displacement X of the piston 6 must precede the pressure variation p.
  • FIG. 6 represents the variation of the quantity WG of working gas in the Stirling working volume and the pressure p in this volume.
  • the quantity WG of gas decreases, the pressure is greater than during its return where the quantity WG of gas increases. There is therefore an energy transport from the Stirling volume to the tube, which compensates for the friction losses in this tubular resonator 18.
  • Figure 4 shows that p x must be opposite to X. If p x becomes zero, or oriented in the direction of X, no energy is transmitted to the tubular resonator 18 to compensate for friction losses. Therefore, the pressure wave cannot be maintained and the machine stops working.
  • FIG. 7 gives an example of the efficiency of the cycle ⁇ c calculated as a function of the work provided by cycle E, with the wall temperature T H of the expansion chamber V E and the amplitude X of the transfer piston 6, 6a as setting.
  • the temperature of the cold exchanger T close to the temperature T c, is approximately 50 ° C.
  • the net efficiency of the generator can be obtained by multiplying the efficiency of the cycle by the efficiency of the heating means and that of the alternator.
  • the Stirling engine should always operate at expansion chamber temperatures between 600 ° and 700 ° C. In this range, the temperature T H of the expansion chamber V E mainly influences the power, to a lesser extent the efficiency. But by lowering the temperature to 400-500 ° C, the efficiency and power decrease sharply, mainly because, under these conditions, the pressure variation p x induced by the movement of the piston becomes small and finally disappears completely.
  • the lateral rigidity of the mechanical suspension of the transfer piston 6, 6a is ensured by flat springs 14, 15 of the type described in “Recent developments in cryocoolers” Ray Radebaugh 19 TM International Congress of Refrigeration 1995 Proceedings Volume Illb, allows it to oscillate perfectly along the longitudinal axis of the cylindrical housing 5, so that it is not necessary to use pneumatic bearings to center it.
  • the transfer piston 6, 6a can be centered with great precision. Because of the suspension pneumatic of this transfer piston and consequently, of the low forces necessary for the elastic suspension elements constituted by the annular flat springs 14 and 15, the amplitude of the transfer piston 6, 6a can be increased from 25% to 50% by relation to the device described in "Free-piston Stirling design features" Neill W.
  • the use of a single movable piston simplifies initial adjustment, start-up and power control significantly compared to conventional Stirling free piston systems.
  • the rigidity of the suspension of the transfer piston 6, 6a and therefore the phase angle can be adjusted by adjusting the pressure of the working gas in the working volume of the Stirling engine.
  • the natural frequency of the tubular resonator 18 can be adjusted by varying the composition of the working gas, that is to say its molecular mass.
  • the engine is then started by first bringing the working gas temperature in the expansion chamber V E to a value T H at which the working gas pressure becomes independent of the position of the piston. transfer.
  • the load on the Stirling engine is thus reduced to a minimum (losses by internal friction of the engine and by periodic flow through the exchangers and the regenerator).
  • the temperature T H will be adjusted to the optimum working temperature.
  • Power control is very easy. We adjust the amplitude of the transfer piston 6, 6a and therefore the power of the Stirling engine, by adjusting the braking force exerted by the electric generator at a determined value. For given temperatures of the gas T H , T c in the expansion chambers, respectively of the compression chambers, the output power varies in proportion to the amplitude of the transfer piston 6, 6a.
  • the heating power of the burner (not shown) intended to heat the working gas of the expansion chamber V E is continuously adjusted to maintain the desired temperature T H in this expansion chamber V E. Under normal conditions, the amplitude of the transfer piston can therefore be precisely controlled. It is therefore not necessary to provide additional dead volume to avoid shocks in the event of accidental overshoot of the transfer piston.
  • the natural frequency of the tubular resonator 18 only depends on the average temperature of the working gas therein. This temperature can be precisely adjusted to the desired value by means of an additional heat exchanger 20 arranged in the Helmholtz volume 19 and by controlling the thermal energy extracted. This allows the phase angle of the resonator to be adjusted relative to the other variables of the system.
  • the extraction of heat from the tubular resonator 18 makes it possible to reduce the cooling of the working gas situated in the compression chamber V c , which makes it possible to simplify the cold exchanger of the Stirling engine. Its dead volume and / or its losses by pneumatic friction can be reduced, providing an additional advantage to the device which is the subject of the present invention.
  • the pressure of the working gas in the Stirling volume varies cyclically as a function of the oscillation of the pressure wave in the tubular resonator 18.
  • the energy dissipation is then exclusively due to the friction losses of the fluid and remains moderate, at least for the pressure variations considered in this application.
  • the parameters of tubular resonator 18, an example of which follows, must be adjusted to those of the Stirling process to ensure that these components interact appropriately, i.e. the wave is driven by the Stirling cycle and that the resulting pressure variations maintain the periodicity of the Stirling cycle.
  • the tubular resonator 18 can have a total length including the Helmholtz volume 19, of approximately 1.6 m, and a temperature T of 40 ° C.
  • the average pressure p 0 of the gas is 4 MPa and the resonant frequency of this resonator is 50 Hz.
  • a working gas whose molecular mass is higher than that of helium such as a mixture of helium and argon or carbon dioxide with a molecular mass M of gas of 14 kg / kmol.
  • the minimum section S m i n of the tubular resonator 18 is, in this example, 4.75 cm 2 .
  • the working gas volume V s of the Stirling 2 engine is 1000 cm 3
  • that of the Helmholtz volume 19 is 6000 cm 3 .
  • the tubular resonator can be extended inside the Helmholtz volume 19. Since this portion of the tube is only exposed to limited pressure differences, its wall can be thin and can thus easily be put into conical shape 18a preventing the formation of pressure waves with a steep front.
  • FIG. 8 An example of the distribution of the section along the tube 18 of the resonator is shown in the diagram in FIG. 8.
  • the left end of the diagram corresponds to the end of the tube 18 in communication with the Stirling compartment 2, while the right end corresponds to that which communicates with the Helmholtz volume 19.
  • the diagram in FIG. 9 represents nine values at regular intervals of the speed of flow of the working gas in the tube 18 compared to the speed of sound (therefore the Mach number) as a function of the position in the tube 18 during a cycle, while the diagram in Figure 10 shows the distribution of the working gas pressure compared to the average pressure during the same cycle.
  • the pressure diagram clearly shows that with appropriate sizing of the tube, no shock occurs at the resonance conditions of the tube 18.
  • the pressure in the Stirling 2 volume varies sinusoidally. Pressure and speed are orthogonal functions, that is to say that if the pressure takes an extreme value, the speed of the working gas is zero and vice versa.
  • the range indicated takes account of the fact that, on the one hand, the coefficient of friction of the working gas in unsteady state can differ from that of an established regime, on the other hand that the roughness of the tubes is known only approximately.
  • the volumes of working gas displaced are of the order of a hundred cm 3 .
  • the cylindrical parts of the tube are typically only diameters from 2.5 to 4cm. It can easily be curved or rolled up so that the entire device occupies as small a volume as possible.
  • the device illustrated in FIG. 3 can have a height of 90cm, a width of 60cm and a depth of 40cm.
  • the variant illustrated in FIG. 2 differs from the embodiment in FIG. 1 only in that the elastic return member of the transfer piston 6, 6a is no longer formed by the closed volume 10, but directly by the cylindrical compartment 3 containing the alternator. Indeed, this compartment is also a closed volume and can therefore also serve as an elastic return member and thus replace the volume 10 of the embodiment of Figure 1. So far we have described only one form in which the mechanical energy produced is transmitted to a reciprocating member such as that of the free transfer piston 6, 6a of the Stirling engine. As a variant, it would also be possible to transform this alternating movement into a rotary movement as is well known in the case of internal combustion engines or steam engines.
  • FIG. 11 Such a variant is illustrated by FIG. 11 in which we find the end of the free transfer piston 6a 'and that of the resonance tube 18' communicating with the cold room or compression volume V c .
  • a rod 21 is slidably mounted in a cylindrical guide 22 by linear bearings 31.
  • a connecting rod 23 is articulated by one end to the rod 21 and by its other end, to a crankshaft 24 integral with the axis of a rotary electric generator for example, mounted in an enclosure 25.
  • the tubular resonator 18 may be constituted by two identical tubular elements arranged in diametrical opposition relative to said transfer piston 6, 6a so as to balance the lateral forces exerted on this transfer piston.
  • the tubular resonator 18 can be connected to the expansion volume V E or hot compartment of the Stirling engine, provided that the whole of this tube is kept warm and does not constitute a heat sink.
  • FIG. 12 illustrates a variant in which the Helmholtz volume 19 is placed in a heating enclosure 26, heated by gaseous, liquid or solid fuels, while the tube 18 is surrounded by thermal insulation 27. It is thus possible to increase the temperature of the working gas contained in the tubular resonator 18 above the temperature T H of this gas in the expansion volume V E. The tubular resonator 18, 19 can then partially or entirely replace the hot exchanger 7 of the Stirling engine.
  • the exchange surface can be increased using fins 30 inside and / or outside of the Helmholtz volume 19. Since the diameter of the tube 18 is already of the order of 2 to 4 times greater than that of the heat exchanger 7 and that the diameter of the Helmholtz volume is itself 2 to 4 times greater than that of the tube 18, the spacing between the fins may be substantially increases. Therefore, such exchanger is much less sensitive to fouling by soot or other combustion residues than conventional small Stirling exchangers. If necessary, it can easily be cleaned and is therefore particularly well suited to systems operating with solid fuels or biomass.
  • FIG. 13 shows a configuration in which the tubular resonator 18 is integrated in a high temperature solar collector.
  • the tube 18 of the resonator is put in the form of a helix, placed inside a cylindrical or conical cavity 28.
  • One end of this tubular resonator 18 opens in a volume of Helmholtz 19, while that the other end communicates with the expansion volume V E of the Stirling engine, of which the transfer piston 6 and the regenerator 9 have been shown.
  • FIG. 15 simply shows two pairs of Stirling engines whose compression volumes V CA V CB / respectively V C c / V CD / alternatively the expansion volumes V EA , V EB , respectively V EC , V ED , are connected by two tubular resonators T x , respectively T 2 , while the compression volumes V CA and V c on the one hand, and the compression volumes V CB and V CD / on the other hand, alternatively the volumes of expansion V EA and V EC on the one hand and the expansion volumes V EB and V ED , on the other hand, are connected to each other by connecting tubes T C ⁇ and T c2 whose role is to ensure that the pressures of the compression volumes, alternately of expansion, thus connected are the same since the motors arranged diagonally are in phase.
  • Figure 16 shows two Stirling engines illustrated by their only compression volumes V C ⁇ , V C u, alternately their expansion volumes V E ⁇ , V E n connected by a tubular resonator 18.
  • FIG. 17 shows the heating of a tubular resonator 18 connecting two Stirling engines as illustrated by FIGS. 14 to 16, arranged in a heating enclosure 26.
  • the respective ends of the tube 18 of this resonator communicate with the expansion volumes V E ⁇ , V EII of two Stirling engines.
  • the tube 18 of the resonator common to these two motors also constitutes a heating element common to these two motors. It would also be possible to use several resonance tubes 18 in parallel in order to increase the exchange surface and improve the heat transfer.
  • the resonance tube used Since in this operating mode, the resonance tube used is entirely passive, it can only operate if it is supplied with energy by the Stirling cycle. This implies that for a cryogenic machine, the section a E of the transfer piston 6, 6a delimiting the expansion volume V E is smaller than the section a c of this transfer piston 6, 6a delimiting the compression volume V c .
  • the ratio of these two sections a E / a c determines the lowest temperature level which can theoretically be reached.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

On transmet de l'énergie mécanique entre un piston de transfert (6, 6a) d'une machine Stirling et un organe mobile (11) d'un générateur ou d'un moteur électrique. On déplace périodiquement à l'aide dudit piston (6, 6a) un gaz de travail entre une chambre d'expansion (VE) et une chambre de compression (VC) associées respectivement à deux faces de travail dudit piston (6, 6a) et on exerce une force élastique de rappel sur ce piston de transfert (6, 6a). On crée entre les deux faces de travail dudit piston (6, 6a) un rapport de section (aC/aE) apte a transmettre entre ce piston (6, 6a) et ledit organe mobile (11) la totalité de ladite énergie mécanique et on forme une onde de pression, en reliant un résonateur pneumatique (18) à l'une desdites chambres de compression (VC), d'expansion (VE) et en l'ajustant de façon que l'onde de pression soit amplifiée et déphasée par rapport au déplacement dudit piston de transfert (6, 6a).

Description

PROCEDE ET DISPOSITIF POUR TRANSMETTRE UNE ENERGIE MECANIQUE ENTRE UNE MACHINE STIRLING ET UN GENERATEUR OU UN MOTEUR
ELECTRIQUE .
La présente invention se rapporte à un procédé pour transmettre de l'énergie mécanique entre un piston de transfert d'une machine Stirling et un organe mobile d'un générateur ou d'un moteur électrique, le piston de transfert étant monté dans un cylindre, selon lequel on déplace périodique- ment à l'aide dudit piston de transfert un gaz de travail entre une chambre d'expansion et une chambre de compression associées respectivement à deux faces de travail dudit piston de transfert en faisant passer ledit gaz à travers un échangeur chaud, alternativement froid, relié à une source de chaleur, un régénérateur et un échangeur de refroidissement relié à un puits de chaleur et on exerce une force élastique de rappel sur ce piston de transfert.
Les machines Stirling à piston libre ont été considérés depuis longtemps comme une solution idéale pour des unités de couplage chaleur-force servant à la production d'énergie thermique et mécanique pour des habitations. La possibilité d'augmenter le degré d'utilisation du combustible fossile, la propreté du processus de combustion externe et le fonctionnement silencieux du dispositif constituent les argu- ments principaux en faveur de l'application de cette technologie aux habitations. Cependant jusqu'ici, la complexité et le prix élevé de telles unités ont empêché son emploi.
On a récemment proposé d' associer un piston moteur à un piston de transfert d'une machine Stirling et de fixer les aimants inducteurs d'un alternateur électrique à ce piston moteur pour les déplacer par rapport aux enroulements de l'induit de cet alternateur. Ce concept prometteur présente cependant l'inconvénient de nécessiter deux pistons coa- xiaux, mobiles l'un par rapport à l'autre, qui doivent être guidés avec une grande précision. En effet, la tige du piston de transfert est montée coulissante dans un volume fermé rempli de gaz du piston moteur, qui couple pneumati- quement ces deux pistons. Ce système nécessite également un asservissement de manière à régler le déphasage entre ces pistons. Un tel système est développé par la firme américaine Sunpo er Inc. Athens, Ohio, et a fait notamment l'objet d'un article intitulé « Development of a 3kW free-piston Stirling engine with the displacer gas-spring partially sprung to the power piston » G. Chen et J. McEntee, Pro- ceedings of the 26th Intersociety Energy Conversion Engineering Conférence, vol. 5, p. 233-238. Un fort couplage élastique entre les deux pistons indique qu'une fraction substantielle de l'énergie motrice induite est engendrée par les forces du gaz agissant sur le piston de transfert et transférée par l'accouplement élastique au piston moteur. Les auteurs de l'article affirment que 2/3 de l'énergie totale est produite par le piston de transfert du moteur Stirling. Dans ce moteur, ce piston sert donc non seulement à transférer le gaz entre les volumes chaud et froid situés aux deux extrémités du cylindre dans lequel se déplace ce piston, mais aussi à engendrer une partie de l'énergie motrice.
On pourrait certes se demander légitimement, dès lors, si il ne serait pas possible de produire la totalité de l'é- nergie motrice à l'aide du piston de transfert et d'associer la partie mobile du générateur électrique à celui-ci. Une telle hypothèse à elle seule ne résoudrait cependant pas les problèmes susmentionnés. En effet, le déphasage nécessaire entre les deux pistons coaxiaux devant subsister pour per- mettre la production d'énergie et son transfert, les problèmes de guidage et d'asservissement resteraient inchangés.
Le but de la présente invention est de remédier au moins en partie aux inconvénients susmentionnés. A cet effet, cette invention a tout d'abord pour objet un procédé pour transmettre de l'énergie mécanique entre un piston de transfert d'une machine Stirling et un organe mobile d'un générateur ou d'un moteur électrique tel que défi- ni par la revendication 1. Cette invention a également pour objet un dispositif pour la mise en oeuvre de ce procédé, selon la revendication 10.
Le remplacement du piston moteur par un résonateur pneumatique entièrement statique permet non seulement de simplifier considérablement le dispositif, comme ceci est évident, puisque ce procédé permet de supprimer le piston moteur, mais aussi de faciliter l'asservissement comme on l'expliquera par la suite. Ceci signifie que non seulement l'invention permet de simplifier sensiblement le dispositif et d'en réduire les coûts de production, mais aussi que la fiabilité du dispositif s'en trouve accrue. Or pour qu'un tel dispositif présente un intérêt économique, il faut non seulement qu' il puisse être produit à un prix compétitif, mais qu'il soit capable de fonctionner aussi de nombreuses années sans nécessiter aucun entretien ni réglage.
D'autres particularités et avantages du procédé et du dispositif objets de l'invention apparaîtront à la lecture de la description qui suit, ainsi que du dessin annexé, qui illustre, schématiquement et à titre d'exemple, deux formes d'exécution et diverses variantes de ce dispositif.
La figure 1 est une vue en coupe diamétrale de cette forme d'exécution; la figure 2 est une vue d'une variante de la figure 1; la figure 3 est une vue en élévation du dispositif selon les figures 1 ou 2; la figure 4 est un diagramme vectoriel, les figures 5 et 6 sont des diagrammes explicatifs relatifs au procédé; la figure 7 est un diagramme relatif au rendement du cycle par rapport au travail par cycle; les figures 8 à 10 sont des diagrammes relatifs au dimensionnement et au comportement du résonateur; la figure 11 est une vue en élévation, partiellement en coupe de la seconde forme d'exécution; les figures 12 et 13 illustrent partiellement deux variantes pour le chauffage d'un moteur Stirling; les figures 14 à 16 illustrent trois variantes dans lesquels des moteurs Stirling sont accouplés par des tubes de résonance; la figure 17 illustre un mode de chauffage applicable aux variantes des figures 14 à 16.
Le dispositif illustré par la figure 1 comporte un carter allongé 1 formé de deux compartiments cylindriques 2, 3, assemblés sur un élément intermédiaire 4, jouant le rôle de bâti. Le compartiment cylindrique 2 comporte un logement cylindrique 5, constituant un volume de travail d'un moteur Stirling, dans lequel un piston de transfert en deux parties 6, 6a est monté, libre de se déplacer dans l'axe longitudinal du logement cylindrique 5. A une extrémité, le volume situé entre la partie 6 du piston de transfert 6, 6a et l'extrémité externe du logement 5 est celui qui est en contact avec un échangeur chaud 7 relié à une source chaude
(non représentée) et constitue la chambre chaude ou volume d'expansion VE du moteur Stirling, tandis qu'à l'autre extrémité de ce logement cylindrique 5, on trouve un volume en contact avec un échangeur froid 8 relié à une source froide (non représentée) , qui constitue la chambre froide ou volume de compression Vc du moteur Stirling. Un régénérateur
9 est disposé entre les échangeurs chaud 7 et froid 8. La partie 6a piston de transfert 6, 6a adjacente à la chambre de compression Vc est engagée dans un volume fermé
10 rempli de gaz de travail, qui constitue un moyen de rappel élastique du piston de transfert 6,6a. Le compartiment cylindrique 3 renferme un volume dans lequel un élément mobile d'un générateur électrique, ici l'inducteur 11 constitué par un élément cylindrique portant des aimants permanents, est solidaire de la périphérie d'un organe annulaire 12, dont le bord interne est solidaire d'un organe de suspension élastique 14, constitué par des ressorts plats annulaires, dont les bords périphériques sont fixés au bâti 4 et dont les bords internes sont solidaires d'une tige 17 dont une extrémité est fixée à la partie 6a du piston de transfert 6, 6a. Le bord interne d'un second organe de suspension élastique 15 semblable à l'organe 14, est fixé à l'autre extrémité de la tige 17, tandis que sa périphérie est fixée à un support 13 solidaire du bâti 4. L'induit du générateur est formé par des enroulements 16. La partie 6a du piston de transfert 6, 6a et la tige 17 traversent le fond du volume fermé 10 ménagé dans l'élément intermédiaire 4 avec un jeu compris entre 30 et 50μm. Un tel jeu est parfaitement acceptable aussi bien du point de vue des tolérances de fabrication que de l'influence des fuites du gaz de travail sur le rendement énergétique et sur la force de rappel du gaz comprimé dans le volume fermé 10.
Un résonateur tubulaire 18, dont seule l'extrémité solidaire du compartiment cylindrique 2 est représentée sur la figure 1, communique avec le volume de compression ou cham- bre froide Vc du moteur Stirling. Ce résonateur a pour rôle de remplacer le second piston, qui selon le procédé objet de l'invention, ne sert plus à produire de l'énergie, toute l'énergie étant produite par le piston de transfert 6, 6a comme on l'expliquera ci-après, mais sert à amplifier l'onde de pression et à assurer un déphasage approprié entre le déplacement du piston de transfert 6, 6a et les variations de pression p dans le volume de travail.
Comme illustré par la figure 3, l'autre extrémité de ce résonateur tubulaire 18 se termine avantageusement dans un volume de Helmholtz 19. Dans ce cas, de préférence, la partie de ce résonateur qui se trouve dans le volume Helmholtz se termine par un évasement 18a.
Le piston de transfert 6, 6a joue alors le double rôle de transfert du gaz de travail entre la chambre d'expansion VE et la chambre de compression Vc et de production de toute l'énergie motrice transmise à l'inducteur 11, pour autant que certaines conditions, dont nous allons parler maintenant, soient remplies. Pour atteindre cet objectif, il est nécessaire de déterminer le rapport entre la surface ac, délimitant la chambre de compression du piston de transfert 6, 6a et celle aE de ce même piston, délimitant la chambre d'expansion.
L'analyse du cycle isothermique montre que la pression du gaz de travail dans le volume de travail devient indépendante de la position du piston de transfert 6, 6a si:
a E τH
Exemple
Température TH du volume chaud VE, TH = 923°K = 650°C Température Tc du volume froid Vc, Tc = 323°K = 50°C
Figure imgf000008_0001
Le fonctionnement du moteur est possible seulement si le rapport de surface ac/aE est supérieur à cette limite, c'est-à-dire que le déplacement du piston de transfert 6, 6a doit induire une composante de pression px (fig. 4) qui doit être opposée au déplacement X de ce piston 6, 6a. Le déplacement du piston de transfert 6, 6a est positif si celui-ci se déplace en direction du volume VE. La variation de la quantité WG de gaz de travail dans le volume de travail du moteur Stirling donne lieu à une variation de pression pw, qui est en phase avec la variation de la quantité WG de gaz de travail. La variation de la pression p dans le volume de travail du moteur Stirling correspond à la somme vectorielle des deux pressions partielles px et pw.
La figure 5 montre la variation de la position X du piston de transfert 6, 6a et la variation de la pression en fonction du temps (ou de l'angle Φ) . Cette représentation correspond schématiquement à celle de la figure 4. Lorsque la pression diminue, le gaz de travail se trouve en grande partie dans la chambre chaude ou de détente; lorsqu'elle augmente, le gaz de travail se trouve essentiellement dans la chambre froide ou de compression. Pour produire de l'énergie, il faut que le déplacement X du piston 6 précède la variation de pression p.
La figure 6 représente la variation de la quantité WG de gaz de travail dans le volume de travail Stirling et la pression p dans ce volume. Lorsque le gaz de travail s'écoule vers le résonateur tubulaire 18, la quantité WG de gaz diminue, la pression est plus grande que durant son retour où la quantité WG de gaz augmente. Il y a donc un transport d'énergie du volume Stirling vers le tube, qui compense les pertes par frottement dans ce résonateur tubulaire 18.
Afin que p soit en retard sur la variation de la quantité WG de gaz de travail, la figure 4 montre que px doit être opposé à X. Si px devient nul, ou orienté en direction de X, aucune énergie n'est transmise vers le résona- teur tubulaire 18 pour compenser les pertes par frottement. Par conséquent, l'onde de pression ne peut pas être maintenue et la machine cesse de fonctionner.
Suite à une étude d'optimisation effectuée à l'aide d'un programme informatique spécialement adapté pour le calcul des cycles Stirling selon la présente invention, les résultats ont montré que pour les générateurs Stirling, le rapport des sections ac/aE doit se situer entre 0,4 et 0,6, de préférence entre 0,45 et 0,55. La figure 7 donne un exemple de rendement du cycle ηc calculé en fonction du travail fourni par cycle E, avec la température de paroi TH de la chambre d'expansion VE et l'amplitude X du piston de transfert 6, 6a comme paramètre. La température de l' échangeur froid T, proche de la température Tc est environ à 50°C. Le rendement net du générateur peut être obtenu en multipliant le rendement du cycle par le rendement des moyens de chauffage et celui de l'alternateur. Ce diagramme montre que dans une gamme relativement grande d'amplitudes du piston de transfert, on peut obtenir de bons rendements, les valeurs les plus élevées étant atteintes à charge partielle. Ces rendements sont légèrement inférieurs à ceux du dispositif de l'état de la technique susmentionné, mais cette très légère baisse est largement compensée par la simplification apportée au dispositif.
Le moteur Stirling devrait toujours fonctionner à des températures de la chambre d'expansion comprises entre 600° et 700°C. Dans cette gamme, la température TH de la chambre d'expansion VE influence principalement la puissance, dans une moindre mesure le rendement. Mais en abaissant la température à 400-500°C, le rendement et la puissance diminuent fortement, essentiellement parce que, dans ces conditions, la variation de pression px induite par le mouvement du piston devient petite et finalement disparaît complètement. La rigidité latérale de la suspension mécanique du piston de transfert 6, 6a est assurée par des ressorts plats 14, 15 du type de ceux décrits dans « Récent developments in cryocoolers » Ray Radebaugh 19™ International Congress of Réfrigération 1995 Proceedings Volume Illb, lui permet d'osciller parfaitement selon l'axe longitudinal du logement cylindrique 5, de sorte qu'il n'est pas nécessaire d'utiliser des paliers pneumatiques pour le centrer. Lors de l'assemblage initial, le piston de transfert 6, 6a peut être centré avec une grande précision. En raison de la suspension pneumatique de ce piston de transfert et par conséquent, des faibles forces nécessaires pour les éléments de suspension élastiques constitués par les ressorts plats annulaires 14 et 15, on peut augmenter l'amplitude du piston de transfert 6, 6a de 25% à 50% par rapport au dispositif décrit dans « Free-piston Stirling design features » Neill W. Lane et al. 8™ International Stirling Engine Conférence and Exhibition May 27-30, 1997 Ancona. Cette augmentation d'amplitude conduisant à une augmentation des vitesses linéaires, permet de réduire les dimensions de l'alternateur. Dans des conditions de fonctionnement inchangées, on peut atteindre des quantités d'énergie similaires.
L'utilisation d'un seul piston mobile simplifie le réglage initial, le démarrage et le contrôle de puissance de manière significative par rapport aux systèmes Stirling conventionnels à piston libre. La rigidité de la suspension du piston de transfert 6, 6a et par conséquent, l'angle de phase peuvent être ajustés en réglant la pression du gaz de travail dans le volume de travail du moteur Stirling. La fréquence naturelle du résonateur tubulaire 18 peut être ajustée en variant la composition du gaz de travail, c'est- à-dire sa masse moléculaire.
Le démarrage du moteur est ensuite exécuté en portant tout d'abord la température du gaz de travail dans la cham- bre d'expansion VE à une valeur TH à laquelle la pression du gaz de travail devient indépendante de la position du piston de transfert. La charge du moteur Stirling est ainsi réduite à un minimum (pertes par frottement interne du moteur et par l'écoulement périodique à travers les échangeurs et le régé- nérateur) . Après le démarrage, la température TH sera ajustée à la température de travail optimum.
Le contrôle de la puissance s'effectue très facilement. On règle l'amplitude du piston de transfert 6, 6a et par conséquent la puissance du moteur Stirling, en ajustant la force de freinage exercée par le générateur électrique à une valeur déterminée. Pour des températures données du gaz TH, Tc dans les chambres d'expansion, respectivement de compression, la puissance de sortie varie proportionnellement à l'amplitude du piston de transfert 6, 6a. La puissance de chauffage du brûleur (non représenté) destiné à chauffer le gaz de travail de la chambre d'expansion VE est ajustée en continu pour maintenir la température TH désirée dans cette chambre d'expansion VE. Dans des conditions normales, l'am- plitude du piston de transfert peut donc être contrôlée avec précision. Il n'est donc pas nécessaire de prévoir de volume mort supplémentaire pour éviter des chocs en cas de dépassement d'amplitude accidentel du piston de transfert. Il est seulement nécessaire d'empêcher que le piston de transfert ne dépasse une amplitude maximum en cas de panne dans le réseau électrique auquel est associé au générateur électrique. Toute non linéarité de la rigidité de la suspension du piston de transfert 6, 6a a un effet marginal sur sa phase étant donné qu'il est couplé à une charge et se comporte comme un oscillateur fortement amorti.
Une fois que l'ensemble du dispositif est scellé, la fréquence naturelle du résonateur tubulaire 18 dépend seulement de la température moyenne du gaz de travail qui s'y trouve. Cette température peut être réglée avec précision à la valeur désirée au moyen d'un échangeur de chaleur supplémentaire 20 disposé dans le volume Helmholtz 19 et en contrôlant l'énergie thermique extraite. Ceci permet d'ajuster l'angle de phase du résonateur par rapport aux autres variables du système. L'extraction de chaleur du résonateur tubu- laire 18 permet de diminuer le refroidissement du gaz de travail situé dans la chambre de compression Vc, ce qui permet de simplifier l' échangeur froid du moteur Stirling. Son volume mort et/ou ses pertes par frottement pneumatique peuvent être réduits, apportant un avantage supplémentaire au dispositif objet de la présente invention.
La pression du gaz de travail dans le volume Stirling varie de manière cyclique en fonction de l'oscillation de l'onde de pression dans le résonateur tubulaire 18. En faisant varier de façon appropriée la section du tube, comme on l'expliquera ci-après, on peut obtenir des variations de pression presque parfaitement sinusoïdales. La dissipation d'énergie est alors exclusivement due aux pertes par frotte- ment du fluide et restent modérées, au moins pour les variations de pression considérées dans cette application. Les paramètres du résonateur tubulaire 18, dont un exemple suit, doivent être ajustés à ceux du processus Stirling pour garantir que ces composants interagissent de manière conve- nable, c'est-à-dire que l'onde est entraînée par le cycle Stirling et que les variations de pression résultantes maintiennent la périodicité du cycle Stirling.
A titre d'exemple, le résonateur tubulaire 18 peut avoir une longueur totale y compris le volume Helmholtz 19, d'environ 1,6m, et une température T de 40°C. La pression moyenne p0 du gaz est de 4MPa et la fréquence de résonance de ce résonateur est de 50Hz. Pour limiter la longueur du tube on utilisera avantageusement un gaz de travail dont la masse moléculaire est plus élevée que celle de l'hélium, tel qu'un mélange d'hélium et d'argon ou de dioxyde de carbone avec une masse moléculaire M du gaz de 14 kg/kmol. La section minimale Smin du résonateur tubulaire 18 est, dans cet exemple, de 4,75cm2. Le volume de gaz de travail Vs du moteur Stirling 2 est de 1000cm3, tandis que celle du volume de Helmholtz 19 est de 6000cm3.
Avantageusement, le résonateur tubulaire peut être prolongé à l'intérieur du volume Helmholtz 19. Etant donné que cette portion du tube est seulement exposée à des différences de pression limitées, sa paroi peut être mince et peut ainsi facilement être mise sous forme conique 18a empêchant la formation d'ondes de pression à front raide.
Un exemple de répartition de la section le long du tube 18 du résonateur est représenté sur le diagramme de la figu- re 8. L'extrémité gauche du diagramme correspond à l'extrémité du tube 18 en communication avec le compartiment Stirling 2, tandis que l'extrémité droite correspond à celle qui communique avec le volume Helmholtz 19.
Le diagramme de la figure 9 représente neuf valeurs à intervalles réguliers de la vitesse d'écoulement du gaz de travail dans le tube 18 rapportée à la vitesse du son (donc le nombre de Mach) en fonction de la position dans le tube 18 durant un cycle, tandis que le diagramme de la figure 10 montre la répartition de la pression du gaz de travail rapportée à la pression moyenne durant le même cycle.
Le diagramme des pressions montre clairement qu'avec un dimensionnement approprié du tube, aucun choc ne se produit aux conditions de résonance du tube 18. La pression dans le volume Stirling 2 varie de façon sinusoïdale. La pression et la vitesse sont des fonctions orthogonales, c'est-à-dire que si la pression prend une valeur extrême, la vitesse du gaz de travail est nulle et réciproquement.
Le facteur de qualité calculé du tube 18 se situe entre 25 et 40 pour un rapport de pression dans le volume Stirling πc = Pmax/Pmin = 1/1 respectivement entre 15 et 25 pour πc = 1,2. La fourchette indiquée tient compte du fait que, d'une part, le coefficient de frottement du gaz de travail en régime instationnaire peut différer de celui d'un régime établi, d'autre part que la rugosité des tubes n'est connue qu' approximativement .
Dans le cas du moteur Stirling à faible puissance étudié dans cet exemple, typiquement de l'ordre 2kW à 5kW, les volumes de gaz de travail déplacés sont de l'ordre d'une centaine de cm3. Les parties cylindriques du tube ont typi- quement des diamètres de 2,5 à 4cm. Il peut facilement être courbé ou enroulé de manière à ce que l'ensemble du dispositif occupe un volume aussi réduit que possible. A titre d'exemple, le dispositif illustré par la figure 3 peut avoir une hauteur de 90cm, une largeur de 60cm et une profondeur de 40cm.
La variante illustrée par la figure 2 ne diffère de la forme d'exécution de la figure 1 que par le fait que l'organe de rappel élastique du piston de transfert 6, 6a n'est plus constitué par le volume fermé 10, mais directement par le compartiment cylindrique 3 renfermant l'alternateur. En effet, ce compartiment est également un volume fermé et peut donc aussi servir d'organe élastique de rappel et remplacer ainsi le volume 10 de la forme d'exécution de la figure 1. Jusqu'ici nous n'avons décrit qu'une forme d'exécution dans laquelle l'énergie mécanique produite est transmise à un organe à mouvement alternatif comme celui du piston de transfert libre 6, 6a du moteur Stirling. En variante, il serait également possible de transformer ce mouvement alter- natif en un mouvement rotatif comme ceci est bien connu dans le cas des moteurs à explosion ou des moteurs à vapeur.
Une telle variante est illustrée par la figure 11 sur laquelle on retrouve l'extrémité du piston de transfert libre 6a' et celle du tube de résonance 18' communiquant avec la chambre froide ou volume de compression Vc. Une tige 21 est montée coulissante dans un guidage cylindrique 22 par des roulements linéaires 31. Une bielle 23 est articulée par une extrémité à la tige 21 et par son autre extrémité, à un vilebrequin 24 solidaire de l'axe d'un générateur électrique rotatif par exemple, monté dans une enceinte 25.
Dans une variante non représentée des figures 1 à 3 notamment, le résonateur tubulaire 18 peut être constitué par deux éléments tubulaires identiques disposés en opposition diamétrale par rapport audit piston de transfert 6, 6a de manière à équilibrer les forces latérales qui s'exercent sur ce piston de transfert.
En variante, le résonateur tubulaire 18 peut être relié au volume d'expansion VE ou compartiment chaud du moteur Stirling, à condition que l'ensemble de ce tube soit maintenu chaud et ne constitue pas un puits de chaleur. La figure 12 illustre une variante dans laquelle le volume Helmholtz 19 est placé dans une enceinte de chauffage 26, chauffée par des combustibles gazeux, liquides ou solides, alors que le tube 18 est entouré par une isolation thermique 27. On peut ainsi augmenter la température du gaz de travail contenu dans le résonateur tubulaire 18 au-dessus de la température TH de ce gaz dans le volume d'expansion VE. Le résonateur tubulaire 18, 19 peut alors se substituer en partie ou en- tierement à l' échangeur chaud 7 du moteur Stirling. Il en résulte ainsi l'économie partielle ou totale d'un échangeur compliqué, coûteux et difficile à optimiser (surface d'échange suffisante avec un volume mort réduit et de faibles pertes de charge) . Le résonateur tubulaire 18, 19 présente une surface d'échange considérable et grâce à l'écoulement périodique qui s'établit dans celui-ci, le transfert interne de chaleur est favorable. En raison du régime d'ondes sta- tionnaires qui s'établit dans ce résonateur, son volume interne ne fait pas partie du volume mort du moteur Stirling. Le principe de fonctionnement du cycle Stirling reste le même que celui expliqué à l'aide des figures 4 à 6.
Pour favoriser l'échange de chaleur on peut augmenter la surface d'échange à l'aide d'ailettes 30 à l'intérieur et/ou à l'extérieur du volume Helmholtz 19. Etant donné que le diamètre du tube 18 est déjà de l'ordre de 2 à 4 fois supérieur à celui de l' échangeur de chaleur 7 et que le diamètre du volume Helmholtz est encore lui-même 2 à 4 fois supérieur à celui du tube 18, l'écartement entre les ailettes peut être sensiblement augmenté. Par conséquent, un tel échangeur est beaucoup moins sensible à l'encrassement par des suies ou autres résidus de combustion que les échangeurs Stirling conventionnels de faible taille. Si nécessaire, il peut facilement être nettoyé et est donc particulièrement bien adapté à des systèmes fonctionnant avec des combustibles solides ou de la biomasse.
La variante illustrée par la figure 13 montre une configuration dans laquelle le résonateur tubulaire 18 est intégré dans un collecteur solaire à haute température. A cet effet, le tube 18 du résonateur est mis sous une forme d'hélice, placée à l'intérieur d'une cavité cylindrique ou conique 28. Une extrémité de ce résonateur tubulaire 18 s'ouvre dans un volume de Helmholtz 19, tandis que l'autre extrémité communique avec le volume d'expansion VE du moteur Stirling, dont on a représenté le piston de transfert 6 et le régénérateur 9. Un miroir parabolique 29 disposé sous l'ouverture de la cavité 28, concentre le rayonnement solaire à l'intérieur de celle-ci.
Un des avantages de cette solution réside dans le fait qu'un tel collecteur est relativement peu sensible à la répartition exacte du rayonnement solaire incident, étant donné que le mouvement périodique du gaz de travail dans le tube 18 du résonateur assure une répartition uniforme de la température dans celui-ci. Un autre avantage résulte du fait que lors de l'apparition du soleil, au moment où un niveau de température TH du gaz de travail dans la chambre d'expansion VE est atteint, le moteur Stirling se met facilement en marche; le risque d'une surchauffe instantanée du collecteur est ainsi diminué. Une autre variante (figure 14) illustre très schémati- quement la combinaison de quatre moteurs Stirling dont on a montré que les volumes de compression respectifs VCA/ CB Vcc CD/ alternativement les volumes d'expansion respectifs VEA/ VEB, VEC, VED, reliés par quatre résonateurs tubulaires, de formes symétriques Ti, T2, T3 et T . L'ensemble forme une boucle fermée, chaque volume V étant relié à deux autres volumes voisins, le tout formant un carré dont les tubes de résonance Ti à T4 constituent les côtés, les volumes VCA à VCD/ alternativement VEA à VED étant disposés aux angles. Cette configuration permet d'augmenter la puissance thermique en associant entre elles des machines selon une conception modulaire.
Lorsque deux moteurs Stirling sont couplés par l'inter- médiaire d'un résonateur tubulaire dans une configuration symétrique, ils travaillent en opposition de phase. Lorsque l'on a quatre moteurs Stirling disposés aux sommets d'un carré comme dans la figure 14, les moteurs qui sont sur une même diagonale sont en phase et sont déphasés de 180° par rapport aux deux autres moteurs disposés sur l'autre diagonale. Les forces transmises à l'extérieur par cet ensemble sont entièrement compensées, ce qui permet de réduire les vibrations transmises à l'extérieur.
La variante de la figure 15 montre simplement deux paires de moteurs Stirling dont les volumes de compression VCA VCB/ respectivement VCc/ VCD/ alternativement les volumes d'expansion VEA, VEB, respectivement VEC, VED, sont reliés par deux résonateurs tubulaires Tx, respectivement T2, alors que les volumes de compression VCA et Vc d'une part, et les volumes de compression VCB et VCD/ d'autre part, alternativement les volumes d'expansion VEA et VEC d'une part et les volumes d'expansion VEB et VED, d'autre part, sont reliés les uns aux autres par des tubes de liaison TCι et Tc2 dont le rôle est d'assurer que les pressions des volumes de compres- sion, alternativement d'expansion, ainsi reliés sont les mêmes étant donné que les moteurs disposés en diagonales sont en phase.
La figure 16 montre deux moteurs Stirling illustrés par leurs seuls volumes de compression VCι, VCu, alternativement leurs volumes d'expansion VEι, VEn reliés par un résonateur tubulaire 18.
La figure 17 montre le chauffage d'un résonateur tubulaire 18 reliant deux moteurs Stirling comme illustré par les figures 14 à 16, disposé dans une enceinte de chauffage 26. Les extrémités respectives du tube 18 de ce résonateur communiquent avec les volumes d'expansion VEι, VEII de deux moteurs Stirling. Ainsi le tube 18 du résonateur commun à ces deux moteurs constitue également un élément de chauffage commun à ces deux moteurs. Il serait également envisageable d'utiliser plusieurs tubes de résonance 18 en parallèle afin d'augmenter la surface d'échange et d'améliorer le transfert de chaleur.
Tous les exemples qui précèdent montrent une machine Stirling fonctionnant en tant que moteur d'entraînement d'un générateur électrique. Or il est bien connu que les machines Stirling peuvent aussi fonctionner en mode inversé: au lieu de chauffer le gaz de travail circulant à travers la chambre d'expansion pour produire de l'énergie mécanique, il est aussi possible, en entraînant mécaniquement le piston de transfert, de produire du froid par la détente du gaz dans cette chambre d'expansion.
Etant donné que dans ce mode de fonctionnement, le tube de résonance utilisé est entièrement passif, celui-ci ne peut fonctionner que si il est alimenté en énergie par le cycle Stirling. Ceci implique que pour une machine cryogénique, la section aE du piston de transfert 6, 6a délimitant le volume d'expansion VE soit plus faible que la section ac de ce piston de transfert 6, 6a délimitant le volume de com- pression Vc. Le rapport de ces deux section aE/ac détermine le niveau de température le plus bas qui peut théoriquement être atteint.

Claims

REVENDICATIONS
1. Procédé pour transmettre de l'énergie mécanique entre un piston de transfert (6, 6a) d'une machine Stirling et un organe mobile (11) d'un générateur ou d'un moteur électrique, le piston de transfert (6, 6a) étant monté dans un cylindre (2) , selon lequel on déplace périodiquement à l'aide dudit piston de transfert (6, 6a) un gaz de travail entre une chambre d'expansion (VE) et une chambre de com- pression (Vc) associées respectivement à deux faces de travail dudit piston de transfert (6, 6a) en faisant passer ledit gaz à travers un échangeur chaud (7), alternativement froid, relié à une source de chaleur, un régénérateur (9) et un échangeur de refroidissement (8) relié à un puits de cha- leur et on exerce une force élastique de rappel sur ce piston de transfert (6, 6a), caractérisé en ce que l'on crée entre les deux faces de travail dudit piston (6, 6a) un rapport de section (ac/aE) apte à transmettre entre ce piston (6, 6a) et ledit organe mobile (11) la totalité de ladite énergie mécanique et que l'on forme une onde de pression, en reliant un résonateur pneumatique (18) à l'une desdites chambres de compression (Vc) , d'expansion (VE) et en l'ajustant de façon que l'onde de pression soit amplifiée et déphasée par rapport au déplacement dudit piston de transfert (6, 6a), de manière à échanger ladite énergie mécanique et à transmettre à ce résonateur pneumatique (18) une énergie apte à compenser ses pertes par frottement.
2. Procédé selon la revendication 1, caractérisé en ce que, pour transmettre ladite énergie mécanique dudit piston de transfert (6, 6a) audit organe mobile (11) d'un générateur électrique, le rapport (ac/aE) que l'on crée entre la section (ac) de la face de travail dudit piston de transfert associée audit volume de compression (Vc) et celle (aE) de la face de travail de ce piston de transfert associée audit volume d'expansion (VE) est compris entre 40 et 60%.
3. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'on fait sortir de manière étanche dudit cylindre (2), une extrémité (6a) dudit piston (6, 6a) pour la mettre en communication avec un volume fermé (3) dans lequel on dispose ledit générateur électrique et on exerce ladite force de rappel élastique à l'aide des variations de pression du gaz de travail contenu dans ledit volu- me fermé (3) , consécutivement aux déplacements dudit piston (6, 6a).
4. Procédé selon l'une des revendications précédentes, caractérisé en ce que pour éviter la formation d'ondes à fronts raides, on fait varier la section d'un conduit tubu- laire (18) destiné à former ledit résonateur pneumatique.
5. Procédé selon la revendication 4, caractérisé en ce que l'on dispose un volume de Helmholtz (19) à l'extrémité dudit conduit tubulaire (18) opposée à celle reliée à l'une desdites chambres de compression (Vc) , d'expansion (VE) de ladite machine Stirling.
6. Procédé selon l'une des revendications 4 et 5, caractérisé en ce que l'on dispose une partie (18a) du conduit tubulaire (18) à section variable à l'intérieur du volume Helmholtz (19) .
7. Procédé selon l'une des revendications 5 et 6, caractérisé en ce que l'on refroidit, respectivement on chauffe, de manière contrôlée le gaz de travail contenu dans ledit volume Helmholtz (19) .
8. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'on ajuste la fréquence propre dudit résonateur (18) en formant ledit gaz de travail par un mélange de gaz de différentes masses moléculaires dans une proportion déterminée.
9. Procédé selon la revendication 1, caractérisé en ce que, pour transmettre ladite énergie mécanique dudit organe mobile (11) d'un moteur électrique audit piston de transfert
(6, 6a), on dimensionne la section (aE) de l'extrémité (6) dudit piston de transfert (6, 6a) associée à la chambre d'expansion (VE) , plus petite que la section (ac) de l'extrémité (6a) de ce piston de transfert (6, 6a) associée à la chambre de compression (Vc) .
10. Dispositif pour la mise en oeuvre du procédé selon la revendication 1, caractérisé en ce que ledit piston (6,
6a) est ciné atiquement solidaire dudit organe mobile (11) .
11. Dispositif selon la revendication 10, caractérisé en ce que ladite force de rappel élastique exercée sur ledit piston (6, 6a) est engendrée par un espace fermé (10, 3) contenant du gaz, d'un volume déterminée en fonction de la fréquence propre désirée pour ledit piston (6, 6a) et dont une des parois est constituée par une face dudit piston (6, 6a) dont la surface correspond à la différence entre lesdi- tes surfaces de travail.
12. Dispositif selon l'une des revendications précédentes, caractérisé en ce que ledit organe mobile est un organe rotatif, relié audit piston (6' a, 21) par un embiellage (23, 24), des moyens de guidage linéaires (31) étant associés audit piston (6'a, 21).
13. Dispositif selon l'une des revendications précédentes, caractérisé en ce que ledit résonateur est constitué par deux éléments tubulaires (Ti, T2) identiques disposés en opposition diamétrale par rapport audit piston de transfert (6, 6a) .
14. Dispositif selon l'une des revendications précédentes, caractérisé en ce que ledit résonateur tubulaire (18) est relié à la chambre d'expansion (VE) de la machine Stirling et qu'il est associé à des moyens de chauffage constituant la source chaude de ladite machine Stirling.
15. Dispositif selon l'une des revendications 10, 11 et 14, caractérisé en ce que quatre dispositifs Stirling sont reliés les uns aux autres au moyen de quatre résonateurs tubulaires (T1-T4) , les pistons de transfert de deux dispo- sitifs Stirling non adjacents travaillant en phase et les deux autres en opposition de phase.
16. Dispositif selon l'une des revendications 10, 11, 12 et 14, caractérisé en ce que chaque extrémité du résonateur tubulaire (18) est relié à l'une des chambres froide (Vc) , chaude (VE) d'une machine Stirling.
17. Dispositif selon l'une des revendications précédentes, caractérisé en ce que lesdits moyens de chauffage présentent la forme d'un collecteur de rayonnement solaire (28, 29) .
PCT/CH2000/000199 1999-04-07 2000-04-05 Procede et dispositif pour transmettre une energie mecanique entre une machine stirling et un generateur ou un moteur electrique WO2000061936A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE60021863T DE60021863T2 (de) 1999-04-07 2000-04-05 Verfahren und vorrichtung zum übersetzen einer mechanischen energie zwischen einer stirlingmachine und einem generator oder einem elektromotor
AT00912325T ATE301773T1 (de) 1999-04-07 2000-04-05 Verfahren und vorrichtung zum übersetzen einer mechanischen energie zwischen einer stirlingmachine und einem generator oder einem elektromotor
EP00912325A EP1165955B1 (fr) 1999-04-07 2000-04-05 Procede et dispositif pour transmettre une energie mecanique entre une machine stirling et un generateur ou un moteur electrique
US09/972,263 US6510689B2 (en) 1999-04-07 2001-10-05 Method and device for transmitting mechanical energy between a stirling machine and a generator or an electric motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP99810286A EP1043491A1 (fr) 1999-04-07 1999-04-07 Procédé pour générer et transmettre une énergie mécanique d'un moteur stirling à un organe consommateur d'énergie et dispositif pour la mise en oeuvre de ce procédé
EP99810286.7 1999-04-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/972,263 Continuation US6510689B2 (en) 1999-04-07 2001-10-05 Method and device for transmitting mechanical energy between a stirling machine and a generator or an electric motor

Publications (1)

Publication Number Publication Date
WO2000061936A1 true WO2000061936A1 (fr) 2000-10-19

Family

ID=8242753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2000/000199 WO2000061936A1 (fr) 1999-04-07 2000-04-05 Procede et dispositif pour transmettre une energie mecanique entre une machine stirling et un generateur ou un moteur electrique

Country Status (5)

Country Link
US (1) US6510689B2 (fr)
EP (2) EP1043491A1 (fr)
AT (1) ATE301773T1 (fr)
DE (1) DE60021863T2 (fr)
WO (1) WO2000061936A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9109533B2 (en) 2010-04-06 2015-08-18 Jean-Pierre Budliger Stirling machine

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6701708B2 (en) 2001-05-03 2004-03-09 Pasadena Power Moveable regenerator for stirling engines
GB0130380D0 (en) * 2001-12-19 2002-02-06 Bg Intellectual Pty Ltd A heat appliance
WO2003100240A1 (fr) * 2002-05-24 2003-12-04 Stm Power Inc. Moteur stirling multi-cylindre destine a la production d'energie electrique
JP3769751B2 (ja) * 2003-02-19 2006-04-26 ツインバード工業株式会社 スターリングサイクル機関
US7017344B2 (en) * 2003-09-19 2006-03-28 Pellizzari Roberto O Machine spring displacer for Stirling cycle machines
US7677039B1 (en) * 2005-12-20 2010-03-16 Fleck Technologies, Inc. Stirling engine and associated methods
US7417331B2 (en) * 2006-05-08 2008-08-26 Towertech Research Group, Inc. Combustion engine driven electric generator apparatus
US8011183B2 (en) * 2007-08-09 2011-09-06 Global Cooling Bv Resonant stator balancing of free piston machine coupled to linear motor or alternator
WO2009070771A1 (fr) * 2007-11-28 2009-06-04 Tiax Llc Moteur stirling à piston libre
ITLI20080007A1 (it) * 2008-07-08 2010-01-08 Fabio Prosperi Generatore elettrico alimentato mediante fonti di calore
US8590300B2 (en) * 2008-10-20 2013-11-26 Sunpower, Inc. Balanced multiple groupings of beta stirling machines
US8096118B2 (en) * 2009-01-30 2012-01-17 Williams Jonathan H Engine for utilizing thermal energy to generate electricity
WO2011047164A1 (fr) * 2009-10-14 2011-04-21 Jeffrey Lee Système et procédé de collecte d'énergie solaire
DE102011107802B4 (de) * 2011-07-11 2013-05-02 Rhp Gmbh Wärmekraftmaschine mit äußerer Verbrennung oder der Nutzung von Solarenergie
CN104500262B (zh) * 2014-12-19 2016-02-03 中国科学院理化技术研究所 自由活塞斯特林发电机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0070780A1 (fr) * 1981-07-21 1983-01-26 Bertin & Cie Convertisseur d'énergie thermique en énergie électrique à moteur Stirling et générateur électrique intégré
EP0086622A1 (fr) * 1982-02-12 1983-08-24 National Research Development Corporation Moteur à gaz chaud à piston libre
EP0218554A1 (fr) * 1985-10-07 1987-04-15 Jean-Pierre Budliger Machine stirling
EP0447134A2 (fr) * 1990-03-14 1991-09-18 MacroSonix Corp. Compresseur avec ondes stationnaires
US5174116A (en) * 1991-03-26 1992-12-29 Aisin Seiki Kabushiki Kaisha Displacer-type Stirling engine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1412935A (en) * 1971-10-05 1975-11-05 Stobart A F Fluid heating systems
US4458495A (en) * 1981-12-16 1984-07-10 Sunpower, Inc. Pressure modulation system for load matching and stroke limitation of Stirling cycle apparatus
EP0860622B1 (fr) 1997-02-19 2002-12-11 Yordak Ltd Joint homocinétique

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0070780A1 (fr) * 1981-07-21 1983-01-26 Bertin & Cie Convertisseur d'énergie thermique en énergie électrique à moteur Stirling et générateur électrique intégré
EP0086622A1 (fr) * 1982-02-12 1983-08-24 National Research Development Corporation Moteur à gaz chaud à piston libre
EP0218554A1 (fr) * 1985-10-07 1987-04-15 Jean-Pierre Budliger Machine stirling
EP0447134A2 (fr) * 1990-03-14 1991-09-18 MacroSonix Corp. Compresseur avec ondes stationnaires
US5174116A (en) * 1991-03-26 1992-12-29 Aisin Seiki Kabushiki Kaisha Displacer-type Stirling engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9109533B2 (en) 2010-04-06 2015-08-18 Jean-Pierre Budliger Stirling machine

Also Published As

Publication number Publication date
ATE301773T1 (de) 2005-08-15
DE60021863D1 (de) 2005-09-15
EP1043491A1 (fr) 2000-10-11
US20020096884A1 (en) 2002-07-25
EP1165955B1 (fr) 2005-08-10
DE60021863T2 (de) 2006-05-24
US6510689B2 (en) 2003-01-28
EP1165955A1 (fr) 2002-01-02

Similar Documents

Publication Publication Date Title
WO2000061936A1 (fr) Procede et dispositif pour transmettre une energie mecanique entre une machine stirling et un generateur ou un moteur electrique
EP0218554B1 (fr) Machine stirling
EP1366280B1 (fr) Groupe electrogene a mouvement lineaire alternatif a base de moteur stirling, et procede mis en oeuvre dans ce groupe electrogene
CH702965A2 (fr) Machine stirling.
EP0070780A1 (fr) Convertisseur d'énergie thermique en énergie électrique à moteur Stirling et générateur électrique intégré
JPH09509710A (ja) エネルギー発生装置
US11448159B2 (en) Stirling engine with a membrane connecting the piston to the cylinder of the Stirling engine and a method of using this Stirling engine
FR2971552A1 (fr) Machine thermoacoustique a boucle de retroaction electrique
WO2016131917A1 (fr) Moteur thermoacoustique
WO2021255040A1 (fr) Machine de conversion d'energie thermique en energie electrique ou inversement
EP0213038B1 (fr) Dispositif d'échange de chaleur parcouru par deux fluides à circuits indépendants
FR3078997A1 (fr) Perfectionnement a un moteur stirling de type beta ou gamma
WO2015110726A1 (fr) Moteur a combustion externe
WO1997003327A1 (fr) Refrigerateur ou pompe a chaleur a tube de pulsation alimente par un generateur de pression
FR2935155A1 (fr) Machines a piston rotatif annulaire trilobique avec cycles thermodynamiques de stirling
EP4308802A1 (fr) Cartouche pour machine thermique à cycle thermodynamique et module pour machine thermique associé
FR3113422A1 (fr) Cycles thermodynamiques fermés moteurs à régime permanent ressemblants aux cycles de Ericsson et de Joule.
FR2913459A1 (fr) Dispositifs pour moteurs stirling,notamment pour diminuer les pertes thermiques,et moteur comprenant de tels dispositifs
WO2023118041A1 (fr) Modulation de puissance acoustique dans une machine thermoacoustique
BE530323A (fr)
Watanabe et al. Experimental studies on atmospheric Stirling engine NAS-2
FR2536788A2 (fr) Moteur thermique intrinsequement irreversible
WO2004053405A1 (fr) Echangeur de chaleur pour application aux fluides oscillants notamment dans une cellule thermoacoustique
FR2913461A1 (fr) Regenerateur,notamment pour moteurs stirling,moteur stirling comprenant un tel regenerateur.
BE503822A (fr)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 09972263

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000912325

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000912325

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWG Wipo information: grant in national office

Ref document number: 2000912325

Country of ref document: EP