EP0837920B1 - Procede et dispositif pour traiter a chaud des dechets hospitaliers et analogues - Google Patents

Procede et dispositif pour traiter a chaud des dechets hospitaliers et analogues Download PDF

Info

Publication number
EP0837920B1
EP0837920B1 EP95924898A EP95924898A EP0837920B1 EP 0837920 B1 EP0837920 B1 EP 0837920B1 EP 95924898 A EP95924898 A EP 95924898A EP 95924898 A EP95924898 A EP 95924898A EP 0837920 B1 EP0837920 B1 EP 0837920B1
Authority
EP
European Patent Office
Prior art keywords
gasification
chamber
zone
gasifying agent
gaseous products
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95924898A
Other languages
German (de)
English (en)
Other versions
EP0837920A1 (fr
Inventor
Georgi Manelis
Evgeni Poliantchik
Galina Iakovleva
Lev Stesik
Sergei Glazov
Alexandr Tchervonny
Viktor Foursov
Nikolai Alkov
Iouri Nikouline
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ENVIROTEC GROUP Ltd
Original Assignee
ENVIROTEC GROUP Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ENVIROTEC GROUP Ltd filed Critical ENVIROTEC GROUP Ltd
Priority to AT95924898T priority Critical patent/ATE184629T1/de
Priority claimed from PCT/EP1995/002416 external-priority patent/WO1996000266A1/fr
Publication of EP0837920A1 publication Critical patent/EP0837920A1/fr
Application granted granted Critical
Publication of EP0837920B1 publication Critical patent/EP0837920B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Definitions

  • the present invention relates to a method and a device for heat treatment, in an ecological manner, hospital waste and other waste containing combustible.
  • Waste disposal must ensure total incineration of fuel at high temperature, non-combustible residues and fumes to be free from germs, hazardous compounds and odors.
  • Most of the waste hospital is cremated with household waste in incineration plants. This process has the disadvantage of presenting a great risk of contamination during waste transportation contaminated dangerous, or to incur costs high disinfection before transport.
  • FR-A-2 649 782 describes a method for incinerating solid hospital, household and which is intended to exclude pollution from the environment, and in which stages of ignition, pyrolysis, combustion and cooling are ensured in sequence under continuous piloting. Overload driven by the introduction of a new batch of waste in the oven is prevented by piloting air supply and burner operation depending on the pressure in the oven and the temperatures in the oven and in a post-combustion chamber. The main drawbacks of this process to consume a lot of energy, to require a complex installation, as well as a fuel additional (combustible gas) to maintain the pyrolysis and combustion.
  • EP-A-0 251 269 describes a process and a reactor to gasify solid fuels followed by the combustion of gaseous products, putting uses a gas generator for the gasification of solid fuels such as wood, coal, fuel in briquettes, household waste, etc ..., followed by a burner for the combustion of gaseous products directly after gasification in the oven.
  • a gas generator for the gasification of solid fuels such as wood, coal, fuel in briquettes, household waste, etc ...
  • a burner for the combustion of gaseous products directly after gasification in the oven.
  • primary air injected into the gasification zone and the air secondary supplied to the burner are heated by the heat released by gasification.
  • the heating of air is supplied by passing primary air and secondary air through passages in a multiple wall of the gasification chamber.
  • fuels such as coal or briquettes
  • Another possible cause of burner overload is tar. emerging from the gasification zone may condense on the cooler waste going down to it and thus agglomerate the waste. The condensation of tar also has the effect of degrading friability waste and their gas permeability.
  • EP-A-0 251 269 has furthermore disadvantage of transferring heat from the gasification zone because it can result in a extinguishing the combustion of a low fuel calorific value, for example wet. This results in constraints regarding the composition of the combustible.
  • EP-A-0 188 073 describes an incinerator for solid fuels in which a gasifying agent is introduced as two streams split in half different points in the combustion zone.
  • the purpose of the present invention is to provide a ecological heat treatment, more particularly gasification for incineration, waste hospital and other solid waste containing combustibles, ensuring reliable operation regardless of staff experience and for a wide range of compositions, calorific values, and hygrometry of waste, this process having more particularly avoid to a large extent the agglomeration of waste in the gasification upstream of the gasification zone.
  • the gasifying agent being introduced into the gasification chamber in a distributed manner, by dividing into at least a first and a second part.
  • the method is characterized in that that we introduce the first part of the agent of gasification in a drying chamber chamber gasification so that this first part crosses waste moving to the gasification area together with the displacement of waste in the room the second part of the gasification agent being sent through the gasification zone only.
  • the device to implement the method comprising a chamber gasification suitable for receiving solid waste containing fuel such as hospital waste, admission means to introduce a screening officer gasification in the gasification chamber and outlet means for withdrawing gaseous products from gasification of the gasification chamber, the means of admission into the gasification chamber being arranged, with respect to the outlet means for gaseous products, so that a flow of said gasifying agent is divided into at least a first and a second part entering the gasification chamber at points distant from each other in the direction of travel waste to the gasification zone, is characterized in that the entry for the first part of the agent gasification is positioned to pass the first part of the gasifier through the waste passing through a drying zone before reaching the zone gasification in the gasification chamber, and in this that the second part of the gasifying agent goes to through the gasification zone only.
  • the gasification chamber is subdivided into a drying zone and a drying zone gasification.
  • a gasifying agent such as air is introduced into the gasification chamber in a distributed way, so that a first part enters the gasification chamber clearly in upstream of the gasification zone, and establishes a drying area.
  • the first part of the agent gasification flows successively through the drying and gasification zones together with moving waste along the chamber.
  • a second part of the gasifier crosses only the gasification zone, in which the non-combustible solid products such as ash, dross etc ... settle. Waste crosses the chamber and feed the gasification zone at as they are consumed by the process.
  • the gaseous products are preferably sent to a post-combustion chamber through orifices in a wall separating the gasification and post-combustion. In the post-combustion chamber, they are completely oxidized in the presence of an excess secondary air. The fumes are evacuated from the post-combustion chamber.
  • Agent flow gasification through the drying zone in concordance with the movement of waste through the room promotes said movement, leads to the gasification zone aqueous vapors and others volatile components released in the area of drying, and prevents tar produced by the gasification to push back to the drying zone and condense there. Such condensation could lead to the agglomeration of waste being treated, and adversely affect their porosity and friability. This could compromise the transportation of waste, and even gasification agent, in the area of gasification.
  • the process can use air as a gasification. However, when dealing with high calorific dry waste, you can also inject steam into the gasification so as to reduce the temperature in the gasification zone.
  • the process according to the invention is particularly efficient to be used in incinerators small in size and highly reliable for processing thermally waste directly at the place of their production, for example in a hospital.
  • the movement of waste to the area of gasification can be promoted by a design and a corresponding size of the gasification chamber, for example by making it flared down.
  • the volume of the post-combustion chamber is chosen so that when operating at capacity nominal incinerator, smoke retention in the room exceeds the standard duration required, and under temperature and oxygen concentration exceeding the prescribed standard values. These duration and standard values are those determined as ensuring the elimination of organic pollutants.
  • the process can be initiated by an impulse thermal applied to waste in the area of gasification and / or in the agent flow gasification by means of a heat source additional, for example an electric heater of which the operation is interrupted when the process of gasification has established itself stably.
  • a heat source additional, for example an electric heater of which the operation is interrupted when the process of gasification has established itself stably.
  • We pilot gasification and combustion by regulating the consumption of gasifier and air secondary and redistributing the gasification agent and secondary air between the intake ports corresponding, depending on the temperatures in the gasification zone and in the post-combustion chamber.
  • the upper temperature limit can be set by the thermal resistance of the constituent materials the incinerator.
  • the feed rate of the agent is reduced gasification. If the temperature in the post-combustion exceeds the upper limit, we increases the secondary air supply rate. If the waste has a low calorific value, can maintain the additional heat source in operation by regulating its power, even after initiation of the gasification process, so as to keep the temperature above the limit lower.
  • the incinerator can be fitted with a control device comprising probes for temperature measurements in gasification and post-combustion chambers, and means for controlling feed rates agents and the distribution of the agent gasification and secondary air on the different means of admission to the incinerator's chambers function of these temperatures.
  • a control device comprising probes for temperature measurements in gasification and post-combustion chambers, and means for controlling feed rates agents and the distribution of the agent gasification and secondary air on the different means of admission to the incinerator's chambers function of these temperatures.
  • a control can result from a factory setting, by simple fitting of corresponding gas pipes, having correlated cross sections.
  • Treatment of waste containing additives dangerous, e.g. chlorine or sulfur, can be further followed by a purification step post-combustion chamber fumes and / or gases of pyrolysis withdrawn from the gasification chamber, to extract harmful gases from it using techniques known, for example by passing the products gaseous through one or more layers of limestone or other materials absorbing and neutralizing these pollutants. If the purification stage concerns gas from pyrolysis, for example, these are passed through a conduit containing said materials and connecting the gasification chamber to the post-combustion chamber.
  • a purification step post-combustion chamber fumes and / or gases of pyrolysis withdrawn from the gasification chamber, to extract harmful gases from it using techniques known, for example by passing the products gaseous through one or more layers of limestone or other materials absorbing and neutralizing these pollutants.
  • the purification stage concerns gas from pyrolysis, for example, these are passed through a conduit containing said materials and connecting the gasification chamber to the post-combustion chamber.
  • the afterburner subdivided into separate volumes linked in series so let the smoke pass through them successively.
  • Mon of these volumes is preferably arranged in a cyclone, the conduit leading to this volume being arranged to ensure there a circular gas flow.
  • Such a cyclone clears gases of dust particles.
  • the gasification chamber Before switching off the incinerator, when his room of gasification is substantially empty of waste to except the part of this room where is located the gasification zone, a supply of gasification is distributed so that the surfaces gasification chamber interns are processed thermally for disinfection purposes.
  • the gasification chamber is provided with an inlet for hot gasifier. Heating a such gasification agent can be insured in the same heat exchanger as the one preheating the air secondary.
  • the incinerator can be fitted, in addition to a chimney for smoke emerging from the combustion chamber, from a draw assist device, for example a extractor fan or ejector.
  • a draw assist device for example a extractor fan or ejector.
  • the incinerator in Figure 1 includes a chamber gasification 1 vertically elongated having a upper opening which is normally closed by a cover 21. When the cover is open, you can introduce into the gasification chamber 1 of the waste 22, such as hospital waste in disposable plastic containers.
  • the bottom of the gasification chamber is defined by a grid 8 through which the gasification 1 is in fluid communication with a post-combustion chamber 7, which is in turn in fluid communication with the outside through a chimney 23 for the fumes.
  • the gasification chamber has two intake ports 4, 5 for a gasification, namely air in the example.
  • a first port 4 is relatively far from the grid 8, while a second orifice 5 is closer to the grid 8.
  • the flow of gasification agent in the gasification chamber is thus divided into a first part 24, going from the admission orifice 4 to grid 8, and a second part 25 going from the second inlet 5 to the grille 8.
  • An electric heater 11 is mounted in the post-combustion chamber 7 just below the grid 8.
  • entry 4 is positioned so that the first part 24 of the gasifying agent enters the gasification well above the area of gasification 3, which establishes a drying zone 2 in which the volatile components including the water, released from the waste, is captured by the first stream of gasification agent and driven with him in the gasification zone 3.
  • the gasified gasification products 6 emerging from the gasification zone 3 flow through the grate 8 in the post-combustion chamber 7.
  • a inlet 9 is provided in the chamber post-combustion 7 in the vicinity of the grate 8 for inject a gas into the post-combustion chamber 7 secondary oxidant, such as air, so that burn the gasification gas products in the post-combustion chamber.
  • secondary oxidant such as air
  • heating 11 is not used only to initiate gasification but also to initiate the combustion of gaseous products from gasification 6.
  • Secondary air is introduced in more than stoichiometric so that the smoke 10 in the post-combustion chamber 7 contain excess oxygen in proportion corresponding to the standards for the decontamination of gas.
  • the gasification chamber 1 is further provided an additional intake port 16 for introduce hot gasifier 17 in one point distant from the grid 8, in the vicinity of the cover 21.
  • Port 16 is supplied with gasification agent in the form of hot air available at the outlet of the heat exchanger 15, like secondary air supplying the inlet 9.
  • All gas inlet ports 4, 5, 9, 16 are equipped with flow adjustment means 14 connected to an automatic pilot device 12 which controls also the operation of the heater 11, and which is connected to temperature sensors 13, one in the gasification chamber 1 and the other in the chamber afterburner 7.
  • the flow control means 14 of the orifice additional intake 16 is ordered to provide hot gasifier through the orifice 16 when the gasification chamber is almost empty because a batch of waste has been almost completely carbonated so as to heat disinfect the internal surfaces of the gasification chamber. But as the gasification chamber is not yet completely empty, gaseous products continue to form clear the gasification area and be burned in the post-combustion chamber, so that the heat exchanger 15 remains capable of producing hot gasifier for port 16.
  • a draw assist device 18, under the form of an ejector, is mounted at the outlet of the post-combustion chamber 7 to produce so certain a depression in all of the incinerator, which avoids the risk of leakage harmful gas from the incinerator.
  • a filter 37 consisting for example of one or several layers of limestone particles is also mounted in the outlet of the post-combustion chamber 7.
  • the post-combustion chamber 7 is subdivided into two volumes 41, 42, which the fumes 10 pass through successively before leaving room 7.
  • the volume downstream 42 is arranged in a cyclone with a vertical axis so as to dust off the fumes.
  • the gas pipe 43 by which the upstream volume 41 adjacent to the grid 8 communicates with the downstream volume 42 at an opening of output directed in the circumferential direction of the volume 42 to generate the cyclone effect.
  • the conduit 43 opens at the top of volume 42.
  • An outlet duct 44 allowing the fumes to exit from the volume 42 has a opening close to the base of volume 42 'and extends axially upwards through volume 42.
  • the outer surface of the conduit 44 serves as a guide rotation for fumes 10 in volume 42 around the duct 44.
  • the heat exchanger 15 is placed downstream of volume 42, between it and ejector 18.
  • a filter such as 37 (Figure 1) has not been shown in Figure 2 but could also be expected.
  • the mass and density of the charged mixture were 1.65 kg and 190 kg / m 3 , respectively.
  • the primary air was sent to the gasification chamber and the secondary air to the post-combustion chamber.
  • the treatment time was 30 min.
  • the temperatures in the gasification zone and in the post-combustion chamber were approximately 700 to 800 ° C and respectively 900 to 1000 ° C; the temperature of the fumes leaving the post-combustion chamber (behind the heat exchanger) was below 170 ° C.
  • the weight of the non-combustible residues consisting of molten glass, aluminum foil and ash was 0.21 kg.
  • the average ratio of air consumption across the two primary air intake ports in the gasification chamber was 2: 1, the strongest consumption of corresponding gasification agent during most of the consumer process through the intake port in the area of gasification. But at the final stage of the process, this report has been reversed to ensure disinfection of bedroom. So in this incinerator of laboratory, the inlet ports 4 and 16 of the figure I were in fact a single orifice.

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

La présente invention concerne un procédé et un dispositif pour traiter à chaud, de manière écologique, des déchets hospitaliers et autres déchets contenant du combustible.
L'élimination des déchets doit assurer une incinération totale du combustible à haute température, les résidus incombustibles et les fumées devant être exempts de germes, de composés dangereux et d'odeurs. Actuellement, la majeure partie des déchets hospitaliers est incinérée avec les ordures ménagères en des usines d'incinération. Ce procédé a l'inconvénient de présenter un grand risque de contamination pendant le transport des déchets contaminés dangereux, ou bien d'entraíner des coûts élevés de désinfection avant le transport.
L'incinération de tels déchets directement sur le lieu de leur collecte (dans les cliniques, les hôpitaux etc..) pourrait réduire significativement le coût et le risque de contamination liés au transport. Cependant les petits dispositifs (fours) pour incinérer les déchets sont habituellement perfectibles et ne satisfont pas aux exigences en matière de propreté des fumées, de fiabilité, et de commodité d'utilisation. Ils polluent l'environnement en particulier lors de l'allumage et de l'extinction, ainsi que lorsque l'on recharge des déchets dans le four, en raison de l'importante formation de gaz causée par l'inflammation des déchets et la combustion. Le fonctionnement de tels incinérateurs peut être interrompu par des variations dans la composition et les propriétés des déchets (humidité, teneur en cendres, etc...), ce qui conduit à un accroissement des rejets nocifs.
Le FR-A-2 649 782 décrit un procédé pour incinérer des déchets solides hospitaliers, ménagers et industriels, qui est destiné à exclure la pollution de l'environnement, et dans lequel des étapes d'allumage, pyrolyse, combustion et refroidissement sont assurées en séquence sous pilotage continu. La surcharge entraínée par l'introduction d'une nouvelle fournée de déchets dans le four est empêchée en pilotant l'alimentation d'air et le fonctionnement de brûleurs en fonction de la pression dans le four et des températures dans le four et dans une chambre de post-combustion. Ce procédé a pour principaux inconvénients de consommer beaucoup d'énergie, de nécessiter une installation complexe, ainsi qu'un combustible additionnel (gaz combustible) pour entretenir la pyrolyse et la combustion.
Le EP-A-0 251 269 décrit un procédé et un réacteur pour assurer la gazéification de combustibles solides suivie par la combustion des produits gazeux, mettant en oeuvre un générateur de gaz pour la gazéification de combustibles solides tels que le bois, le charbon, le combustible en briquettes, les déchets ménagers, etc..., suivi par un brûleur pour la combustion des produits gazeux directement après la gazéification dans le four. Pour améliorer le rendement thermique de la combustion des combustibles précités, l'air primaire injecté dans la zone de gazéification et l'air secondaire fourni au brûleur sont réchauffés par la chaleur dégagée par la gazéification. Le chauffage de l'air est assuré en faisant passer l'air primaire et l'air secondaire à travers des passages ménagés dans une paroi multiple de la chambre de gazéification.
Ce principe exclut les surcharges lorsque l'on utilise des combustibles tels que le charbon ou les briquettes, car de nouvelles quantités de combustibles sont fournies à la zone de gazéification de manière continue à mesure que les quantités précédentes sont consommées. Cependant, lorsque le matériau à traiter consiste en des déchets, il n'alimente pas régulièrement la zone de gazéification car, en raison de leur faible densité, les déchets chargés dans la chambre de gazéification peuvent adhérer aux parois de la chambre. Autre cause possible de surcharge du brûleur, les goudrons se dégageant de la zone de gazéification risquent de se condenser sur les déchets plus froids descendant vers elle et d'agglomérer ainsi les déchets. La condensation des goudrons a aussi pour conséquence de dégrader la friabilité des déchets et leur perméabilité aux gaz.
Le procédé selon le EP-A-0 251 269 a en outre pour inconvénient de transférer de la chaleur provenant de la zone de gazéification car il peut en résulter une extinction de la combustion d'un combustible à faible pouvoir calorifique, par exemple humide. Ceci entraíne des contraintes en ce qui concerne la composition du combustible.
Le EP-A-0 188 073 décrit un incinérateur pour combustibles solides dans lequel un agent de gazéification est introduit sous la forme de deux flux séparés en deux points différents de la zone de combustion.
Le but de la présente invention est de proposer un traitement écologique par la chaleur, plus particulièrement une gazéification en vue d'une incinération, de déchets hospitaliers et autres déchets solides contenant des combustibles, assurant un fonctionnement fiable indépendamment de l'expérience du personnel et pour un large éventail de compositions, de pouvoirs calorifiques, et d'hygrométrie des déchets, ce procédé devant plus particulièrement éviter dans une large mesure l'agglomération des déchets dans la chambre de gazéification en amont de la zone de gazéification.
L'invention concerne, conformément au EP-A-0 188 073, un procédé pour traiter à chaud des déchets solides contenant des combustibles, tels que des déchets hospitaliers, comprenant les étapes selon lesquelles :
  • on charge les déchets dans une chambre de gazéification ;
  • on établit une zone de gazéification dans la chambre de gazéification en introduisant un agent de gazéification contenant de l'oxygène dans la zone de gazéification de sorte que les déchets se déplacent dans la chambre de gazéification en succession vers la zone de gazéification pour y être successivement gazéifiés,
  • on retire des produits gazeux de gazéification de la zone de gazéification,
l'agent de gazéification étant introduit dans la chambre de gazéification d'une manière répartie, en le divisant en au moins une première et une seconde partie.
Suivant l'invention, le procédé est caractérisé en ce que l'on introduit la première partie de l'agent de gazéification dans une zone de séchage de la chambre de gazéification pour que cette première partie traverse les déchets se déplaçant vers la zone de gazéification conjointement avec le déplacement des déchets dans la chambre, la seconde partie de l'agent de gazéification étant envoyée à travers la zone de gazéification seulement.
Selon un second aspect de l'invention, le dispositif pour mettre en oeuvre le procédé, comprenant une chambre de gazéification adaptée à recevoir des déchets solides contenant du combustible tels que des déchets hospitaliers, des moyens d'admission pour introduire un agent de gazéification dans la chambre de gazéification et des moyens de sortie pour soutirer des produits gazeux de gazéification de la chambre de gazéification, les moyens d'admission dans la chambre de gazéification étant agencés, par rapport aux moyens de sortie pour les produits gazeux, de façon qu'un flux dudit agent de gazéification soit divisé en au moins une première et une seconde partie entrant dans la chambre de gazéification en des points distants l'un de l'autre selon la direction de déplacement des déchets vers la zone de gazéification, est caractérisé en ce que l'entrée de la première partie de l'agent de gazéification est positionnée pour faire passer la première partie de l'agent de gazéification à travers les déchets passant par une zone de séchage avant d'atteindre la zone de gazéification dans la chambre de gazéification, et en ce que la seconde partie de l'agent de gazéification passe à travers la zone de gazéification seulement.
Grâce à l'invention, la chambre de gazéification est subdivisée en une zone de séchage et une zone de gazéification. Un agent de gazéification, tel que de l'air, est introduit dans la chambre de gazéification d'une manière répartie, de sorte qu'une première partie entre dans la chambre de gazéification nettement en amont de la zone de gazéification, et y établit une zone de séchage. La première partie de l'agent de gazéification s'écoule successivement à travers les zones de séchage et de gazéification conjointement avec le déplacement des déchets le long de la chambre. Une seconde partie de l'agent de gazéification traverse seulement la zone de gazéification, dans laquelle les produits solides incombustibles tels que les cendres, les crasses etc... se déposent. Les déchets traversent la chambre et alimentent la zone de gazéification à mesure qu'ils sont consommés par le procédé. Les produits gazeux sont de préférence envoyés à une chambre de post-combustion à travers des orifices dans une paroi séparant les chambres de gazéification et de post-combustion. Dans la chambre de post-combustion, ils sont complètement oxydés en présence d'un excès d'air secondaire. Les fumées sont évacuées de la chambre de post-combustion. L'écoulement de l'agent de gazéification à travers la zone de séchage en concordance avec le déplacement des déchets à travers la chambre favorise ledit déplacement, entraíne vers la zone de gazéification les vapeurs acqueuses et autres composants volatiles qui se dégagent dans la zone de séchage, et empêche les goudrons produits par la gazéification de refouler vers la zone de séchage et de s'y condenser. Une telle condensation pourrait entraíner l'agglomération des déchets en train d'être traités, et nuire à leur porosité et leur friabilité. Ceci pourrait compromettre l'acheminement des déchets, et même de l'agent de gazéification, dans la zone de gazéification.
Le procédé peut utiliser de l'air comme agent de gazéification. Cependant, lorsque l'on traite des déchets secs à haut pouvoir calorifique, on peut également injecter de la vapeur dans l'agent de gazéification de manière à réduire la température dans la zone de gazéification.
Le procédé selon l'invention est particulièrement efficace pour être mis en oeuvre dans des incinérateurs de petite taille et à grande fiabilité pour traiter thermiquement des déchets directement sur le lieu de leur production, par exemple dans un hôpital.
Pour réduire le risque de contamination par des germes ou des produits chimiques dangereux présents dans les déchets, on peut charger les déchets directement dans des récipients jetables (à condition que ceux-ci soient inflammables, par exemple les sacs usuels en polyéthylène), ces récipients étant eux aussi incinérés en même temps que les déchets.
Le déplacement des déchets vers la zone de gazéification peut être favorisé par un dessin et une taille correspondants de la chambre de gazéification, par exemple en la réalisant évasée vers le bas. On peut également activer le mouvement par une sorte d'agitateur.
Le volume de la chambre de post-combustion est choisi de manière qu'en fonctionnement à la capacité nominale de l'incinérateur, la rétention des fumées dans la chambre excède la durée standard exigée, et sous une température et une concentration en oxygène excédant les valeurs standards prescrites. Ces durée et valeurs standards sont celles déterminées comme garantissant l'élimination des polluants organiques.
Le procédé peut être initié par une impulsion thermique appliquée aux déchets dans la zone de gazéification et/ou dans le flux d'agent de gazéification au moyen d'une source de chaleur additionnelle, par exemple un chauffage électrique dont on interrompt le fonctionnement lorsque le processus de gazéification s'est établi de manière stable. On pilote la gazéification et la combustion en régulant la consommation d'agent de gazéification et d'air secondaire et en redistribuant l'agent de gazéification et l'air secondaire entre les orifices d'admission correspondants, en fonction des températures dans la zone de gazéification et dans la chambre de post-combustion. On maintient les températures dans la plage dont la limite inférieure est définie par la nécessité d'empêcher le dégagement de composés organiques, en particulier de dioxynes, en concentration dangereuse. La limite de température supérieure peut être définie par la résistance thermique des matériaux constituant l'incinérateur. Lorsque la température dans la zone de gazéification tend à dépasser la limite supérieure prescrite, on réduit le débit d'alimentation de l'agent de gazéification. Si la température dans la chambre de post-combustion dépasse la limite supérieure, on augmente le débit d'alimentation de l'air secondaire. Si les déchets ont un faible pouvoir calorifique, on peut maintenir la source de chaleur additionnelle en fonctionnement en régulant sa puissance, même après initiation du processus de gazéification, de façon à maintenir la température au-dessus de la limite inférieure.
Les pilotages décrits ci-dessus peuvent être assurés automatiquement. A cette fin, l'incinérateur peut être muni d'un dispositif de pilotage comprenant des sondes pour les mesures de températures dans les chambres de gazéification et de post-combustion, et des moyens pour commander les débits d'alimentation correspondants et la répartition de l'agent de gazéification et de l'air secondaire sur les différents moyens d'admission des chambres de l'incinérateur en fonction de ces températures. Cependant, pour des déchets particuliers dont on sait qu'ils restent dans certaines limites de composition et de propriétés, un tel pilotage peut résulter d'un réglage en usine, par simple montage de conduits de gaz correspondants, ayant des sections transversales corrélées.
Pour étendre la possibilité d'appliquer le procédé à des déchets variés, on peut préchauffer l'air secondaire alimentant la chambre de post-combustion au moyen de la chaleur récupérée dans les fumées générées dans la chambre de post-combustion. La récupération de chaleur peut être réalisée au moyen d'un échangeur de chaleur monté soit directement dans la chambre de post-combustion ou en aval de celle-ci dans le trajet d'écoulement des fumées. Un tel préchauffage de l'air secondaire permet d'incinérer des déchets qui dégagent des gaz à faible pouvoir calorifique pendant la gazéification.
Le traitement de déchets contenant des additifs dangereux, par exemple du chlore ou du soufre, peut être suivi en outre par une étape d'épuration des fumées de la chambre de post-combustion et/ou des gaz de pyrolyse soutirés de la chambre de gazéification, pour en extraire les gaz nocifs au moyen de techniques connues, par exemple en faisant passer les produits gazeux à travers une ou plusieurs couches de calcaire ou autres matériaux absorbant et neutralisant ces polluants. Si l'étape d'épuration concerne les gas de pyrolyse, on fait par exemple passer ceux-ci par un conduit contenant lesdits matériaux et reliant la chambre de gazéification à la chambre de post-combustion.
Pour réduire les risques de pollution de l'air par des particules, la chambre de post-combustion peut-être subdivisée en volumes séparés reliés en série de façon que les fumées les traversent successivement tous. L'un de ces volumes est de préférence agencé en cyclone, le conduit menant à ce volume étant agencé pour y assurer un écoulement circulaire des gaz. Un tel cyclone débarrasse les gaz des particules de poussière.
Avant d'éteindre l'incinérateur, lorsque sa chambre de gazéification est sensiblement vide de déchets à l'exception de la partie de cette chambre où se trouve la zone de gazéification, une alimentation en agent de gazéification est répartie de manière que les surfaces internes de la chambre de gazéification soient traitées thermiquement dans un but de désinfection. Pour cela, la chambre de gazéification est munie d'une entrée pour de l'agent de gazéification chaud. Le chauffage d'un tel agent de gazéification peut être assuré dans le même échangeur de chaleur que celui préchauffant l'air secondaire.
Pour assurer un tirage régulier, l'incinérateur peut être muni, en plus d'une cheminée pour les fumées se dégageant de la chambre de combustion, d'un dispositif d'assistance au tirage, par exemple un ventilateur extracteur ou un éjecteur. On maintient ainsi une légère pression négative dans les chambres de gazéification et de post-combustion, ce qui évitera les fuites de gaz à partir de celles-ci.
D'autres particularités et avantages de l'invention ressortiront encore de la description ci-après, relative à des exemples non-limitatifs.
Aux dessins annexés :
  • la figure 1 est un schéma en élévation d'un incinérateur selon l'invention ; et
  • la figure 2 est un schéma analogue à la figure 1, mais à échelle légèrement réduite et relatif à une variante, avec un détail II vu de dessus.
L'incinérateur de la figure 1 comprend une chambre de gazéification 1 allongée verticalement ayant une ouverture supérieure qui est normalement fermée par un couvercle 21. Lorsque le couvercle est ouvert, on peut introduire dans la chambre de gazéification 1 des déchets 22, tels que des déchets hospitaliers dans des récipients jetables en plastique.
Le bas de la chambre de gazéification est défini par une grille 8 à travers laquelle la chambre de gazéification 1 est en communication de fluide avec une chambre de post-combustion 7, laquelle est à son tour en communication de fluide avec l'extérieur à travers une cheminée 23 pour les fumées.
La chambre de gazéification est munie de deux orifices d'admission 4, 5 pour un agent de gazéification, à savoir de l'air dans l'exemple. Un premier orifice 4 est relativement éloigné de la grille 8, alors qu'un second orifice 5 est plus proche de la grille 8. Le flux d'agent de gazéification dans la chambre de gazéification est ainsi divisé en une première partie 24, allant de l'orifice d'admission 4 à la grille 8, et une seconde partie 25 allant du second orifice d'admission 5 à la grille 8.
Un chauffage électrique 11 est monté dans la chambre de post-combustion 7 juste en-dessous de la grille 8.
On va maintenant expliquer le processus de gazéification. Les déchets 22 étant chargés dans la chambre de gazéification 1, on fait fonctionner le chauffage 11 pour amorcer le chauffage de la partie inférieure des déchets 22, et on introduit l'agent de gazéification à travers les orifices d'admission 4 et 5. Ceci amorce la gazéification de la partie inférieure des déchets, à la suite de quoi le chauffage 11 peut être mis à l'arrêt. A mesure que les parties successivement inférieures des déchets sont gazéifiées, les autres parties se déplacent successivement par gravité vers la grille 8. Il s'établit ainsi une zone de gazéification 3 sensiblement stable dans la chambre de gazéification contre la grille 8, et le second orifice d'admission 5 pour l'agent de gazéification est ainsi positionné que la seconde partie 25 de l'agent de gazéification ne s'écoule qu'à travers la zone de gazéification 3. Au contraire l'entrée 4 est positionnée de façon que la première partie 24 de l'agent de gazéification pénètre dans la chambre de gazéification bien au-dessus de la zone de gazéification 3, ce qui établit une zone de séchage 2 dans laquelle les composants volatiles, y compris l'eau, se dégageant des déchets, sont captés par le premier flux d'agent de gazéification et entraínés avec lui dans la zone de gazéification 3.
Les produits gazeux de gazéification 6 se dégageant de la zone de gazéification 3 s'écoulent à travers la grille 8 dans la chambre de post-combustion 7. Un orifice d'admission 9 est prévu dans la chambre de post-combustion 7 au voisinage de la grille 8 pour injecter dans la chambre de post-combustion 7 un gaz oxydant secondaire, tel que de l'air, de manière à brûler les produits gazeux de gazéification dans la chambre de post-combustion. Lorsqu'une session d'incinération commence, le chauffage 11 sert non seulement à amorcer la gazéification mais également à amorcer la combustion des produits gazeux de gazéification 6. L'air secondaire est introduit en quantité plus que stoechiométrique de manière que les fumées 10 dans la chambre de post-combustion 7 contiennent de l'oxygène excédentaire en proportion correspondant aux standards pour la décontamination des gaz. Pour une meilleure incinération des produits gazeux de gazéification, l'air secondaire, avant d'être introduit dans la chambre de post-combustion 7 à travers l'orifice d'admission 9, est chauffé à travers un échangeur de chaleur 15 monté dans la chambre de post-combustion 7 au voisinage de sa sortie. Dans l'échangeur 15, l'air secondaire récupère de la chaleur des fumées de la chambre de post-combustion 7.
La chambre de gazéification 1 est en outre munie d'un orifice d'admission supplémentaire 16 pour introduire de l'agent de gazéification chaud 17 en un point éloigné de la grille 8, au voisinage du couvercle 21.
L'orifice 16 est alimenté en agent de gazéification sous la forme d'air chaud disponible à la sortie de l'échangeur de chaleur 15, comme l'air secondaire alimentant l'orifice d'admission 9.
Tous les orifices d'admission de gaz 4, 5, 9, 16 sont équipés de moyens de réglage de débit 14 reliés à un dispositif de pilotage automatique 12 qui pilote également le fonctionnement du chauffage 11, et qui est relié à des sondes de température 13, une dans la chambre de gazéification 1 et l'autre dans la chambre de post-combustion 7.
Le moyen de commande de débit 14 de l'orifice d'admission supplémentaire 16 est commandé pour fournir de l'agent de gazéification chaud à travers l'orifice 16 lorsque la chambre de gazéification est presque vide car une fournée de déchets a été presque complètement gazéifiée, de manière à désinfecter par la chaleur les surfaces internes de la chambre de gazéification. Mais comme la chambre de gazéification n'est pas encore totalement vide, des produits gazeux continuent de se dégager de la zone de gazéification et d'être brûlés dans la chambre de post-combustion, de sorte que l'échangeur de chaleur 15 demeure capable de produire de l'agent de gazéification chaud pour l'orifice 16.
Un dispositif d'assistance au tirage 18, sous la forme d'un éjecteur, est monté à la sortie de la chambre de post-combustion 7 pour produire de manière certaine une dépression dans la totalité de l'incinérateur, ce qui évite les risques de fuite de gaz nocif en provenance de l'incinérateur.
Un filtre 37, constitué par exemple d'une ou plusieurs couches de particules de calcaire est également monté dans la sortie de la chambre de post-combustion 7.
Dans l'exemple de la figure 2, qui ne sera décrit que pour ses différences avec celui de la figure 1, la chambre de post-combustion 7 est subdivisée en deux volumes 41, 42, que les fumées 10 traversent successivement avant de quitter la chambre 7. Le volume aval 42 est agencé en cyclone à axe vertical de façon à dépoussiérer les fumées. Le conduit de gaz 43 par lequel le volume amont 41 adjacent à la grille 8 communique avec le volume aval 42 à une ouverture de sortie dirigée dans le sens circonférentiel du volume 42 pour engendrer l'effet cyclone. Le conduit 43 débouche au sommet du volume 42. Un conduit de sortie 44 permettant aux fumées de sortir du volume 42 a une ouverture voisine de la base du volume 42' et s'étend axialement vers le haut à travers le volume 42. Ainsi, la surface extérieure du conduit 44 sert de guide de rotation pour les fumées 10 dans le volume 42 autour du conduit 44. L'échangeur de chaleur 15 est placé en aval du volume 42, entre celui-ci et l'éjecteur 18. Un filtre tel que 37 (figure 1) n'a pas été représenté à la figure 2 mais pourrait également être prévu.
Un échantillon de déchets, imitant la composition des déchets hospitaliers (d'après l'analyse des déchets de l'hôpital CHERNOGOLOVKA, dans la région de Moscou, Russie) constitué de :
  • textile 24% en poids
  • papier 28%
  • carton 12%
  • polyéthylène 9%
  • caoutchouc 2%
  • feuilles d'aluminium 2%
  • verre 7%, et
  • eau 16%
   a été chargé dans la chambre de gazéification d'un incinérateur de laboratoire réalisé sous la forme d'un cylindre vertical subdivisé par une grille métallique en une chambre de gazéification supérieure et une chambre de post-combustion inférieure. L'échangeur de chaleur pour l'air secondaire a été placé dans la partie inférieure de la chambre de post-combustion. Un chauffage électrique a été placé dans la partie supérieure de la chambre de post-combustion, sous la grille, pour amorcer le processus de gazéification dans la chambre de gazéification et enflammer les produits gazeux qui s'en dégageaient. Il y avait également un orifice d'admission pour introduire de l'air secondaire.
Dans la partie inférieure de la chambre de gazéification il y avait au-dessus de la grille un orifice d'admission pour introduire un agent de gazéification (l'air primaire) dans la zone de gazéification, et il y avait dans la partie supérieure de la même chambre un second orifice d'admission pour introduire l'air primaire dans la chambre de gazéification en vue du séchage forcé des déchets.
La masse et la densité du mélange chargé étaient de 1,65 kg et 190 kg/m3, respectivement. Après avoir appliqué l'impulsion thermique au moyen du chauffage pour l'amorçage, on a envoyé l'air primaire dans la chambre de gazéification et l'air secondaire dans la chambre de post-combustion. Avec des débits de 1,5 1/seconde pour l'alimentation de l'air primaire et 0,75 1/seconde pour l'alimentation de l'air secondaire, le temps de traitement a été de 30 mn. Les températures dans la zone de gazéification et dans la chambre de post-combustion étaient d'environ 700 à 800°C et respectivement 900 à 1000°C ; la température des fumées à la sortie de la chambre de post-combustion (derrière l'échangeur de chaleur) était inférieure à 170°C. Les rejets de la chambre de post-combustion ne contenaient aucune poussière visible et n'avaient pas d'odeur. Le poids des résidus incombustibles constitués de verre fondu, de feuilles d'aluminium et de cendre était de 0,21 kg.
Le rapport moyen de consommation d'air à travers les deux orifices d'admission de l'air primaire dans la chambre de gazéification était de 2 : 1, la plus forte consommation d'agent de gazéification correspondant pendant la majeure partie du procédé à la consommation à travers l'orifice d'admission dans la zone de gazéification. Mais au stade final du procédé, ce rapport a été inversé pour assurer la désinfection de la chambre. Ainsi, dans cet incinérateur de laboratoire, les orifices d'admission 4 et 16 de la figure I étaient en fait un seul et même orifice.

Claims (22)

  1. Procédé, pour traiter à chaud des déchets solides contenant des combustibles, tels que des déchets hospitaliers, comprenant les étapes selon lesquelles :
    on charge les déchets (22) dans une chambre de gazéification (1) ;
    on établit une zone de gazéification (3) dans la chambre de gazéification en introduisant un agent de gazéification contenant de l'oxygène dans la zone de gazéification de sorte que les déchets se déplacent dans la chambre de gazéification en succession vers la zone de gazéification pour y être successivement gazéifiés,
    on retire des produits gazeux de gazéification, (6) de la zone de gazéification (3),
       l'agent de gazéification étant introduit dans la chambre de gazéification d'une manière répartie, en le divisant en au moins une première et une seconde partie , caractérisé en ce que l'on introduit la première partie de L'agent de gazéification (24) dans une zone de séchage (2) de la chambre de gazéification (1) pour que cette permière partie traverse les déchets (22) se déplaçant vers la zone de gazéification (3) conjointement avec le déplacement des déchets dans la chambre (1), la seconde partie (25) de l'agent de gazéification étant envoyée à travers la zone de gazéification (3) seulement.
  2. Procédé selon la revendication 1, caractérisé en ce qu'on introduit de la vapeur dans l'agent de gazéification alimentant la zone de gazéification (3).
  3. Procédé selon la revendication 1 ou 2, caractérisé par une étape d'épuration des produits gazeux de gazéification.
  4. Procédé selon la revendication 1, 2 ou 3, caractérisé en ce que l'on charge les déchets (22) dans la chambre de gazeification (1) directement dans des récipients jetables.
  5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'avant de terminer une opération de gazéification, lorsque la chambre de gazéification est sensiblement vide de déchets à l'exception de la partie de cette chambre où est située la zone de gazéification (3), on injecte un agent de gazéification chaud (17) dans la chambre de gazéification de manière que des surfaces internes de la chambre de gazéification soit traitées thermiquement en vue de leur désinfection.
  6. Procédé selon la revendication 5, caractérisé en ce qu'avant l'injection, ledit agent de gazéification chaud est chauffé par de la chaleur produite par la combustion des produits gazeux de la gazéification.
  7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'on envoie les produits gazeux de gazéification (6) retirés de la zone de gazéification, dans une chambre de post-combustion (7) dans laquelle on injecte un gaz oxydant secondaire.
  8. Procédé selon la revendication 7, caractérisé en ce qu'on injecte le gaz oxydant secondaire dans des quantités plus que stoechiométriques.
  9. Procédé selon la revendication 7 ou 8, caractérisé en ce qu'on préchauffe le gaz oxydant secondaire (9) avec de la chaleur récupérée des fumées (10) formées dans la chambre de pose-combustion (7).
  10. Procédé selon l'une quelconque des revendications 7 à 9, caractérisé en ce que l'on épure lesdites fumées pour en extraire les gaz nocifs.
  11. Procédé selon la revendication 3 ou 10, caractérisé en ce que ladite étape d'épuration comprend l'étape consistant à faire passer des produits gazeux à travers au moins une couche de materiau absorbant ou neutralisant les gaz nocifs.
  12. procédé selon l'une quelconque des revendications 7 à 11, caractérisé en ce qu'on régule la température dans la chambre de post-combustion (7) en accroissant le débit de gaz oxydant secondaire lorsque cette température tend à devenir trop élevée.
  13. Procédé selon l'une quelconque des revendications 1 à 12, caractérisé en ce qu'on régule la température dans la zone de gazéification en reduisant le débit d'agent de gazéification lorsque cette température tend à devenir trop élevée.
  14. Dispositif pour mettre en oeuvre un procédé selon l'une quelconque des revendications 1 à 13, comprenant une chambre de gazéification (1) adaptée à recevoir des déchets solides (22) contenant du combustible, tels que des déchets hospitaliers, des moyens d'admission (4,5) pour introduire un agent de gazéification dans la chambre de gazéification et des moyens de sortie (8) pour soutirer des produits gazeux de gazéification (6) de la chambre de gazéification, les moyens d'admission (4,5) dans la chambre de gazéification étant agencés par rapport aux moyens de sortie (8) pour les produits gazeux de façon qu'un flux dudit agent de gazéification soit divisé en au moins une première et seconde partie entrant dans la chambre de gazéification en des points distants l'un de l'autre selon la direction de déplacement des déchets vers la zone de gazéification, caractérisé en ce que l'entrée de la première partie de l'agent de gazéification est positionnée pour faire passer la première partie de l'agent de gazéification à travers les déchets passant par une zone de séchage (2) avant d'atteindre la zone de gazéification dans la chambre de gazéification, et en ce que la seconde partie de l'agent de gazéification passe à travers la zone de gazéification seulement.
  15. dispositif selon la revendication 14, caractérisé en ce que les moyens des sortie (8) de la chambre de gazéification (1) assurent une communication de fluide entre la chambre de gazéification (1) et une chambre de pose-combustion (7) munie d'un orifice d'admission (9) pour un gaz oxydant secondaire, et d'une sortie pour les produits gazeux résultant de la combustion des produits gazeux de gazéification.
  16. Dispositif selon la revendication 15, caractérisé par des moyens échangeurs de chaleur (15) montés pour assurer un échange de chaleur entre les fumées de combustion et le gaz oxydant secondaire s'écoulant vers l'orifice d'admission (9) pour gaz oxydant secondaire.
  17. Dispositif selon La revendication 15 ou 16, caractérisé en ce que la chambre de post-combustion (7) est agencée de façon à être subdivisée en au moins deux volumes (41, 42) successivement traversés par le flux de gaz (10).
  18. Dispositif selon la revendication 17, caractérisé en ce que l'un (42) au moins des volumes est agencé en cyclone pour dépoussiérer le flux de gaz.
  19. Dispositif selon l'une quelconque des revendications 14 à 18, caractérisé en ce qu'il comprend des moyens de pilotage (12) reliés à des sondes (13) de mesure de température dans le dispositif et à des moyens de commande de débit (14) pour piloter les débits à travers les orifices d'admission (4, 5, 9) en fonction des températures détectées par les sondes (13).
  20. Dispositif selon l'une quelconque des revendications 14 à 19, caractérisé en ce que sa chambre de gazéification (1) est munie d'au moins un orifice d'admission supplémentaire (16) pour un agent de gazéification chauffé (17), adapté à assurer la désinfection de surfaces internes de la chambre de gazéification (1).
  21. Dispositif selon la revendication 20, caractérisé en ce que ledit orifice supplémentaire (16) est situé à distance sensiblement maximale des moyens de sortie (8) pour les produits gazeux de gazéification.
  22. Dispositif selon l'une quelconque des revendications 14 à 21, caractérisé en ce qu'il est muni d'un dispositif d'assistance au tirage (18) tel qu'un ventilateur extracteur ou un ejecteur.
EP95924898A 1995-06-22 1995-06-22 Procede et dispositif pour traiter a chaud des dechets hospitaliers et analogues Expired - Lifetime EP0837920B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT95924898T ATE184629T1 (de) 1995-06-22 1995-06-22 Verfahren und vorrichtung zur wärmebehandlung von krankenhausabfällen und dergleichen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP1995/002416 WO1996000266A1 (fr) 1994-06-23 1995-06-22 Procede et dispositif pour traiter a chaud des dechets hospitaliers et analogues

Publications (2)

Publication Number Publication Date
EP0837920A1 EP0837920A1 (fr) 1998-04-29
EP0837920B1 true EP0837920B1 (fr) 1999-09-15

Family

ID=8166044

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95924898A Expired - Lifetime EP0837920B1 (fr) 1995-06-22 1995-06-22 Procede et dispositif pour traiter a chaud des dechets hospitaliers et analogues

Country Status (2)

Country Link
EP (1) EP0837920B1 (fr)
DE (1) DE69512280T2 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10132755B4 (de) * 2001-07-10 2005-07-14 Robert Bosch Gmbh Verfahren und Anordnung zum Ermitteln des Kondensatanfalls in einem Kamin

Also Published As

Publication number Publication date
DE69512280D1 (de) 1999-10-21
EP0837920A1 (fr) 1998-04-29
DE69512280T2 (de) 2000-05-11

Similar Documents

Publication Publication Date Title
CN102472486B (zh) 垃圾处理系统
EP0692677B1 (fr) Procédé et installation de thermolyse de déchets
US20140223908A1 (en) Waste Management System
WO2005106328A1 (fr) Systeme et procede pour recycler thermiquement des dechets
US20110303134A1 (en) Method and apparatus for treating solid wastes
EP0485255B2 (fr) Procédé et dispositif de production d'un combustible solide à partir de déchets combustibles
KR20140142869A (ko) 가연성 고형폐기물의 연소장치 및 방법
FR2721691A1 (fr) Procédé pour traiter les déchets municipaux combustibles solides ou analogues par gazéification.
FR2721689A1 (fr) Procédé et incinérateur pour incinérer les déchets hospitaliers et analogues.
JP2008057906A (ja) 低公害焼却処理装置
EP0837920B1 (fr) Procede et dispositif pour traiter a chaud des dechets hospitaliers et analogues
WO1996000266A1 (fr) Procede et dispositif pour traiter a chaud des dechets hospitaliers et analogues
EP0834042B1 (fr) Procede et incinerateur pour incinerer les dechets hospitaliers et analogues
JP3091181B2 (ja) 焼却装置
EP2479493B1 (fr) Dispositif de combustion, unité d'incinération comprenant un tel dispositif de combustion, et procédé de mise en oeuvre d'un tel dispositif de combustion
EP0851906A1 (fr) Procede pour traiter les dechets municipaux combustibles solides ou analogues par gazeification
FR2977928A1 (fr) Incinerateur de dechets tres energetiques
JP2001503504A (ja) ゴミを熱処理する方法及び装置
WO2002084178A1 (fr) Systeme et procede d'incineration de matieres organiques, notamment de farines et graisses d'origine animale
CN113531538A (zh) 生活垃圾处理方法及处理系统
KR101594726B1 (ko) 폐기물 처리용 친환경 건류장치
FR3009977A1 (fr) Procede de vitrification par gazeification d'une matiere carbonee
JP2002106816A (ja) 廃棄物焼却装置
JP2008285730A (ja) 鉄鋼材料分別回収装置及び方法
WO2017129871A4 (fr) Procédé de gazéification de matières carbonées et dispositifs permettant de le mettre en oeuvre

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980119

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IE IT LI NL SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19980623

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IE IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990915

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990915

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19990915

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990915

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990915

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990915

REF Corresponds to:

Ref document number: 184629

Country of ref document: AT

Date of ref document: 19991015

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69512280

Country of ref document: DE

Date of ref document: 19991021

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19991215

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19990915

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ABREMA AGENCE BREVETS ET MARQUES GANGUILLET & HUMP

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000816

26N No opposition filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010627

Year of fee payment: 7

Ref country code: BE

Payment date: 20010627

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010629

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020627

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020630

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020630

BERE Be: lapsed

Owner name: *ENVIROTEC GROUP LTD

Effective date: 20020630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030101

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040227

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST