EP0829029A1 - Procede de transformation d'images en images stereoscopiques et images et suites d'images obtenues par ledit procede - Google Patents

Procede de transformation d'images en images stereoscopiques et images et suites d'images obtenues par ledit procede

Info

Publication number
EP0829029A1
EP0829029A1 EP96917534A EP96917534A EP0829029A1 EP 0829029 A1 EP0829029 A1 EP 0829029A1 EP 96917534 A EP96917534 A EP 96917534A EP 96917534 A EP96917534 A EP 96917534A EP 0829029 A1 EP0829029 A1 EP 0829029A1
Authority
EP
European Patent Office
Prior art keywords
image
images
components
foreground
stereoscopic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96917534A
Other languages
German (de)
English (en)
Inventor
Philippe Schoulz
Keith Mac Donald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9506586A external-priority patent/FR2734918B1/fr
Priority claimed from FR9510336A external-priority patent/FR2738357B1/fr
Application filed by Individual filed Critical Individual
Publication of EP0829029A1 publication Critical patent/EP0829029A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/23Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using wavelength separation, e.g. using anaglyph techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/122Improving the 3D impression of stereoscopic images by modifying image signal contents, e.g. by filtering or adding monoscopic depth cues
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/15Processing image signals for colour aspects of image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/324Colour aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/334Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using spectral multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/239Image signal generators using stereoscopic image cameras using two 2D image sensors having a relative position equal to or related to the interocular distance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/337Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using polarisation multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/341Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using temporal multiplexing

Definitions

  • the present invention relates to a process for transforming images, in particular photographs into stereoscopic images, as well as to images, visual or audiovisual programs comprising sequences of images obtained by said process, in particular to films on film or magnetic medium as well than video games.
  • an opaque partition arranged in the sagittal plane between the eyepieces and the slides, acts as masking means by preventing the left eye from seeing the image intended for the right eye and vice versa.
  • the spectacles comprising a first polarizing filter having a first polarization disposed in front of the left eye and a second polarizing filter having a second polarization, crossed with the first polarization, disposed in front of the right eye, play the role of the masking means by allowing the simultaneous or alternating vision of different images by the two eyes.
  • the polarizing filters can be replaced by shutters, for example with liquid crystals, placed in front of the eyes, a first shutter being transparent when the second is opaque and vice versa, the shutter cycles being for example substantially equal to one thirtieth of a second .
  • shutters for example with liquid crystals
  • a computer system monitor displays images intended for the left eye interlaced with those intended for the right eye. The observation of such stereoscopic images requires complex and expensive equipment.
  • the masking means may comprise a red filter placed in front of the left eye and a blue filter placed in front of the right eye.
  • the image to be observed includes either a blue image intended for the right eye superimposed on a red image intended for the left eye generating a good effect of depth, or a color image whose subject forming the foreground has on the sides left and right red and blue fringes of large width, generating a moderate depth effect.
  • Such images are of insufficient quality to allow, in the absence of colored glasses, an acceptable observation of flat images (without depth effect).
  • the Applicants have discovered that the observation, in particular for the selection of stereoscopic images, is carried out mainly without glasses.
  • the current system with the exception of relief images covered by a lenticular network, whose technique and high cost price have not enabled wide dissemination, does not allow easy observation of the image without additional equipment , in particular for the selection of images to observe and / or buy. It is therefore an object of the present invention to offer stereoscopic images restoring a relief effect with means for selecting or separating images intended for the left eye and the right eye, arranged in front of the eyes, but also allowing an easy reading of the image without means of image separation while minimizing the reduction in the quality of the image observed during direct observation (without relief effect).
  • aims are achieved according to the invention by: - the separation of a background of the image into chromatic components of complementary colors advantageously in red, blue and green; the relative displacement of at least one of the chromatic components with respect to the others, advantageously by displacement of opposite directions and of small amplitude of two chromatic components, the third chromatic component typically of green color remaining immobile; the overlay of an image forming the image foreground.
  • the relative displacement is a horizontal or substantially horizontal translation. In a second example of implementation, the relative displacement is a rotation.
  • the relative movement corresponds to a translation combined with a rotation.
  • the Applicants have discovered that the horizontal relative displacement of the chromatic components with respect to each other can be supplemented and / or replaced by the relative rotation of at least one of the chromatic components with respect to the others.
  • This rotation makes it possible to accentuate the relief effect and / or to reduce any horizontal relative displacement of the chromatic components with respect to each other, so as to minimize the degradation of the image observed during direct observations (without relief effect).
  • the offset is not perceptible to the naked eye while providing, when observed through colored glasses, the perception of relief images.
  • the implementation of rotations of the chromatic components makes it possible to improve the perception of a continuous transition between the various planes of the relief image.
  • the main object of the invention is a method of transforming images into stereoscopic images, characterized in that it comprises the steps consisting in: a) determining elements of images forming a background; b) determining image elements forming the foreground; c) temporarily save image elements forming the foreground; d) separating an image comprising at least the image elements forming the background as a component of the complementary colors; e) moving at least one color component relative to the other components; f) superimposing the temporarily saved image elements forming the foreground on the image of which at least one of the chromatic components has undergone a displacement.
  • the invention also relates to a method, characterized in that the relative displacement of the color components comprises a rotation of at least one of the color components with respect to the other components with an angle ⁇ less than 2 °.
  • the invention also relates to a method, characterized in that one works on digitized images and in that the angle ⁇ is between 0.001 ° and 0.8 °.
  • the invention also relates to a method, characterized in that the angle ⁇ is less than or equal to 0.4 °.
  • the invention also relates to a method, characterized in that the relative displacement of the color components comprises a translation of at least one of the color components with respect to the other components.
  • the invention also relates to a method, characterized in that one works on digitized images, in that the relative translation of the color components is horizontal or substantially horizontal and has an amplitude between 0.25 and 15 elements d 'images.
  • the invention also relates to a method, characterized in that the horizontal or substantially horizontal translation is less than or equal to 3 picture elements.
  • the invention also relates to a method, characterized in that it implements a computer system and in that step c) consists of a selection and a copy, in particular in the clipboard, or in a file elements of images forming the foreground.
  • step c) consists of a selection and a copy, in particular in the clipboard, or in a file elements of images forming the foreground.
  • the invention also relates to a method, characterized in that it comprises a step of ablation of the ends of the image.
  • the invention also relates to a method, characterized in that step d) of separating the image comprising the background into complementary color components is a separation into red, green and blue components.
  • the subject of the invention is also a method, characterized in that a rotation of the same amplitude ( ⁇ , ⁇ ) and of opposite directions is carried out on the red and blue components of the image comprising the background.
  • the invention also relates to a method, characterized in that a translation of the same amplitude and opposite directions is carried out on the red and blue components of the image comprising the background.
  • the subject of the invention is also a method of transforming a film into a stereoscopic film, characterized in that it comprises the steps of acquiring images of the film and the steps of transforming images into stereoscopic images according to the invention .
  • the invention also relates to a method, characterized in that it comprises a step of automatic detection of foregrounds or backgrounds in images to be transformed.
  • the invention also relates to a stereoscopic image, characterized in that it is obtained by the method according to the invention.
  • the invention also relates to an image, characterized in that it is produced by printing with subtractive synthesis in four colors using yellow, cyan, magenta and black inks.
  • FIG. 1 is a schematic view of an example of a two-dimensional image to which one wishes to add relief
  • FIG. 2 is a schematic view illustrating a first step of the method according to the present invention
  • FIG. 3 is a schematic view of a second step of a first example of implementation of the method according to the present invention
  • - Figure 4 is a schematic view illustrating a third step of a first example of implementation of the method according to the present invention
  • FIG. 5 is a schematic view of a fourth step of a first example of implementation of the method according to the present invention.
  • FIG. 6 is a schematic view of a fifth step of a first example of implementation of the method according to the present invention
  • FIG. 7 is a schematic view of a sixth step of a first example of implementation of the method according to the present invention.
  • FIG. 8 is a schematic view of a seventh step of a first example of implementation of the method according to the present invention.
  • FIG. 9 is a schematic view of an eighth step of a first example of implementation of the method according to the present invention.
  • FIG. 10 is a schematic view of a ninth step of a first example of implementation of the method according to the present invention.
  • FIG. 1 1 is a schematic view of a second step of a second example of implementation of the method according to the present invention
  • - Figure 12 is a schematic view illustrating a third step of a second example of implementation of the method according to the present invention
  • FIG. 13 is a schematic view of a fourth step of a second example of implementation of the method according to the present invention.
  • FIG. 14 is a schematic view of a fifth step of a second example of implementation of the method according to the present invention.
  • FIG. 15 is a schematic view of a sixth step of a second example of implementation of the method according to the present invention.
  • FIG. 16 is a schematic view of a seventh step of a second example of implementation of the method according to the present invention.
  • FIGS. 1 to 17 is a schematic view of an eighth step of a second example of implementation of the method according to the present invention.
  • the same references have been used to designate the same elements.
  • the shifts between layers have been exaggerated in FIGS. 5 to 10 and the rotations of the layers have been exaggerated in FIGS. 13 to 17.
  • Image 1 of FIG. 1 can be a raster image also called in point mode (bit map in English terminology) whose resolution is at least equal to that of the desired stereoscopic image.
  • it could be an image created using bitmap image creation and editing software, a digitized photograph, or a vector graphic converted to bitmap.
  • bitmap image creation and editing software e.g., a digitized photograph
  • vector graphic converted to bitmap e.g., a vector graphic converted to bitmap.
  • Figure 2 we select, for example by clipping, the bird 2 to form the foreground.
  • image 1 is separated into complementary colors.
  • image 1 is separated into a red component 1.1, a green component 1.2 and a blue component 1.3 symbolized by three planes superimposed in Figures 3 to 8.
  • bird 2 of the image 1 has undergone separation as a chromatic component of complementary colors, while its copy 2 ′ of the clipboard 4 or of a temporary backup file has not been modified.
  • the blue component 1.3 has been selected.
  • image editing software in point mode, the selection allows modifications to selected elements without affecting the rest of the image.
  • the chromatic components of the unselected image are illustrated in dotted lines in Figures 4 to 7 and 12 to 15.
  • the component 1.3 of image 1 has undergone a shift to the right of small amplitude D1 symbolized by the arrow 5.
  • the shift D1 must however be large enough to be visible possibly with a magnifying glass on the final image .
  • the offset D1 is for example between 0.01 and 15 picture elements (pixels in English terminology), preferably between 0.05 and 10, advantageously between 0.25 and 5, for example equal to 0 , 25, 0.5, 1, 2, 3 or 4 image elements.
  • the optimal offset giving a good relief effect but being little annoying during the observation without glasses is chosen directly according to the size of the final image.
  • the red layer 1.1 is deselected in FIG. 8 in which it can be seen that the green component 1.2 of the image has remained stationary, while the red component 1.1 has been shifted to the left and that the blue component 1.3 has shifted to the right.
  • the resulting image 1 ′ corresponding to the superposition in additive synthesis of the components 1.1, 1.2 and 1.3 is illustrated in FIG. 9.
  • the red component 3.1, the green component 3.2 and the blue component 3.3 of mountain 3 do not perfectly overlap.
  • the left side of the montage has a red fringe corresponding to component 3.1 of the image of the mountain 3.
  • the right side of the mountain 3 has a blue fringe corresponding to component 3.3 of the image of the mountain.
  • the duck 2 ' is glued substantially on the location of the green component 2.2 of the duck image 2.
  • the gluing is advantageously carried out without transparency, that is to say that the image 2' completely mask image 2.2, which leads to clearly separated multiple planes.
  • peripheral fringes corresponding to components 2.1 and 2.3 of the duck remain.
  • multiple opaque bondings are made or with, for example, 20%, 30%, 40%, 50%, 70% or 90% of transparency.
  • 2 to 10 successive overlays are made.
  • the left edge 7 and the right edge 8 are eliminated from the image, so as to eliminate any colored fringes which do not participate in the relief effect.
  • a first image is printed comprising at least one background, the chromatic components of which have undergone the abovementioned offsets.
  • the first image may also include images 2 'forming a foreground.
  • a second image which has not undergone any shifts, for example a piece of a photographic print, is drawn or physically pasted on the first printed image.
  • the second image forms a foreground giving the illusion of being in front of the background of the first image with an effect of striking depth. It should be noted that in certain images, depending on the colors of the subjects photographed, one can see fringes of blue and red colors reversed on the images of the foreground and / or of the background.
  • Image 1 of FIG. 1 can be a raster image also called in point mode (bit map in English terminology) whose resolution is at least equal to that of the desired stereoscopic image.
  • it could be an image created using bitmap image creation and editing software, a digitized photograph, or a vector graphic converted to bitmap.
  • the bird 2 we select, for example by clipping, the bird 2 to form the foreground. It can be a "cut” function, removing the bird from image 1 in FIG. 2 or a “copy” function placing a copy 2 'in a clipboard 4 or in a file, for future use. You can also make a selection using the "airbrush” tool avoiding a sudden transition between planes of the relief images and allowing by progressive selection to shape the volumes, that is to say to give a impression of progressive relief giving spectacular results with rounded subjects such as spheres, cylinders, vases, vessels, human body, etc. In a variant, it is perfectly possible to start directly from the image of the background, the foreground being added by an operation of "paste" during the step illustrated in FIG. 17. Thus for example, it would be perfectly possible to mount a photograph representing a mounting landscape 3 to which we would add a bird 2 'photographed or drawn separately.
  • image 1 is separated into complementary colors.
  • image 1 is separated into a red component 1.1-, into a green component 1.2 and into a component blue 1.3 symbolized by three planes superimposed on FIGS. 11 to 15.
  • bird 2 of image 1 has undergone separation as a chromatic component of complementary colors while its copy 2 'of the clipboard 4 or of a temporary backup file has not been modified.
  • the red component 1.1 has been selected.
  • the selection allows modifications to selected elements without affecting the rest of the image.
  • the component 1.1 of image 1 has been rotated counterclockwise by a small angle ⁇ , symbolized by the arrow 5 '.
  • the rotation must be large enough to be visible on the final image, possibly with a magnifying glass.
  • the angle ⁇ is preferably less than 2 °, for example between 0.001 ° and 0.8 °, preferably equal to 0.02 ° or 0.04 °, for example equal to 0.02 ° or 0.03 °.
  • the center C of the image forms the center of rotation.
  • the reference C1 designates the center of the red component 1.1 of the image
  • the reference C2 the center of the green component 1.2 of the image
  • the reference C3 the center of the blue component 1.3 of the image.
  • a clockwise rotation is symbolized by the arrow 6 of the blue component 1.3 by an angle ⁇ , advantageously equal to - ⁇ , ⁇ being the angle of rotation of the component red 1.1.
  • advantageously equal to - ⁇
  • being the angle of rotation of the component red 1.1.
  • the implementation of the rotations of the red 1.1 and blue 1.3 components with angles ⁇ and ⁇ whose absolute values are not equal, does not depart from the scope of the present invention.
  • the blue layer 1.3 is deselected in FIG. 16 in which we can see that the green component 1.2 of the image has remained stationary, while the red component 1.1 has been rotated counterclockwise and that the blue component 1.3 has been rotated in the clockwise.
  • the resulting image l 'corresponding to the superimposition in additive synthesis of the components 1.1, 1.2 and 1.3 is illustrated in Figure 17.
  • the red component 3.1, the green component 3.2 and the blue component 3.3 of mountain 3 do not perfectly overlap. It is the same for image 2 of the bird whose red components 2.1, green 2.2. and blue 2.3 do not overlap exactly.
  • the duck 2 ' is glued substantially on the location of the green component 2.2 of the duck image 2.
  • the collage is advantageously carried out without transparency, that is to say that the image 2' completely hides the image 2.2, which leads to clearly separated multiple planes.
  • multiple opaque bondings are made or with, for example, 20%, 30%, 40%, 50%, 70% or 90% of transparency.
  • 2 to 10 successive overlays are made.
  • the edges of the image are eliminated, so as to obtain a rectangular image.
  • a first image is printed comprising at least one background whose chromatic components have undergone the aforementioned rotations.
  • the first image may also include images 2 'forming a foreground.
  • a second image which has not undergone rotations is drawn or physically pasted on the first printed image, for example a piece of a photographic print.
  • the second image constitutes a foreground giving the illusiori of being in front of the background formed by the first image with an effect of striking depth.
  • the present invention makes it possible to add depth to preexisting images or even to use a first image to form the foreground and a second image to form the background.
  • the foreground can be pasted on the background at the start of the process to form an image similar to that illustrated in FIG. 1, which makes it possible to accentuate the relief.
  • an image of the foreground that has not been subjected to other treatments than, for example, a clipping can be pasted on an image of a background whose components in complementary colors, preferably red and blue, have undergone the displacements described above.
  • the directions of rotation described make it possible to use standardized and commercially available glasses comprising a red filter on the left eye and a blue filter on the right eye.
  • the image comprises only two planes, a bird 2 located in the foreground and a mountain 3 located in the background. Additional plans can be obtained by the desired treatment of a background onto which a processed image can be pasted, such as the 1 "image in FIG. 9 or the image in FIG. 16 in the foreground.
  • the image forming the foreground in particular the bird 2 ′, can undergo a separation in complementary color with the rotations of the components 1.1 and 1.3 in opposite directions from those of the background, which allows accentuate the relief effect.
  • the image forming the foreground in particular the bird 2 ′, can undergo a separation in complementary color with the rotations of the components 1.1 and 1.3 in opposite directions from those of the background, which allows accentuate the relief effect.
  • by pasting other images that have not been rotated it is possible to create an intermediate plane between the background and the foreground.
  • the impression of depth can be enhanced by applying a slight blur to the background of the image.
  • the foreground is perfectly clear while the background corresponds to the "almost clear" function of certain image editing software.
  • the rotation of the red 1.1 and blue 1.3 components of the image can be completed by an offset of these components.
  • the offset of the red component 1.1 takes place after the selection of FIG. 12 before or after the rotation illustrated in FIG. 13.
  • the horizontal offset of opposite direction of the blue component 1.3 takes place before or after the rotation of FIG. 15.
  • the translations do not necessarily relate to the same chromatic components as those which have undergone a rotation.
  • the offsets are for example between 0.25 and 10 image elements (pixels in English terminology) advantageously between 0.25 and 2 image elements.
  • the low amplitude offsets, as well as the low angle rotations, possibly combined, allow a more pleasant observation of the flat image (without depth effect and without colored glasses).
  • the method according to the present invention can implement most image retouching programs or bitmap image editing allowing the separation of the image into complementary colors.
  • the selections and in particular the trimming during the passage from FIG. 1 to FIG. 2 can be made manually or be assisted by automatic selection functions, such as for example the "magic wand", “lasso”, “airbrush” functions available in many software.
  • the method according to the present invention can be implemented using specific software comprising an image editor, using a module or a filter complementary to editing software. or retouching images or using a macro command to execute after loading an image and copying the foreground to the clipboard.
  • the stereoscopic images according to the present invention obtained by rotation of the red 1.1 and blue 1.3 components can be printed with color reproduction by subtractive synthesis in three colors with yellow, magenta and cyan inks (YMC in Anglo-Saxon terminology) or four-color process using yellow, magenta, cyan and black inks (YMCK in Anglo-Saxon terminology).
  • the images according to the present invention can therefore be displayed on computer monitors, on television receivers, be printed on color office printers, on graphic art printers, be screen printed, be printed by traditional printing methods, etc.
  • the present invention is not limited to still images but also applies to sequences of images restoring a movement and / or transition effect, such as for example slide shows, films and video programs, video game etc.
  • Each image of the sequence of images, in particular of the film can be processed manually by the method described above. However, it can be advantageous to process each plan or sequence automatically.
  • an operator indicates to a computer system the location of the foreground of the background as well as any intermediate shots. From this information, the system performs the necessary selections and clipping as well as the offsets and / or rotations of the various chromatic components of the image.
  • the modified image is saved for digital use or transfer, for example on film or analog video tapes.
  • the system loads the next image and the system locates the foreground and background.
  • This selection is advantageously carried out by artificial intelligence algorithms, in particular by an expert system.
  • the selection of the foreground and the background is carried out by applying rules of the type: "the foreground and the background change little from one image to the following image";"The foreground color varies little from one image to the next image”.
  • stereoscopic films according to the invention can be directly generated by directly applying the offsets and / or rotations of the chromatic components of an image when calculating synthetic images forming for example the elementary images of a cartoon. .
  • stereoscopic image sequences are stored on a medium, for example on a digital optical disc, in particular on discs obtained by pressing (CD-ROM in English terminology ).
  • the player's actions cause the sequence of sequences to be selected from among the possible sequences stored on the media.
  • the images displayed are generated as the game evolves as a function of information contained on the medium, in particular the scenario and the graphics applied to the decor and to the various characters as well as according to the actions of the player.
  • the offsets and / or rotations of the chromatic components of the image 1.1 and 1.3 are carried out in real time by software or by wired functions, for example in the graphics card of the computer system.
  • the present invention applies to the production of fixed and / or animated stereoscopic images.
  • the present invention applies mainly to the printing of images, in particular postcards, albums, logos, in particular for packaging products, posters, slides, films on film, video or other support, the computer industry and in particular graphic editors and image editing programs, digital video, interactive computer programs and in particular video games.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Processing Or Creating Images (AREA)
  • Automatic Focus Adjustment (AREA)
  • Color Television Image Signal Generators (AREA)
  • Studio Devices (AREA)
  • Image Processing (AREA)

Abstract

La présente invention se rapporte à un procédé de transformation d'images, notamment de photographies en images stéréoscopiques ainsi qu'aux images, programmes visuels ou audiovisuels comportant des suites d'images obtenues par ledit procédé, notamment aux films et jeux vidéo. L'invention est obtenue par: la séparation d'un arrière-plan de l'image en composantes chromatiques de couleurs complémentaires avantageusement en rouge, bleu et vert; le déplacement relatif d'au moins une des composantes chromatiques par rapport aux autres, avantageusement par décalage de sens contraires et de faible amplitude de deux composantes chromatiques, la troisième composante chromatique typiquement de couleur verte restant immobile ou par rotation de sens contraire et de faible amplitude de deux composantes chromatiques, la troisième composante chromatique restant immobile; la superposition d'une image formant l'avant-plan de l'image.

Description

PROCEDE DE TRANSFORMATION D'IMAGES EN IMAGES STEREOSCOPIQUES ET IMAGES ET SUITES D'IMAGES OBTENUES PAR
LEDIT PROCEDE
La présente invention se rapporte à un procédé de transformation d'images, notamment de photographies en images stereoscopiques ainsi qu'aux images, programmes visuels ou audiovisuels comportant des suites d'images obtenues par ledit procédé, notamment aux films sur pellicule ou support magnétique ainsi qu'aux jeux vidéo.
L'effet de profondeur des images stereoscopiques a depuis de nombreuses années exercé une grande fascination sur les spectateurs. Cet effet est obtenu par la vision par l'oeil gauche d'une image décalée horizontalement par rapport à celle vue par l'oeil droit. Dans l'observation directe d'objets tridimensionnels, observation d'hologrammes, ou d'images en relief munies de réseaux lenticulaires, le décalage des images observées par les deux yeux provient du décalage spatial de leurs axes optiques. Malheureusement, ces techniques ne peuvent pas être mises en oeuvre pour observer des images imprimées destinées à une large diffusion. D'autres systèmes d'observations stereoscopiques mettent en oeuvre une première image destinée à l'oeil gauche rendue invisible à l'oeil droit par des premiers moyens de masquage et une seconde image destinée à l'oeil droit rendue invisible à l'oeil gauche par des seconds moyens de masquage.
Dans une visionneuse de diapositives stereoscopiques, typiquement équipée avec deux lentilles convergentes identiques formant deux oculaires, une cloison opaque disposée dans le plan sagittal entre les oculaires et les diapositives, joue le rôle de moyens de masquage en empêchant l'oeil gauche de voir l'image destinée à l'oeil droit et vice versa.
La séparation spatiale des deux images de la diapositive nécessite une visionneuse relativement complexe et onéreuse pour l'observation de l'image stéréoscopique, visionneuse qui doit de plus être adaptée au format des diapositives à observer. L'absence d'une image unique ne permet pas l'observation simple d'une image en deux dimensions (sans profondeur). Dans un autre dispositif de type connu, les lunettes comportant un premier filtre polarisant ayant une première polarisation disposé devant l'oeil gauche et un second filtre polarisant ayant une deuxième polarisation, croisée avec la première polarisation, disposé devant l'oeil droit, jouent le rôle des moyens de masquage en permettant la vision simultanée ou alternée d'images différentes par les deux yeux. Les filtres polarisant peuvent être remplacés par des obturateurs, par exemple à cristaux liquides, placés devant les yeux, un premier obturateur étant transparent quand le second est opaque et vice versa, les cycles d'obturation étant par exemple sensiblement égaux à un trentième de seconde. Pour permettre l'observation d'images stereoscopiques, un moniteur d'un système informatique affiche des images destinées à l'oeil gauche entrelacées avec celles destinées à l'oeil droit. L'observation de telles images stereoscopiques exige un matériel complexe et coûteux.
Dans les cas précités, on doit assurer dès la prise de vue initiale, l'acquisition des deux images destinées respectivement à l'oeil gauche et à l'oeil droit. La réalisation d'une image stéréoscopique à partir d'une image plane, par exemple d'une photographie classique est impossible, ou tout au moins extrêmement complexe.
Enfin, de manière connue, les moyens de masquage peuvent comporter un filtre rouge placé devant l'oeil gauche et un filtre bleu placé devant l'oeil droit. L'image à observer comporte soit une image bleue destinée à l'oeil droit superposée à une image rouge destinée à l'oeil gauche engendrant un bon effet de profondeur, soit une image en couleur dont le sujet formant le premier plan comporte sur les côtés gauche et droit des franges rouge et bleue de largeur importante, engendrant un effet de profondeur modéré. De telles images présentent une qualité insuffisante pour permettre en l'absence de lunettes colorées, une observation acceptable d'images planes (sans effet de profondeur).
Les Demandeurs ont découvert que l'observation, notamment en vue de la sélection d'images stereoscopiques, s'effectue principalement sans lunettes. Le système actuel, à l'exception d'images en relief recouvertes par un réseau lenticulaire, dont la technique et le prix de revient important n'ont pas permis une large diffusion, ne permet pas une observation aisée de l'image sans matériel additionnel, notamment en vue de la sélection d'images à observer et/ou à acheter. C'est par conséquent un but de la présente invention d'offrir des images stereoscopiques restituant un effet de relief avec des moyens de sélection ou séparation d'images destinés à l'oeil gauche et à l'oeil droit, disposés devant les yeux, mais permettant également une lecture aisée de l'image sans moyens de séparation d'images en minimisant la diminution de la qualité de l'image constatée lors d'observation directe (sans effet de relief). C'est également un but de la présente invention d'offrir de telles images susceptibles d'être imprimées ou d'être visualisées sur tout moyen de visualisation connu. C'est aussi un but de la présente invention d'offrir de telles images stereoscopiques nécessitant des moyens de sélection ou de séparation d'images destinés à l'oeil gauche et à l'oeil droit simples et peu coûteux.
C'est également un but de la présente invention d'offrir un film sur tout support possible ou des jeux vidéo comportant une suite de telles images rtéréoscopiques.
C'est aussi un but de la présente invention d'offrir un procédé de transformation d'images classiques bidimensionnelles (sans effet de profondeur), notamment des photographies, en images stereoscopiques. C'est également un but de la présente invention d'offrir un tel procédé simple, rapide à mettre en oeuvre et peu coûteux.
C'est aussi un but de la présente invention d'offrir un tel procédé permettant l'obtention d'images stereoscopiques par création et/ou transformation d'images bidimensionnelles (sans effet de profondeur) à l'aide d'un éditeur d'images de type connu.
Ces buts sont atteints selon l'invention par : - la séparation d'un arrière-plan de l'image en composantes chromatiques de couleurs complémentaires avantageusement en rouge, bleu et vert ; - le déplacement relatif d'au moins une des composantes chromatiques par rapport aux autres, avantageusement par déplacement de sens contraires et de faible amplitude de deux composantes chromatiques, la troisième composante chromatique typiquement de couleur verte restant immobile ; la superposition d'une image formant l'avant-plan de image.
Dans un premier exemple de mise en oeuvre, le déplacement relatif est une translation horizontale ou sensiblement horizontale. Dans un deuxième exemple de mise en oeuvre, le déplacement relatif est une rotation.
Dans un troisième exemple de réalisation, le mouvement relatif correspond à une translation combinée avec une rotation.
En effet, les Demandeurs ont découvert que le déplacement relatif horizontal des composantes chromatiques les unes par rapport aux autres peut être complété et/ou remplacé par la rotation relative d'au moins une des composantes chromatiques par rapport aux autres. Cette rotation, lors de la mise en oeuvre du procédé selon la présente invention, permet d'accentuer l'effet de relief et/ou de diminuer un éventuel déplacement relatif horizontal des composantes chromatiques les unes par rapport aux autres, de manière à minimiser la dégradation de l'image constatée lors d'observations directes (sans effet de relief). Dans la plupart des cas, pour des rotations de faible amplitude, le décalage n'est pas perceptible à l'oeil nu tout en procurant, lors de l'observation à travers des lunettes colorées, la perception d'images en relief. De plus, la mise en oeuvre de rotations des composantes chromatiques permet d'améliorer la perception d'une transition continue entre les divers plans de l'image en relief.
L'observation de l'image stéréoscopique selon l'invention s'effectue à travers des lunettes colorées dont les couleurs correspondent aux couleurs complémentaires déplacées dans l'arrière-plan de l'image (typiquement un filtre rouge devant l'oeil gauche et un filtre bleu devant l'oeil droit ou inversement). Toutefois, il est bien entendu que les traitements d'autres composantes chromatiques, que le rouge et le bleu, avec la mise en oeuvre des filtres adaptés, ne sortent pas du cadre de la présente invention. L'invention a principalement pour objet un procédé de transformation d'images en images stereoscopiques, caractérisé en ce qu'il comporte les étapes consistant à : a) déterminer des éléments d'images formant un arrière-plan ; b) déterminer des éléments d'images formant l'avant-plan ; c) sauvegarder provisoirement des éléments d'images formant l'avant-plan ; d) séparer une image comportant au moins les éléments d'images formant l'arrière-plan en composante des couleurs complémentaires ; e) déplacer au moins une composante de couleurs par rapport aux autres composantes ; f) superposer les éléments d'images sauvegardés provisoirement formant l'avant-plan sur l'image dont au moins une des composantes chromatiques a subi un déplacement.
L'invention a également pour objet un procédé, caractérisé en ce que le déplacement relatif des composants de couleurs comporte une rotation d'au moins une des composantes de couleurs par rapport aux autres composantes d'un angle α inférieur à 2°. L'invention a également pour objet un procédé, caractérisé en ce qu'on travaille sur des images numérisées et en ce que l'angle α est compris entre 0,001° et 0,8°.
L'invention a également pour objet un procédé, caractérisé en ce que l'angle α est inférieur ou égal à 0,4°. L'invention a également pour objet un procédé, caractérisé en ce que le déplacement relatif des composantes de couleurs comporte une translation d'au moins une des composantes de couleurs par rapport aux autres composantes.
L'invention a également pour objet un procédé, caractérisé en ce qu'on travaille sur des images numérisées, en ce que la translation relative des composantes de couleurs est horizontale ou sensiblement horizontale et a une amplitude comprise entre 0,25 et 15 éléments d'images.
L'invention a également pour objet un procédé, caractérisé en ce que la translation horizontale ou sensiblement horizontale est inférieure ou égale à 3 éléments d'images.
L'invention a également pour objet un procédé, caractérisé en ce qu'il met en oeuvre un système informatique et en ce que l'étape c) consiste en une sélection et une copie, notamment dans le presse-papier, ou dans un fichier des éléments d'images formant l'avant-plan. L'invention a également pour objet un procédé, caractérisé en ce qu'il comporte une étape d'ablation des extrémités de l'image.
L'invention a également pour objet un procédé, caractérisé en ce que l'étape d) de séparation de l'image comportant l'arrière-plan en composantes de couleurs complémentaires est une séparation en composantes rouge, verte et bleue.
L'invention a également pour objet un procédé, caractérisé en ce qu'on effectue une rotation de même amplitude (α, β) et de sens contraires sur les composantes rouge et bleue de l'image comportant l'arrière-plan. L'invention a également pour objet un procédé, caractérisé en ce qu'on effectue une translation de même amplitude et de sens contraires sur les composantes rouge et bleue de l'image comportant l'arrière-plan.
L'invention a également pour objet un procédé de transformation d'un film en film stereoscopique, caractérisé en ce qu'il comporte les étapes d'acquisition des images du film et des étapes de transformation d'images en images stereoscopiques selon l'invention.
L'invention a également pour objet un procédé, caractérisé en ce qu'il comporte une étape de détection automatique des avant-plans ou des arrière-plans dans des images à transformer. L'invention a également pour objet une image stereoscopique, caractérisée en ce qu'elle est obtenue par le procédé selon l'invention.
L'invention a également pour objet une image, caractérisée en ce qu'elle est réalisée par impression avec synthèse soustractive en quadrichromie utilisant des encres jaune, cyan, magenta et noire.
L'invention sera mieux comprise au moyen de la description ci-après et des figures annexées données comme des exemples non limitatifs et sur lesquels :
- la figure 1 est une vue schématique d'un exemple d'image bidimensionnelle à laquelle on désire rajouter du relief ;
- la figure 2 est une vue schématique illustrant une première étape du procédé selon la présente invention ;
- la figure 3 est une vue schématique d'une deuxième étape d'un premier exemple de mise en oeuvre du procédé selon la présente invention ; - la figure 4 est une vue schématique illustrant une troisième étape d'un premier exemple de mise en oeuvre du procédé selon la présente invention ;
- la figure 5 est une vue schématique d'une quatrième étape d'un premier exemple de mise en oeuvre du procédé selon la présente invention ;
- la figure 6 est une vue schématique d'une cinquième étape d'un premier exemple de mise en oeuvre du procédé selon la présente invention ; -la figure 7 est une vue schématique d'une sixième étape d'un premier exemple de mise en oeuvre du procédé selon la présente invention ;
- la figure 8 est une vue schématique d'une septième étape d'un premier exemple de mise en oeuvre du procédé selon la présente invention ;
- la figure 9 est une vue schématique d'une huitième étape d'un premier exemple de mise en oeuvre du procédé selon la présente invention ;
- la figure 10 est une vue schématique d'une neuvième étape d'un premier exemple de mise en oeuvre du procédé selon la présente invention ;
- la figure 1 1 est une vue schématique d'une deuxième étape d'un deuxième exemple de mise en oeuvre du procédé selon la présente invention ; - la figure 12 est une vue schématique illustrant une troisième étape d'un deuxième exemple de mise en oeuvre du procédé selon la présente invention ;
- la figure 13 est une vue schématique d'une quatrième étape d'un deuxième exemple de mise en oeuvre du procédé selon la présente invention ;
- la figure 14 est une vue schématique d'une cinquième étape d'un deuxième exemple de mise en oeuvre du procédé selon la présente invention ; -la figure 15 est une vue schématique d'une sixième étape d'un deuxième exemple de mise en oeuvre du procédé selon la présente invention ;
- la figure 16 est une vue schématique d'une septième étape d'un deuxième exemple de mise en oeuvre du procédé selon la présente invention ;
- la figure 17 est une vue schématique d'une huitième étape d'un deuxième exemple de mise en oeuvre du procédé selon la présente invention. Sur les figures 1 à 17, on a utilisé les mêmes références pour désigner les mêmes éléments. Pour des raisons de clarté, les décalages entre couches ont été exagérés sur les figures 5 à 10 et les rotations des couches ont été exagérées sur les figures 13 à 17.
Sur la figure 1 , on peut voir une image 1 représentant un oiseau 2 volant à l'avant-plan et des montagnes 3 à l'arrière-plan. Dans l'exemple illustré sur les figures 2 à 10, nous allons, donner du relief à l'image en détachant l'oiseau 2 qui semblera voler devant les montagnes 3. Il est bien entendu qu'il s'agit d'un exemple non limitatif et que le procédé selon la présente invention s'applique à tous les sujets. Toutefois, d'autres informations concernant la profondeur de l'image, comme par exemple le respect des règles de perspective ou la vision légèrement moins nette, plus brumeuse et/ou plus bleue d'un arrière-plan éloigné, accentuent pour le cerveau humain la notion d'images en relief.
L'image 1 de la figure 1 peut être une image matricielle également appelée en mode point (bit map en terminologie anglo-saxonne) dont la résolution est au moins égale à celle de l'image stereoscopique désirée. Par exemple, il peut s'agir d'une image créée à l'aide d'un logiciel de création et d'édition d'images en mode point, d'une photographie numérisée ou d'un graphique vectoriel converti en mode point. Dans l'exemple décrit ci-après, nous allons décrire un premier exemple de mise en oeuvre du procédé selon la présente invention mettant en oeuvre un système informatique. Toutefois, il est bien entendu que d'autres méthodes, comme par exemple un filtrage optique et le déplacement manuel des films correspondant à une pluralité de composantes chromatiques,- ne sortent pas du cadre de la présente invention. Sur la figure 2, on sélectionne, par exemple par détourage, l'oiseau 2 devant former l'avant-plan. Il peut s'agir d'une fonction "couper", supprimant l'oiseau de l'image 1 de la figure 2 ou d'une fonction "copier" plaçant une copie 2' dans un presse-papier 4 ou dans un fichier, en vue d'une utilisation ultérieure. On peut également effectuer une sélection à l'aide de l'outil "aérographe" évitant une transition brutale entre plans de l'image en relief. En variante, il est parfaitement possible de partir directement de l'image de l'arrière-plan, l'avant-plan étant rajouté par une opération de "coller" lors de l'étape illustrée sur la figure 10. Ainsi par exemple, il serait parfaitement possible d'effectuer le montage d'une photographie représentant un paysage de montage 3 à laquelle on rajouterait un oiseau 2' photographié ou dessiné séparément.
Sur la figure 3, on effectue la séparation de l'image 1 en couleurs complémentaires. Par exemple, l'image 1 est séparée en une composante rouge 1.1, en une composante verte 1.2 et en une composante bleue 1.3 symbolisées par trois plans superposés sur les figures 3 à 8. Il est à noter que l'oiseau 2 de l'image 1 a subi la séparation en composante chromatique de couleurs complémentaires alors que sa copie 2' du presse- papier 4 ou d'un fichier de sauvegarde temporaire n'a pas subi de modifications.
Sur la figure 4, on a sélectionné la composante bleue 1.3. Dans les logiciels de retouche d'image, en mode point, la sélection permet d'effectuer des modifications d'éléments sélectionnés sans affecter le reste de l'image. Les composantes chromatiques de l'image non sélectionnée sont illustrées en traits pointillés sur les figures 4 à 7 et 12 à 15.
Sur la figure 5, la composante 1.3 de l'image 1 a subi un décalage vers la droite de faible amplitude D1 symbolisé par la flèche 5. Le décalage D1 doit toutefois être suffisamment important pour être visible éventuellement avec une loupe sur l'image finale. Ainsi, on est amené à effectuer un décalage D1 plus grand lorsque la résolution de l'impression ou d'affichage de l'image stereoscopique est réalisée en basse résolution. Le décalage D1 est par exemple compris entre 0,01 et 15 éléments d'images (pixels en terminologie anglo-saxonne), de préférence compris entre 0,05 et 10, avantageusement compris entre 0,25 et 5, par exemple égal à 0,25, 0,5, 1 , 2, 3 ou 4 éléments d'images. Le décalage optimal donnant un bon effet de relief mais étant peu gênant lors de l'observation sans lunettes est choisi directement en fonction de la taille de l'image finale. D'excellents résultats ont été obtenus pour un format A4 (210 x 297 mm) avec un décalage de 0,5 élément d'image et pour une projection sur grand écran ayant approximativement 10 m de large avec un décalage de 0,02 élément d'image. Un décalage de 0,25 élément d'image est par exemple obtenu par un agrandissement de l'image (fonction "zoom 400 %"), le décalage d'une amplitude d'un élément d'image et une réduction de l'image résultante d'un facteur égal au facteur d'agrandissement (fonction "zoom 25 %"). Ce nombre d'éléments d'images correspond au nombre de pixels de l'image numérique affichée en vraie couleur, par exemple avec un codage sur 24 bits. Il est bien entendu que pour rendre perceptibles des franges colorées, des bordures gauche et droite des sujets représentés sur l'image, on peut être amené à utiliser un nombre de pixels nettement plus important à celui correspondant à un pas de trame dans le cas d'une impression ou d'un affichage d'images tramées. La réduction de l'amplitude D1 du décalage permet de minimiser son impact sur l'image stereoscopique finale lorsqu'elle est regardée sans lunette colorée. Sur la figure 6, on a dé-sélectionné la composante bleue 1.3 de l'image 1 et on a sélectionné la composante rouge 1.1 de cette image.
Sur la figure 7, on effectue un décalage vers la gauche, symbolisé par la flèche 6, de la composante rouge 1.1 avec une amplitude D2 avantageusement égale à l'amplitude D1 du décalage vers la droite de la composante bleue 1.3.
La couche rouge 1.1 est dé-sélectionnée sur la figure 8 sur laquelle on peut voir que la composante verte 1.2 de l'image est restée immobile, alors que la composante rouge 1.1 a subi un décalage vers la gauche et que la composante bleue 1.3 a subi un décalage vers la droite. L'image résultante 1 ' correspondant à la superposition en synthèse additive des composantes 1.1 , 1.2 et 1.3 est illustrée sur la figure 9. Sur cette image, la composante rouge 3.1 , la composante verte 3.2 et la composante bleue 3.3 de la montagne 3 ne se superposent pas parfaitement. Au contraire, le côté gauche de la montage comporte une frange rouge correspondant à la composante 3.1 de l'image de la montagne 3. Le côté droit de la montagne 3 est muni d'une frange bleue correspondant à la composante 3.3 de l'image de la montagne. Il en est de même de l'image 2 de l'oiseau dont les composantes rouge 2.1 , verte 2.2 et bleue 2.3 ne se superposent pas exactement. Sur la figure 10, on colle le canard 2' sensiblement sur l'emplacement de la composante verte 2.2 de l'image du canard 2. Le collage est avantageusement effectué sans transparence, c'est-à-dire que l'image 2' masque complètement l'image 2.2, ce qui conduit à des plans multiples nettement séparés. Toutefois, des franges périphériques correspondant aux composantes 2.1 et 2.3 du canard subsistent. En variante, on effectue des collages multiples opaques ou avec par exemple 20 %, 30 %, 40 %, 50 %, 70 % ou 90 % de transparence. On effectue par exemple 2 à 10 collages successifs superposés. Avantageusement, on élimine le bord gauche 7 et le bord droit 8 de l'image, de manière à éliminer les franges colorées éventuelles ne participant pas à l'effet de relief. En variante, on imprime une première image comprenant au moins un arrière-plan dont les composantes chromatiques ont subi les décalages précités. La première image peut comporter en outre des images 2' formant un avant-plan. On dessine ou on colle physiquement sur la première image imprimée une deuxième image n'ayant pas subi de décalages, par exemple un morceau d'un tirage photographique. De manière surprenante, lors d'une observation stereoscopique avec des lunettes colorées, la deuxième image forme un avant-plan donnant l'illusion de se trouver devant l'arrière-plan de la première image avec un effet de profondeur saisissant. II est à noter que dans certaines images, selon les couleurs des sujets photographiés, on peut voir des franges de couleurs bleue et rouge inversées sur les images de l'avant-plan et/ou de l'arrière-plan.
On va maintenant expliquer en référence aux figures 1 , 2 et 1 1 à 17, la mise en oeuvre d'un deuxième exemple de mise en oeuvre du procédé selon la présente invention.
Sur la figure 1 , on peut voir une image 1 représentant un oiseau 2 volant à l'avant-plan et des montagnes 3 à l'arrière-plan. Dans l'exemple illustré sur les figures 1 1 à 17, nous allons donner du relief à l'image en détachant l'oiseau 2 qui semblera voler devant les montagnes 3. Il est bien entendu qu'il s'agit d'un exemple non limitatif et que le procédé selon la présente invention s'applique à tous les sujets. Toutefois, d'autres informations concernant la profondeur de l'image, comme par exemple le respect des règles de perspective ou la vision légèrement moins nette, plus brumeuse et/ou plus bleue d'un arrière-plan éloigné, accentuent pour le cerveau humain la notion d'images en relief.
L'image 1 de la figure 1 peut être une image matricielle également appelée en mode point (bit map en terminologie anglo-saxonne) dont la résolution est au moins égale à celle de l'image stereoscopique désirée. Par exemple, il peut s'agir d'une image créée à l'aide d'un logiciel de création et d'édition d'images en mode point, d'une photographie numérisée ou d'un graphique vectoriel converti en mode point.
Dans l'exemple décrit ci-après, nous allons décrire l'exemple préféré du procédé selon la présente invention mettant en oeuvre un système informatique. Toutefois, il est bien entendu que d'autres méthodes, comme par exemple un filtrage optique et la rotation manuelle des films correspondant à une pluralité de composantes chromatiques, ne sortent pas du cadre de la présente invention.
Sur la figure 2, on sélectionne, par exemple par détourage, l'oiseau 2 devant former l'avant-plan. Il peut s'agir d'une fonction "couper", supprimant l'oiseau de l'image 1 de la figure 2 ou d'une fonction "copier" plaçant une copie 2' dans un presse-papier 4 ou dans un fichier, en vue d'une utilisation ultérieure. On peut également effectuer une sélection à l'aide de l'outil "aérographe" évitant une transition brutale entre plans de l'images en relief et permettant par une sélection progressive de modeler les volumes, c'est-à-dire de conférer une impression de relief progressif donnant des résultats spectaculaires avec des sujets arrondis comme des sphères, cylindres, vases, récipients, corps humain etc.... En variante, il est parfaitement possible de partir directement de l'image de l'arrière-plan, l'avant-plan étant rajouté par une opération de "coller" lors de l'étape illustrée sur la figure 17. Ainsi par exemple, il serait parfaitement possible d'effectuer le montage d'une photographie représentant un paysage de montage 3 à laquelle on rajouterait un oiseau 2' photographié ou dessiné séparément.
Sur la figure 11 , on effectue la séparation de l'image 1 en couleurs complémentaires. Par exemple, l'image 1 est séparée en une composante rouge 1.1-, en une composante verte 1.2 et en une composante bleue 1.3 symbolisées par trois plans superposés sur les figures 11 à 15. Il est à noter que l'oiseau 2 de l'image 1 a subi la séparation en composante chromatique de couleurs complémentaires alors que sa copie 2' du presse- papier 4 ou d'un fichier de sauvegarde temporaire n'a pas subi de modifications.
Sur la figure 12, on a sélectionné la composante rouge 1.1. Dans les logiciels de retouche d'image, en mode point, la sélection permet d'effectuer des modifications d'éléments sélectionnés sans affecter le reste de l'image. Sur la figure 13, la composante 1.1 de l'image 1 a subi une rotation dans le sens trigonometrique d'un angle α faible, symbolisé par la flèche 5'. La rotation doit être suffisamment importante pour être visible sur l'image finale, éventuellement avec une loupe. Ainsi, on est amené à effectuer une rotation d'un angle α plus important lorsque la résolution d'impression ou d'affichage de l'image stereoscopique est réalisée en basse résolution. L'angle α est de préférence inférieur à 2°, par exemple compris entre 0,001° et 0,8°, de préférence égal à 0,02° ou 0,04°, par exemple égal à 0,02° ou 0,03°. La réduction de l'angle α de la rotation permet de minimiser son impact sur l'image stereoscopique finale lorsqu'elle est regardée sans lunette colorée. Avantageusement, le centre C de l'image forme le centre de rotation. La référence C1 désigne le centre de la composante rouge 1.1 de l'image, la référence C2 le centre de la composante verte 1.2 de l'image et la référence C3 le centre de la composante bleue 1.3 de l'image.
Sur la figure 14, on a dé-sélectionné la composante rouge 1.1 de l'image 1 et on a sélectionné la composante bleue 1.3 de cette image.
Sur la figure 15, on effectue une rotation dans le sens des aiguilles d'une montre symbolisée par la flèche 6 de la composante bleue 1.3 d'un angle β, avantageusement égal à - α , α étant l'angle de rotation de la composante rouge 1.1. Toutefois, la mise en oeuvre des rotations des composantes rouge 1.1 et bleue 1.3 avec des angles α et β dont les valeurs absolues ne sont pas égales, ne sort pas du cadre de la présente invention.
La couche bleue 1.3 est dé-sélectionnée sur la figure 16 sur laquelle on peut voir que la composante verte 1.2 de l'image est restée immobile, alors que la composante rouge 1.1 a subi une rotation dans le sens trigonometrique et que la composante bleue 1.3 a subi une rotation dans le sens des aiguilles d'une montre. L'image résultante l' correspondant à la superposition en synthèse additive des composantes 1.1, 1.2 et 1.3 est illustrée sur la figure 17. Sur cette image, la composante rouge 3.1, la composante verte 3.2 et la composante bleue 3.3 de la montagne 3 ne se superposent pas parfaitement. Il en est de même de l'image 2 de l'oiseau dont les composantes rouge 2.1, verte 2.2. et bleue 2.3 ne se superposent pas exactement.
On colle le canard 2' sensiblement sur l'emplacement de la composante verte 2.2 de l'image du canard 2. Le collage est avantageusement effectué sans transparence, c'est-à-dire que l'image 2' masque complètement l'image 2.2, ce qui conduit à des plans multiples nettement séparés. En variante, on effectue des collages multiples opaques ou avec par exemple 20 %, 30 %, 40 %, 50 %, 70 % ou 90 % de transparence. On effectue par exemple 2 à 10 collages successifs superposés. Avantageusement, on élimine les bords de l'image, de manière à obtenir une image rectangulaire.
En variante, on imprime une première image comprenant au moins un arrière-plan dont les composantes chromatiques ont subi les rotations précitées. La première image peut comporter en outre des images 2' formant un avant-plan. On dessine ou on colle physiquement sur la première image imprimée une deuxième image n'ayant pas subi de rotations, par exemple un morceau d'un tirage photographique. De manière surprenante, lors d'une observation stereoscopique avec des lunettes colorées, la deuxième image constitue un avant-plan donnant l'illusiori de se trouver devant l'arrière-plan formé par la première image avec un effet de profondeur saisissant.
La présente invention permet de rajouter de la profondeur à des images préexistantes ou même de se servir d'une première image pour former l'avant-plan et d'une seconde image pour former l'arrière-plan. L'avant-plan peut être collé sur l'arrière-plan au début du procédé pour former une image analogue à celle illustrée sur la figure 1 , ce qui permet d'accentuer le relief. En variante, on peut coller une image de l'avant-plan n'ayant pas subi d'autres traitements que, par exemple, un détourage, sur une image d'un arrière-plan dont les composantes en couleurs complémentaires, de préférence rouge et bleue, ont subi les déplacements décrits précédemment. Il est à noter que les directions des rotations décrites permettent d'utiliser des lunettes standardisées et disponibles dans le commerce comportant un filtre rouge sur l'oeil gauche et un filtre bleu sur l'oeil droit. Toutefois, il est bien entendu que, sans sortir du cadre de la présente invention, on peut effectuer des rotations d'autres combinaisons des composantes chromatiques, notamment de l'arrière-plan de l'image.
Dans les exemples décrits sur les figures 1 à 17, l'image comporte uniquement deux plans, un oiseau 2 situé à l'avant-plan et une montagne 3 située à l'arrière-plan. Des plans supplémentaires peuvent être obtenus par le traitement désiré d'un arrière-plan sur lesquels on peut coller en avant-plan une image traitée, comme par exemple l'image 1" de la figure 9 ou l'image de la figure 16.
En variante, l'image formant l'avant-plan, notamment l'oiseau 2', peut subir une séparation en couleur complémentaire avec les rotations des composantes 1.1 et 1.3 de sens opposés de celles de l'arrière-plan, ce qui permet d'accentuer l'effet de relief. De plus, en collant d'autres images n'ayant pas subi de rotations, il est possible de créer un plan intermédiaire entre l'arrière-plan et l'avant-plan.
De même, l'impression de profondeur peut être renforcée en appliquant un léger flou à l'arrière-plan de l'image. Dans un tel cas, l'avant- plan est parfaitement net alors que l'arrière-plan correspond à la fonction "presque nette" de certains logiciels de retouche d'images.
La rotation des composantes rouge 1.1 et bleue 1.3 de l'image peut être complétée par un décalage de ces composantes. Par exemple, le décalage de la composante rouge 1.1 s'effectue après la sélection de la figure 12 avant ou après la rotation illustrée sur la figure 13. De même, le décalage horizontal de sens opposé de la composante bleue 1.3 s'effectue avant ou après la rotation de la figure 15. Toutefois, les translations ne concernent pas nécessairement les mêmes composantes chromatiques que celles qui ont subi une rotation. Les décalages sont par exemple compris entre 0,25 et 10 éléments d'images (pixels en terminologie anglo-saxonne) avantageusement compris entre 0,25 et 2 éléments d'images. Les décalages de faible amplitude, de même que les rotations d'angle faible, éventuellement combinés, permettent une observation plus agréable de l'image plane (sans effet de profondeur et sans lunettes colorées).
Le procédé selon la présente invention peut mettre en oeuvre la plupart de programmes de retouches d'images ou d'éditions d'images en mode point permettant la séparation de l'image en couleurs complémentaires. Les sélections et notamment les détourages lors du passage de la figure 1 à la figure 2 peuvent être faits manuellement ou être assistés par des fonctions de sélection automatique, comme par exemple les fonctions "baguette magique", "lasso", "aérographe" disponibles dans de nombreux logiciels. En variante, le procédé selon la présente invention peut être mis en oeuvre à l'aide d'un logiciel spécifique comportant un éditeur d'images, à l'aide d'un module ou d'un filtre complémentaire à un logiciel d'édition ou de retouches d'images ou à l'aide d'une macro-commande à exécuter après chargement d'une image et copie de l'avant-plan dans le presse-papier. II est à noter que, de manière surprenante, les images stereoscopiques selon la présente invention obtenues par rotation des composantes rouge 1.1 et bleue 1.3 peuvent être imprimées avec reproduction de couleurs par synthèse soustractive en trichromie avec les encres jaune, magenta et cyan (YMC en terminologie anglo-saxonne) ou en quadrichromie mettant en oeuvre les encres jaune, magenta, cyan et noire (YMCK en terminologie anglo-saxonne). Les images selon la présente invention peuvent donc être affichées sur les moniteurs informatiques, sur les récepteurs de télévision, être imprimées sur des imprimantes bureautiques couleurs, sur des imprimantes d'art graphique, être sérigraphiées, être imprimées par des procédés traditionnels d'impression, etc..
Il est bien entendu que la présente invention n'est pas limitée aux images fixes mais s'applique également aux suites d'images restituant un effet de mouvement et/ou de transition, comme par exemple les diaporamas, les films et programmes vidéo, le jeu vidéo etc.. Chaque image de la suite d'images, notamment du film, peut être traitée manuellement par la méthode décrite précédemment. Toutefois, il peut s'avérer avantageux de traiter de manière automatique chaque plan ou chaque séquence. Une fois le film numérisé, un opérateur indique à un système informatique l'emplacement de l'avant-plan de l'arrière-plan ainsi que d'éventuels plans intermédiaires. A partir de ces informations, le système effectue les sélections et détourages nécessaires ainsi que les décalages et/ou les rotations des diverses composantes chromatiques de l'image. L'image modifiée est enregistrée en vue de son utilisation en numérique ou de son transfert, par exemple sur support argentique ou sur bandes vidéo analogiques. Le système charge l'image suivante et le système repère l'avant-plan et l'arrière-plan. Cette sélection est avantageusement effectuée par des algorithmes d'intelligence artificielle, notamment par un système expert. Par exemple, la sélection de l'avant-plan et de l'arrière-plan est effectuée par application de règles du type : "l'avant-plan et l'arrière plan évoluent peu d'une image à l'image suivante" ; "la couleur de l'avant-plan varie peu d'une image à l'image suivante". En variante, on peut utiliser les algorithmes de sélection de parties d'images mises en oeuvre par des programmes informatiques destinés à ajouter de la couleur aux films noir et blanc. II est à noter que la mise en relief est particulièrement facile dans le cas de dessins animés présentant des couleurs uniformes.
En variante, on peut générer directement des films stereoscopiques selon l'invention en appliquant directement les décalages et/ou les rotations des composantes chromatiques d'une image lors de calcul d'images de synthèse formant par exemple les images élémentaires d'un dessin animé.
Dans une première variante de programmes informatiques interactifs, notamment de jeux vidéo, des séquences d'images stereoscopiques sont stockées sur un support, par exemple sur un disque optique numérique, notamment sur les disques obtenus par pressage (CD- ROM en terminologie anglo-saxonne). Les actions du joueur provoquent la sélection d'enchaînement des séquences parmi les séquences possibles stockées sur les supports. En variante, les images affichées sont générées au fur et à mesure de l'évolution du jeu en fonction d'informations contenues sur le support, notamment du scénario et du graphisme appliqués au décor et aux divers personnages ainsi qu'en fonction des actions du joueur. Les décalages et/ou les rotations des composantes chromatiques de l'image 1.1 et 1.3 sont effectués en temps réel par logiciel ou par des fonctions câblées, par exemple dans la carte graphique du système informatique. La présente invention s'applique à la réalisation d'images stereoscopiques fixes et/ou animées.
La présente invention s'applique principalement à l'imprimerie d'images, notamment de cartes postales, d'album, de logos, notamment pour emballage de produits, d'affiches, aux diapositives, aux films sur support argentique, vidéo ou autres, à l'industrie informatique et notamment aux éditeurs graphiques et aux programmes de retouches d'images, à la vidéo numérique, aux programmes informatiques interactifs et notamment aux jeux vidéo.

Claims

REVENDICATIONS
1. Procédé de transformation d'images en images stereoscopiques, caractérisé en ce qu'il comporte les étapes consistant à : a) déterminer des éléments d'images (3) formant un arrière- plan ; b) déterminer des éléments d'images (2) formant l'avant-plan c) sauvegarder provisoirement (4) des éléments d'images (2) formant l'avant-plan (2') ; d) séparer une image comportant au moins les éléments d'images (3) formant l'arrière-plan en composante des couleurs complémentaires (1.1 , 1.2, 1.3) ; e) déplacer au moins une composante de couleurs (1.3) par rapport aux autres composantes (1.1 , 1.2) ; f) superposer les éléments d'images (2') sauvegardés provisoirement formant l'avant-plan sur l'image (V) dont au moins une des composantes chromatiques a subi un déplacement.
2. Procédé selon la revendication 1 , caractérisé en ce que le déplacement relatif des composants de couleurs (1.1 , 1.2, 1.3) comporte une rotation d'au moins une des composantes de couleurs (1.3) par rapport aux autres composantes (1.1 , 1.2) d'un angle α inférieur à 2°.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce qu'on travaille sur des images numérisées et en ce que l'angle α est compris entre 0,001 ° et 0,8°. 4. Procédé selon la revendication 3, caractérisé en ce que l'angle α est inférieur ou égal à 0,
4°.
5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le déplacement relatif des composantes de couleurs (1.1 , 1.2, 1.3) comporte une translation d'au moins une des composantes de couleurs (1.3) par rapport aux autres composantes (1.1 , 1.2).
6. Procédé selon la revendication 5, caractérisé en ce qu'on travaille sur des images numérisées, en ce que la translation relative des composantes de couleurs (1.1 , 1.2, 1.3) est horizontale ou sensiblement horizontale et a une amplitude comprise entre 0,25 et 15 éléments d'images.
7. Procédé selon la revendication 6, caractérisé en ce que la translation horizontale ou sensiblement horizontale est inférieure ou égale à 3 éléments d'images.
8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il met en oeuvre un système informatique et en ce que l'étape c) consiste en une sélection et une copie, notamment dans le presse-papier, ou dans un fichier (4) des éléments d'images (2) formant l'avant-plan.
9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte une étape d'ablation des extrémités de l'image.
10. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'étape d) de séparation de l'image comportant l'arrière-plan en composantes de couleurs complémentaires est une séparation en composantes rouge (1.1 ), verte (1.2) et bleue (1.3).
1 1. Procédé selon la revendication 10 ou 1 1 , caractérisé en ce qu'on effectue une rotation de même amplitude (α, β) et de sens contraires sur les composantes rouge (1.1 ) et bleue (1.3) de l'image comportant l'arrière-plan.
12. Procédé selon la revendication 10, caractérisé en ce qu'on effectue une translation de même amplitude (D1 , D2) et de sens contraires sur les composantes rouge (1.1 ) et bleue (1.3) de l'image comportant l'arrière-plan.
13. Procédé de transformation d'un film en film stereoscopique, caractérisé en ce qu'il comporte les étapes d'acquisition des images du film et des étapes de transformation d'images en images stereoscopiques selon l'une quelconque des revendications précédentes.
14. Procédé selon la revendication 13, caractérisé en ce qu'il comporte une étape de détection automatique des avant-plans ou des arrière-plans dans des images à transformer.
15. Image stereoscopique, caractérisée en ce qu'elle est obtenue par le procédé selon l'une quelconque des revendications 1 à 12.
16. Image selon la revendication 15, caractérisée en ce qu'elle est réalisée par impression avec synthèse soustractive en quadrichromie utilisant. des encres jaune, cyan, magenta et noire.
EP96917534A 1995-06-02 1996-05-23 Procede de transformation d'images en images stereoscopiques et images et suites d'images obtenues par ledit procede Withdrawn EP0829029A1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
FR9506586A FR2734918B1 (fr) 1995-06-02 1995-06-02 Procede de transformation d'images en images stereoscopiques et images et suites d'images obtenues par ledit procede
FR9506586 1995-06-02
FR9510336 1995-09-04
FR9510336A FR2738357B1 (fr) 1995-09-04 1995-09-04 Procede de transformation d'images en images stereoscopiques et images et suites d'images obtenues par ledit procede
PCT/FR1996/000769 WO1996038753A1 (fr) 1995-06-02 1996-05-23 Procede de transformation d'images en images stereoscopiques et images et suites d'images obtenues par ledit procede

Publications (1)

Publication Number Publication Date
EP0829029A1 true EP0829029A1 (fr) 1998-03-18

Family

ID=26232007

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96917534A Withdrawn EP0829029A1 (fr) 1995-06-02 1996-05-23 Procede de transformation d'images en images stereoscopiques et images et suites d'images obtenues par ledit procede

Country Status (10)

Country Link
US (1) US6175371B1 (fr)
EP (1) EP0829029A1 (fr)
JP (1) JPH11509998A (fr)
CN (1) CN1087853C (fr)
AU (1) AU709976B2 (fr)
BR (1) BR9608953A (fr)
CA (1) CA2223007A1 (fr)
NZ (1) NZ309818A (fr)
TN (1) TNSN96080A1 (fr)
WO (1) WO1996038753A1 (fr)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2119693B1 (es) * 1996-07-25 1999-05-16 Tejeda Jordi Masso Procedimiento para la obtencion de fotogramas en tres dimensiones.
GB2331424A (en) * 1997-11-17 1999-05-19 Jordi Masso Tejeda System for obtaining three-dimensional anagliph-like still photographs
US6614427B1 (en) 1999-02-01 2003-09-02 Steve Aubrey Process for making stereoscopic images which are congruent with viewer space
WO2004003850A1 (fr) * 2002-06-28 2004-01-08 Fujitsu Limited Programme et methode de comparaison d'image tridimensionnelle et appareil a cet effet
US6807759B1 (en) * 2002-12-30 2004-10-26 David G. Burder Method for viewing a full color animation
EP1727093A1 (fr) * 2003-12-19 2006-11-29 Tdvision Corporation S.A. DE C.V. Systeme de jeu video 3d
WO2005083637A1 (fr) 2004-02-27 2005-09-09 Td Vision Corporation, S.A. De C.V. Procede et systeme de decodage numerique d'images video 3d stereoscopiques
JP4489610B2 (ja) * 2005-01-28 2010-06-23 株式会社 日立ディスプレイズ 立体視可能な表示装置および方法
US20080163052A1 (en) * 2007-01-02 2008-07-03 International Business Machines Corporation Method and system for multi-modal fusion of physical and virtual information channels
US20080158223A1 (en) * 2007-01-02 2008-07-03 International Business Machines Corporation Method and system for dynamic adaptability of content and channels
US20080159328A1 (en) * 2007-01-02 2008-07-03 International Business Machines Corporation Method and system for in-context assembly of interactive actionable insights and modalities in physical spaces
US7959295B2 (en) * 2007-05-18 2011-06-14 Dolby Laboratories Licensing Corporation Spectral separation filters for 3D stereoscopic D-cinema presentation
TWI402606B (zh) 2007-05-09 2013-07-21 Dolby Lab Licensing Corp 三維影像之投影與觀看系統
US7784938B2 (en) * 2007-05-09 2010-08-31 Dolby Laboratories Licensing Corporation Method and system for shaped glasses and viewing 3D images
US8463074B2 (en) * 2009-11-11 2013-06-11 General Dynamics Advanced Information Systems System and method for rotating images
KR101598706B1 (ko) * 2014-08-14 2016-02-29 주식회사 엔씨소프트 배경 그래픽의 입체적 표시를 위한 컴퓨팅 디바이스 및 컴퓨터 프로그램
US10809543B2 (en) 2017-01-23 2020-10-20 Dolby Laboratories Licensing Corporation Glasses for spectral and 3D imaging
CN107170016A (zh) * 2017-07-25 2017-09-15 京东方科技集团股份有限公司 一种图像处理方法、图像处理系统和显示面板
CN113256489B (zh) * 2021-06-22 2021-10-26 深圳掌酷软件有限公司 三维壁纸生成方法、装置、设备及存储介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4925294A (en) 1986-12-17 1990-05-15 Geshwind David M Method to convert two dimensional motion pictures for three-dimensional systems
US4620770A (en) * 1983-10-25 1986-11-04 Howard Wexler Multi-colored anaglyphs
US4558359A (en) * 1983-11-01 1985-12-10 The United States Of America As Represented By The Secretary Of The Air Force Anaglyphic stereoscopic image apparatus and method
JPH0568268A (ja) * 1991-03-04 1993-03-19 Sharp Corp 立体視画像作成装置および立体視画像作成方法
GB2261789B (en) * 1991-11-20 1995-07-19 Stephen Peter Ehrmann Erskine Improvements in or relating to the production of anaglyphs
US5469536A (en) * 1992-02-25 1995-11-21 Imageware Software, Inc. Image editing system including masking capability
US5337096A (en) * 1993-08-23 1994-08-09 Pantech, Inc. Method for generating three-dimensional spatial images

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9638753A1 *

Also Published As

Publication number Publication date
NZ309818A (en) 1999-04-29
AU6007396A (en) 1996-12-18
BR9608953A (pt) 1999-03-02
JPH11509998A (ja) 1999-08-31
CA2223007A1 (fr) 1996-12-05
AU709976B2 (en) 1999-09-09
WO1996038753A1 (fr) 1996-12-05
CN1191613A (zh) 1998-08-26
TNSN96080A1 (fr) 1998-12-31
CN1087853C (zh) 2002-07-17
US6175371B1 (en) 2001-01-16

Similar Documents

Publication Publication Date Title
WO1996038753A1 (fr) Procede de transformation d'images en images stereoscopiques et images et suites d'images obtenues par ledit procede
US6329987B1 (en) Lenticular image and method
US5438429A (en) Digital filtering for lenticular printing
US6405464B1 (en) Lenticular image product presenting a flip image(s) where ghosting is minimized
WO1998027456A9 (fr) Panoramagramme de synthese
WO2008155213A1 (fr) Procede et equipements de production et de visualisation d'images stereoscopiques avec filtres colores
US9131209B1 (en) Method for automated realtime conversion of 2D RGB images and video to red-cyan stereoscopic anaglyph 3D
CN1231456A (zh) 用计算机图对合成方法制作立体图片
CA2120761C (fr) Imaginographe
US6778295B1 (en) Composite three-dimensional image display and method of preparing same from color photographs and LCD displays
FR2734918A1 (fr) Procede de transformation d'images en images stereoscopiques et images et suites d'images obtenues par ledit procede
FR2738357A1 (fr) Procede de transformation d'images en images stereoscopiques et images et suites d'images obtenues par ledit procede
US20220020132A1 (en) Device and method for enhancing images
CN115035178A (zh) 一种增强现实显示系统、方法及存储介质
EP2718901B1 (fr) Procede de fabrication d'une image iridescente, image obtenue et dispositif la comprenant, programme associe
EP0918242A1 (fr) Dispositif de vision stéréoscopique d'images
EP1168060A1 (fr) Limage lenticulaire présentant des images basculantes avec minimalisation d'images de dédoublement
RU2172008C1 (ru) Способ получения объемного рекламного изображения
Schädel et al. Flatbed scanners as versatile tools for studying surface details of compression fossils
WO2007148003A1 (fr) Procede et systeme de traitement d'une image en deux dimensions pour permettre une visualisation de ladite image en trois dimensions
Cerosaletti et al. The perception of depth in photographic images
Gibson A Process For Creating Autostereoscopic Displays of Historic Stereoscopic Photographs
JP2005286981A (ja) 立体写真作成用コンピュータの使用方法及び立体写真作成方法
Labbe et al. Publishing stereoscopic images
Iizuka et al. Psychophysical effect of retouched and modified digital stereograms for binocular vision on depth perception

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971126

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RTI1 Title (correction)

Free format text: PROCESS FOR TRANSFORMING IMAGES INTO STEREOSCOPIC IMAGES

17Q First examination report despatched

Effective date: 20020220

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 20020716