EP0828838A1 - Proteines chimeriques activant la transcription par la polymerase iii, leur utilisation pour la detection et l'analyse des interactions entre proteines, et genes codant pour lesdites proteines - Google Patents

Proteines chimeriques activant la transcription par la polymerase iii, leur utilisation pour la detection et l'analyse des interactions entre proteines, et genes codant pour lesdites proteines

Info

Publication number
EP0828838A1
EP0828838A1 EP96917544A EP96917544A EP0828838A1 EP 0828838 A1 EP0828838 A1 EP 0828838A1 EP 96917544 A EP96917544 A EP 96917544A EP 96917544 A EP96917544 A EP 96917544A EP 0828838 A1 EP0828838 A1 EP 0828838A1
Authority
EP
European Patent Office
Prior art keywords
protein
gene
polypeptide
sequence
transcription
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96917544A
Other languages
German (de)
English (en)
Inventor
Marie-Claude Marsolier
André SENTENAC
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0828838A1 publication Critical patent/EP0828838A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/39Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts
    • C07K14/395Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts from Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1055Protein x Protein interaction, e.g. two hybrid selection
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6897Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids involving reporter genes operably linked to promoters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • the present invention relates to new means for detecting and analyzing interactions between proteins.
  • Protein / protein interactions are fundamental cellular mechanisms which are involved in the formation of multimeric complexes responsible for functions such as transcription, translation, as well as signal transmission, response to pathogens, etc.
  • This process is based on the co-expression in the same yeast cell, of the following genes:
  • a reporter gene expressing a detectable protein, the level of expression of which depends on transcriptional activation by a polypeptide domain; and - two chimeric genes, coding for two hybrid proteins comprising respectively the sequences of the two proteins whose interaction is to be detected: one further comprises a transcriptional activation domain regulating the expression of the reporter gene, and the other further comprises a DNA binding domain, which recognizes a binding site located on the reporter gene in the host cell.
  • GAL4 activates the transcription by RNA polymerase II (PolII) of genes coding for enzymes involved in the metabolism of galactose.
  • This protein has 2 functionally independent and physically separable domains: a DNA binding domain, represented by the N-terminal domain (amino acids 1-147) which binds to specific DNA sequences (UASQ, for Upstream Activating Sequence for Galactose), and a transcriptional activation domain represented by the C-terminal domain (amino acids 768-881), which activates transcription by PolII.
  • GAL4 domain (1-147) fused to a first test protein
  • the other contains the GAL4 domain (768-881) fused to a second test protein. If the 2 test proteins are able to interact, they bring the two domains together of GAL4, and trigger the transcription of the reporter gene (for example the lacZ gene coding for the ⁇ -galactosidase of E. coli.).
  • the reporter gene for example the lacZ gene coding for the ⁇ -galactosidase of E. coli.
  • the protein whose partners are sought is fused to the GAL4 binding domain (1-147) and it is tested against a bank of proteins fused to the GAL4 activator domain (768-881).
  • FIELDS and SONG Numerous improvements have been made to the technique initially used by FIELDS and SONG: for example, a cloning system in ⁇ phages which can subsequently be converted into plasmids by recombination of lox sites has been developed; a second reporter gene, consisting of an auxotrophy marker, the HIS3 gene (involved in the metabolism of histidine), was used in combination with the lacZ gene, in order to more effectively eliminate false positives [DURFEE and al., Genes & Development, 7, 555-569, (1993)].
  • a derived technique makes it possible to detect proteins which bind to DNA fragments (for example promoters or fragments involved in DNA replication).
  • DNA fragments for example promoters or fragments involved in DNA replication.
  • This library is introduced into cells containing a reporter gene (HIS3 or lacZ) placed downstream of the DNA fragment studied [WANG and REED, NATURE, 364, 121-126, (1993); LI and HERSKOWITZ, SCIENCE, 262, 1870-1874, (1993)].
  • the inventors have undertaken the development of a system which does not have this limitation. To this end, they had the idea of looking for a method based on the use of the PolIII system. However, to achieve a double hybrid system based on the use of polymerase III, it it was necessary on the one hand to identify transcription factors of the PolIII system which can be used for this purpose, and on the other hand to have suitable reporter genes.
  • the PolIII system transcribes "household" genes, the products of which (tRNA, 5S rRNA, U6 RNA, etc.) are necessary for the basic functions (translation, splicing, etc.) of any active cell. The functioning of the PolIII system requires the presence of different transcription factors, ensuring correct positioning of the polymerase III.
  • the transcription of tRNA genes first involves a factor called TFIIIC or ⁇ which binds to intragenic sequences called block A and block B.
  • the binding of ⁇ to block B involves the subunit ⁇ l38 and its attachment to block A, the ⁇ 95 subunit.
  • then allows the recruitment of another factor, called TFIIIB, near the site of initiation of transcription.
  • TFIIIB allows the recruitment and positioning of polymerase III on the gene.
  • the PolIII promoter comprises an intragenic A block, a B block downstream of the gene transcription termination signal, and a TATA box in position -30.
  • a succession of steps analogous to that described for the tRNA genes makes it possible to initiate the transcription of SNR6. These steps are shown diagrammatically in Figure 1.
  • the sub-unit ⁇ 138 of the factor ⁇ is fixed first on block B (1), then the sub-unit ⁇ 95 on block A (2).
  • the fixation of ⁇ makes it possible to recruit TFIIIB through the subunit ⁇ l31 (3).
  • the precise role of the other sub-units ( ⁇ 50, ⁇ 60 and ⁇ 91) has not yet been established.
  • TFIIIB which is composed of the subunits of 70 kD (70), 90 kD (90) and TBP (TATA-binding protein, protein binding to the TATA box) is positioned upstream of SNR6 (4) and allows then recruiting the PolIII polymerase (5).
  • the binding of ⁇ 138 to block B of SNR6 therefore constitutes one of the first steps in the transcriptional activation of this gene.
  • a mutation in block B (deletion of the bases +238 and +239 relative to the site of initiation of transcription of SNR6) which abolishes this link prevents the transcription of the gene SNR6 [BROW and GUTHRIE, Gene & Developement 4, 1345-1356 (1990) ; BURNOL et al., Nature, 362, 475-477, (1993)].
  • the inventors have found that the transcription of the mutated SNR6 gene, via the fusion protein GAL4- (1-147) - ⁇ l38 could provide enough transcripts to allow the cells to grow without the presence of the wild type SNR6 gene. .
  • the inventors have introduced plasmids comprising the SNR6 gene without block B and with UASQ sequences, as well as plasmids comprising the construction GAL4- (1-147) - ⁇ l38, in the yMCM strain yMCM616.
  • yMCM616 is a derivative of the YPH500 ⁇ strain
  • the transformants of yMCM616 comprising the construction GAL4- (1-147) - ⁇ l38 alone, or else the construction GAL4- (1-147) - ⁇ l38 and SNR6 genes without block B and without UASQ sequences do not grow in the presence 5-fluoro-orotic acid (5-FOA).
  • the yMCM616 transformants comprising the construction GAL4- (1-147) - ⁇ l38 and the SNR6 gene without block B and with UASQ sequences, are capable of growing in the presence of 5- acid. fluoro-orotic, that is to say to lose the plasmid URA3 carrying the wild SNR6 gene, which shows that the presence of the wild type SNR6 gene is not necessary for the cell viability of these transformants.
  • the inventors have thus found that the presence of the three types of plasmids, (namely a plasmid carrying the construction X138-PRP21, a plasmid carrying the construction GAL4- (1-147) -PRP9 or GAL4- (1- 147) -PRP 11, and a plasmid carrying the SNR6 gene without block B and with UASQ sequences) is necessary to allow the transformants to grow in the presence of 5-fluoro-orotic acid.
  • no cell growth is observed when one of the plasmids GAL4- (1-147) -PRP9 / 11 or ⁇ l38-PRP21 is missing or when the SNR6 genes devoid of block B are also devoid of the UASQ sequences.
  • the inventors obtained chimeric proteins resulting, one from the fusion of GAL4- (1-147) with a protein member of an interaction couple, and the other from the fusion of ⁇ l38 with the other member of said couple. interaction couple, and found that the interaction between these two fusion proteins reproduced the activity of the transcription factor GAL4- (1-147) - ⁇ l38.
  • the transcription system thus obtained is shown diagrammatically in Figure 3.
  • the efficiency of transcription by this system makes it possible to obtain enough transcripts to ensure cell viability, and therefore to practice a selection test based on cell viability.
  • the subject of the present invention is a chimeric protein resulting from the fusion of a polypeptide constituting a transcription activator PolIII, with a polypeptide constituting a member of a protein / protein interaction pair.
  • the polypeptide constituting an activator of the transcription by the polymerase PolIII is a subunit of a transcription factor PolIII or a subunit of the polymerase PolIII itself, or represents at least part of one of these subunits.
  • the polypeptide constituting an activator of the transcription by the polymerase PolIII is chosen from the group consisting of the subunits of the factor TFIIIC ( ⁇ 138, X131, etc.), and the polypeptides representing a part of said subunits.
  • the present invention also relates to a gene coding for a chimeric protein as defined above, as well as a recombinant vector carrying said gene.
  • the present invention also relates to a pair of chimeric proteins comprising a first chimeric protein as defined above, and a second chimeric protein resulting from the fusion of a polypeptide capable of binding to a specific DNA sequence, with a polypeptide constituting the other member of the protein / protein interaction couple mentioned above.
  • the present invention also relates to a method for detecting interactions between two proteins, which method is characterized in that the following DNA sequences are introduced into the same host cell:
  • the reporter gene transcribed by polymerase III is the SNR6 gene.
  • PolIII genes can also be used as reporter genes, provided that their expression leads to the appearance of a phenotype observable.
  • reporter genes may for example be tRNA genes, and in particular, genes for suppressing translation termination codons.
  • This reporter gene (s) can be found on centromeric or multicopy plasmids, or be integrated into the chromosomes of the host cell.
  • the binding site recognized by a polypeptide sequence capable of binding to DNA is a UASQ sequence, and the polypeptide which recognizes said binding site is the domain 1-147 of GAL4.
  • polypeptide sequence-binding site associations can also be used, such as for example the LexA binding domain or that of the human estrogen receptor, cited above; these polypeptides are used in association with their respective DNA target sequences (operators LexA and EREs, elements of response to the estrogen receptor).
  • the polypeptide constituting an activator of transcription by the polymerase PolIII is the ⁇ 138 subunit of factor TFIIIC.
  • the host cell used is preferably a yeast cell (Saccharomyces cerevisiae, Schizosaccharomyces pombe).
  • the yMCM616 strain is identical to the FTY115 strain described by MARSOLIER et al. [Genes & Development, 9, 410-422, (1995)], with the exception that it does not include the plasmid pRS314-U6, but the centromeric plasmid URA3 pRS316-U6, carrying the region of the SNR6 gene which extends between bases -140 to + 314 relative to the starting site of transcription.
  • the plasmid pRS316-U6 was obtained from the original plasmid URA3 pRS316, which was described by. SIKORSKI and HIETER, [Genetics, 122, 19-27, (1989)].
  • the region (-140, - +314) of SNR6 was cloned between the Kpnl and Sacl sites of pR316 to give pR316-U6.
  • FIG. 4 This construction is shown diagrammatically in FIG. 4 (CEN: centrometric sequences of yeast; URA3: gene coding for orotidine-5 ′ -phosphate decarboxylase which is involved in the biosynthesis of uracil).
  • the genotype of, the strain yMCM616 is: ⁇ , ura3-52, lys2-801 a bre , ade2-101 ocher , trpl- ⁇ 63, his3- ⁇ 200, Ieu2- ⁇ l. Furthermore, the wild-type chromosomal SNR6 gene of the initial strain has been replaced by a mutant SNR6 gene whose block B has been inactivated by the deletion of bases 238-239 (from the transcription initiation site) [MARSOLIER and al., Genes & Development, vol. 9, 410-422, (1995)].
  • an SNR6 gene without block B and with UAS Q sequences similar to the "B block-UAS Q template" construction described by MARSOLIER et al., [Proc Natl. Acad. Sci. USA, 91, 11938-11942, (1994)] apart from the fact that it lacks the insertion of 24 bp at position +73, has been cloned between the Apal and SacI sites of the centromeric plasmid LEU2, pRS315 [SIKORSKI and HIETER, Genetics, 122, 19-27, (1989)] This construction is shown diagrammatically in FIG. 5 (CEN: centrometric sequences of yeast; LEU2: gene coding for ⁇ -isopropylmalate dehydrogenase involved in the synthesis of leucine).
  • Plasmids respectively designated GAL4- (1-147) -PRP9, and GAL4- (1-147) -PRP11, and derivatives of pMA424 have been previously described [LEGRAIN et al. , Genes & Development, 7, 1390-1399, (1993); LEGRAIN and CHAPON, Science, 262, 108-110, (1993)]. These plasmids contain a construct comprising the entire sequence coding for PRP9 or for PRP11, fused to the 147 N-terminal amino acids of GAL4. These constructions are shown diagrammatically in FIG.
  • ADH1-PRO promoter region for the transcription of the yeast gene ADH1 coding for an alcohol dehydrogenase
  • ADH1-TER region which terminates the transcription of the ADH1 gene
  • - 2 ⁇ autonomous replication sequences derived yeast plasmid 2 ⁇
  • HIS3 gene coding for imidazoleglycerol-phosphate dehydrogenase involved in the synthesis of histidine
  • the X138-PRP21 construct constituted by the entire sequence of ⁇ 138 [LEFEBVRE et al. Proceedings of the National Academy of Science USA, 89, 10512-10514, (1992)] fused to the coding region of PRP21, was obtained as follows:
  • pOL101 The sequence of ⁇ 138 was cloned from the plasmid called pOL101 (supplied by Olivier LEFEBVRE, CEA-Saclay, Gif-sur-Yvette).
  • pOL101 was obtained as follows: the plasmid pOL45 described by LEFEBVRE et al. , [Proceedings of the National Academy of Sciences USA, 89, 10512-10516 (1992)] which contained the sequence of tl38 had been modified to eliminate the intron of the gene (LEFEBVRE et al., 1992, already cited).
  • This plasmid pOL45 modified was later mutagenized by site-directed mutagenesis [KUNKEL et al., Methods in Enzymology, 154, 367-382, (1987)]: BamHI sites were introduced, one, just in front of the initiation codon of ⁇ 138, the other, just in front of the termination codons, to give pOL101.
  • the BamHI fragment of pOL101 comprising the entire coding sequence of ⁇ 138 was then cloned into the vector pBluescript SK (BSSK, Stratagene) so that the KpnI site of BSSK is located at the 5 ′ end of ⁇ 138.
  • the resulting plasmid is named BSSK-X138.
  • pPL247 The PRP21 sequence was cloned from the plasmid called pPL247 (this plasmid was supplied by Pierre LEGRAIN, Institut Pasteur, Paris). Briefly, pPL247 was obtained as follows: A DNA fragment was derived by PCR from the PRP21 gene. This fragment comprises the coding sequence of PRP21 framed in 5 ′ by a BamHI site introduced in -8 relative to the initiation codon, and in 3 ′ by an EcoRI site, followed by a BamHI site introduced 26 bp after the codon of termination. This BamHI digested DNA fragment was cloned into the BamHI site of pMA424
  • Plasmid pYcDE-2 was provided by BD HALL, University of Washington, Seattle, USA.
  • This plasmid is derived from the plasmid pMAC561 [McKNIGHT and McCONAUGHY Proc.Natl.Acad.Sci USA, 80, 4412-4416 (1983)] by deletion of a SphI fragment comprising the upstream part of the promoter of the ADH1 gene, which is thus reduced to an EcoRI-SphI fragment, which makes it truly constitutive.
  • the construction resulting from the insertion of the chimeric fragment X138-PRP21, into the EcoRI site of the plasmid pYcDE-2 is shown diagrammatically in FIG. 7
  • ADH1-PRO promoter region for the transcription of the yeast gene ADH2
  • CYCl-TER terminator region for the transcription of the yeast gene CYCl coding for iso-1-cytochrome c
  • 2 ⁇ autonomous replication sequences derived from the plasmid yeast 2 ⁇
  • TRP1 gene coding for an enzyme involved in the synthesis of tryptophan
  • transforming clones are selected on minimum media devoid of uracil, leucine, histidine or tryptophan (depending on the marker genes carried by the plasmids) and are then spread on complete medium in the presence of 5-fluoro-orotic acid .
  • plasmids namely a plasmid carrying X138-PRP21, a plasmid carrying GAL4- (1-147) -PRP9 or 11, and a plasmid carrying the gene SNR6 lacking block B and comprising UAS sequences Q ) is necessary to allow the transformants to grow in the presence of 5-fluoro-orotic acid. No cell growth is observed when one of the plasmids GAL4- (1-147) -PRP9 / 11 or X138-PRP21 is missing, or when the SNR6 genes lacking block B are also lacking the UASQ sequences.
  • the transformants containing the constructs GAL4- (1-147) -PRP9 / 11 and X138-PRP21 were subcultured several times on 5-FOA medium, and have this fact lost the plasmid URA3 containing the wild SNR6 gene.
  • Their SNR6 transcripts therefore come exclusively from the transcription of the SNR6 gene without block B but with the UAS Q sequences via the 2 hybrids.
  • SNR6 transcripts produced were quantified by RNA transfer, as described previously [MARSOLIER et al., Proc. Natl. Acad. Sci. USA, 91, 11938-11942, (1994)], using the SNR31 gene transcript as an internal control.
  • Table I below represents the percentage of SNR6 transcripts produced relative to the yMCM616 strain carrying only the wild type SNR6 gene on the plasmid pRS316, which represents 100%.
  • GAL4- (1-147) and where these two domains are therefore strongly fixed by covalent bond, a level of expression is obtained (which is arbitrarily fixed at 100%), more or less comparable to the level obtained with the activators and wild genes (190% for PolII with lacZ and 110% for PolIII with SNR6).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Mycology (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

L'invention est relative à des gènes codant pour des protéines chimériques activant la transcription par la polymérase III, aux protéines chimériques et à leur utilisation pour la détection et l'analyse des interactions entre protéines. Lesdites protéines chimériques résultent de la fusion d'un polypeptide constituant un activateur de la transcription par la polymérase PolIII, avec un polypeptide constituant un premier membre d'un couple d'interaction protéine/protéine.

Description

PROTEINES CHIMERIQUES ACTIVANT LA TRANSCRIPTION PAR LA POLYMERASE III, LEUR UTILISATION POUR LA DETECTION ET L'ANALYSE DES INTERACTIONS ENTRE PROTEINES, ET GENES CODANT POUR LESDITES PROTEINES. La présente Invention est relative à de nouveaux moyens de détection et d'analyse des interactions entre protéines.
Les interactions protéine/protéine sont des mécanismes cellulaires fondamentaux gui interviennent dans la formation de complexes multimeriques responsables aussi bien de fonctions comme la transcription, la traduction, que de la transmission des signaux, la réponse à des agents pathogènes, etc...
Pour analyser ces interactions, les techniques biochimiques classiques (cross-lin ing, co-immunopré- cipitation, co-fractionnement par chromâtographie) ayant pour but d'isoler les protéines interagissant avec une protéine-cible sont généralement difficiles à mettre en oeuvre, surtout quand les protéines en interaction sont en faible quantité. En outre, elles permettent d'identifier les protéines en interaction, mais pas d'obtenir directement les gènes correspondant auxdites protéines .
Un procédé dénommé : "méthode double-hybride", permettant de détecter des interactions entre 2 protéines, a été mis au point par FIELDS et SONG [FIELDS and SONG, Nature, 340, 245-246 (1989) et Brevet US 5283173] .
Ce procédé est basé sur la co-expression dans une même cellule de levure, des gènes suivants :
- un gène rapporteur exprimant une protéine détectable, dont le niveau d'expression dépend de 1 ' activation transcriptionnelle par un domaine polypeptidique ; et - deux gènes chimériques, codant pour deux protéines hybrides comprenant respectivement les séquences des deux protéines dont on souhaite détecter l'interaction : l'une comprend en outre un domaine d'activation transcriptionnelle régulant l'expression du gène rapporteur, et l'autre comprend en outre un domaine de liaison à l'ADN, qui reconnaît un site de liaison situé sur le gène rapporteur dans la cellule-hôte.
Lorsque les deux gènes chimériques s'expriment dans la même cellule, si une interaction entre les deux protéines a lieu, elle entraîne la mise en présence du domaine d'activation transcriptionnelle et du gène rapporteur, du fait de la fixation du domaine de liaison à l'ADN à son site situé sur le gène rapporteur. La transcription de ce dernier est activée, et on peut donc observer une augmentation de son produit d'expression. Dans le système décrit dans le brevet US
5283173, FIELDS et SONG ont plus particulièrement exploité les propriétés de GAL4, un activateur de la transcription chez Saccharomyces cerevisiae .
GAL4 active la transcription par l'ARN polymerase II (PolII) de gènes codant pour des enzymes impliqués dans le métabolisme du galactose. Cette protéine comporte 2 domaines fonctionnellement indépendants, et physiquement séparables : un domaine de liaison à l'ADN, représenté par le domaine N-terminal (acides aminés 1-147) qui se lie à des séquences spécifiques de l'ADN (UASQ, pour Upstream Activating Séquence pour le Galactose), et un domaine d'activation transcriptionnelle représenté par le domaine C-terminal (acides aminés 768-881) , qui active la transcription par la PolII.
Deux types de protéines hybrides peuvent ainsi être produits à partir de GAL4 : l'un contient le domaine GAL4 (1-147) fusionné à une première protéine-test, l'autre contient le domaine GAL4 (768-881) fusionné à une deuxième protéine-test. Si les 2 protéines-tests sont capables d'interagir, elles rapprochent les deux domaines de GAL4, et déclenchent la transcription du gène rapporteur (par exemple le gène lacZ codant pour la β-galactosidase d ' E. coli . ) .
Il est possible de tester simultanément plusieurs protéines dans le but de rechercher leurs interactions avec une protéine donnée. Par exemple la protéine dont on recherche les partenaires est fusionnée au domaine de liaison GAL4(1-147) et elle est testée contre une banque de protéines fusionnées au domaine activateur GAL4 (768-881) .
De nombreux perfectionnements ont été apportés à la technique initialement utilisée par FIELDS et SONG : par exemple un système de clonage dans des phages λ convertibles ultérieurement en plasmides par recombinaison de sites lox, a été développé ; un second gène rapporteur, constitué par un marqueur d'auxotrophie, le gène HIS3 (impliqué dans le métabolisme de l'histidine) , a été utilisé en combinaison avec le gène lacZ, afin d'éliminer plus efficacement les faux-positifs [DURFEE et al., Gènes & Development, 7, 555-569, (1993)] .
Des variantes de cette technique ont également été proposées : ainsi, l'aspect non-exclusif de 2 interactions d'une protéine A avec 2 autres protéines B et C peut être démontré par la différence d'activation transcriptionnelle entre un système comprenant uniquement les 2 hybrides B et C respectivement fusionnés à GAL4-(1- 147) et GAL4- (758-881) , et un système comprenant les 2 hybrides B et C ainsi que la protéine A non-fusionnée mais simplement surexprimée, et qui forme un intermédiaire entre B et C [LEGRAIN and CHAPON, SCIENCE, 262, 108-110, (1993) ] .
Une technique dérivée, dénommée système simpie-hybride, permet de détecter des protéines se fixant sur des fragments d'ADN (par exemple des promoteurs ou des fragments impliqués dans la replication de l'ADN) . Dans ce cas, on utilise uniquement les protéines hybrides codées par une banque d'ADNc fusionnés à GAL4- (768-881) . Cette banque est introduite dans des cellules contenant un gène rapporteur [HIS3 ou lacZ) placé en aval du fragment d'ADN étudié [WANG and REED, NATURE, 364, 121-126, (1993) ; LI and HERSKOWITZ, SCIENCE, 262, 1870-1874, (1993)] .
Des stratégies apparentées ont également été mises au point pour identifier les séquences d'ADN auxquelles se lie une protéine donnée [WILSON et al., SCIENCE, 252, 1296-1300, (1991)] , ou pour sélectionner des mutations fonctionnelles dans des domaines protéiques se liant à l'ADN [WILSON et al., Proc. Natl . Acad. Sci. USA, 90, 9186-9190, (1993)] .
La limitation majeure de ce système tient à ce que la protéine dont on recherche les partenaires ne doit pas présenter d'activité activatrice de la transcription PolII. Cette limite interdit donc l'étude par cette technique des activateurs PolII physiologiques (impliqués dans des mécanismes de régulation de la transcription PolII, pathologiques ou normaux) , et, d'une manière générale, des protéines qui, fortuitement, possèdent des propriétés d'activation. Or, de telles propriétés ne sont pas rares : l'activation de la transcription PolII par des protéines qui ne sont pas des activateurs PolII physiologiques a été signalée; il a également été montré que 1% des fragments génomiques d ' E. coli engendrés aléatoirement par digestion par Sau3A, lorsqu'ils sont fusionnés au domaine codant pour GAL4 (1-147) , codent pour des peptides qui activent la transcription PolII [MA et PTASHNE, Cell . , 51, 113-119, (1987)] .
Les Inventeurs ont entrepris la mise au point d'un système ne possédant pas cette limitation. Dans ce but, ils ont eu l'idée de rechercher une méthode basée sur l'utilisation du système PolIII. Cependant, pour parvenir à un système double- hybride basé sur l'utilisation de la polymerase III, il fallait d'une part identifier des facteurs de transcription du système PolIII utilisables dans ce but, et d'autre part disposer de gènes rapporteurs appropriés. Le système PolIII transcrit des gènes "de ménage", dont les produits (ARNt, ARNr 5S, ARN U6, etc..) sont nécessaires aux fonctions de base (traduction, épissage, etc..) de toute cellule active. Le fonctionnement du système PolIII nécessite la présence de différents facteurs de transcription, assurant un positionnement correct de la polymerase III. Par exemple, la transcription des gènes des ARNt fait intervenir tout d'abord un facteur dénommé TFIIIC ou τ qui se fixe sur des séquences intragéniques dénommées bloc A et bloc B. La fixation de τ sur le bloc B fait intervenir la sous-unité τl38 et sa fixation sur le bloc A, la sous-unité τ95. Une fois fixé, τ permet ensuite le recrutement d'un autre facteur, dénommé TFIIIB, à proximité du site d'initiation de la transcription. A son tour, TFIIIB permet le recrutement et le positionnement de la polymerase III sur le gène.
Dans le cas du gène de l'ARN U6 (dénommé SNR6) , le promoteur PolIII comprend un bloc A intragénique, un bloc B en aval du signal de terminaison de la transcription du gène, et une boîte TATA en position -30. Une succession d'étapes analogue à celle décrite pour les gènes des ARNt permet d'initier la transcription de SNR6. Ces étapes sont schématisées sur la Figure 1. La sous-unité τl38 du facteur τ se fixe d'abord sur le bloc B (1), puis la sous-unité τ95 sur le bloc A (2) . La fixation de τ permet de recruter TFIIIB par l'intermédiaire de la sous-unité τl31 (3) . Le rôle précis des autres sous-unités (τ50, τ60 et τ91) n'a pas encore été établi. TFIIIB, qui est composé des sous-unités de 70 kD (70) , 90 kD (90) et de la TBP (TATA-binding protein, protéine se fixant sur la boîte TATA) se positionne en amont de SNR6 (4) et permet ensuite le recrutement de la polymerase PolIII (5) . La liaison de τl38 sur le bloc B de SNR6 constitue donc une des premières étapes de 1 ' activation transcriptionnelle de ce gène. Une mutation du bloc B (délétion des bases +238 et +239 par rapport au site d'initiation de la transcription de SNR6) qui abolit cette liaison empêche la transcription du gène SNR6 [BROW et GUTHRIE, Gène & Developement 4, 1345-1356 (1990) ; BURNOL et al., Nature, 362, 475-477, (1993)] .
Lors de travaux précédents, les Inventeurs ont démontré qu'il était possible de rétablir la transcription du gène SNR6 en insérant à 1 ' intérieur du bloc B muté" de SNR6 des séquences UASQ, et en utilisant un facteur de transcription chimérique, GAL4- (1-147) -τl38 résultant de la fusion du domaine de liaison GAL4- (1-147) et de τl38 [MARSOLIER et al., Proc Natl. Acad. Sci. USA, 91, 11938-11942, (1994)] . Ce mécanisme de transcription est schématisé à la Figure 2. Ces expérimentations avaient été effectuées en présence d'un gène SNR6 de type sauvage, afin de produire des transcrits en quantité suffisante pour assurer la viabilité cellulaire .
Les Inventeurs ont constaté que la transcription du gène SNR6 muté, par l'intermédiaire de la protéine de fusion GAL4- (1-147) -τl38 pouvait fournir suffisamment de transcrits pour permettre aux cellules de croître sans la présence du gène SNR6 de type sauvage.
En effet, les Inventeurs ont introduit des plasmides comprenant le gène SNR6 sans bloc B et avec séquences UASQ, ainsi que des plasmides comprenant la construction GAL4- (1-147) -τl38, dans la souche de levure yMCM616.
Dans l'exposé de la présente Invention l'expression "sans bloc B", doit être comprise comme signifiant "sans bloc B fonctionnel" capable de reconnaître τl38. yMCM616 est un dérivé de la souche YPH500α,
[SIKORSKI et HIETER, Genetics, 122, 19-27, (1989)] , dont le gène SNR6 chromosomal a été muté, et qui survit avec un gène de type sauvage SNR6 porté par un plasmide URA3. Cette souche ne pousse pas en présence d'acide 5-fluoro- orotique, qui est métabolisé en un composé toxique par le produit du gène URA3 [BOEKE et al . , Molecular and General Genetics, 197, 345, (1984)] .
De même, les transformants de yMCM616 comprenant la construction GAL4- (1-147) -τl38 seule, ou bien la construction GAL4- (1-147) -τl38 et des gènes SNR6 sans bloc B et sans séquences UASQ ne poussent pas en présence d'acide 5-fluoro-orotique (5-FOA) .
Or, les Inventeurs ont constaté qu'en revanche, les transformants yMCM616, comprenant la construction GAL4- (1-147) -τl38 et le gène SNR6 sans bloc B et avec séquences UASQ, sont capables de pousser en présence d'acide 5-fluoro-orotique, c'est-à-dire de perdre le plasmide URA3 portant le gène SNR6 sauvage, ce qui montre que la présence du gène SNR6 de type sauvage n'est pas nécessaire pour la viabilité cellulaire de ces transformants .
Les Inventeurs ont eu 1 ' idée de rechercher si ce processus d'activation de la PolIII par l'intermédiaire de GAL4- (1-147) -τl38 pouvait permettre la détection d'interactions protéine/protéine. Dans ce but, deux couples de protéines nucléaires de la levure (facteurs de clivage PRP) , dont les interactions ont été préalablement démontrées dans le système double-hybride PolII [LEGRAIN et al., Gènes & Development, 7, 1390-1399, (1993) et LEGRAIN et CHAPON, Science, 262, 108-110, (1993)] , à savoir les couples PRP9/PRP21 et PRP11/PRP21, ont été utilisés.
Des plasmides respectivement dénommés GAL4-(1- 147)-PRP9, et GAL4- (1-147) -PRP11, et comprenant la totalité des séquences codant pour PRP9 ou pour PRP11, fusionnées à la séquence codant pour les 147 aminoacides N-terminaux de GAL4, ont été construits. De même, un plasmide (τl38-PRP21) a été construit, qui comprend la totalité de la séquence codante de τl38 fusionnée à la région codante de PRP21.
Ces différents plasmides ont été introduits dans la souche yMCM616 en même temps qu'un plasmide comprenant le gène SNR6 dépourvu de bloc B, avec ou sans séquence UASQ.
Les Inventeurs ont ainsi constaté que la présence des trois types de plasmides, (à savoir un plasmide portant la construction X138-PRP21, un plasmide portant la construction GAL4- (1-147) -PRP9 ou GAL4- (1- 147) -PRP 11, et un plasmide portant le gène SNR6 sans bloc B et avec des séquences UASQ) est nécessaire pour permettre aux transformants de croître en présence d'acide 5-fluoro-orotique . En revanche, aucune croissance cellulaire n'est observée quand l'un des plasmides GAL4- (1-147) -PRP9/11 ou τl38-PRP21 manque ou quand les gènes SNR6 dépourvus de bloc B sont également dépourvus des séquences UASQ. Les Inventeurs ont obtenu des protéines chimériques résultant, l'une de la fusion de GAL4- (1-147) avec une protéine membre d'un couple d'interaction, et l'autre de la fusion de τl38 avec l'autre membre dudit couple d'interaction, et ont constaté que l'interaction entre ces deux protéines de fusion reproduisait l'activité du facteur de transcription GAL4- (1-147) -τl38. Le système de transcription ainsi obtenu est schématisé à la Figure 3 .
En outre, l'efficacité de la transcription par ce système permet d'obtenir suffisamment de transcrits pour assurer la viabilité cellulaire, et donc de pratiquer un test de sélection basé sur la viabilité des cellules.
La présente Invention a pour objet une protéine chimérique résultant de la fusion d'un polypeptide constituant un activateur de la transcription PolIII, avec un polypeptide constituant un membre d'un couple d'interaction protéine/protéine.
Selon un mode de réalisation préféré de la présente Invention, le polypeptide constituant un activateur de la transcription par la polymerase PolIII est une sous-unité d'un facteur de transcription PolIII ou une sous-unité de la polymerase PolIII elle-même, ou représente au moins une partie de l'une de ces sous- unités . Selon une disposition préférée de ce mode de réalisation, le polypeptide constituant un activateur de la transcription par la polymerase PolIII, est choisi dans le groupe constitué par les sous-unités du facteur TFIIIC (τl38, X131, etc ..) , et les polypeptides représentant une partie desdites sous-unités.
La présente Invention a également pour objet un gène codant pour une protéine chimérique telle que définie ci-dessus, ainsi qu'un vecteur recombinant portant ledit gène. La présente Invention a également pour objet un couple de protéines chimériques comprenant une première protéine chimérique telle que définie ci-dessus, et une seconde protéine chimérique résultant de la fusion d'un polypeptide capable de se lier à une séquence d'ADN spécifique, avec un polypeptide constituant l'autre membre du couple d'interaction protéine/protéine mentionné ci-dessus.
Différents polypeptides capables de se lier à une séquence d'ADN spécifique, sont utilisables pour construire cette seconde protéine chimérique ; à titre d'exemples non-limitatifs, on citera : le domaine 1-147 de GAL4, qui reconnaît spécifiquement les séquences UASQ ; le domaine de fixation de LexA [BRENT and PTASHNE, Cell, 43, 729-736, (1985)] ou celui du récepteur humain de 1 ' oestrogène [LE DOUARIN et al . Nucleic Acidε Research, 23, 876-878, (1995)] , etc .. La présente Invention a aussi pour objet un procédé de détection des interactions entre deux protéines, lequel procédé est caractérisé en ce que l'on introduit, dans une même cellule-hôte, les séquences d'ADN suivantes :
- une séquence d'ADN (a) , dont au moins une partie constitue un gène rapporteur transcrit par la polymerase III ; et au moins une partie constitue un site de liaison reconnu par une séquence polypeptidique capable de se fixer à l'ADN ,-
- une séquence d'ADN (b) , dont au moins une partie constitue un premier gène chimérique, comprenant une séquence codant pour un polypeptide constituant un activateur de la transcription par la polymerase PolIII, fusionnée avec une séquence codant pour un polypeptide susceptible de constituer un membre d'un couple d'interaction protéine/protéine ;
- une séquence d'ADN (c) , dont au moins une partie constitue un second gène chimérique, comprenant une séquence codant pour le polypeptide qui reconnaît le site de liaison porté par la séquence (a) , fusionnée avec une séquence codant pour un polypeptide susceptible de constituer le second membre dudit couple d'interaction protéine/protéine ; en ce que l'on met ladite cellule-hôte en culture, dans des conditions autorisant l'expression du gène rapporteur porté par la séquence (a) et en ce que l'on détecte l'expression dudit gène rapporteur, dans la cellule-hôte ou dans sa descendance, par tous moyens appropriés .
Selon un mode de mise en oeuvre préféré de la présente invention, le gène rapporteur transcrit par la polymerase III est le gène SNR6.
D'autres gènes PolIII peuvent également être utilisés comme gènes rapporteurs, pour autant que leur expression entraîne l'apparition d'un phénotype observable. Il peut s'agir par exemple des gènes d'ARNt, et en particulier, des gènes suppresseurs de codons de terminaison de traduction.
Ce (s) gène (s) rapporteur(s) peu (ven) t se trouver sur des plasmides centromériques ou multicopie, ou être intégré (s) dans les chromosomes de la cellule- hôte.
Selon un autre mode de mise en oeuvre préféré de la présente Invention le site de liaison reconnu par une séquence polypeptidique capable de se fixer à l'ADN est une séquence UASQ , et le polypeptide qui reconnaît ledit site de liaison est le domaine 1-147 de GAL4.
D'autres associations séquence polypeptidique- site de liaison sont également utilisables, comme par exemple le domaine de fixation de LexA ou celui du récepteur humain de l'oestrogène, cités ci-dessus, ; ces polypeptides sont utilisés en association avec leurs séquences-cibles d'ADN respectives (opérateurs LexA et EREs, éléments de réponse au récepteur de l'oestrogène) . Selon un autre mode de mise en oeuvre préféré de la présente invention, le polypeptide constituant un activateur de la transcription par la polymerase PolIII, est la sous-unité τl38 du facteur TFIIIC.
Selon encore un autre mode de mise en oeuvre préféré de la présente invention, la cellule-hôte utilisée est de préférence une cellule de levure (Saccharomyces cerevisiae, Schizosaccharomyces pombe . . . ) .
La présente Invention sera mieux comprise à l'aide du complément de description qui va suivre, qui se réfère à des exemples de mise en oeuvre du procédé conforme à l'Invention.
Il doit être bien entendu toutefois que ces exemples sont donnés uniquement à titre d'illustration de l'objet de l'Invention dont ils ne constituent en aucune manière une limitation. EXEMPLE 1 : Souches et plasmides :
La souche yMCM616 est identique à la souche FTY115 décrite par MARSOLIER et al. [Gènes & Development, 9, 410-422, (1995)], à l'exception du fait qu'elle comprend non pas le plasmide pRS314-U6, mais le plasmide centromérique URA3 pRS316-U6, portant la région du gène SNR6 qui s'étend entre les bases -140 à + 314 par rapport au site de départ de la transcription. Le plasmide pRS316-U6 a été obtenu à partir du plasmide d'origine URA3 pRS316, qui a été décrit par. SIKORSKI et HIETER, [Genetics, 122, 19-27, (1989)] . La région (-140 ,- +314) de SNR6 a été clonée entre les sites Kpnl et Sacl de pR316 pour donner pR316-U6.
Cette construction est schématisée à la Figure 4 (CEN : séquences centrométriques de levure ; URA3 : gène codant pour l'orotidine-5' -phosphate décarboxylase qui est impliquée dans la biosynthèse de l'uracile).
Le génotype de, la souche yMCM616 est : α, ura3-52, lys2-801a bre, ade2-101ocnre, trpl-Δ63, his3- Δ200, Ieu2-Δl. Par ailleurs, le gène chromosomal SNR6 sauvage de la souche initiale a été remplacé par un gène SNR6 mutant dont le bloc B a été inactivé par la délétion des bases 238-239 (à partir du site d'initiation de la transcription) [MARSOLIER et al., Gènes & Development, vol. 9, 410-422, (1995)] .
D'autre part, un gène SNR6 sans bloc B et avec séquences UASQ, similaire à la construction "B block-UASQ template" décrite par MARSOLIER et al., [Proc Natl. Acad. Sci. USA, 91, 11938-11942, (1994)] mis à part le fait qu'il est dépourvu de l'insertion de 24 pb à la position +73, a été clone entre les sites Apal et Sacl du plasmide centromérique LEU2, pRS315 [SIKORSKI et HIETER, Genetics, 122, 19-27, (1989)] Cette construction est schématisée à la Figure 5 (CEN : séquences centrométriques de levure ; LEU2 : gène codant pour la β-isopropylmalate déshydrogénase impliquée dans la synthèse de la leucine) .
En outre, le gène SNR6 sans bloc B et dépourvu de séquences UASQ du plasmide pRS314-U6 décrit par MARSOLIER et al. [Gènes & Development, 9, 410-422, (1995)], a été recloné entre les sites Apal et Sacl du plasmide centromérique pRS315.
Des plasmides respectivement dénommés GAL4- (1-147) -PRP9, et GAL4- (1-147) -PRP11, et dérivés de pMA424 ont été précédemment décrits [LEGRAIN et al. , Gènes & Development, 7, 1390-1399, (1993) ; LEGRAIN et CHAPON, Science, 262, 108-110, (1993)] . Ces plasmides contiennent une construction comprenant la totalité de la séquence codant pour PRP9 ou pour PRP11, fusionnée aux 147 aminoacides N-terminaux de GAL4. Ces constructions sont schématisées à la Figure 6 (ADH1-PRO : région promotrice de la transcription du gène de levure ADH1 codant pour une alcool déshydrogénase ; ADH1-TER : région terminatrice de la transcription du gène ADH1 ,- 2μ : séquences de replication autonome dérivées du plasmide de levure 2μ ; HIS3 : gène codant pour l'imidazoleglycérol- phosphate déshydrogénase impliquée dans la synthèse de 1'histidine) .
D'autre part, la construction X138-PRP21 constituée par la totalité de la séquence de τl38 [LEFEBVRE et al. Proceedings of the National Academy of Science USA, 89, 10512-10514, (1992)] fusionnée à la région codante de PRP21, a été obtenue comme suit :
La séquence de τl38 a été clonée à partir du plasmide dénommé pOLlOl (fourni par Olivier LEFEBVRE, C.E.A-Saclay, Gif-sur-Yvette) . pOLlOl a été obtenu comme suit : le plasmide pOL45 décrit par LEFEBVRE et al. , [Proceedings of the National Academy of Sciences USA, 89, 10512-10516 (1992)] qui contenait la séquence de tl38 avait été modifié pour éliminer l'intron du gène (LEFEBVRE et al., 1992, déjà cité) . Ce plasmide pOL45 modifié a été ultérieurement mutagénisé par mutagénèse dirigée [KUNKEL et al., Methods in Enzymology, 154, 367- 382, (1987)] : des sites BamHI ont été introduits, l'un, juste devant le codon d'initiation de τl38, l'autre, juste devant les codons de terminaison, pour donner pOLlOl. Le fragment BamHI de pOLlOl comprenant la totalité de la séquence codante de τl38 a ensuite été clone dans le vecteur pBluescript SK (BSSK, Stratagène) de manière à ce que le site Kpnl de BSSK soit localisé à l'extrémité 5' de τl38. Le plasmide résultant est dénommé BSSK-X138.
La séquence de PRP21 a été clonée à partir du plasmide dénommé pPL247 (ce plasmide a été fourni par Pierre LEGRAIN, Institut Pasteur, Paris) . Brièvement, pPL247 a été obtenu comme suit : Un fragment d'ADN a été dérivé par PCR à partir du gène PRP21. Ce fragment comprend la séquence codante de PRP21 encadrée en 5' par un site BamHI introduit en -8 par rapport au codon d'initiation, et en 3' par un site EcoRI, suivi d'un site BamHI introduits 26 pb après le codon de terminaison. Ce fragment d'ADN digéré par BamHI a été clone dans le site BamHI de pMA424
[LEGRAIN et al., Gènes & Development, 7, 1390-1399,
(1993)] . Le site BamHI en 3' de PRP21 a été ultérieurement éliminé, et le fragment BamHI-Pstl du plasmide contenant la séquence de PRP21 a été clone dans le vecteur pBluescript SK" (BSSK, Stratagène) , pour donner pPL247.
Le site unique BamHI de pPL247 situé à l'extrémité 5' de PRP21, a été ouvert, pourvu d'extrémités franches, et religué de manière à pouvoir ultérieurement mettre PRP21 en phase avec τl38.
Le plasmide pPL247 ainsi modifié a été ensuite digéré par Spel et EcoRV, et le fragment résultant, contenant PRP21, a été inséré entre les sites Spel et Notl pourvu d'extrémités franches, de BSSK-X138. Un fragment EcoRI comprenant la construction X138-PRP21, a ensuite été introduit dans le site EcoRI du plasmide pYcDE-2. Le plasmide pYcDE-2 a été fourni par B.D. HALL, University of Washington, Seattle, USA. Ce plasmide dérive du plasmide pMAC561 [McKNIGHT et McCONAUGHY Proc.Natl.Acad.Sci USA, 80, 4412-4416 (1983)] par délétion d'un fragment SphI comprenant la partie amont du promoteur du gène ADH1 , qui se trouve ainsi réduit à un fragment EcoRI-SphI, ce qui le rend réellement constitutif. La construction résultant de l'insertion du fragment chimérique X138-PRP21, dans le site EcoRI du plasmide pYcDE-2 est schématisée à la Figure 7
(ADH1-PRO : région promotrice de la transcription du gène de levure ADH2 ; CYCl-TER : région terminatrice de la transcription du gène de levure CYCl codant pour l'iso-1- cytochrome c ; 2μ : séquences de replication autonome dérivées du plasmide de levure 2μ ; TRP1 : gène codant pour une enzyme impliquée dans la synthèse du tryptophane) . EXEMPLE 2 : ACTIVATION DE LA TRANSCRIPTION PAR UN SYSTEME DOUBLE-HYBRIDE POLIII CONFORME A L'INVENTION
Les plasmides contenant les constructions :
- GAL4 - ( 1 - 147 ) -τl38 ;
- X138 - PRP21 , et GAL4 - ( 1 - 147 ) - PRP9 , ou GAL4 - ( 1 - 147 ) - PRP11 ; ont été introduits dans la souche yMCM616 en même temps que les plasmides contenant les gènes SNR6 dépourvus de bloc B, et avec ou sans séquence UASQ. Les clones transformants sont sélectionnés sur des milieux minimum dépourvus d'uracile, de leucine, d'histidine ou de tryptophane (selon les gènes marqueurs portés par les plasmides) et sont ensuite étalés sur milieu complet en présence d'acide 5-fluoro-orotique.
La présence des trois types de plasmides, (à savoir un plasmide portant X138-PRP21, un plasmide portant GAL4- (1-147) -PRP9 ou 11, et un plasmide portant le gène SNR6 dépourvu de bloc B et comprenant des séquences UASQ) est nécessaire pour permettre aux transformants de croître en présence d'acide 5-fluoro-orotique. Aucune croissance cellulaire n'est observée quand l'un des plasmides GAL4- (1-147) -PRP9/11 ou X138-PRP21 manque, ou quand les gènes SNR6 dépourvus de bloc B sont également dépourvus des séquences UASQ.
Pour l'analyse quantitative des transcrits SNR6 produits par le système double-hybride, les transformants contenant les constructions GAL4- (1-147) -PRP9/11 et X138-PRP21 ont été repiqués plusieurs fois sur milieu 5-FOA, et ont de ce fait perdu le plasmide URA3 contenant le gène SNR6 sauvage. Leurs transcrits SNR6 proviennent donc exclusivement de la transcription du gène SNR6 sans bloc B mais avec les séquences UASQ par l'intermédiaire des 2 hybrides.
Plusieurs clones ont été analysés de la sorte pour chaque combinaison de constructions.
La quantité de transcrits SNR6 produits a été quantifiée par transfert d'ARN, comme décrit précédemment [MARSOLIER et al., Proc. Natl. Acad. Sci. USA, 91, 11938-11942, (1994)], en utilisant le transcrit du gène SNR31 en tant que contrôle interne. Le Tableau I ci-dessous représente le pourcentage de transcrits SNR6 produits par rapport à la souche yMCM616 portant seulement le gène de type sauvage SNR6 sur le plasmide pRS316, qui représente 100%.
TABLEAU I
CONSTRUCTIONS QUANTITE DE TRANSCRITS (%)
GAL4- (1-147) -X138 90%
GAL4- (1-147) -PRP9 + X138- 62% PRP21
GAL4- (1-147) -PRP11 + X138- 71% PRP21
Ces résultats montrent que le système double- hybride conforme à l'Invention permet d'obtenir un niveau de transcription élevé, représentant la production de 60 à 70% des transcrits produits par le gène SNR6 sauvage possédant un bloc B intact.
EXEMPLE 3 : COMPARAISON DU SYSTEME D'ACTIVATION DOUBLE-HYBRIDE POLIII CONFORME A L'INVENTION AVEC UN SYSTEME D'ACTIVATION DOUBLE-HYBRIDE POLII Les taux d'expression obtenus avec les deux systèmes d'activation : UASQ-lacZ (double-hybride PolII) et UAS_.- SNR6 (double-hybride PolIII conforme à l'invention) ont été comparés à ceux obtenus avec l'activateur "sauvage" de chacun des deux systèmes. Pour UASQ-lacZ, les résultats reproduits dans le Tableau II ci-dessous sont ceux rapportés par MA and PTASHNE, [Cell, 48, 847-853 (1987)] pour l'activateur sauvage et l'activateur chimère PolII, et par LEGRAIN et al. [Nucleic Acids Research, 22, 3241-3242, (1994)] pour le système double-hybride PolII; le taux d'expression est déterminé par la mesure de l'activité β-gal.
Pour UASQ-SMRfj, le taux d'expression est déterminé par la mesure du pourcentage de transcription. Les résultats sont représentés dans le Tableau II ci-dessous :
TABLEAU II
Ces résultats montrent que dans le cas des molécules chimère où la partie activatrice des 2 systèmes
(respectivement GAL4- (768-881) pour PolII, et xl38 pour
PolIII) est fusionnée directement au domaine de liaison
GAL4- (1-147) , et où ces deux domaines sont donc fortement fixés par liaison covalente, on obtient un niveau d'expression (que l'on fixe arbitrairement à 100%), plus ou moins comparable au niveau obtenu avec les activateurs et les gènes sauvages (190% pour PolII avec lacZ et 110% pour PolIII avec SNR6) .
En revanche, lorsque la liaison entre la partie activatrice et le domaine de liaison à l'ADN est constituée par l'interaction entre PRP21, et PRP9 ou PRP11, le comportement des 2 systèmes PolII et PolIII se différencie fondamentalement. En effet, avec le système d'activation PolII (UASQ-lacZ), on obtient un taux d'expression mesuré par une activité β-gal de 40-60 U [LEGRAIN et al., 1994)] qui est relativement peu important, (seulement 4-6% de l'activité obtenue avec GAL4- (1-147) -GAL4- (768-881) ) . Au contraire, on obtient pour le gène UASQ-SJtfRfJ, et avec la même interaction faible PRP21-PRP9/11, un taux de transcription correspondant à 70-80% de celui obtenu avec GAL4- (1-147) -X138.

Claims

REVENDICATIONS
1) Protéine chimérique, caractérisée en ce qu'elle résulte de la fusion d'un polypeptide constituant un activateur de la transcription par la polymerase PolIII, avec un polypeptide constituant un premier membre d'un couple d'interaction protéine/protéine.
2) Protéine chimérique, selon la revendication l, caractérisée en ce que le polypeptide constituant un activateur de la transcription par la polymerase PolIII, est choisi dans le groupe constitué par les sous-unités de facteurs de transcription PolIII, les sous-unités de la polymerase PolIII, et les polypeptides représentant au moins une partie desdites sous-unités.
3) Protéine chimérique, selon la revendication 2, caractérisée en ce que le polypeptide constituant un activateur de la transcription par la polymerase PolIII, est choisi dans le groupe constitué par les sous-unités du facteur TFIIIC, et les polypeptides représentant au moins une partie desdites sous-unités. 4) Gène codant pour une protéine chimérique selon une quelconque des revendications 1 à 3.
5) Couple de protéines chimériques caractérisé en ce qu' il comprend une première protéine chimérique selon une quelconque des revendications l à 3 , et une seconde protéine chimérique résultant de la fusion d'un polypeptide capable de se lier à une séquence d'ADN spécifique, avec un polypeptide constituant le second membre du couple d'interaction protéine/protéine.
6) Procédé de détection des interactions entre deux protéines, lequel procédé est caractérisé en ce que l'on introduit, dans une même cellule-hôte, les séquences d'ADN suivantes :
- une séquence d'ADN (a) , dont au moins une partie constitue un gène rapporteur transcrit par la polymerase III ; et au moins une partie constitue un site de liaison reconnu par une séquence polypeptidique capable de se fixer à l'ADN ;
- une séquence d'ADN (b) , dont au moins une partie constitue un premier gène, codant pour une protéine chimérique selon une quelconque des revendications l à 3 ,-
- une séquence d'ADN (c) , dont au moins une partie constitue un second gène chimérique, comprenant une séquence codant pour le polypeptide qui reconnaît le site de liaison porté par la séquence (a) , fusionnée avec une séquence codant pour un polypeptide susceptible de constituer le second membre dudit couple d'interaction protéine/protéine ; en ce que l'on met ladite cellule-hôte en culture, dans des conditions autorisant l'expression du gène rapporteur porté par la séquence (a) et en ce que l'on détecte l'expression dudit gène rapporteur, dans la cellule-hôte ou dans sa descendance, par tous moyens appropriés . 7) Procédé selon la revendication 6, caractérisé en ce que le gène rapporteur transcrit par la polymerase III est le gène SNR6, le site de liaison reconnu par une séquence polypeptidique capable de se fixer à l'ADN est une séquence UASQ , et le polypeptide qui reconnaît ledit site de liaison est le domaine 1-147 de GAL4.
EP96917544A 1995-05-26 1996-05-24 Proteines chimeriques activant la transcription par la polymerase iii, leur utilisation pour la detection et l'analyse des interactions entre proteines, et genes codant pour lesdites proteines Withdrawn EP0828838A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9506249A FR2734567B1 (fr) 1995-05-26 1995-05-26 Proteines chimeriques activant la transcription par la polymerase iii, leur utilisation pour la detection et l'analyse des interactions entre proteines, et genes codant pour lesdites proteines
FR9506249 1995-05-26
PCT/FR1996/000780 WO1996037618A1 (fr) 1995-05-26 1996-05-24 Proteines chimeriques activant la transcription par la polymerase iii, leur utilisation pour la detection et l'analyse des interactions entre proteines, et genes codant pour lesdites proteines

Publications (1)

Publication Number Publication Date
EP0828838A1 true EP0828838A1 (fr) 1998-03-18

Family

ID=9479377

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96917544A Withdrawn EP0828838A1 (fr) 1995-05-26 1996-05-24 Proteines chimeriques activant la transcription par la polymerase iii, leur utilisation pour la detection et l'analyse des interactions entre proteines, et genes codant pour lesdites proteines

Country Status (4)

Country Link
US (1) US5905025A (fr)
EP (1) EP0828838A1 (fr)
FR (1) FR2734567B1 (fr)
WO (1) WO1996037618A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102443867A (zh) * 2010-10-08 2012-05-09 太仓荣文合成纤维有限公司 用于生产阻燃抗菌隔音装饰布专用纤维的生产方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0974649A1 (fr) * 1998-06-22 2000-01-26 Universität Zürich Système de criblage
DE19937230A1 (de) * 1999-08-06 2001-02-08 Lion Bioscience Ag Chimäre Proteine
FR2800077B1 (fr) * 1999-10-22 2001-12-21 Commissariat Energie Atomique Facteur chimerique de transcription a activite conditionnelle, et ses utilisations pour la detection d'interactions entre proteines
US6365355B1 (en) 2000-03-28 2002-04-02 The Regents Of The University Of California Chimeric proteins for detection and quantitation of DNA mutations, DNA sequence variations, DNA damage and DNA mismatches
US6787321B1 (en) * 2000-10-13 2004-09-07 The Regents Of The University Of California Mammalian two-hybrid system for screening for modulators of the accumulation of metabolic products
CA2441071C (fr) 2001-03-14 2010-06-22 Myriad Genetics, Inc. Interaction tsg101-gag et son utilisation
DE10211063A1 (de) * 2002-03-13 2003-10-09 Axaron Bioscience Ag Neue Verfahren zur Detektion und Analyse von Protein-Interaktionen in vivo
WO2007053570A2 (fr) * 2005-10-31 2007-05-10 Janssen Pharmaceutica N.V. Complexe polypeptidique de trpm8 et de calmoduline et tissus correspondants

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9637618A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102443867A (zh) * 2010-10-08 2012-05-09 太仓荣文合成纤维有限公司 用于生产阻燃抗菌隔音装饰布专用纤维的生产方法
CN102443867B (zh) * 2010-10-08 2013-11-06 太仓荣文合成纤维有限公司 用于生产阻燃抗菌隔音装饰布专用纤维的生产方法

Also Published As

Publication number Publication date
US5905025A (en) 1999-05-18
FR2734567A1 (fr) 1996-11-29
WO1996037618A1 (fr) 1996-11-28
FR2734567B1 (fr) 1997-08-08

Similar Documents

Publication Publication Date Title
Brocard et al. The tetratricopeptide repeat domain of the PAS10 protein of Saccharomyces cerevisiae is essential for binding the peroxisomal targeting signal-SKL
Wotton et al. A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae.
Berroteran et al. The sua8 suppressors of Saccharomyces cerevisiae encode replacements of conserved residues within the largest subunit of RNA polymerase II and affect transcription start site selection similarly to sua7 (TFIIB) mutations
Liu et al. Construction of a GAL1-regulated yeast cDNA expression library and its application to the identification of genes whose overexpression causes lethality in yeast.
Moretti et al. Evidence that a complex of SIR proteins interacts with the silencer and telomere-binding protein RAP1.
Dietzel et al. Pheromonal regulation and sequence of the Saccharomyces cerevisiae SST2 gene: a model for desensitization to pheromone
DK175898B1 (da) Fremgangsmåde til at udtrykke ikke-gærprotein i en gærvært og transformeret gærvært samt anvendelsen af en transformeret gær til fremstilling af gærværten
JPH10500865A (ja) タンパク質−rna相互作用の検出システム
JP2004000282A (ja) 酵母におけるgタンパク質結合受容体の発現
EP0828838A1 (fr) Proteines chimeriques activant la transcription par la polymerase iii, leur utilisation pour la detection et l'analyse des interactions entre proteines, et genes codant pour lesdites proteines
US6074829A (en) Relating to assay systems
JP2005532823A (ja) 減数分裂組換えの標的化刺激を誘導する方法及び前記方法を実施するためのキット
CA2341776C (fr) Procede de transformation non-homologue de yarrowia lipolytica
JPH10512447A (ja) ナンセンス媒介によるmRNAの崩壊機能非存在下における異種ポリペプチドの産生
US6303310B1 (en) Method and kit for detection of multiple protein interactions
WO1996031611A1 (fr) Nouveaux promoteurs pour l'expression de proteines d'interet dans la levure
EP0974649A1 (fr) Système de criblage
EP0977840A2 (fr) Methodes de detection d'interactions entre plusieurs proteines
KR20000071182A (ko) 지-단백질 커플링 시스템에서 작용하는 식물 단백질 동정 방법및 이에 따른 조성물
EP1021533A1 (fr) Acides nucleiques codant pour des proteines capables d'interagir avec les presenilines
FR2598432A1 (fr) Procede pour l'expression de genes dans une levure, et fragments d'adn ainsi que plasmides comprenant lesdits fragments d'adn a utiliser lors de la mise en oeuvre du procede
EP0909331A1 (fr) Systeme de detection des interactions proteine-proteine
JP2003517307A (ja) ユビキチン−リガーゼscf複合体の活性化を調節し得る化合物の細胞スクリーニング方法及びその使用
WO1996001898A1 (fr) Recepteur opioide kappa humain, acides nucleiques et utilisations
FR2571060A1 (fr) Nouveaux vecteurs de clonage et d'expression dans les cellules eucaryotes utilisant le virus de la vaccine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971127

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE DK ES GB IT NL SE

17Q First examination report despatched

Effective date: 20020808

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050519