EP0823941A1 - Human antibodies derived from immunized xenomice - Google Patents

Human antibodies derived from immunized xenomice

Info

Publication number
EP0823941A1
EP0823941A1 EP95918935A EP95918935A EP0823941A1 EP 0823941 A1 EP0823941 A1 EP 0823941A1 EP 95918935 A EP95918935 A EP 95918935A EP 95918935 A EP95918935 A EP 95918935A EP 0823941 A1 EP0823941 A1 EP 0823941A1
Authority
EP
European Patent Office
Prior art keywords
human
analog
immunoglobulin
antigen
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP95918935A
Other languages
German (de)
French (fr)
Other versions
EP0823941A4 (en
Inventor
Raju Kucherlapati
Aya Jakobovits
Sue Klapholz
Daniel G. Brenner
Daniel J. Capon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amgen Fremont Inc
Original Assignee
Abgenix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abgenix Inc filed Critical Abgenix Inc
Publication of EP0823941A1 publication Critical patent/EP0823941A1/en
Publication of EP0823941A4 publication Critical patent/EP0823941A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2812Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • C07K16/1267Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-positive bacteria
    • C07K16/1282Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-positive bacteria from Clostridium (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/241Tumor Necrosis Factors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/244Interleukins [IL]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2851Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the lectin superfamily, e.g. CD23, CD72
    • C07K16/2854Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the lectin superfamily, e.g. CD23, CD72 against selectins, e.g. CD62
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2875Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the NGF/TNF superfamily, e.g. CD70, CD95L, CD153, CD154
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/42Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins
    • C07K16/4283Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins against an allotypic or isotypic determinant on Ig
    • C07K16/4291Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins against an allotypic or isotypic determinant on Ig against IgE
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the invention relates to the field of immunology, and in particular to the production of antibodies. More specifically, it concerns producing such antibodies by a process which includes the step of immunizing a transgenic animal with an antigen to which antibodies are desired.
  • the transgenic animal has been modified so as to produce human, as opposed to endogenous antibodies.
  • Antibodies with various i munospecificities are desirable for therapeutic and diagnostic use.
  • Those antibodies intended for human therapeutic and in vivo diagnostic use, in particular, have been problematic because prior art sources for such antibodies resulted in immunoglobulins bearing the characteristic structures of antibodies produced by nonhuman hosts. Such antibodies tend to be immunogenic when used in humans.
  • the invention is directed to methods to produce human antibodies by a process wherein at least one step of the process includes immunizing a transgenic nonhuman animal with the desired antigen.
  • the modified animal fails to produce endogenous antibodies, but instead produces B-cells which secrete immunoglobulins with fully human variable regions.
  • the antibodies produced include fully human antibodies and can be obtained from the animal directly, or from immortalized B-cells derived from the animal. .
  • the genes encoding the immunoglobulins with human variable regions can be recovered and expressed to obtain the antibodies directly or modified to obtain analogs of antibodies such as, for example, single chain F v molecules.
  • the invention is directed to a method to produce an immunoglobulin with a fully human variable region to a specific antigen or to produce an analog of said immunoglobulin by a process which comprises immunizing a nonhuman animal with the antigen under conditions that stimulate an immune response.
  • Fully human immunoglobulins are included in this group and are preferred.
  • the nonhuman animal is characterized by being substantially incapable of producing endogenous heavy or light immunoglobulin chain, but capable of producing immunoglobulins either with both human variable regions and constant regions or with fully human variable regions or both.
  • the animal produces B cells which secrete immunoglobulins, with at least variable regions that are fully human, specific for the antigen.
  • the human immunoglobulin of desired specificity can be directly recovered from the animal, for example, from the serum, or primary B cells can be obtained from the animal and immortalized.
  • the immortalized B cells can be used directly as the source of human antibodies or, alternatively, the genes encoding the antibodies can be prepared from the immortalized B cells or from primary B cells of the blood or lymphoid tissue (spleen, tonsils, lymph nodes, bone marrow) of the immunized animal and expressed in recombinant hosts, with or without modification, to produce the immunoglobulin or its analogs.
  • the genes encoding the repertoire of immunoglobulins produced by the immunized animal can be used to generate a library of immunoglobulins to permit screening for those variable regions which provide the desired affinity. Clones from the library which have the desired characteristics can then be used as a source of nucleotide sequences encoding the desired variable regions for further manipulation to generate antibodies or analogs with these characteristics using standard recombinant techniques.
  • the invention relates to an immortalized nonhuman B cell line derived from the above described animal.
  • the invention is directed to a recombinant host cell which is modified to contain the gene encoding either the human immunoglobulin with the desired specificity, or an analog thereof which exhibits the same specificity.
  • the invention is directed to antibodies or antibody analogs prepared by the above described methods and to recombinant materials for their production.
  • the invention is directed to antibodies with fully human variable regions, including fully human antibodies which are immunospecific with respect to particular antigens set forth herein and to analogs which are similarly immunospecific, as well as to the recombinant materials useful in the production of these antibodies.
  • Figure 1 shows the serum titers of anti-IL-6 antibodies from a XenomouseTM 1 immunized with human IL-6 and which antibodies contain human K light chains and/or human ⁇ heavy chains.
  • Figure 2 shows the serum titers of anti-IL-8 antibodies from a XenomouseTM immunized with human IL-8 and which antibodies contain human K light chains and/or human ⁇ heavy chains.
  • Fi-gure 3 shows the serum titers of anti-TNF ⁇ antibodies from a XenomouseTM immunized with human TNF-o; and which antibodies contain human K light chains and/or human ⁇ heavy chains.
  • Figure 4 shows the serum titers of anti-CD4 antibodies from a XenomouseTM immunized with human CD4 and which antibodies contain human K light chains and/or human ⁇ heavy chains.
  • Figure 5 shows the serum titers of a XenomouseTM immunized with 300.19 cells expressing L-selectin at their surface. In the ELISA assay used, these antibodies are detectable only if they carry human ⁇ constant region heavy chains.
  • Figure 6 shows the serum titers of a XenomouseTM immunized with 300.19 cells expressing L-selectin at their surface. In the ELISA assay used, these antibodies are detectable only if they carry human *c light chains.
  • Figure 7 shows the serum titers of a XenomouseTM immunized with 300.19 cells expressing L-selectin. In this ELISA, these antibodies are detectable if they carry human K light chain and/or murine y constant regions.
  • Figure 8 shows a FACS analysis of human neutrophils coupled to sera from a XenomouseTM (A195-2) immunized with human L-selectin and labeled with an antibody immunoreactive with murine heavy chain y constant region.
  • Figure 9 shows a FACS analysis of human neutrophils incubated with serum from a XenomouseTM (A195-2) immunized with human L-selectin and labeled with an antibody immunoreactive with human light chain K region.
  • Figure 10 is a diagram of a plasmid used to transfect mammalian cells to effect the production of the human protein gp39.
  • Figure 11 represents the serum titration curve of mice immunized with CHO cells expressing human gp39.
  • the antibodies detected in this ELISA must be immunoreactive with gp39 and contain human heavy chain ⁇ constant regions or human *c light chains.
  • Figure 12 shows the results of a FACS analysis of antibodies from a XenomouseTM (labeled A247-4) immunized with human gp39 reacted with activated human T cells.
  • Figure 12A shows the separation of human activated T cells into CD4 + and CD4" populations.
  • Panel B shows the results of a FACS analysis of the activated CD4 + T cells with antibodies from the XenomouseTM immunized with gp39 which contain murine heavy chain y constant regions;
  • panel C shows the corresponding results with respect to CD4 " populations.
  • Figure 13 is a titration curve with respect to monoclonal antibodies secreted by the hybridoma clone D5.1.
  • This clone is obtained from a XenomouseTM immunized with tetanus toxin C (TTC) and contains human K light chain and human ⁇ constant region in the heavy chain.
  • TTC tetanus toxin C
  • Figure 14 is a titration curve with respect to the hybridoma supernatant from clone K4.1.
  • This hybridoma clone is obtained from a XenomouseTM immunized with TTC and contains human K light chain and heavy chain having the murine y constant region.
  • Figure 15 shows binding curves for various concentrations of the K4.1 monoclonal antibody in a determination of the affinity of the monoclonal with its antigen in a BIAcore instrument.
  • Figure 16 shows the complete nucleotide sequence of the heavy chain from the antibody secreted by K4.1.
  • Figure 17 shows the complete nucleotide sequence of the light chain from the antibody secreted by K4.1.
  • Figure 18 shows the complete nucleotide sequence of the heavy chain from the antibody secreted by D5.1.
  • Figure 19 shows the complete nucleotide sequence of the light chain from the antibody secreted by D5.1.
  • the methods of the invention include administering an antigen for which human forms of immunospecific reagents are desired to a transgenic nonhuman animal which has been modified genetically so as to be capable of producing human, but not endogenous, antibodies.
  • the animal has been modified to disable the endogenous heavy and/or light chain loci in its genome, so that these endogenous loci are incapable of the rearrangement required to generate genes encoding immunoglobulins in response to an antigen.
  • the animal will have been provided, stably, in its genome, at least one human heavy chain locus and at least one human light chain locus so that in response to an administered antigen, the human loci can rearrange to provide genes encoding human variable regions immunospecific for the antigen.
  • the first step is administration of the antigen.
  • Techniques for such administration are conventional and involve suitable immunization protocols and formulations which will depend on the nature of the antigen per se. It may be necessary to provide the antigen with a carrier to enhance its immunogenicity and/or to include formulations which contain adjuvants and/or to administer multiple injections, and the like. Such techniques are standard and optimization of them will depend on the characteristics of the particular antigen for which immunospecific reagents are desired.
  • immunospecific reagents includes immunoglobulins and their analogs.
  • analogs has a specific meaning in this context. It refers to moieties that contain the fully human portions of the immunoglobulin which account for its immunospecificity.
  • variable regions including the complementarity determining regions (CDRs) are required, along with sufficient portions of the framework regions (FRs) to result in the appropriate three dimensional conformation.
  • Typical immunospecific analogs of antibodies include F ( a b ' ) _t» F a b ' » and F a b regions. Modified forms of the variable regions to obtain, for example, single chain F v analogs with the appropriate immunospecificity are known.
  • variable regions derived from antibodies with varying specificities can also be coupled to a variety of additional substances which can provide toxicity, biological functionality, alternative binding specificities and the like.
  • the moieties including the fully human variable regions produced by the methods of the invention include single-chain fusion proteins, molecules coupled by covalent methods other than those involving peptide linkages, and aggregated molecules. Examples of analogs which include variable regions coupled to additional molecules covalently or noncovalently include those in the following nonlimiting illustrative list. Traunecker, A. et al . Int J
  • Cancer Supp (1992) Supp 7:51-52 describe the bispecific reagent janusin in which the F v region directed to CD3 is coupled to soluble CD4 or to other ligands such as OVCA and IL-7.
  • the fully human variable regions produced by the method of the invention can be constructed into F v molecules and coupled to alternative ligands such as those illustrated in the cited article.
  • Higgins, P.J. et al . J Infect Disease (1992) 166:198-202 describe a heteroconjugate antibody composed of 0KT3 cross-linked to an antibody directed to a specific sequence in the V3 region or GP120.
  • heteroconjugate antibodies can also be constructed using at least the human variable regions contained in the immunoglobulins produced by the invention methods. Additional examples of bispecific antibodies include those described by Fanger, M.W. et al . Cancer Treat Res (1993) £&:181-194 and by Fanger, M.W. et al . Crit Rev Immunol (1992) 12.:101-124.
  • Conjugates that are immunotoxins including conventional antibodies have been widely described in the art.
  • the toxins may be coupled to the antibodies by conventional coupling techniques or immunotoxins containing protein toxin portions can be produced as fusion proteins.
  • the analogs of the present invention can be used in a corresponding way to obtain such immunotoxins. Illustrative of such immunotoxins are those described by Byrs, B.S. et al . Seminars Cell Biol (1991) 2:59-70 and by Fanger, M.W. et al. Immunol Today (1991) 12:51-54.
  • immunoglobulins and analogs of the invention will have agonist activity with respect to antigens for which they are immunospecific in the cases wherein the antigens perform signal transducing functions.
  • a subset of antibodies or analogs prepared according to the methods of the invention which are immunospecific for, for example, a cell surface receptor will be capable of eliciting a response from cells bearing this receptor corresponding to that elicited by the native ligand.
  • antibodies or analogs which are immunospecific for substances mimicking transition states of chemical reactions will have catalytic activity.
  • a subset of the antibodies and analogs of the invention will function as catalytic antibodies.
  • the genes encoding the immunoglobulins produced by the transgenic animals of the invention can be retrieved and the nucleotide sequences encoding the fully human variable region can be manipulated according to known techniques to provide a variety of analogs such as those described above.
  • the immunoglobulins themselves containing the human variable regions can be modified using standard coupling techniques to provide conjugates retaining immunospecificity and fully human characteristics in the immunospecific region.
  • immunoglobulin "analogs" refers to moieties which contain those portions of the antibodies of the invention which retain their human characteristics and their immunospecificity. These will retain sufficient human variable region to provide the desired specificity.
  • all of the methods of the invention include administering the appropriate antigen to the transgenic animal. The recovery or production of the antibodies themselves can be achieved in various ways.
  • the polyclonal antibodies produced by the animal and secreted into the bloodstream can be recovered using known techniques. Purified forms of these antibodies can, of course, be readily prepared by standard purification techni-ques, preferably including affinity chromatography with respect to the particular antigen, or even with respect to the particular epitope of the antigen for which specificity is desired. In any case, in order to monitor the success of immunization, the antibody levels with respect to the antigen in serum will be monitored using standard techniques such as ELISA, RIA and the like.
  • a portion of the polyclonal antiserum obtained may include an endogenous heavy chain constant region derived from the host, even though the variable regions are fully human.
  • use of the polyclonal antiserum directly would be inappropriate.
  • the presence of these chimeras which is believed to result from in vivo isotype switching as described by Gerstein et al . Cell (1990) £1:537, is not problematic, in view of conventional purification and modification methods and in view of the availability of alternative methods to recover fully human antibodies, if desired, described in the following paragraphs.
  • the polyclonal antiserum could be subjected to suitable separation techniques to provide compositions containing only fully human immunoglobulins. Portions of the serum which display characteristics of the host species can be removed, for example, using affinity reagents with the appropriate anti species immunoglobulins or immunospecific portions thereof. Furthermore, for applications where only the variable regions of the antibodies are required, treating the polyclonal antiserum with suitable reagents so as to generate F ⁇ , F ⁇ , , or F (ab , ) portions results in compositions containing fully human characteristics. Such fragments are sufficient for use, for example, in immunodiagnostic procedures involving coupling the immunospecific portions of immunoglobulins to detecting reagents such as radioisotopes.
  • the polyclonal antiserum can be treated to provide compositions with the desired characteristics including compositions consisting essentially of fully human antibodies and compositions including immunoglobulin analogs wherein the immunospecific portion is fully human.
  • immunoglobulins and analogs with desired characteristics can be generated from immortalized B cells derived from the transgenic animals used in the method of the invention or from the rearranged genes provided by these animals in response to immunization.
  • hybridomas derived from the B cells of the immunized animal can be screened so as to choose only those secreting fully human antibodies and that the genetic material can be recovered from the hybridomas or from lymphocytes in spleen, blood, or lymph nodes of the immunized animal and manipulated using conventional techniques to replace any endogenous constant region with a human one or to produce a desired analog.
  • the B cells can be obtained, typically from the spleen, but also, if desired, from the peripheral blood lymphocytes or lymph nodes and immortalized using any of a variety of techniques, most commonly using the fusion methods described by Kohler and Milstein.
  • the resulting hybridomas (or otherwise immortalized B cells) can then be cultured as single colonies and screened for secretion of antibodies of the desired specificity.
  • the screen can also include a determination of the fully human character of the antibody. For example, as described in the examples below, a sandwich ELISA wherein the monoclonal in the hybridoma supernatant is bound both to antigen and to an antihu an constant region can be employed.
  • hybridomas that secrete antibodies which are immunoreactive with antispecies antibodies directed to the species of the immunized animal can be discarded.
  • the desired antibodies can be recovered, again using conventional techniques. They can be prepared in quantity by culturing the immortalized B cells using conventional methods, either in vitro, or in vivo to produce ascites fluid. Purification of the resulting monoclonal antibody preparations is less burdensome than in the case of serum since each immortalized colony will secrete only a single type of antibody. In any event, standard purification techniques to isolate the antibody from other proteins in the culture medium can be employed.
  • the immortalized cells can be used as a source of rearranged heavy chain and light chain loci for subsequent expression and/or genetic manipulation. Isolation of genes from such antibody-producing cells is straightforward since high levels of the appropriate mRNAs are available for production of a cDNA library.
  • the recovered rearranged loci can be manipulated as desired. For example, the constant region can be exchanged for that of a different isotype or that of a human antibody, as described above, or eliminated altogether.
  • the variable regions can be linked to encode single chain F v regions. Multiple F v regions can be linked to confer binding ability to more than one target or chimeric heavy and light chain combinations can be employed.
  • the coding sequences including those that encode, at a minimum, the variable regions of the human heavy and light chain can be inserted into expression systems contained on vectors which can be transfected into standard recombinant host cells.
  • host cells As described below, a variety of such host cells may be used; for efficient processing, however, mammalian cells are preferred. Typical mammalian cell lines useful for this purpose include CHO cells, 293 cells, or NSO-GS cells.
  • the production of the antibody or analog is then undertaken by culturing the modified recombinant host under culture conditions appropriate for the growth of the host cells and the expression of the coding sequences.
  • the antibodies are then recovered from the culture.
  • the expression systems are preferably designed to include signal peptides so that the resulting antibodies are secreted into the medium; however, intracellular production is also possible.
  • the phage library is thus screened for the antibodies with highest affinity for the antigen and the genetic material recovered from the appropriate clone. Further rounds of screening can increase the affinity of the original antibody isolated.
  • the manipulations described above for recombinant production of the antibody or modification to form a desired analog can then be employed.
  • the modified or unmodified rearranged loci are manipulated using standard recombinant techniques by constructing expression systems operable in a desired host cell, such as, typically, a Chinese hamster ovary cell, and the desired immunoglobulin or analog is produced using standard recombinant expression techniques, and recovered and purified using conventional methods.
  • compositions of the invention will have utilities similar to those ascribable to nonhuman antibodies directed against the same antigen. Such utilities include, for example, use as a affinity ligands for purification, as reagents in immunoassays, as components of immunoconjugates, and as therapeutic agents for appropriate indications.
  • antibodies or their analogs with fully human characteristics.
  • These reagents avoid the undesired immune responses engendered by antibodies or analogs which have characteristics marking them as originating from non-human species.
  • Other attempts to "humanize” antibodies do not result in reagents with fully human characteristics.
  • chimeric antibodies with murine variable regions and human constant regions are easily prepared, but, of course, retain murine characteristics in the variable regions.
  • Even the much more difficult procedure of "humanizing" the variable regions by manipulating the genes encoding the amino acid sequences that form the framework regions does not provide the desired result since the CDRs, typically of nonhuman origin, cannot be manipulated without destroying immunospecificity.
  • the methods of the present invention provide, for the first time, immunoglobulins that are fully human or analogs which contain immunospecific regions with fully human characteristics.
  • leukocyte markers such as CD2, CD3, CD4, CD5, CD6, CD7, CD8, CDlla,b,C, CD13, CD14, CD18, CD19, CD20, CD22, CD23, CD27 and its ligand, CD28 and its ligands B7.1, B7.2, B7.3, CD29 and its ligand, CD30 and its ligand, CD40 and its ligand gp39, CD44, CD45 and isoforms
  • CDw52 (Campath antigen)
  • CD56, CD58, CD69, CD72, CTLA-4, LFA-1 and TCR histocompatibility antigens such as MHC class I or
  • adhesion molecules including the integrins, such as VLA-1, VLA-2, VLA-3, VLA-4, VLA-5, VLA-6, LFA-1, Mac-1 and pl50,95; and the selectins, such as L-selectin, E-selectin, and
  • interleukins such as IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, and IL-15
  • interleukin receptors such as IL-1R, IL-2R, IL-3R, IL-4R, IL-5R, IL-6R, IL-7R, IL-8R, IL-9R, IL-10R, IL-11R, IL-12R, IL-13R, IL-14R, and IL-15R
  • chemokines such as PF4, RANTES, MlPl ⁇ , MCP1, NAP-2, Gro ⁇ , Gro/3, and IL-8
  • growth factors such as TNFalpha, TGFbeta, TSH, VEGF/VPF, PTHrP, EGF family
  • Igs and their receptors such as IgE, FceRI, and FCeRII
  • tumor antigens such as her2-neu, mucin, CEA and endosialin
  • allergens such as house dust mite antigen, lol pi (grass) antigens, and urushiol
  • viral proteins such as CMV glycoproteins B, H, and gCIII, HIV-l envelope glycoproteins, RSV envelope glycoproteins, HSV envelope glycoproteins, EBV envelope glycoproteins, VZV envelope glycoproteins, HPV envelope glycoproteins, Hepatitis family surface antigens
  • toxins such as pseudomonas endotoxin and osteopontin/uropontin, snake venom, and bee venom
  • blood factors such as complement C3b, complement C5a, complement C5b-9, Rh factor, fibrinogen, fibrin, and myelin associated growth inhibitor
  • enzymes such as cholesterol ester transfer protein, membrane bound matrix metalloproteases, and glutamic acid
  • immunoglobulins and analogs are those immunospecific with respect to human IL-6, human IL-8, human TNFcu, human CD4, human L-selectin, and human gp39.
  • Human antibodies against IL-8 are particularly useful in preventing tumor metastasis and inflammatory states such as asthma and reperfusion injury.
  • Antibodies and analogs immunoreactive with human TNF ⁇ and human IL-6 are useful in treating cachexia and septic shock as well as autoimmune disease.
  • Antibodies and analogs immunoreactive with gp39 or with L-selectin are also effective in treating or preventing autoimmune disease.
  • anti-gp39 is helpful in treating graft versus host disease, in preventing organ transplant rejection, and in treating glomerulonephritis.
  • Antibodies and analogs against L-selectin are useful in treating ischemia associated with reperfusion injury.
  • Typical autoimmune diseases which can be treated using the above-mentioned antibodies and analogs include systemic lupus erythematosus, rheumatoid arthritis, psoriasis, Sjogren's, scleroderma, mixed connective tissue disease, dermatomyositis, polymyositis, Reiter's syndrome, Behcet's disease, Type 1 diabetes, Hashimoto's thyroiditis, Grave's disease, multiple sclerosis, myasthenia gravis and pemphigus.
  • mice designated “xenomice”
  • xenomice mice
  • Immunization protocols appropriate to each antigen are described in the specific examples below.
  • the sera of the immunized xenomice (or the supernatants from immortalized B cells) were titrated for antigen specific human antibodies in each case using a standard ELISA format. In this format, the antigen used for immunization was immobilized onto wells of microtiter plates.
  • the plates were washed and blocked and the sera (or supernatants) were added as serial dilutions for 1-2 hours of incubation. After washing, bound antibody having human characteristics was detected by adding the appropriate antispecies Ig (typically antihuman K chain antibody or antihuman ⁇ chain antibody) conjugated to horseradish peroxidase (HRP) for one hour. In some cases, the bound antibodies were tested for murine characteristics using antimurine antibodies, typically antimurine y chain antibody. After again washing, the chromogenic reagent o-phenylene diamine (OPD) substrate and hydrogen peroxide were added and the plates were read 30 minutes later at 492 nm using a microplate reader.
  • Ig typically antihuman K chain antibody or antihuman ⁇ chain antibody conjugated to horseradish peroxidase
  • HRP horseradish peroxidase
  • the bound antibodies were tested for murine characteristics using antimurine antibodies, typically antimurine y chain antibody.
  • OPD chromogenic reagent o-phenylene
  • the antigen was coated using plate coating buffer (0.1 M carbonate buffer, pH 9.6); the assay blocking buffer used was 0.5% BSA, 0.1% Tween 20 and 0.01% Thimerosal in PBS; the substrate buffer used in color development was citric acid 7.14 g/1: dibasic sodium phosphate 17.96 g/1; the developing solution (made immediately before use) was 10 ml substrate buffer, 10 mg OPD, plus 5 ml hydrogen peroxide; the stop solution (used to stop color development) was 2 M sulfuric acid. The wash solution was 0.05% Tween 20 in PBS.
  • EXflW le l Human Antibodies Against Human IL-6 Three to 5 xenomice aged 8-20 weeks were age-matched and immunized intraperitoneally with 50 ⁇ g human IL-6 emulsified in complete Freund's adjuvant for primary immunization and in incomplete Freund's adjuvant for subse-quent injections. The mice received 6 injections 2-3 weeks apart. Serum titers were determined after the second dose and following each dose thereafter. Bleeds were performed 6-7 days after injections from the retrobulbar plexus. The blood was allowed to clot at room temperature for about 2 hours and then incubated at 4°C for at least 2 hours before separating and collecting the sera.
  • ELISAs were conducted as described above by applying 100 ⁇ l/well of recombinant human IL-6 at 2 mg/ml in coating buffer. Plates were then incubated at 4°C overnight or at 37°C for 2 hours and then washed three times in washing buffer. Addition of 100 ⁇ l/well blocking buffer was followed by incubation at room temperature for 2 hours, and an additional 3 washes.
  • Immunization and serum preparation were as described in Example 1 as except that human recombinant IL-8 was used as an immunogen.
  • ELISA assays were performed with respect to the recovered serum, also exactly as described in Example 1, except that the ELISA plates were initially coated using 100 ⁇ l/well of recombinant human IL-8 at 0.5 mg/ml in the coating buffer.
  • the results obtained for various serum dilutions from XenomouseTM A260-5 after 6 injections are shown in Figure 2.
  • Human anti- IL-8 binding was again shown at serum dilutions having concentrations higher than that represented by a 1:1,000 dilution.
  • Example 3 Human Antibodies Against Human TNF ⁇ Immunization and serum preparation were conducted as described in Example 1 except that human recombinant TNF ⁇ was substituted for human IL-6. ELISAs were conducted as described in Example 1 except that the initial coating of the ELISA plate employed 100 ⁇ l/well recombinant human TNF ⁇ at 1 mg/ml in coating buffer.
  • Human CD4 antigen was prepared as a surface protein using human CD4 f on transfected recombinant cells as follows.
  • Human CD4 ⁇ * consists of the extracellular domain of CD4, the transmembrane domain of CD4, and the cytoplasmic domain of residues 31-142 of the mature £ chain.
  • RBL- 2H3 cells at 10 6 cells per well were cultured in 750 ml DMEM low + 20% FBS (Gibco) and 16 ⁇ g/ml polybrene with an equal volume of proviral supernatant for 2 hours at 37°C, 5% C0 2 .
  • 750 ml of medium was removed and 750 ⁇ l of infection medium and retroviral supernatant were added to each well and the cultures incubated overnight.
  • the cells were washed and expanded in DMEM low + 10% FBS until sufficient cells were available for sorting.
  • the CD4 " zeta transduced RBL-2H3 cells were sorted using the FACSTAR plus (Becton Dickinson) .
  • the cells were stained for human CD4 with a mouse antihuman CD4 " PE antibody and the top 2-3% expressing cells were selected.
  • Immunizations were conducted as described in Example 1 using 10 x 10 6 cells per mouse except that the primary injection was subcutaneous at the base of the neck. The mice received 6 injections 2-3 weeks apart. Serum was prepared and analyzed by ELISA as described in Example 1 except that the initial coating of the ELISA plate utilized 100 ⁇ l per well of recombinant soluble CD4 at 2 mg/ml of coating buffer. The titration curve for serum from XenomouseTM A207-1 after 6 injections is shown in Figure 4. Titers of human anti-CD4 reactivity were shown at concentrations representing greater than those at 1:1,000 dilution.
  • the antigen was prepared as a surface displayed protein in C51 cells, a high expressing clone derived by transfecting the mouse pre-B cell 300.19 with LAM-1 cDNA (LAM-1 is the gene encoding L-selectin) (Tedder, et al . , J Immunol (1990) ______..- 532 ) or with similarly transfected CHO cells.
  • LAM-1 is the gene encoding L-selectin
  • the transfected cells were sorted using fluorescent activated cell sorting using anti-Leu-8 antibody as label.
  • the C51 and the transfected CHO cells were grown in DME 4.5 g/1 glucose with 10% FCS and 1 mg/ml G418 in 100 mm dishes.
  • Negative control cells, 3T3-P317 (transfected with gag/pol/env genes of Moloney virus) were grown in the same medium without G418.
  • Sera were collected as described in Example l and analyzed by ELISA in a protocol similar to that set forth in Example 1.
  • the transfected cells were plated into 96 well plates and cell monolayers grown for 1-2 days depending on cell number and used for ELISA when confluent.
  • the cells were fixed by first washing with cold 1 x PBS and then fixing solution (5% glacial acetic acid, 95% ethanol) was added.
  • the plates were incubated at -25°C for 5 minutes and can be stored at this temperature if sealed with plate sealers.
  • the ELISA is begun by bringing the plates to room temperature, flicking to remove fixing solution and washing 5 times with DMEM medium containing 10% FCS at 200 ⁇ l per well.
  • the wells were treated with various serum dilutions or with positive or negative controls.
  • Positive control wells contained murine IgGl monoclonal antibody to human L-selectin.
  • the wells were incubated for 45 minutes and monolayer integrity was checked under a microscope.
  • the wells were then incubated with either antimouse IgG (1/1000) or with antihuman K chain antibody or antihuman ⁇ chain antibody conjugates with HRP described in Example 1.
  • the plates were then washed with 1% BSA/PBS and again with PBS and monolayer integrity was checked. The plates were developed, stopped, and read as described above.
  • the results for serum from XenomouseTM A303-3 are shown in Figs.
  • ELISAs were also performed using as the immobilized antigen a fusion protein consisting of the extracellular domain of human L-selectin fused to the constant domain of human IgG x (Guo, et al . , Cell Immunol (1994) 154:202) .
  • the L-selectin fusion protein was made by transient transfection of human 293 cells using calcium phosphate transfection (Wigler, M. , Cell (1979) 16_:777) .
  • Serum preparation was performed as described in Example 1.
  • ELISAs were conducted essentially as in Example 1, except that the initial coating of the ELISA plate employed 100 ⁇ l transfected 293 cell culture supernatant containing the L-selectin-Ig fusion protein. Detection employed HRP-mouse antihuman K and HRP-goat antimouse IgG.
  • Figure 7 shows the results from XenomouseTM A195-2; antibodies specific for L-selectin having human * light chains and/or human variable regions with murine heavy chain y regions are present in the serum.
  • the antisera obtained from the immunized xenomice were also tested for staining of human neutrophils which express L-selectin.
  • Human neutrophils were prepared as follows: peripheral blood was collected from normal volunteers with 100 units/ml heparin. About 3.5 ml blood was layered over an equal volume of One-step Polymorph Gradient (Accurate Chemical, Westbury, NY) and spun for 30 minutes at 450 x g at 20°C. The neutrophil fraction was removed and washed twice in DPBS/2% FBS. The neutrophils were then stained with either:
  • mouse monoclonal antibody LAM1-3 as a positive control, mouse monoclonal antibody LAM1-3 (against L-selectin) ; and (3) as negative control, antiserum from a XenomouseTM immunized with cells expressing human gp39.
  • Example 6 Human Antibodies Against Human gp39 gp39 (the ligand for CD40) is expressed on activated human CD4 + T cells.
  • the sera of xenomice immunized with recombinant gp39 according to this example contained antibodies immunospecific for gp39 with fully human variable regions; the sera contained fully human IgM antibodies and chimeric IgG antibodies containing human variable regions and murine constant heavy chain y region.
  • the antigen consisted of stable transfectants of
  • CHO cells were split 1:10 prior to transfection in DMEM 4.5 g/1 glucose, 10% FBS, 2 mM glutamine, MEM, NEAA supplemented with additional glycine, hypoxanthine and thymidine.
  • the cells were cotransfected with the gp39 vector at 9 ⁇ g/10 cm plate (6 X 10 5 cells) and the DHFR expressing vector pSV2DHFRs (Subranani et al . Mol Cell Biol (1981) 2:854) at 1 ⁇ g/10 cm plate using calcium phosphate transfection. 24 hours later the cells were split 1:10 into the original medium containing G418 at 0.6 mg/ml.
  • Cells producing gp39 were sorted by FACS using an anti-gp39 antibody.
  • mice grouped as described in Example 1 were immunized with 300.19 cells expressing gp39 using a primary immunization subcutaneously at the base of the neck and with secondary intraperitoneal injections every 2-3 weeks.
  • Sera were harvested as described in Example 1 for the ELISA assay.
  • the ELISA procedure was conducted substantially as set forth in Example 1; the microtiter plates were coated with CHO cells expressing gp39 grown in a 100 mm dish in DMEM, 4.5 g/1 glucose, 10% FCS, 4 mM glutamine, and nonessential amino acid (NEAA) solution for MEM (100X) .
  • the cells were trypsinized and plated into 96-well filtration plates at 10 5 cells/200 ⁇ l well and incubated at 37°C overnight.
  • the positive controls were mouse antihuman gp39; negative controls were antisera from mice immunized with an antigen other than gp39. 50 ⁇ l of sample were used for each assay. The remainder of the assay is as described in Example 1.
  • the dilution curves for the sera obtained after 4 injections from mice immunized with gp39 expressed on CHO cells are shown in Figure 11. As shown, the sera contained antihuman gp39 immunospecificity which is detectable with human K and human ⁇ chain antibodies coupled to HRP.
  • PBMC peripheral blood was collected from normal volunteers with the addition of 100 unit/ml heparin.
  • PBMC peripheral blood was collected from normal volunteers with the addition of 100 unit/ml heparin.
  • PBMC peripheral blood was collected from normal volunteers with the addition of 100 unit/ml heparin.
  • PBMC peripheral blood was collected from normal volunteers with the addition of 100 unit/ml heparin.
  • PBMC peripheral blood was collected from normal volunteers with the addition of 100 unit/ml heparin.
  • PBMC were isolated over Ficoll gradient and activated with 3 ⁇ g/ml PHA, 1 ⁇ g/ml PMA in IMDM plus 10% FBS plus 25 ⁇ M 2-mercaptoethanol for 4 hours.
  • the PBMC were stained with mouse Mab against human CD4 labeled with FITC to permit separation of CD4 + and CD4" human T cells.
  • the activated CD4 + and CD4 " T cells were then analyzed by FACS using staining with either:
  • the detecting antibody in the FACS analysis was goat antimouse IgG (PE) .
  • the results are shown in Figure 12.
  • CD4 + (R2) and CD4" (R3) cells were separated prior to FACS analysis.
  • Panel B shows the results for CD4 + cells and shows that sera from mice immunized with gp39 (labeled A247-4 in the figure) reacted with these activated CD4 + T cells;
  • panel C shows that these sera did not react with CD4" cells.
  • These antibodies carried murine heavy chain y constant regions.
  • the results of panels B and C also confirm that the TNF-injected XenomouseTM did not make antibodies against gp39.
  • Example 7 Preparation of High-Affinity Human Mabs Agajngt Tetmug Tpyjn
  • the antibodies prepared in this example were secreted by hybridomas obtained by immortalizing B cells from xenomice immunized with tetanus toxin.
  • the immunization protocol was similar to that set forth in Example 1 using 50 ⁇ g tetanus toxin emulsified in complete Freund's adjuvant for intraperitoneal primary immunization followed by subsequent intraperitoneal injections with antigen incorporated into incomplete Freund's adjuvant.
  • the mice received a total of 4 injections 2-3 weeks apart.
  • anti-TTC antitetanus toxinC
  • the spleen cells were fused with myeloma cells P3X63- Ag8.653 as described by Galfre, G. and Milstein, C. Methods in Enzymology (1981) 21:3-46.
  • the cells were resuspended in DMEM, 15% FCS, containing HAT supplemented with glutamine, pen/strep for culture at 37°C and 10% C0 2 .
  • the cells were plated in microtiter trays and maintained in HAT-supplemented medium for two weeks before transfer to HAT-supplemented medium.
  • the ELISA was conducted as described in Example 1 wherein the antigen coating consisted of 100 ⁇ l/well of tetanus toxin C (TTC) protein at 2 mg/ml in coating buffer, followed by incubation at 4°C overnight or at 37°C for two hours.
  • TTC tetanus toxin C
  • HRP-conjugated goat antimouse IgG at 1/2000 was used in addition to HRP mouse antihuman IgM as described in Example 1.
  • Two hybridomas that secreted anti-TTC according to the ELISA assay, clone D5.1 and clone K4.1 were used for further analysis.
  • clone D5.1 secretes fully human anti-TTC which is detectable using HRP-conjugated antihuman ⁇ chain antibody and HRP-conjugated antihuman K chain antibody. This is confirmed in Figures 18 and 19.
  • Figure 14 shows that clone K4.1 secretes anti-TTC which is immunoreactive with antimurine y and antihuman K HRP-conjugated antibodies.
  • clone K4.1 provides anti-TTC fully with human variable region as confirmed in Figures 16 and 17 and a murine constant heavy chain ⁇ region.
  • the antibodies secreted by D5.l and K4.1 did not immunoreact in ELISAs using TNF ⁇ , IL-6, or IL-8 as immobilized antigen under conditions where positive controls (sera from xenomice immunized with TNF ⁇ , IL-6 and IL-8 respectively) showed positive ELISA results.
  • TTC TTC antigen
  • the surface was activated with 35 ⁇ l of equal volumes 0.1 M NHS and 0.1 M EDC injected across the surface followed by 30 ⁇ l of TTC fragment at 100 ⁇ g/ml in 10 mM sodium acetate buffer pH 5.0. The surface was blocked by injecting 35 ⁇ l 1 M ethanolamine and washed to remove noncovalently bound TCC using 5 ⁇ l 0.1 M HC1. The entire immobilization procedure was conducted with a continuous flow of buffer at 5 ⁇ l/min. This results in about 7500-8500 response units (RU) of TTC per chip. (1000 RU corresponds to about 1 ng of protein per mm 2 .) For chips with low antigen density, the procedure utilizes 15 ⁇ l rather than 30 ⁇ l of TTC, resulting in chips containing 550-950 RU.
  • Chips could be regenerated after use in single determinations by injecting 10 ⁇ l formal or MgCl 2 .
  • the chips are used to determine binding affinities by determining k a and k b (the association and dissociation rate constants) for the antibody with respect to the immobilized TTC.
  • the association rate constant is measured over six minutes at a flow rate of 5 ⁇ l/min. at different concentrations of K4.1 Mab in the range of 2.16 nm-69.33 n .
  • the dissociation rate constant is measured at a constant buffer flow rate of 5 ⁇ l/min after completion of the antibody injection.
  • the raw data are graphed in Figure 15 and the calculated results are shown in Table 1.
  • Immobilized K4.1 cone. rate rate constant constant tetanus toxinC range nM ka(10 5 M ⁇ s -1 ) kd(10 5 s _:l ) KAW ⁇ -ka/kd KD(M) kd/ka
  • the K4.1 antibody has a binding constant (K a ) for TTC somewhat larger than 10 10 M *1 .
  • the complete nucleotide sequence of the cDNAs encoding the heavy and light chains of the K4.1 and D5.1 monoclonals were determined as shown in Fi-gures 16-19.
  • PolyA mRNA was isolated from about 10 6 hybridoma cells and used to generate cDNA using random hexamers as primers. Portions of the product were amplified by PCR using the appropriate primers.
  • Both cell lines were known to provide human light chains; for PCR amplification of light chain encoding cDNA, the primers used were HKP1 (5' -CTCTGTGACACTCTCCTGGGAGTT-3' ) for priming from the constant region terminus and two oligos, used in equal amounts to prime from the variable segments: B3 (5' -CCACCATCAACTGCAAGTCCAGCCA-3' ) and B2/Bl (5' -GAAACGACACTCACGCAGTCTCCAGC-3' ) .
  • the primers were MG-24Vi for the human variable regions: 5' -CAGGTGCAGCTGGAGCAGTCiGG-3' which, with inosine as shown recognizes the human variable regions V H1 _ 2 , V H1 _ 3 , V H4 and V H6 , and from the constant region MG-25 i.e.,
  • MG-24VI was used to prime from the variable and ⁇ Pl (5' -TTTTCTTTGTTGCCGTTGGGGTGC-3' ) was used to prime from the constant region terminus.
  • Figure 16 representing the heavy chain of the Mab secreted by K4.1
  • the sequence shows the presence of the human variable segment VH6, the human diversity region DN1, and the human joining segment JH4 linked to the murine ⁇ l constant region.
  • VH6 the human variable segment
  • DN1 the human diversity region
  • JH4 the human joining segment JH4 linked to the murine ⁇ l constant region.
  • Figure 17 which shows the light chain of the K4.1 antibody
  • analysis shows the presence of the human K variable region B3 and joining region JK4. Eight nucleotides are missing from B3 at the V ⁇ -J ⁇ junction and four mutations were found in the variable region.
  • Five nongermline nucleotide additions were present at the V ⁇ -J ⁇ junction.
  • FIG 18 which sets forth the sequence for the heavy chain of the antibody secreted by clone D5.1, this shows the heavy chain is comprised of the human variable fragment VH6, the human diversity region DNl and the human joining segment JH4 linked to the human ⁇ constant region.
  • VH6 the human variable fragment
  • DNl the human diversity region
  • JH4 the human joining segment
  • Germline chimeric mice containing integrated human DNA from the immunoglobulin loci were immunized by injection of 15- 20 ⁇ g of human IgE/ ⁇ in adjuvant. The mice were boosted with 15-20 ⁇ g of human IgE/ ⁇ every 14 days after the primary immunization. A bleed was done on the immunized animals to test the titer of serum antibodies against human IgE/ ⁇ . The mice with the highest titers were sacrificed and the spleen removed.
  • Myeloma cells line P3X63-Ag8.653, used as the fusion partner for the spleen cells, were thawed 6 days prior to the fusion and grown in tissue culture.
  • cells were split into fresh medium containing 10% fetal calf serum (FCS) at a ratio of 1:3.
  • FCS fetal calf serum
  • FCS fetal calf serum
  • the splenocytes were further washed twice by centrifugation in serum-free medium. Myeloma cells were also washed in serum-free medium at this time. Each cell type was counted and combined at a ratio of 1:3 (myeloma to splenocyte) , mixed gently and centrifuged once together.
  • a solution of 40% polyethylene glycol (PEG) was slowly added to the cell pellet while the cells were gently resuspended over a period of one minute. Cells were incubated at room temperature for one minute in the PEG solution and then slowly diluted into 5 ml serum-free medium over 5 minutes. Five ml more were added over the next 90 seconds. Cells were incubated at room temperature for 5 minutes. The cells were centrifuged at low speed and the supernatant removed. The cells were resuspended slowly and very gently in 5 ml of hybridoma medium containing 10% FCS, IX OPI, IX NE amino acids and 10 mM HEPES.
  • PEG polyethylene glycol
  • Cells were further diluted to 100 ml final volume in hybridoma medium with IX HAT solution (hypoxanthine, aminopterin and thymidine) .
  • the fused cells were aliquoted 100 ⁇ l/well of 96- 2311 plates and cultured at 37°C and 10% C0 2 .
  • Cells were fed at 10 days post-fusion with 100 ⁇ l/well of hybridoma medium with IX HT (hypoxanthine and thymidine) and allowed to grow close to confluence before screening.
  • IX HAT solution hypoxanthine, aminopterin and thymidine
  • Positive wells were further tested for human IgE/ ⁇ specificity.
  • the cells were transferred from the 96-well plate to 0.5 ml of hybridoma medium with IX HT in a 48-well plate. At this stage the cells were subcloned by limiting dilution into 96-well plates so that a single antibody producing cell was in culture. As the culture became confluent, the cells were expanded to l ml, 3 ml, 5 ml, etc. and frozen aliquots were stored in liquid nitrogen to preserve the cell stocks.
  • a chimeric nonhuman host particularly a murine host
  • a transgenic host can be immunized with immunogens which could not be used with a human host.
  • the resulting B cells may then be used for immortalization for the continuous production of the desired antibody.
  • the immortalized cells may be used for isolation of the genes encoding the immunoglobulin or analog and be subjected to further molecular modification by methods such as in vitro mutagenesis or other techniques to modify the properties of the antibodies. These modified genes may then be returned to the immortalized cells by transfection to provide for a continuous mammalian cellular source of the desired antibodies.
  • the subject invention provides for a convenient source of human antibodies, where the human antibodies are produced in analogous manner to the production of antibodies in a human host.
  • the animal host cells conveniently provide for the activation and rearrangement of human DNA in the host cells for production of human antibodies.
  • human antibodies can be produced to human immunogens, e.g., proteins, by immunization of the subject host mammal with human immunogens.
  • the resulting antisera will be specific for the human immunogen and may be harvested from the serum of the host.
  • the immunized host B cells may be used for immortalization, e.g., myeloma cell fusion, transfection, etc. to provide immortal cells, e.g., hybridomas, to produce monoclonal antibodies.
  • the antibodies, antiserum and monoclonal antibodies will be glycosylated in accordance with the species of the cell producing the antibodies.
  • Rare variable regions of the Ig locus may be recruited in producing the antibodies, so that antibodies having rare variable regions may be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

Antibodies with fully human variable regions against a specific antigen can be prepared by administering the antigen to a transgenic animal which has been modified to produce such antibodies in response to antigenic challenge, but whose endogenous loci have been disabled. Various subsequent manipulations can be performed to obtain either antibodies per se or analogs thereof.

Description

HUMAN ANTIBODIES DERIVED FROM IMMUNIZED XENOMICE
Technical Field
The invention relates to the field of immunology, and in particular to the production of antibodies. More specifically, it concerns producing such antibodies by a process which includes the step of immunizing a transgenic animal with an antigen to which antibodies are desired. The transgenic animal has been modified so as to produce human, as opposed to endogenous antibodies.
Background Art
PCT application WO 94/02602, published 3 February 1994 and incorporated herein by reference, describes in detail the production of transgenic nonhuman animals which are modified so as to produce antibodies with fully human variable regions rather than endogenous antibodies in response to antigenic challenge. Briefly, the endogenous loci encoding the light and heavy immunoglobulin chains are incapacitated in the transgenic hosts and loci encoding human heavy and light chain proteins are inserted into the genome. In general, the animal which provides all the desired modifications is obtained by cross-breeding intermediate animals containing fewer than the full complement of modifications. The preferred embodiment of the nonhuman animal described in the specification is a mouse. Thus, mice, specifically, are described which, when administered immunogens, produce antibodies with human variable regions, including fully human antibodies, rather than murine antibodies that are immunospecific for these antigens.
The availability of such transgenic animals makes possible new approaches to the production of fully human antibodies. Antibodies with various i munospecificities are desirable for therapeutic and diagnostic use. Those antibodies intended for human therapeutic and in vivo diagnostic use, in particular, have been problematic because prior art sources for such antibodies resulted in immunoglobulins bearing the characteristic structures of antibodies produced by nonhuman hosts. Such antibodies tend to be immunogenic when used in humans.
The availability of the nonhuman, immunogen-responsive transgenic animals described in the above-referenced WO 94/02602 make possible convenient production of human antibodies without the necessity of employing human hosts.
Disclosure of the Invention
The invention is directed to methods to produce human antibodies by a process wherein at least one step of the process includes immunizing a transgenic nonhuman animal with the desired antigen. The modified animal fails to produce endogenous antibodies, but instead produces B-cells which secrete immunoglobulins with fully human variable regions. The antibodies produced include fully human antibodies and can be obtained from the animal directly, or from immortalized B-cells derived from the animal. .Alternatively, the genes encoding the immunoglobulins with human variable regions can be recovered and expressed to obtain the antibodies directly or modified to obtain analogs of antibodies such as, for example, single chain Fv molecules.
Thus, in one aspect, the invention is directed to a method to produce an immunoglobulin with a fully human variable region to a specific antigen or to produce an analog of said immunoglobulin by a process which comprises immunizing a nonhuman animal with the antigen under conditions that stimulate an immune response. Fully human immunoglobulins are included in this group and are preferred. The nonhuman animal is characterized by being substantially incapable of producing endogenous heavy or light immunoglobulin chain, but capable of producing immunoglobulins either with both human variable regions and constant regions or with fully human variable regions or both. In the resulting immune response, the animal produces B cells which secrete immunoglobulins, with at least variable regions that are fully human, specific for the antigen. The human immunoglobulin of desired specificity can be directly recovered from the animal, for example, from the serum, or primary B cells can be obtained from the animal and immortalized. The immortalized B cells can be used directly as the source of human antibodies or, alternatively, the genes encoding the antibodies can be prepared from the immortalized B cells or from primary B cells of the blood or lymphoid tissue (spleen, tonsils, lymph nodes, bone marrow) of the immunized animal and expressed in recombinant hosts, with or without modification, to produce the immunoglobulin or its analogs. In addition, the genes encoding the repertoire of immunoglobulins produced by the immunized animal can be used to generate a library of immunoglobulins to permit screening for those variable regions which provide the desired affinity. Clones from the library which have the desired characteristics can then be used as a source of nucleotide sequences encoding the desired variable regions for further manipulation to generate antibodies or analogs with these characteristics using standard recombinant techniques.
In another aspect, the invention relates to an immortalized nonhuman B cell line derived from the above described animal. In still another aspect, the invention is directed to a recombinant host cell which is modified to contain the gene encoding either the human immunoglobulin with the desired specificity, or an analog thereof which exhibits the same specificity.
In still other aspects, the invention is directed to antibodies or antibody analogs prepared by the above described methods and to recombinant materials for their production.
In still other aspects, the invention is directed to antibodies with fully human variable regions, including fully human antibodies which are immunospecific with respect to particular antigens set forth herein and to analogs which are similarly immunospecific, as well as to the recombinant materials useful in the production of these antibodies.
Figure 1 shows the serum titers of anti-IL-6 antibodies from a Xenomouse™1 immunized with human IL-6 and which antibodies contain human K light chains and/or human μ heavy chains. Figure 2 shows the serum titers of anti-IL-8 antibodies from a Xenomouse™ immunized with human IL-8 and which antibodies contain human K light chains and/or human μ heavy chains. Fi-gure 3 shows the serum titers of anti-TNFα antibodies from a Xenomouse™ immunized with human TNF-o; and which antibodies contain human K light chains and/or human μ heavy chains.
Figure 4 shows the serum titers of anti-CD4 antibodies from a Xenomouse™ immunized with human CD4 and which antibodies contain human K light chains and/or human μ heavy chains.
Figure 5 shows the serum titers of a Xenomouse™ immunized with 300.19 cells expressing L-selectin at their surface. In the ELISA assay used, these antibodies are detectable only if they carry human μ constant region heavy chains.
Figure 6 shows the serum titers of a Xenomouse™ immunized with 300.19 cells expressing L-selectin at their surface. In the ELISA assay used, these antibodies are detectable only if they carry human *c light chains.
Figure 7 shows the serum titers of a Xenomouse™ immunized with 300.19 cells expressing L-selectin. In this ELISA, these antibodies are detectable if they carry human K light chain and/or murine y constant regions. Figure 8 shows a FACS analysis of human neutrophils coupled to sera from a Xenomouse™ (A195-2) immunized with human L-selectin and labeled with an antibody immunoreactive with murine heavy chain y constant region.
Figure 9 shows a FACS analysis of human neutrophils incubated with serum from a Xenomouse™ (A195-2) immunized with human L-selectin and labeled with an antibody immunoreactive with human light chain K region.
Figure 10 is a diagram of a plasmid used to transfect mammalian cells to effect the production of the human protein gp39.
Figure 11 represents the serum titration curve of mice immunized with CHO cells expressing human gp39. The antibodies detected in this ELISA must be immunoreactive with gp39 and contain human heavy chain μ constant regions or human *c light chains.
Figure 12 shows the results of a FACS analysis of antibodies from a Xenomouse™ (labeled A247-4) immunized with human gp39 reacted with activated human T cells. Figure 12A shows the separation of human activated T cells into CD4+ and CD4" populations. Panel B shows the results of a FACS analysis of the activated CD4+ T cells with antibodies from the Xenomouse™ immunized with gp39 which contain murine heavy chain y constant regions; panel C shows the corresponding results with respect to CD4" populations.
Figure 13 is a titration curve with respect to monoclonal antibodies secreted by the hybridoma clone D5.1. This clone is obtained from a Xenomouse™ immunized with tetanus toxin C (TTC) and contains human K light chain and human μ constant region in the heavy chain.
Figure 14 is a titration curve with respect to the hybridoma supernatant from clone K4.1. This hybridoma clone is obtained from a Xenomouse™ immunized with TTC and contains human K light chain and heavy chain having the murine y constant region.
Figure 15 shows binding curves for various concentrations of the K4.1 monoclonal antibody in a determination of the affinity of the monoclonal with its antigen in a BIAcore instrument.
Figure 16 shows the complete nucleotide sequence of the heavy chain from the antibody secreted by K4.1.
Figure 17 shows the complete nucleotide sequence of the light chain from the antibody secreted by K4.1. Figure 18 shows the complete nucleotide sequence of the heavy chain from the antibody secreted by D5.1.
Figure 19 shows the complete nucleotide sequence of the light chain from the antibody secreted by D5.1.
Modes of Carrying Out the Invention In general, the methods of the invention include administering an antigen for which human forms of immunospecific reagents are desired to a transgenic nonhuman animal which has been modified genetically so as to be capable of producing human, but not endogenous, antibodies. Typically, the animal has been modified to disable the endogenous heavy and/or light chain loci in its genome, so that these endogenous loci are incapable of the rearrangement required to generate genes encoding immunoglobulins in response to an antigen. In addition, the animal will have been provided, stably, in its genome, at least one human heavy chain locus and at least one human light chain locus so that in response to an administered antigen, the human loci can rearrange to provide genes encoding human variable regions immunospecific for the antigen.
The details for constructing such an animal useful in the method of the invention are provided in the PCT application WO 94/02602 referenced above. For production of the desired antibodies, the first step is administration of the antigen. Techniques for such administration are conventional and involve suitable immunization protocols and formulations which will depend on the nature of the antigen per se. It may be necessary to provide the antigen with a carrier to enhance its immunogenicity and/or to include formulations which contain adjuvants and/or to administer multiple injections, and the like. Such techniques are standard and optimization of them will depend on the characteristics of the particular antigen for which immunospecific reagents are desired.
As used herein, the term "immunospecific reagents" includes immunoglobulins and their analogs. The term "analogs" has a specific meaning in this context. It refers to moieties that contain the fully human portions of the immunoglobulin which account for its immunospecificity. In particular, variable regions including the complementarity determining regions (CDRs) are required, along with sufficient portions of the framework regions (FRs) to result in the appropriate three dimensional conformation. Typical immunospecific analogs of antibodies include F(ab') _t» Fab' » and Fab regions. Modified forms of the variable regions to obtain, for example, single chain Fv analogs with the appropriate immunospecificity are known. A review of such Fv construction is found, for example, in Tibtech (1991) S_: . The construction of antibody analogs with multiple immunospecificities is also possible by coupling the human variable regions derived from antibodies with varying specificities. The variable regions with fully human characteristics can also be coupled to a variety of additional substances which can provide toxicity, biological functionality, alternative binding specificities and the like. The moieties including the fully human variable regions produced by the methods of the invention include single-chain fusion proteins, molecules coupled by covalent methods other than those involving peptide linkages, and aggregated molecules. Examples of analogs which include variable regions coupled to additional molecules covalently or noncovalently include those in the following nonlimiting illustrative list. Traunecker, A. et al . Int J
Cancer Supp (1992) Supp 7:51-52 describe the bispecific reagent janusin in which the Fv region directed to CD3 is coupled to soluble CD4 or to other ligands such as OVCA and IL-7. Similarly, the fully human variable regions produced by the method of the invention can be constructed into Fv molecules and coupled to alternative ligands such as those illustrated in the cited article. Higgins, P.J. et al . J Infect Disease (1992) 166:198-202 describe a heteroconjugate antibody composed of 0KT3 cross-linked to an antibody directed to a specific sequence in the V3 region or GP120. Such heteroconjugate antibodies can also be constructed using at least the human variable regions contained in the immunoglobulins produced by the invention methods. Additional examples of bispecific antibodies include those described by Fanger, M.W. et al . Cancer Treat Res (1993) £&:181-194 and by Fanger, M.W. et al . Crit Rev Immunol (1992) 12.:101-124. Conjugates that are immunotoxins including conventional antibodies have been widely described in the art. The toxins may be coupled to the antibodies by conventional coupling techniques or immunotoxins containing protein toxin portions can be produced as fusion proteins. The analogs of the present invention can be used in a corresponding way to obtain such immunotoxins. Illustrative of such immunotoxins are those described by Byrs, B.S. et al . Seminars Cell Biol (1991) 2:59-70 and by Fanger, M.W. et al. Immunol Today (1991) 12:51-54.
It will also be noted that some of the immunoglobulins and analogs of the invention will have agonist activity with respect to antigens for which they are immunospecific in the cases wherein the antigens perform signal transducing functions. Thus, a subset of antibodies or analogs prepared according to the methods of the invention which are immunospecific for, for example, a cell surface receptor, will be capable of eliciting a response from cells bearing this receptor corresponding to that elicited by the native ligand. Furthermore, antibodies or analogs which are immunospecific for substances mimicking transition states of chemical reactions will have catalytic activity. Hence, a subset of the antibodies and analogs of the invention will function as catalytic antibodies.
In short, the genes encoding the immunoglobulins produced by the transgenic animals of the invention can be retrieved and the nucleotide sequences encoding the fully human variable region can be manipulated according to known techniques to provide a variety of analogs such as those described above. In addition, the immunoglobulins themselves containing the human variable regions can be modified using standard coupling techniques to provide conjugates retaining immunospecificity and fully human characteristics in the immunospecific region. Thus, immunoglobulin "analogs" refers to moieties which contain those portions of the antibodies of the invention which retain their human characteristics and their immunospecificity. These will retain sufficient human variable region to provide the desired specificity. As stated above, all of the methods of the invention include administering the appropriate antigen to the transgenic animal. The recovery or production of the antibodies themselves can be achieved in various ways.
First, and most straightforward, the polyclonal antibodies produced by the animal and secreted into the bloodstream can be recovered using known techniques. Purified forms of these antibodies can, of course, be readily prepared by standard purification techni-ques, preferably including affinity chromatography with respect to the particular antigen, or even with respect to the particular epitope of the antigen for which specificity is desired. In any case, in order to monitor the success of immunization, the antibody levels with respect to the antigen in serum will be monitored using standard techniques such as ELISA, RIA and the like.
It will be noted, from the examples below, that a portion of the polyclonal antiserum obtained may include an endogenous heavy chain constant region derived from the host, even though the variable regions are fully human. Under these circumstances, to the extent that an application requires fully human antibodies, use of the polyclonal antiserum directly would be inappropriate. However, the presence of these chimeras, which is believed to result from in vivo isotype switching as described by Gerstein et al . Cell (1990) £1:537, is not problematic, in view of conventional purification and modification methods and in view of the availability of alternative methods to recover fully human antibodies, if desired, described in the following paragraphs. First, and most simply, the polyclonal antiserum could be subjected to suitable separation techniques to provide compositions containing only fully human immunoglobulins. Portions of the serum which display characteristics of the host species can be removed, for example, using affinity reagents with the appropriate anti species immunoglobulins or immunospecific portions thereof. Furthermore, for applications where only the variable regions of the antibodies are required, treating the polyclonal antiserum with suitable reagents so as to generate F^, F^, , or F(ab,) portions results in compositions containing fully human characteristics. Such fragments are sufficient for use, for example, in immunodiagnostic procedures involving coupling the immunospecific portions of immunoglobulins to detecting reagents such as radioisotopes. Thus, for some applications, the polyclonal antiserum can be treated to provide compositions with the desired characteristics including compositions consisting essentially of fully human antibodies and compositions including immunoglobulin analogs wherein the immunospecific portion is fully human. .Alternatively, immunoglobulins and analogs with desired characteristics can be generated from immortalized B cells derived from the transgenic animals used in the method of the invention or from the rearranged genes provided by these animals in response to immunization. It will be apparent that hybridomas derived from the B cells of the immunized animal can be screened so as to choose only those secreting fully human antibodies and that the genetic material can be recovered from the hybridomas or from lymphocytes in spleen, blood, or lymph nodes of the immunized animal and manipulated using conventional techniques to replace any endogenous constant region with a human one or to produce a desired analog.
Thus, as an alternative to harvesting the antibodies directly from the animal, the B cells can be obtained, typically from the spleen, but also, if desired, from the peripheral blood lymphocytes or lymph nodes and immortalized using any of a variety of techniques, most commonly using the fusion methods described by Kohler and Milstein. The resulting hybridomas (or otherwise immortalized B cells) can then be cultured as single colonies and screened for secretion of antibodies of the desired specificity. As described above, the screen can also include a determination of the fully human character of the antibody. For example, as described in the examples below, a sandwich ELISA wherein the monoclonal in the hybridoma supernatant is bound both to antigen and to an antihu an constant region can be employed. Conversely, hybridomas that secrete antibodies which are immunoreactive with antispecies antibodies directed to the species of the immunized animal can be discarded. After the appropriate hybridomas are selected, the desired antibodies can be recovered, again using conventional techniques. They can be prepared in quantity by culturing the immortalized B cells using conventional methods, either in vitro, or in vivo to produce ascites fluid. Purification of the resulting monoclonal antibody preparations is less burdensome than in the case of serum since each immortalized colony will secrete only a single type of antibody. In any event, standard purification techniques to isolate the antibody from other proteins in the culture medium can be employed. As an alternative to obtaining human immunoglobulins directly from the culture of immortalized B cells derived from the animal, the immortalized cells can be used as a source of rearranged heavy chain and light chain loci for subsequent expression and/or genetic manipulation. Isolation of genes from such antibody-producing cells is straightforward since high levels of the appropriate mRNAs are available for production of a cDNA library. The recovered rearranged loci can be manipulated as desired. For example, the constant region can be exchanged for that of a different isotype or that of a human antibody, as described above, or eliminated altogether. The variable regions can be linked to encode single chain Fv regions. Multiple Fv regions can be linked to confer binding ability to more than one target or chimeric heavy and light chain combinations can be employed. Once the genetic material is available, design of analogs as described above which retain their ability to bind the desired target, as well as their human characteristics, is straightforward.
Once the appropriate genetic material is obtained and, if desired, modified to encode an analog, the coding sequences including those that encode, at a minimum, the variable regions of the human heavy and light chain can be inserted into expression systems contained on vectors which can be transfected into standard recombinant host cells. As described below, a variety of such host cells may be used; for efficient processing, however, mammalian cells are preferred. Typical mammalian cell lines useful for this purpose include CHO cells, 293 cells, or NSO-GS cells.
The production of the antibody or analog is then undertaken by culturing the modified recombinant host under culture conditions appropriate for the growth of the host cells and the expression of the coding sequences. The antibodies are then recovered from the culture. The expression systems are preferably designed to include signal peptides so that the resulting antibodies are secreted into the medium; however, intracellular production is also possible.
In addition to deliberate design of modified forms of the immunoglobulin genes to produce analogs, advantage can be taken of phage display techniques to provide libraries containing a repertoire of antibodies with varying affinities for the desired antigen. For production of such repertoires, it is unnecessary to immortalize the B cells from the immunized animal; rather the primary B cells can be used directly as a source of DNA. The mixture of cDNAs obtained from B cells, e.g., derived from spleens, is used to prepare an expression library, for example, a phage display library transfected into E. coli . The resulting cells are tested for immunoreactivity to the desired antigen. Techniques for the identification of high affinity human antibodies from such libraries are described by Griffiths, A.D., et al., EMBO J (1994) 11:3245-3260; by Nissi , A., et al. i id, 692-698, and by Griffiths, A.D., et al., ibid, 725-734. Ultimately, clones from the library are identified which produce binding affinities of a desired magnitude for the antigen, and the DNA encoding the product responsible for such binding is recovered and manipulated for standard recombinant expression. Phage display libraries may also be constructed using previously manipulated nucleotide sequences and screened in similar fashion. In general, the cDNAs encoding heavy and light chain are independently supplied or are linked to form Fv analogs for production in the phage library.
The phage library is thus screened for the antibodies with highest affinity for the antigen and the genetic material recovered from the appropriate clone. Further rounds of screening can increase the affinity of the original antibody isolated. The manipulations described above for recombinant production of the antibody or modification to form a desired analog can then be employed. As above, the modified or unmodified rearranged loci are manipulated using standard recombinant techniques by constructing expression systems operable in a desired host cell, such as, typically, a Chinese hamster ovary cell, and the desired immunoglobulin or analog is produced using standard recombinant expression techniques, and recovered and purified using conventional methods.
The application of the foregoing processes to antibody production has enabled the preparation of human immunospecific reagents with respect to antigens for which human antibodies have not heretofore been available. The immunoglobulins that result from the above-described methods and the analogs made possible thereby, provide novel compositions for use in analysis, diagnosis, research, and therapy. The particular use will, of course, depend on the immunoglobulin or analog prepared. In general, the compositions of the invention will have utilities similar to those ascribable to nonhuman antibodies directed against the same antigen. Such utilities include, for example, use as a affinity ligands for purification, as reagents in immunoassays, as components of immunoconjugates, and as therapeutic agents for appropriate indications.
Particularly in the case of therapeutic agents or diagnostic agents for use in vivo, it is highly advantageous to employ antibodies or their analogs with fully human characteristics. These reagents avoid the undesired immune responses engendered by antibodies or analogs which have characteristics marking them as originating from non-human species. Other attempts to "humanize" antibodies do not result in reagents with fully human characteristics. For example, chimeric antibodies with murine variable regions and human constant regions are easily prepared, but, of course, retain murine characteristics in the variable regions. Even the much more difficult procedure of "humanizing" the variable regions by manipulating the genes encoding the amino acid sequences that form the framework regions does not provide the desired result since the CDRs, typically of nonhuman origin, cannot be manipulated without destroying immunospecificity. Thus, the methods of the present invention provide, for the first time, immunoglobulins that are fully human or analogs which contain immunospecific regions with fully human characteristics.
There are large numbers of antigens for which human antibodies and their human analogs would be made available by the methods of the invention. These include the following as a nonlimiting set: leukocyte markers, such as CD2, CD3, CD4, CD5, CD6, CD7, CD8, CDlla,b,C, CD13, CD14, CD18, CD19, CD20, CD22, CD23, CD27 and its ligand, CD28 and its ligands B7.1, B7.2, B7.3, CD29 and its ligand, CD30 and its ligand, CD40 and its ligand gp39, CD44, CD45 and isoforms, CDw52 (Campath antigen), CD56, CD58, CD69, CD72, CTLA-4, LFA-1 and TCR histocompatibility antigens, such as MHC class I or
II, the Lewis Y antigens, SLex, SLey, SLea, and SLeb; adhesion molecules, including the integrins, such as VLA-1, VLA-2, VLA-3, VLA-4, VLA-5, VLA-6, LFA-1, Mac-1 and pl50,95; and the selectins, such as L-selectin, E-selectin, and
P-selectin and their counterreceptors VCAM-1, ICAM-1, ICAM-2, and LFA-3; interleukins, such as IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, and IL-15; interleukin receptors, such as IL-1R, IL-2R, IL-3R, IL-4R, IL-5R, IL-6R, IL-7R, IL-8R, IL-9R, IL-10R, IL-11R, IL-12R, IL-13R, IL-14R, and IL-15R; chemokines, such as PF4, RANTES, MlPlα, MCP1, NAP-2, Groα, Gro/3, and IL-8; growth factors, such as TNFalpha, TGFbeta, TSH, VEGF/VPF, PTHrP, EGF family, FGF, PDGF family, endothelin, and gastrin releasing peptide (GRP) ; growth factor receptors, such as TNFalphaR, RGFbetaR, TSHR, VEGFR/VPFR, FGFR, EGFR, PTHrPR, PDGFR family, EPO-R, GCSF-R and other hematopoietic receptors; interferon receptors, such as IFNαR, IFN0R, and IFNγR;
Igs and their receptors, such as IgE, FceRI, and FCeRII; tumor antigens, such as her2-neu, mucin, CEA and endosialin; allergens, such as house dust mite antigen, lol pi (grass) antigens, and urushiol; viral proteins, such as CMV glycoproteins B, H, and gCIII, HIV-l envelope glycoproteins, RSV envelope glycoproteins, HSV envelope glycoproteins, EBV envelope glycoproteins, VZV envelope glycoproteins, HPV envelope glycoproteins, Hepatitis family surface antigens; toxins, such as pseudomonas endotoxin and osteopontin/uropontin, snake venom, and bee venom; blood factors, such as complement C3b, complement C5a, complement C5b-9, Rh factor, fibrinogen, fibrin, and myelin associated growth inhibitor; enzymes, such as cholesterol ester transfer protein, membrane bound matrix metalloproteases, and glutamic acid decarboxylase (GAD) ; and miscellaneous antigens including ganglioside GD3, ganglioside GM2, LMPl, LMP2, eosinophil major basic protein, eosinophil cationic protein, pANCA, Amadori protein, Type IV collagen, glycated lipids, γ-interferon, A7, P-glycoprotein and Fas (AFO-1) and oxidized- DL.
Particularly preferred immunoglobulins and analogs are those immunospecific with respect to human IL-6, human IL-8, human TNFcu, human CD4, human L-selectin, and human gp39. Human antibodies against IL-8 are particularly useful in preventing tumor metastasis and inflammatory states such as asthma and reperfusion injury. Antibodies and analogs immunoreactive with human TNFα and human IL-6 are useful in treating cachexia and septic shock as well as autoimmune disease. Antibodies and analogs immunoreactive with gp39 or with L-selectin are also effective in treating or preventing autoimmune disease. In addition, anti-gp39 is helpful in treating graft versus host disease, in preventing organ transplant rejection, and in treating glomerulonephritis. Antibodies and analogs against L-selectin are useful in treating ischemia associated with reperfusion injury.
Typical autoimmune diseases which can be treated using the above-mentioned antibodies and analogs include systemic lupus erythematosus, rheumatoid arthritis, psoriasis, Sjogren's, scleroderma, mixed connective tissue disease, dermatomyositis, polymyositis, Reiter's syndrome, Behcet's disease, Type 1 diabetes, Hashimoto's thyroiditis, Grave's disease, multiple sclerosis, myasthenia gravis and pemphigus.
The examples below are intended to illustrate but not to limit the invention. In these examples, mice, designated "xenomice", are used for initial immunizations. A detailed description of such xenomice is found in the above referenced PCT application WO 94/02602. Immunization protocols appropriate to each antigen are described in the specific examples below. The sera of the immunized xenomice (or the supernatants from immortalized B cells) were titrated for antigen specific human antibodies in each case using a standard ELISA format. In this format, the antigen used for immunization was immobilized onto wells of microtiter plates. The plates were washed and blocked and the sera (or supernatants) were added as serial dilutions for 1-2 hours of incubation. After washing, bound antibody having human characteristics was detected by adding the appropriate antispecies Ig (typically antihuman K chain antibody or antihuman μ chain antibody) conjugated to horseradish peroxidase (HRP) for one hour. In some cases, the bound antibodies were tested for murine characteristics using antimurine antibodies, typically antimurine y chain antibody. After again washing, the chromogenic reagent o-phenylene diamine (OPD) substrate and hydrogen peroxide were added and the plates were read 30 minutes later at 492 nm using a microplate reader.
Unless otherwise noted, the antigen was coated using plate coating buffer (0.1 M carbonate buffer, pH 9.6); the assay blocking buffer used was 0.5% BSA, 0.1% Tween 20 and 0.01% Thimerosal in PBS; the substrate buffer used in color development was citric acid 7.14 g/1: dibasic sodium phosphate 17.96 g/1; the developing solution (made immediately before use) was 10 ml substrate buffer, 10 mg OPD, plus 5 ml hydrogen peroxide; the stop solution (used to stop color development) was 2 M sulfuric acid. The wash solution was 0.05% Tween 20 in PBS.
EXflW le l Human Antibodies Against Human IL-6 Three to 5 xenomice aged 8-20 weeks were age-matched and immunized intraperitoneally with 50 μg human IL-6 emulsified in complete Freund's adjuvant for primary immunization and in incomplete Freund's adjuvant for subse-quent injections. The mice received 6 injections 2-3 weeks apart. Serum titers were determined after the second dose and following each dose thereafter. Bleeds were performed 6-7 days after injections from the retrobulbar plexus. The blood was allowed to clot at room temperature for about 2 hours and then incubated at 4°C for at least 2 hours before separating and collecting the sera.
ELISAs were conducted as described above by applying 100 μl/well of recombinant human IL-6 at 2 mg/ml in coating buffer. Plates were then incubated at 4°C overnight or at 37°C for 2 hours and then washed three times in washing buffer. Addition of 100 μl/well blocking buffer was followed by incubation at room temperature for 2 hours, and an additional 3 washes.
Then, 50 μl/well of diluted serum samples (and positive and negative controls) were added to the plates. Plates were then incubated at room temperature for 2 hours and again washed 3 times.
After washing, 100 μl/well of either mouse antihuman μ chain antibody conjugated to HRP at 1/2,000 or mouse antihuman K chain antibody conjugated to HRP at 1/2,000, diluted in blocking buffer were added. After a 1 hour incubation at room temperature, the plates were washed 3 times and developed with OPD substrate for 10-25 minutes. 50 μl/well of stop solution were then added and the results read on an ELISA plate reader at 492 nm. The dilution curves resulting from the titration of serum from Xenomouse™ A40-7 after 6 injections are shown in Figure 1. The data in Figure 1 show production of anti-IL-6 immunoreactive with antihuman K and antihuman μ detectable at serum dilutions above 1:1,000.
Example 2 Human Antibodies Against Human IL-8
Immunization and serum preparation were as described in Example 1 as except that human recombinant IL-8 was used as an immunogen.
ELISA assays were performed with respect to the recovered serum, also exactly as described in Example 1, except that the ELISA plates were initially coated using 100 μl/well of recombinant human IL-8 at 0.5 mg/ml in the coating buffer. The results obtained for various serum dilutions from Xenomouse™ A260-5 after 6 injections are shown in Figure 2. Human anti- IL-8 binding was again shown at serum dilutions having concentrations higher than that represented by a 1:1,000 dilution.
Example 3 Human Antibodies Against Human TNFα Immunization and serum preparation were conducted as described in Example 1 except that human recombinant TNFα was substituted for human IL-6. ELISAs were conducted as described in Example 1 except that the initial coating of the ELISA plate employed 100 μl/well recombinant human TNFα at 1 mg/ml in coating buffer.
The dilution curves for serum from Xenomouse™ A210-8 after 6 injections obtained are shown in Figure 3. Again significant titers of human anti-TNFα binding were shown.
Example 4 Human Antibodies Against Human CD4 The human CD4 antigen was prepared as a surface protein using human CD4 f on transfected recombinant cells as follows. Human CD4 {* consists of the extracellular domain of CD4, the transmembrane domain of CD4, and the cytoplasmic domain of residues 31-142 of the mature £ chain. Human CD4 zeta (F15 LTR) as described in Roberts, et al., Blood (1994) :2878 was introduced into the rat basophil leukemic cell line RBL-2H3, described by Callan, M. , et al., Proc Natl Acad Sci USA (1993) £0.:10454 using the kat high efficiency transduction system described by Finer, et al., Blood (1994) £1:43. Briefly, RBL- 2H3 cells at 106 cells per well were cultured in 750 ml DMEMlow + 20% FBS (Gibco) and 16 μg/ml polybrene with an equal volume of proviral supernatant for 2 hours at 37°C, 5% C02. One ml of medium was removed and 750 μl of infection medium and retroviral supernatant were added to each well and the cultures incubated overnight. The cells were washed and expanded in DMEMlow + 10% FBS until sufficient cells were available for sorting. The CD4" zeta transduced RBL-2H3 cells were sorted using the FACSTAR plus (Becton Dickinson) . The cells were stained for human CD4 with a mouse antihuman CD4" PE antibody and the top 2-3% expressing cells were selected.
Immunizations were conducted as described in Example 1 using 10 x 106 cells per mouse except that the primary injection was subcutaneous at the base of the neck. The mice received 6 injections 2-3 weeks apart. Serum was prepared and analyzed by ELISA as described in Example 1 except that the initial coating of the ELISA plate utilized 100 μl per well of recombinant soluble CD4 at 2 mg/ml of coating buffer. The titration curve for serum from Xenomouse™ A207-1 after 6 injections is shown in Figure 4. Titers of human anti-CD4 reactivity were shown at concentrations representing greater than those at 1:1,000 dilution.
Example 5
Human Antibodies Against Human L-selectin The antigen was prepared as a surface displayed protein in C51 cells, a high expressing clone derived by transfecting the mouse pre-B cell 300.19 with LAM-1 cDNA (LAM-1 is the gene encoding L-selectin) (Tedder, et al . , J Immunol (1990) ______..- 532 ) or with similarly transfected CHO cells. The transfected cells were sorted using fluorescent activated cell sorting using anti-Leu-8 antibody as label.
The C51 and the transfected CHO cells were grown in DME 4.5 g/1 glucose with 10% FCS and 1 mg/ml G418 in 100 mm dishes. Negative control cells, 3T3-P317 (transfected with gag/pol/env genes of Moloney virus) were grown in the same medium without G418.
Primary immunization was done by injection subcutaneously at the base of the neck; subsequent injections were intraperitoneal. 70-100 million C51 or transfected CHO cells were used per injection for a total of five injections 2-3 weeks apart.
Sera were collected as described in Example l and analyzed by ELISA in a protocol similar to that set forth in Example 1. For the ELISA, the transfected cells were plated into 96 well plates and cell monolayers grown for 1-2 days depending on cell number and used for ELISA when confluent. The cells were fixed by first washing with cold 1 x PBS and then fixing solution (5% glacial acetic acid, 95% ethanol) was added. The plates were incubated at -25°C for 5 minutes and can be stored at this temperature if sealed with plate sealers.
The ELISA is begun by bringing the plates to room temperature, flicking to remove fixing solution and washing 5 times with DMEM medium containing 10% FCS at 200 μl per well.
The wells were treated with various serum dilutions or with positive or negative controls. Positive control wells contained murine IgGl monoclonal antibody to human L-selectin. The wells were incubated for 45 minutes and monolayer integrity was checked under a microscope. The wells were then incubated with either antimouse IgG (1/1000) or with antihuman K chain antibody or antihuman μ chain antibody conjugates with HRP described in Example 1. The plates were then washed with 1% BSA/PBS and again with PBS and monolayer integrity was checked. The plates were developed, stopped, and read as described above. The results for serum from Xenomouse™ A303-3 are shown in Figs. 5 and 6; human antibodies both to L-selectin and control 3T3 cells were obtained. However, the serum titers are higher for the L-selectin-expressing cells as compared to parental 3T3 cells. These results show that Xenomouse™ A303-3 produces antibodies specific for L-selectin with human μ heavy chain regions and/or human K light chains.
ELISAs were also performed using as the immobilized antigen a fusion protein consisting of the extracellular domain of human L-selectin fused to the constant domain of human IgGx (Guo, et al . , Cell Immunol (1994) 154:202) . The L-selectin fusion protein was made by transient transfection of human 293 cells using calcium phosphate transfection (Wigler, M. , Cell (1979) 16_:777) . Serum preparation was performed as described in Example 1. ELISAs were conducted essentially as in Example 1, except that the initial coating of the ELISA plate employed 100 μl transfected 293 cell culture supernatant containing the L-selectin-Ig fusion protein. Detection employed HRP-mouse antihuman K and HRP-goat antimouse IgG.
Figure 7 shows the results from Xenomouse™ A195-2; antibodies specific for L-selectin having human * light chains and/or human variable regions with murine heavy chain y regions are present in the serum.
The antisera obtained from the immunized xenomice were also tested for staining of human neutrophils which express L-selectin. Human neutrophils were prepared as follows: peripheral blood was collected from normal volunteers with 100 units/ml heparin. About 3.5 ml blood was layered over an equal volume of One-step Polymorph Gradient (Accurate Chemical, Westbury, NY) and spun for 30 minutes at 450 x g at 20°C. The neutrophil fraction was removed and washed twice in DPBS/2% FBS. The neutrophils were then stained with either:
(1) antiserum from Xenomouse™ A195-2 immunized with C51 cells (expressing L-selectin) ;
(2) as a positive control, mouse monoclonal antibody LAM1-3 (against L-selectin) ; and (3) as negative control, antiserum from a Xenomouse™ immunized with cells expressing human gp39.
The stained, washed neutrophils were analyzed by FACS. The results for antiserum from Xenomouse™ A195-2 are shown in Figures 8 and 9. These results show the presence of antibodies in immunized Xenomouse™ serum which contain fully human variable regions immunoreactive with L-selectin. The negative control antiserum from mice immunized with gp39 does not contain antibodies reactive against human neutrophils. Serum from A195-2 (immunized with L-selectin-expressing cells) contains antibodies binding to human neutrophils detectable with a goat antimouse IgG antibody (Figure 8) , which binds with heavy chain protein composed of fully human variable regions and mouse y constant regions. Staining with anti L-selectin Xenomouse™ antisera detected with a mouse monoclonal antibody against human K chain antibody is shown in Figure 9, showing the presence of fully human x light chain. As explained above, these antibodies containing human variable regions are readily convertible to fully human antibodies. For example, using hybridomas secreting these antibodies, the cDNAs encoding them can be obtained. By amplifying the genes encoding human V regions using primers containing restriction enzyme recognition sites and cloning them into plasmids containing the coding sequences for human constant regions as described by Queen, et al . , Proc Natl Acad Sci (1989) JL6_:10029, genes encoding the fully human antibodies can be obtained for recombinant production.
Example 6 Human Antibodies Against Human gp39 gp39 (the ligand for CD40) is expressed on activated human CD4+ T cells. The sera of xenomice immunized with recombinant gp39 according to this example contained antibodies immunospecific for gp39 with fully human variable regions; the sera contained fully human IgM antibodies and chimeric IgG antibodies containing human variable regions and murine constant heavy chain y region. The antigen consisted of stable transfectants of
300.19 cells or of CHO cells expressing gp39 cDNA cloned into the mammalian expression vector PlKl.HUgp39/IRES NEO as shown in Figure 10. CHO cells were split 1:10 prior to transfection in DMEM 4.5 g/1 glucose, 10% FBS, 2 mM glutamine, MEM, NEAA supplemented with additional glycine, hypoxanthine and thymidine. The cells were cotransfected with the gp39 vector at 9 μg/10 cm plate (6 X 105 cells) and the DHFR expressing vector pSV2DHFRs (Subranani et al . Mol Cell Biol (1981) 2:854) at 1 μg/10 cm plate using calcium phosphate transfection. 24 hours later the cells were split 1:10 into the original medium containing G418 at 0.6 mg/ml. Cells producing gp39 were sorted by FACS using an anti-gp39 antibody.
Mice grouped as described in Example 1 were immunized with 300.19 cells expressing gp39 using a primary immunization subcutaneously at the base of the neck and with secondary intraperitoneal injections every 2-3 weeks. Sera were harvested as described in Example 1 for the ELISA assay. The ELISA procedure was conducted substantially as set forth in Example 1; the microtiter plates were coated with CHO cells expressing gp39 grown in a 100 mm dish in DMEM, 4.5 g/1 glucose, 10% FCS, 4 mM glutamine, and nonessential amino acid (NEAA) solution for MEM (100X) . On the day preceding the ELISA assay, the cells were trypsinized and plated into 96-well filtration plates at 105 cells/200 μl well and incubated at 37°C overnight. The positive controls were mouse antihuman gp39; negative controls were antisera from mice immunized with an antigen other than gp39. 50 μl of sample were used for each assay. The remainder of the assay is as described in Example 1.
The dilution curves for the sera obtained after 4 injections from mice immunized with gp39 expressed on CHO cells are shown in Figure 11. As shown, the sera contained antihuman gp39 immunospecificity which is detectable with human K and human μ chain antibodies coupled to HRP.
In addition, the sera were tested for their ability to react with activated human T cells included in PBMC using FACS analysis. To prepare the PBMC, human peripheral blood was collected from normal volunteers with the addition of 100 unit/ml heparin. PBMC were isolated over Ficoll gradient and activated with 3 μg/ml PHA, 1 μg/ml PMA in IMDM plus 10% FBS plus 25 μM 2-mercaptoethanol for 4 hours. After washing, the PBMC were stained with mouse Mab against human CD4 labeled with FITC to permit separation of CD4+ and CD4" human T cells.
The activated CD4+ and CD4" T cells were then analyzed by FACS using staining with either:
1) antiserum from a Xenomouse™ immunized with 300.19 cells producing gp39; 2) a positive control mouse Mab directed against α-CD40L (human gp39) ; and
3) a negative control antiserum from a Xenomouse™ immunized with TNF.
The detecting antibody in the FACS analysis was goat antimouse IgG (PE) . The results are shown in Figure 12.
As shown in Figure 12A, CD4+ (R2) and CD4" (R3) cells were separated prior to FACS analysis. Panel B shows the results for CD4+ cells and shows that sera from mice immunized with gp39 (labeled A247-4 in the figure) reacted with these activated CD4+ T cells; panel C shows that these sera did not react with CD4" cells. These antibodies carried murine heavy chain y constant regions. The results of panels B and C also confirm that the TNF-injected Xenomouse™ did not make antibodies against gp39.
Example 7 Preparation of High-Affinity Human Mabs Agajngt Tetmug Tpyjn The antibodies prepared in this example were secreted by hybridomas obtained by immortalizing B cells from xenomice immunized with tetanus toxin. The immunization protocol was similar to that set forth in Example 1 using 50 μg tetanus toxin emulsified in complete Freund's adjuvant for intraperitoneal primary immunization followed by subsequent intraperitoneal injections with antigen incorporated into incomplete Freund's adjuvant. The mice received a total of 4 injections 2-3 weeks apart.
After acceptable serum titers of antitetanus toxinC (anti-TTC) were obtained, a final immunization dose of antigen in PBS was given 4 days before the animals were sacrificed and the spleens were harvested for fusion.
The spleen cells were fused with myeloma cells P3X63- Ag8.653 as described by Galfre, G. and Milstein, C. Methods in Enzymology (1981) 21:3-46.
After fusion the cells were resuspended in DMEM, 15% FCS, containing HAT supplemented with glutamine, pen/strep for culture at 37°C and 10% C02. The cells were plated in microtiter trays and maintained in HAT-supplemented medium for two weeks before transfer to HAT-supplemented medium.
Supernatants from wells containing hybridomas were collected for a primary screen using an ELISA.
The ELISA was conducted as described in Example 1 wherein the antigen coating consisted of 100 μl/well of tetanus toxin C (TTC) protein at 2 mg/ml in coating buffer, followed by incubation at 4°C overnight or at 37°C for two hours. In the primary ELISA, HRP-conjugated goat antimouse IgG at 1/2000 was used in addition to HRP mouse antihuman IgM as described in Example 1. Two hybridomas that secreted anti-TTC according to the ELISA assay, clone D5.1 and clone K4.1 were used for further analysis. As shown in Figure 13, clone D5.1 secretes fully human anti-TTC which is detectable using HRP-conjugated antihuman μ chain antibody and HRP-conjugated antihuman K chain antibody. This is confirmed in Figures 18 and 19. Figure 14 shows that clone K4.1 secretes anti-TTC which is immunoreactive with antimurine y and antihuman K HRP-conjugated antibodies. Thus, clone K4.1 provides anti-TTC fully with human variable region as confirmed in Figures 16 and 17 and a murine constant heavy chain γ region.
The antibodies secreted by D5.l and K4.1 did not immunoreact in ELISAs using TNFα, IL-6, or IL-8 as immobilized antigen under conditions where positive controls (sera from xenomice immunized with TNFα, IL-6 and IL-8 respectively) showed positive ELISA results.
The affinity of the monoclonal antibodies secreted by K4.1 for TTC antigen was determined using commercially available reagents and instrumentation. BIAcore Instrument, CM5 sensor chips, surfactant P20 and the amine coupling kit were purchased from Pharmacia Biosensor (Piscataway, NJ) . TTC was immobilized at two levels of antigen density on the surface of the sensor chips according to the manufacturer's instructions. Briefly, after washing and equilibrating the instrument with buffer containing surfactant, the surfaces were activated and the TCC was immobilized.
For high antigen density, the surface was activated with 35 μl of equal volumes 0.1 M NHS and 0.1 M EDC injected across the surface followed by 30 μl of TTC fragment at 100 μg/ml in 10 mM sodium acetate buffer pH 5.0. The surface was blocked by injecting 35 μl 1 M ethanolamine and washed to remove noncovalently bound TCC using 5 μl 0.1 M HC1. The entire immobilization procedure was conducted with a continuous flow of buffer at 5 μl/min. This results in about 7500-8500 response units (RU) of TTC per chip. (1000 RU corresponds to about 1 ng of protein per mm2.) For chips with low antigen density, the procedure utilizes 15 μl rather than 30 μl of TTC, resulting in chips containing 550-950 RU.
Chips could be regenerated after use in single determinations by injecting 10 μl formal or MgCl2.
The chips are used to determine binding affinities by determining ka and kb (the association and dissociation rate constants) for the antibody with respect to the immobilized TTC. The association rate constant is measured over six minutes at a flow rate of 5 μl/min. at different concentrations of K4.1 Mab in the range of 2.16 nm-69.33 n . The dissociation rate constant is measured at a constant buffer flow rate of 5 μl/min after completion of the antibody injection. The raw data are graphed in Figure 15 and the calculated results are shown in Table 1.
Table 1 Kinetic Constants of K4.1 Measured Using the BIAcore on Two Different Surfaces
Association Dissociation Binding Dissociation
Immobilized K4.1 cone. rate rate constant constant tetanus toxinC range nM ka(105 M^s-1) kd(105s_:l) KAW^-ka/kd KD(M)=kd/ka
931 RU 4.3 - 34.7 6.47 ± 1.05 4.02 ± 1.42 1.6 X 10 10 0.62 X 10"10 868 RU 4.3 - 34.7 7.19 ± 2.18 2.02 ± 1.01 3.5 x 10 10 0.28 x 10'10
As shown, the K4.1 antibody has a binding constant (Ka) for TTC somewhat larger than 1010 M*1.
The complete nucleotide sequence of the cDNAs encoding the heavy and light chains of the K4.1 and D5.1 monoclonals were determined as shown in Fi-gures 16-19. PolyA mRNA was isolated from about 106 hybridoma cells and used to generate cDNA using random hexamers as primers. Portions of the product were amplified by PCR using the appropriate primers.
Both cell lines were known to provide human light chains; for PCR amplification of light chain encoding cDNA, the primers used were HKP1 (5' -CTCTGTGACACTCTCCTGGGAGTT-3' ) for priming from the constant region terminus and two oligos, used in equal amounts to prime from the variable segments: B3 (5' -CCACCATCAACTGCAAGTCCAGCCA-3' ) and B2/Bl (5' -GAAACGACACTCACGCAGTCTCCAGC-3' ) .
For amplification of the heavy chain from K4.1 (which contains the murine γl constant region) , the primers were MG-24Vi for the human variable regions: 5' -CAGGTGCAGCTGGAGCAGTCiGG-3' which, with inosine as shown recognizes the human variable regions VH1_2, VH1_3, VH4 and VH6, and from the constant region MG-25 i.e.,
5' -GCACACCGCTGGA-CAGGGATCCAiAGTTTC-3' , which, containing inosine as shown recognizes murine γl, γ2A, γ2B, and γ3.
For amplification of the heavy chain of the antibody derived from D5.1 (which contains the human μ constant region), MG-24VI was used to prime from the variable and μPl (5' -TTTTCTTTGTTGCCGTTGGGGTGC-3' ) was used to prime from the constant region terminus.
Turning first to the results shown in Figure 16 representing the heavy chain of the Mab secreted by K4.1, the sequence shows the presence of the human variable segment VH6, the human diversity region DN1, and the human joining segment JH4 linked to the murine γl constant region. Nine base-pair mutations from the published germline sequence were present in the variable region, two of them within CDR2. One mutation was observed in the D segment. Three nongermline nucleotide additions were present in the DH-JH junction. Referring to Figure 17 which shows the light chain of the K4.1 antibody, analysis shows the presence of the human K variable region B3 and joining region JK4. Eight nucleotides are missing from B3 at the Vκ-Jκ junction and four mutations were found in the variable region. Five nongermline nucleotide additions were present at the Vκ-Jκ junction.
Referring now to Figure 18 which sets forth the sequence for the heavy chain of the antibody secreted by clone D5.1, this shows the heavy chain is comprised of the human variable fragment VH6, the human diversity region DNl and the human joining segment JH4 linked to the human μ constant region. There were two base-pair mutations from the germline sequence in the variable region, neither within the CDRs. Two additional mutations were in the D segment and six nongermline nucleotide additions were present at the DH-JH junction.
Finally, referring to Figure 19 which presents the light chain of the antibody secreted by D5.1, the human K variable region B3 and human K joining region JK3 are shown. There are nine base-pair differences from the germline sequences, three falling within CDR1.
Example 8 Production of Human Antibodies to IgE
A. Immunization of Mice
Germline chimeric mice containing integrated human DNA from the immunoglobulin loci were immunized by injection of 15- 20 μg of human IgE/λ in adjuvant. The mice were boosted with 15-20 μg of human IgE/λ every 14 days after the primary immunization. A bleed was done on the immunized animals to test the titer of serum antibodies against human IgE/λ. The mice with the highest titers were sacrificed and the spleen removed.
B. Fusion of Splenocytes
Myeloma cells, line P3X63-Ag8.653, used as the fusion partner for the spleen cells, were thawed 6 days prior to the fusion and grown in tissue culture. One day before the fusion, cells were split into fresh medium containing 10% fetal calf serum (FCS) at a ratio of 1:3. After sacrificing the mouse, the spleen was aseptically removed and placed in a culture dish with serum-free culture medium. A single cell suspension was created by gently grinding the spleen between two frosted microscope slides. The cells were washed in fresh serum-free medium red blood cells were lysed and debris filtered away.
The splenocytes were further washed twice by centrifugation in serum-free medium. Myeloma cells were also washed in serum-free medium at this time. Each cell type was counted and combined at a ratio of 1:3 (myeloma to splenocyte) , mixed gently and centrifuged once together.
A solution of 40% polyethylene glycol (PEG) was slowly added to the cell pellet while the cells were gently resuspended over a period of one minute. Cells were incubated at room temperature for one minute in the PEG solution and then slowly diluted into 5 ml serum-free medium over 5 minutes. Five ml more were added over the next 90 seconds. Cells were incubated at room temperature for 5 minutes. The cells were centrifuged at low speed and the supernatant removed. The cells were resuspended slowly and very gently in 5 ml of hybridoma medium containing 10% FCS, IX OPI, IX NE amino acids and 10 mM HEPES. Cells were further diluted to 100 ml final volume in hybridoma medium with IX HAT solution (hypoxanthine, aminopterin and thymidine) . The fused cells were aliquoted 100 μl/well of 96- 2311 plates and cultured at 37°C and 10% C02. Cells were fed at 10 days post-fusion with 100 μl/well of hybridoma medium with IX HT (hypoxanthine and thymidine) and allowed to grow close to confluence before screening.
Supernatant was aseptically taken from each growing well and tested for the presence of fully human antibodies.
Positive wells were further tested for human IgE/λ specificity. When a positive well was identified, the cells were transferred from the 96-well plate to 0.5 ml of hybridoma medium with IX HT in a 48-well plate. At this stage the cells were subcloned by limiting dilution into 96-well plates so that a single antibody producing cell was in culture. As the culture became confluent, the cells were expanded to l ml, 3 ml, 5 ml, etc. and frozen aliquots were stored in liquid nitrogen to preserve the cell stocks.
Using the foregoing procedures, antibodies specific for the antigens described above are prepared. In accordance with the above procedure, mouse hybridomas producing human antibody against human IgE/λ were obtained.
In accordance with the above procedures, a chimeric nonhuman host, particularly a murine host, may be produced which can be immunized to produce human antibodies or analogs specific for an immunogen. In this manner, the problems associated with obtaining human monoclonal antibodies are avoided, because the transgenic host can be immunized with immunogens which could not be used with a human host. Furthermore, one can provide for booster injections and adjuvants which would not be permitted with a human host. The resulting B cells may then be used for immortalization for the continuous production of the desired antibody. The immortalized cells may be used for isolation of the genes encoding the immunoglobulin or analog and be subjected to further molecular modification by methods such as in vitro mutagenesis or other techniques to modify the properties of the antibodies. These modified genes may then be returned to the immortalized cells by transfection to provide for a continuous mammalian cellular source of the desired antibodies. The subject invention provides for a convenient source of human antibodies, where the human antibodies are produced in analogous manner to the production of antibodies in a human host. The animal host cells conveniently provide for the activation and rearrangement of human DNA in the host cells for production of human antibodies.
In accordance with the subject invention, human antibodies can be produced to human immunogens, e.g., proteins, by immunization of the subject host mammal with human immunogens. The resulting antisera will be specific for the human immunogen and may be harvested from the serum of the host. The immunized host B cells may be used for immortalization, e.g., myeloma cell fusion, transfection, etc. to provide immortal cells, e.g., hybridomas, to produce monoclonal antibodies. The antibodies, antiserum and monoclonal antibodies will be glycosylated in accordance with the species of the cell producing the antibodies. Rare variable regions of the Ig locus may be recruited in producing the antibodies, so that antibodies having rare variable regions may be obtained.
All productions and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference.

Claims

Claims
1. A method to produce an immunoglobulin having fully human variable region or an analog thereof, specific for a desired antigen, which method comprises: administering said antigen or an immunogenic portion thereof to a nonhuman animal under conditions to stimulate an immune response, whereby said animal produces B cells that secrete immunoglobulin specific for said antigen; wherein said nonhuman animal is characterized by being substantially incapable of producing endogenous heavy and light immunoglobulin chain variable regions, but capable of producing human immunoglobulin variable regions; and recovering said immunoglobulin or analog.
2. The method of claim 1 wherein said recovering step comprises recovering polyclonal immunoglobulin or analog from said animal.
3. The method of claim 1 wherein said recovering step comprises immortalizing B cells from said animal immunized with said antigen, screening the resulting immortalized cells for the secretion of said immunoglobulin specific for said antigen, and
1) recovering immunoglobulin secreted by said immortalized B cells, or
2) recovering the genes encoding at least the variable region of said immunoglobulin from the immortalized B cells, and optionally modifying said genes; expressing said genes or modified forms thereof to produce immunoglobulin or analog; and recovering said immunoglobulin or analog.
4. The method of claim 1 wherein said recovering step comprises recovering genes encoding at least the variable region of immunoglobulins from the primary B cells of the animal immunized with said antigen; generating a library of said genes expressing the variable regions; screening the library for a variable region with desired affinity for the antigen; recovering the genes encoding said variable regions and optionally modifying said genes; expressing said recovered genes to produce an immunoglobulin or analog containing said variable region and recovering said immunoglobulin or analog.
5. The method of claim 1 wherein said immunoglobulin is fully human.
6. A recombinant DNA molecule comprising a nucleotide sequence encoding the immunoglobulin or analog produced by the method of claim 1.
7. A recombinant DNA molecule comprising an encoding nucleotide sequence corresponding to a gene prepared by a method comprising administering a desired antigen or an immunoge ic portion thereof to a nonhuman animal under conditions to stimulate an immune response, whereby said animal produces B cells that secrete immunoglobulin specific for said antigen; wherein said nonhuman animal is characterized by being substantially incapable of producing endogenous heavy and light immunoglobulin chain variable regions, but capable of producing human immunoglobulin variable regions; immortalizing B cells from said animal immunized with said antigen, screening the resulting immortalized cells for the secretion of said immunoglobulin specific for said antigen, and recovering the genes encoding at least the variable region of said immunoglobulin from the immortalized B cells, and optionally modifying said genes.
8. A recombinant DNA molecule comprising an encoding nucleotide sequence corresponding to a gene prepared by a method comprising administering a desired antigen or an immunogenic portion thereof to a nonhuman animal under conditions to stimulate an immune response, whereby said animal produces B cells that secrete immunoglobulin specific for said antigen; wherein said nonhuman animal is characterized by being substantially incapable of producing endogenous heavy and light immunoglobulin chain variable regions, but capable of producing human immunoglobulin variable regions; recovering genes encoding at least the variable region of immunoglobulins from the primary B cells of the animal immunized with said antigen; generating a library of said genes expressing the variable regions; screening the library for a variable region with desired affinity for the antigen; and recovering the genes encoding said variable regions and optionally modifying said genes.
9. The DNA molecule of claim 6, 7 or 8 wherein said encoding nucleotide sequence is operably linked to control sequences capable of effecting its expression.
10. A cell or cell line modified to contain the DNA molecule of claim 9.
11. A method to produce an immunoglobulin with fully human variable region or an analog thereof which method comprises culturing the cells of claim 10 under conditions whereby said encoding nucleotide se-quence is expressed to produce said immunoglobulin or analog; and recovering said immunoglobulin or analog.
12. An immortalized B cell which secretes an immunoglobulin with a fully human variable region to a desired antigen prepared by a method which comprises administering said antigen or an immunogenic portion thereof to a nonhuman animal under conditions to stimulate an immune response, whereby said animal produces B cells that secrete immunoglobulin specific for said antigen; wherein said nonhuman animal is characterized by being substantially incapable of producing endogenous heavy and light immunoglobulin chain variable regions, but capable of producing human immunoglobulin variable regions; immortalizing B cells from said animal immunized with said antigen, screening the resulting immortalized cells for the secretion of said immunoglobulin specific for said antigen; and recovering said immortalized B cell.
13. A method to produce an immunoglobulin or analog which comprises culturing the recovered cells of claim 12 and recovering said immunoglobulin or analog.
14. An immunoglobulin with fully human variable region or analog thereof produced by the method of claim 1.
15. The immunoglobulin or analog of claim 14 which is fully human.
16. The immunoglobulin or analog of claim 14 which is an agonist or a catalyst or wherein the immunoglobulin is chimeric.
17. The immunoglobulin or analog of claim 14 wherein the desired antigen is selected from the group consisting of transition state mimics; leukocyte markers; histocompatibility antigens; adhesion molecules; interleukins; interleukin receptors; chemokines; growth factors; growth factor receptors; interferon receptors; Igs and their receptors; tumor antigens; allergens; viral proteins; toxins; blood factors; enzymes; and the miscellaneous antigens ganglioside GD3, ganglioside GM2, LMPl, LMP2, eosinophil major basic protein, eosinophil cationic protein, pANCA, Amadori protein, Type IV collagen, glycated lipids, γ-interferon, A7, P-glycoprotein, Fas (AFO-1) and oxidized-LDL.
18. The immunoglobulin or analog of claim 17 wherein the leukocyte marker is selected from the group consisting of CD2, CD3, CD4, CD5, CD6, CD7, CD8, CDlla,b,C, CD13, CD14, CD18, CD19, CD20, CD22, CD23, CD27 and its ligand, CD28 and its ligands B7.1, B7.2, B7.3, CD29 and its ligand, CD30 and its ligand, CD40 and its ligand gp39, CD44, CD45 and isoforms, CDw52 (Campath antigen), CD56, CD58, CD69, CD72, CTLA-4, LFA-1 and TCR; the histocompatibility antigen is selected from the group consisting of MHC class I or II, the Lewis Y antigens, SLex, SLey, SLea, and SLeb; the adhesion molecule is selected from the group consisting of VLA-1, VLA-2, VLA-3, VLA-4, VLA-5, VLA-6, LFA-1, L-selectin, P-selectin, and E-selectin and their counterreceptors VCAM-1, ICAM-1, ICAM-2, LFA-3; Mac-1 and pl50,95; the interleukin is selected from the group consisting Of IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11# IL-12, IL-13, IL-14, and IL-15; the interleukin receptor is selected from the group consisting of IL-1R, IL-2R, IL-3R, IL-4R, IL-5R, IL-6R, IL-7R, IL-8R, IL-9R, IL-10R, IL-11R, IL-12R, IL-13R, IL-14R, and IL-15R; the chemokine is selected from the group consisting of PF4, RANTES, MlPlα, MCP1, NAP-2, Groα, Gro0, and IL-8; the growth factor is selected from the group consisting of TNFalpha, TGFbeta, TSH, VEGF/VPF, PTHrP, EGF family, FGF, PDGF family, endothelin, and gastrin releasing peptide (GRP) ; the growth factor receptor is selected from the group consisting of TNFalphaR, RGFbetaR, TSHR, VEGFR/VPFR, FGFR, EGFR, PTHrPR, PDGFR family, EPO-R, GCSF-R and other hematopoietic receptors; the interferon receptor is selected from the group consisting of IFNαR, IFN0R, and IFNγR; the Ig and its receptor is selected from the group consisting of IgE, FceRI, and FCeRII; the tumor antigen is selected from the group consisting of her2-neu, mucin, CEA and endosialin; the allergen is selected from the group consisting of house dust mite antigen, lol pi (grass) antigens, and urushiol; the viral protein is selected from the group consisting of CMV glycoproteins B, H, and gCIII, HIV-1 envelope glycoproteins, RSV envelope glycoproteins, HSV envelope glycoproteins, EBV envelope glycoproteins, VZV envelope glycoproteins, HPV envelope glycoproteins, Hepatitis family surface antigens; the toxin is selected from the group consisting of pseudomonas endotoxin and osteopontin/uropontin, snake venom, and bee venom; the blood factor is selected from the group consisting of complement C3b, complement C5a, complement C5b-9, Rh factor, fibrinogen, fibrin, and myelin associated growth inhibitor; and the enzyme is selected from the group consisting of cholesterol ester transfer protein, membrane bound matrix metalloproteases, and glutamic acid decarboxylase (GAD) .
19. The immunoglobulin or analog of claim 14 wherein said desired antigen is selected from the group consisting of human IL-6, human IL-8, human TNFα, human CD4, human L-selectin, human gp39, human IgE and tetanus toxin C(TTC) .
20. A recombinant DNA molecule comprising a nucleotide sequence that encodes the immunoglobulin or analog of any of claims 15-19.
21. The DNA molecule of claim 20 wherein said encoding nucleotide sequence is operably linked to control sequences capable of effecting its expression.
22. A cell or cell line modified to contain the DNA molecule of claim 21.
23. A method to produce an immunoglobulin or analog specific for a desired antigen which method comprises culturing the cell or cell line of claim 22 under conditions wherein said nucleotide se-quence is expressed to produce said immunoglobulin or analog; and recovering the immunoglobulin or analog.
24. An antibody containing a fully human variable region or analog thereof which is specifically immunoreactive with an antigen selected from the group consisting of transition state mimics; leukocyte markers; histocompatibility antigens; adhesion molecules; interleukins; interleukin receptors; chemokines; growth factors; growth factor receptors; interferon receptors; Igs and their receptors; tumor antigens; allergens; viral proteins; toxins; blood factors; enzymes; and the miscellaneous antigens ganglioside GD3, ganglioside GM2, LMPl, LMP2, eosinophil major basic protein, eosinophil cationic protein, pANCA, Amadori protein, Type IV collagen, glycated lipids, γ-interferon, A7, P-glycoprotein, Fas (AFO-1) and oxidized-LDL.
25. The antibody or analog of claim 24 wherein the leukocyte marker is selected from the group consisting of CD2, CD3, CD4, CD5, CD6, CD7, CD8, CDlla,b,C, CD13, CD14, CD18, CD19, CD20, CD22, CD23, CD27 and its ligand, CD28 and its ligands B7.1, B7.2, B7.3, CD29 and its ligand, CD30 and its ligand, CD40 and its ligand gp39, CD44, CD45 and isoforms, CDw52 (Campath antigen), CD56, CD58, CD69, CD72, CTLA-4, LFA-1 and TCR; the histocompatibility antigen is selected from the group consisting of MHC class I or II, the Lewis Y antigens, SLex, SLey, SLea, and SLeb; the adhesion molecule is selected from the group consisting of VLA-1, VLA-2, VLA-3, VLA-4, VLA-5, VLA-6, LFA-1, L-selectin, P-selectin, and E-selectin and their counterreceptors VCAM-1, ICAM-1, ICAM-2, LFA-3; Mac-1 and pl50,95; the interleukin is selected from the group consisting of IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, and IL-15; the interleukin receptor is selected from the group consisting Of IL-1R, IL-2R, IL-3R, IL-4R, IL-5R, IL-6R, IL-7R, IL-8R, IL-9R, IL-10R, IL-11R, IL-12R, IL-13R, IL-14R, and IL-15R; the chemokine is selected from the group consisting of
PF4, RANTES, MlPlα, MCP1, NAP-2, Groα, Gro/3, and IL-8; the growth factor is selected from the group consisting of TNFalpha, TGFbeta, TSH, VEGF/VPF, PTHrP, EGF family, FGF, PDGF family, endothelin, and gastrin releasing peptide (GRP) ; the growth factor receptor is selected from the group consisting of TNFalphaR, RGFbetaR, TSHR, VEGFR/VPFR, FGFR, EGFR, PTHrPR, PDGFR family, EPO-R, GCSF-R and other hematopoietic receptors; the interferon receptor is selected from the group consisting of IFNαR, IFN3R, and IFNγR; the Ig and its receptor is selected from the group consisting of IgE, FceRI, and FCeRII; the tumor antigen is selected from the group consisting of her2-neu, mucin, CEA and endosialin; the allergen is selected from the group consisting of house dust mite antigen, lol pi (grass) antigens, and urushiol; the viral protein is selected from the group consisting of CMV glycoproteins B, H, and gCIII, HIV-1 envelope glycoproteins, RSV envelope glycoproteins, HSV envelope glycoproteins, EBV envelope glycoproteins, VZV envelope glycoproteins, HPV envelope glycoproteins, Hepatitis family surface antigens; the toxin is selected from the group consisting of pseudomonas endotoxin and osteopontin/uropontin, snake venom, and bee venom; the blood factor is selected from the group consisting of complement C3b, complement C5a, complement C5b-9, Rh factor, fibrinogen, fibrin, and myelin associated growth inhibitor; and the enzyme is selected from the group consisting of cholesterol ester transfer protein, membrane bound matrix metalloproteases, and glutamic acid decarboxylase (GAD) .
26. The antibody or analog of claim 24 wherein the desired antigen is selected from the group consisting of human IL-6, human IL-8, human TNFα, human CD4, human L-selectin, human gp39, human IgE and tetanus toxin C(TTC) .
27. The antibody or analog of claim 19 or 26 wherein the desired antigen is human IL-6.
28. The antibody or analog of claim 19 or 26 wherein the desired antigen is human IL-8.
29. The antibody or analog of claim 19 or 26 wherein the desired antigen is human TNFα.
30. The antibody or analog of claim 19 or 26 wherein the desired antigen is human CD4.
31. The antibody or analog of claim 19 or 26 wherein the desired antigen is human L-selectin.
32. The antibody or analog of claim 19 or 26 wherein the desired antigen is human gp39.
33. The antibody or analog of claim 19 or 26 wherein the desired antigen is tetanus toxin C(TTC) .
34. The antibody or analog of claim 19 or 26 wherein the desired antigen is human IgE.
35. The analog of claim 19 or 26 which is a single chain Fv.
36. The antibody or analog of claim 24 which is fully human.
37. The antibody or analog of claim 24 which is an agonist or is a catalyst or wherein the immunoglobulin is chimeric.
38. A recombinant DNA molecule encoding the antibody or analog of any of claims 26-37.
39. A recombinant DNA molecule which comprises an expression system for the production of the antibody or analog of any of claims 26-37 which expression system comprises a nucleotide sequence encoding said antibody or analog operably linked to control sequences capable of effecting its expression.
40. A recombinant host cell which is modified to contain the DNA molecule of claim 39.
41. A method to produce an antibody or analog which method comprises culturing the cells of claim 40 under conditions wherein said coding sequence is expressed; and recovering the antibody or analog produced.
42. Use of the antibody or analog of claim 36 for in vivo prophylaxis, therapy or diagnosis in humans.
43. Use of the antibody or analog of claim 27, 29, 30, 31 or 32 for treating an autoimmune disease in a mammal.
44. The use of claim 43 wherein the autoimmune disease is systemic lupus erythrematosus, rheumatoid arthritis, psoriasis, Sjogren's syndrome, scleroderma, mixed connective tissue disease, dermatomyositis, polymyositis, Reiter's syndrome, Behcet's disease, Type I diabetes, Hashimoto's thyroiditis, Graves' disease, multiple sclerosis, myasthenia gravis, or pemphigus.
45. Use of the antibody of claim 32 for preventing graft versus host disease, for preventing rejection of an organ transplant, or for treating glomerular nephritis in a mammal.
46. Use of the antibody of claim 31 for treating reperfusion ischemia in a mammal.
47. Use of the antibody of claim 27 for treating cachexia, septic shock, myeloma, renal cell carcinoma, osteoporosis, or Paget disease in a mammal.
48. Use of the antibody of claim 29 for treating septic shock, cachexia, osteoporosis, or systemic sclerosis in a mammal.
49. Use of the antibody of claim 28 for preventing tumor metastasis, and for treating asthma, rheumatoid arthritis, glomerulonephritis, reperfusion injury, adult respiratory distress syndrome, or systemic sclerosis in a mammal.
EP95918935A 1995-04-28 1995-04-28 Human antibodies derived from immunized xenomice Withdrawn EP0823941A4 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA002219486A CA2219486A1 (en) 1995-04-28 1995-04-28 Human antibodies derived from immunized xenomice
PCT/US1995/005500 WO1996034096A1 (en) 1995-04-28 1995-04-28 Human antibodies derived from immunized xenomice

Publications (2)

Publication Number Publication Date
EP0823941A1 true EP0823941A1 (en) 1998-02-18
EP0823941A4 EP0823941A4 (en) 2001-09-19

Family

ID=25679770

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95918935A Withdrawn EP0823941A4 (en) 1995-04-28 1995-04-28 Human antibodies derived from immunized xenomice

Country Status (4)

Country Link
EP (1) EP0823941A4 (en)
AU (1) AU2466895A (en)
CA (1) CA2219486A1 (en)
WO (1) WO1996034096A1 (en)

Families Citing this family (1505)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
US6713610B1 (en) 1990-01-12 2004-03-30 Raju Kucherlapati Human antibodies derived from immunized xenomice
US7084260B1 (en) 1996-10-10 2006-08-01 Genpharm International, Inc. High affinity human antibodies and human antibodies against human antigens
US6300129B1 (en) * 1990-08-29 2001-10-09 Genpharm International Transgenic non-human animals for producing heterologous antibodies
US5770429A (en) * 1990-08-29 1998-06-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US7041871B1 (en) 1995-10-10 2006-05-09 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5795966A (en) 1995-02-22 1998-08-18 Immunex Corp Antagonists of interleukin-15
US7888466B2 (en) 1996-01-11 2011-02-15 Human Genome Sciences, Inc. Human G-protein chemokine receptor HSATU68
US7964190B2 (en) 1996-03-22 2011-06-21 Human Genome Sciences, Inc. Methods and compositions for decreasing T-cell activity
US6635743B1 (en) 1996-03-22 2003-10-21 Human Genome Sciences, Inc. Apoptosis inducing molecule II and methods of use
US6497878B1 (en) 1996-04-23 2002-12-24 Chugai Seiyaku Kabushiki Kaisha Treatment of cerebral disorders by inhibition of IL-8 binding to receptor
EP0859633A2 (en) * 1996-08-16 1998-08-26 Kurt B. Osther Method for treating diabetes
AU2008200005B2 (en) * 1996-12-03 2012-05-17 Amgen Fremont Inc. Transgenic Mammals Having Human Ig Loci Including Plural Vh and Vk Regions and Antibodies Produced Therefrom
ATE549918T1 (en) 1996-12-03 2012-04-15 Amgen Fremont Inc HUMAN ANTIBODIES THAT EXPRESSLY BIND HUMAN TNF ALPHA
EP2011514B1 (en) 1997-03-21 2012-02-29 Chugai Seiyaku Kabushiki Kaisha A preventive or therapeutic agent for sensitized T cell-mediated diseases comprising IL-6 antagonist as an active ingredient
US6235883B1 (en) * 1997-05-05 2001-05-22 Abgenix, Inc. Human monoclonal antibodies to epidermal growth factor receptor
US20020173629A1 (en) 1997-05-05 2002-11-21 Aya Jakobovits Human monoclonal antibodies to epidermal growth factor receptor
AU747883B2 (en) 1997-08-15 2002-05-30 Chugai Seiyaku Kabushiki Kaisha Preventives and/or remedies for systemic lupus erythematosus containing anti-IL-6 receptor antibody as the active ingredient
ATE518949T1 (en) 1998-11-04 2011-08-15 Chugai Pharmaceutical Co Ltd NEW SERINE PROTEASES OF THE TRYPSIN FAMILY
CA2353520C (en) 1998-12-09 2006-04-25 Protein Design Labs, Inc. Animal model for psoriasis for the prevention and treatment of psoriasis in humans
EE05627B1 (en) 1998-12-23 2013-02-15 Pfizer Inc. Human monoclonal antibodies to CTLA-4
US7109003B2 (en) 1998-12-23 2006-09-19 Abgenix, Inc. Methods for expressing and recovering human monoclonal antibodies to CTLA-4
KR100617337B1 (en) 1998-12-23 2006-08-31 화이자 인크. Human monoclonal antibodies to ctla-4
JP2002537769A (en) 1999-02-26 2002-11-12 ヒューマン ジノーム サイエンシーズ, インコーポレイテッド Human endokine alpha and method of use
US6914128B1 (en) 1999-03-25 2005-07-05 Abbott Gmbh & Co. Kg Human antibodies that bind human IL-12 and methods for producing
JP4590107B2 (en) 1999-04-09 2010-12-01 中外製薬株式会社 New fetal gene
MXPA01011279A (en) 1999-05-07 2002-07-02 Genentech Inc Treatment of autoimmune diseases with antagonists which bind to b cell surface markers.
NZ515686A (en) 1999-06-01 2005-01-28 Biogen Inc A blocking monoclonal antibody to integrin VLA-1 and its use for the treatment of inflammatory disorders such as arthritis
WO2000075314A1 (en) 1999-06-02 2000-12-14 Chugai Research Institute For Molecular Medicine, Inc. Novel hemopoietin receptor protein nr10
US6833268B1 (en) 1999-06-10 2004-12-21 Abgenix, Inc. Transgenic animals for producing specific isotypes of human antibodies via non-cognate switch regions
AU783356B2 (en) * 1999-07-29 2005-10-20 Medarex, Inc. Human monoclonal antibodies to prostate specific membrane antigen
CA2382587A1 (en) 1999-08-23 2001-03-01 Chugai Seiyaku Kabushiki Kaisha Hm1.24 antigen expression potentiators
IL148079A0 (en) * 1999-08-24 2002-09-12 Medarex Inc Human ctla-4 antibodies and compositions containing the same
WO2001018200A1 (en) 1999-09-06 2001-03-15 Chugai Seiyaku Kabushiki Kaisha Tsg-like gene
EP1486510B1 (en) 1999-09-21 2009-05-13 Chugai Seiyaku Kabushiki Kaisha Use of transporter gene oatp-c to screen for test compounds
SK4442002A3 (en) 1999-10-01 2003-04-01 Chugai Pharmaceutical Co Ltd Prevention and treatment of diseases associated with blood coagulation
EP1251172B1 (en) 2000-01-24 2008-10-01 Haruo Sugiyama Wt1-interacting protein wtip
WO2002043660A2 (en) 2000-11-28 2002-06-06 Mediummune, Inc Methods of administering/dosing anti-rsv antibodies for prophylaxis and treatment
HUP0300423A3 (en) 2000-02-10 2008-07-28 Abbott Lab Antibodies that bind human interleukin-18 and methods of making and using
US6653448B1 (en) 2000-03-29 2003-11-25 Curagen Corporation Wnt-7B-like polypeptides and nucleic acids encoding same
GB0006398D0 (en) * 2000-03-16 2000-05-03 Novartis Ag Organic compounds
EP1278767A4 (en) 2000-04-12 2003-11-12 Principia Pharmaceutical Corp Albumin fusion proteins
AU2001259215A1 (en) * 2000-04-28 2001-11-12 La Jolla Institute For Allergy And Immunology Human anti-cd40 antibodies and methods of making and using same
US7063845B2 (en) 2000-04-28 2006-06-20 Gemini Science, Inc. Human anti-CD40 antibodies
ES2382891T3 (en) 2000-05-26 2012-06-14 Immunex Corporation Use of IL-4R antibodies and their compositions
US20030031675A1 (en) 2000-06-06 2003-02-13 Mikesell Glen E. B7-related nucleic acids and polypeptides useful for immunomodulation
CA2413160A1 (en) 2000-06-15 2001-12-20 Human Genome Sciences, Inc. Human tumor necrosis factor delta and epsilon
ES2358885T3 (en) 2000-06-16 2011-05-16 Human Genome Sciences, Inc. ANTIBODIES THAT BIND BLyS IMMUNO-SPECIFICALLY.
ATE420958T1 (en) 2000-06-29 2009-01-15 Abbott Lab ANTIBODIES WITH DUAL SPECIFICITIES AND METHOD FOR THE PRODUCTION AND USE THEREOF
US6902734B2 (en) 2000-08-07 2005-06-07 Centocor, Inc. Anti-IL-12 antibodies and compositions thereof
UA81743C2 (en) 2000-08-07 2008-02-11 Центокор, Инк. HUMAN MONOCLONAL ANTIBODY WHICH SPECIFICALLY BINDS TUMOR NECROSIS FACTOR ALFA (TNFα), PHARMACEUTICAL MIXTURE CONTAINING THEREOF, AND METHOD FOR TREATING ARTHRITIS
US7288390B2 (en) 2000-08-07 2007-10-30 Centocor, Inc. Anti-dual integrin antibodies, compositions, methods and uses
AU2001296547A1 (en) 2000-10-02 2002-04-15 Chiron Corporation Methods of therapy for b-cell malignancies using antagonist anti-cd40 antibodies
ES2649037T3 (en) 2000-12-12 2018-01-09 Medimmune, Llc Molecules with prolonged half-lives, compositions and uses thereof
TNSN01177A1 (en) 2001-01-05 2005-11-10 Pfizer ANTIBODIES FOR THE INSULIN-LIKE GROWTH FACTOR RECEPTOR I.
CA2436091A1 (en) * 2001-01-26 2002-08-01 Abgenix, Inc. Neutralizing human monoclonal antibodies against hiv-1, their production and uses
JP3986439B2 (en) 2001-02-07 2007-10-03 中外製薬株式会社 Hematopoietic tumor therapeutic agent
JP2005503116A (en) 2001-02-09 2005-02-03 ヒューマン ジノーム サイエンシーズ, インコーポレイテッド Human G protein chemokine receptor (CCR5) HDGNR10
US7087726B2 (en) * 2001-02-22 2006-08-08 Genentech, Inc. Anti-interferon-α antibodies
US8981061B2 (en) 2001-03-20 2015-03-17 Novo Nordisk A/S Receptor TREM (triggering receptor expressed on myeloid cells) and uses thereof
EP2294917A1 (en) 2001-03-22 2011-03-16 Abbott GmbH & Co. KG Transgenic animals expressing antibodies specific for genes of interest and uses thereof
UA80091C2 (en) 2001-04-02 2007-08-27 Chugai Pharmaceutical Co Ltd Remedies for infant chronic arthritis-relating diseases and still's disease which contain an interleukin-6 (il-6) antagonist
WO2002081639A2 (en) 2001-04-06 2002-10-17 Georgetown University Gene brcc2 and diagnostic and therapeutic uses thereof
AU2002305151A1 (en) 2001-04-06 2002-10-21 Georgetown University Gene scc-112 and diagnostic and therapeutic uses thereof
WO2002081642A2 (en) 2001-04-06 2002-10-17 Georgetown University Gene brcc-3 and diagnostic and therapeutic uses thereof
NZ529494A (en) 2001-04-13 2005-08-26 Biogen Idec Inc Antibodies to VLA-1
AU2002257142B2 (en) 2001-04-13 2008-09-04 Human Genome Sciences, Inc. Vascular endothelial growth factor 2
CA2658221C (en) 2001-04-27 2012-11-27 Kyowa Hakko Kirin Co., Ltd. Anti-cd40 monoclonal antibody
JP2005519580A (en) 2001-05-16 2005-07-07 アルバート アインシュタイン カレッジ オブ メディシン オブ イエシバ ユニバーシティ Human anti-pneumococcal antibody derived from non-human animals
ES2437992T3 (en) 2001-05-25 2014-01-15 Human Genome Sciences, Inc. Antibodies that bind immunospecifically to TRAIL receptors
EA014802B1 (en) 2001-08-23 2011-02-28 Генмаб А/С HUMAN ANTIBODIES SPECIFIC FOR INTERLEUKIN 15 (IL-15)\ (VARIANTS), A METHOD OF PRODUCING THEREOF, AN IMMUNOCONJUGATE BASED THEREON, A TRANSFECTOMA, A HYBRIDOMA, A TRANSGENIC ANIMAL, AN EXPRESSION VECTOR (VARIANTS) AND NUCLEIC ACID FOR PRODUCING THEREOF, A METHOD OF TREATMENT (VARIANTS) AND DIAGNOSING AN IL-15 MEDIATED DISEASE, A METHOD OF INHIBITING IL-15 INDUCED TNF-α, AND A METHOD OF INHIBITING INDUCED IL-15 CELL PROLIFERATION.
US7247304B2 (en) 2001-08-23 2007-07-24 Genmab A/S Methods of treating using anti-IL-15 antibodies
US7329405B2 (en) 2001-08-23 2008-02-12 Genmab A/S Human antibodies specific for interleukin 15 (IL-15)
US7981863B2 (en) 2001-09-19 2011-07-19 Neuronova Ab Treatment of Parkinson's disease with PDGF
WO2003029296A1 (en) * 2001-10-02 2003-04-10 Chiron Corporation Human anti-cd40 antibodies
AR039067A1 (en) 2001-11-09 2005-02-09 Pfizer Prod Inc ANTIBODIES FOR CD40
EP3269235B1 (en) 2001-11-30 2022-01-26 Amgen Fremont Inc. Transgenic mice bearing human ig lambda light chain genes
JP5424521B2 (en) 2001-12-21 2014-02-26 ヒューマン ジノーム サイエンシーズ, インコーポレイテッド Albumin fusion protein
JP4364645B2 (en) 2002-02-14 2009-11-18 中外製薬株式会社 Antibody-containing solution formulation
EP1527100B1 (en) 2002-03-29 2009-07-01 Schering Corporation Human monoclonal antibodies to interleukin-5 and methods and compositions comprising same
WO2003083116A1 (en) 2002-03-29 2003-10-09 Chugai Seiyaku Kabushiki Kaisha Emthod of screening transporter inhibitor
US7244565B2 (en) 2002-04-10 2007-07-17 Georgetown University Gene shinc-3 and diagnostic and therapeutic uses thereof
JP2005535572A (en) 2002-04-12 2005-11-24 メディミューン,インコーポレーテッド Recombinant anti-interleukin-9 antibody
EP1503794B9 (en) 2002-04-12 2012-09-19 Medarex, Inc. Methods of treatement using ctla-4 antibodies
CA2429483A1 (en) 2002-05-17 2003-11-17 Amrad Operations Pty Ltd. Immunointeractive molecules
MXPA04012225A (en) 2002-06-06 2005-07-25 Oncotherapy Science Inc Genes and polypeptides relating to human colon cancers.
CN101613406A (en) 2002-06-06 2009-12-30 肿瘤疗法科学股份有限公司 Gene relevant and polypeptide with human colon carcinoma
US7563882B2 (en) 2002-06-10 2009-07-21 University Of Rochester Polynucleotides encoding antibodies that bind to the C35 polypeptide
US7425618B2 (en) 2002-06-14 2008-09-16 Medimmune, Inc. Stabilized anti-respiratory syncytial virus (RSV) antibody formulations
ZA200500480B (en) 2002-07-15 2006-10-25 Wyeth Corp Methods and compositions for modulating T helper (TH) cell development and function
PT1534335E (en) 2002-08-14 2012-02-28 Macrogenics Inc Fcgammariib-specific antibodies and methods of use thereof
EP1541165A4 (en) 2002-08-27 2009-06-24 Chugai Pharmaceutical Co Ltd Method of stabilizing protein solution preparation
JP2006516383A (en) 2002-09-09 2006-07-06 デイナ−ファーバー キャンサー インスティチュート,インコーポレイテッド BH3 peptide and method of use thereof
WO2004024752A1 (en) 2002-09-11 2004-03-25 Chugai Seiyaku Kabushiki Kaisha Method of purifying protein
TW200413725A (en) 2002-09-30 2004-08-01 Oncotherapy Science Inc Method for diagnosing non-small cell lung cancers
TW200418988A (en) 2002-09-30 2004-10-01 Oncotherapy Science Inc Method for diagnosing prostate cancer
CN100572535C (en) 2002-10-22 2009-12-23 卫材R&D管理有限公司 Specific expressed gene in the product dopaminergic neuron precursor cell after division stops
EP1559786A4 (en) 2002-10-30 2006-01-11 Chugai Pharmaceutical Co Ltd Mast cell-derived membrane proteins
US20060034845A1 (en) 2002-11-08 2006-02-16 Karen Silence Single domain antibodies directed against tumor necrosis factor alpha and uses therefor
JP2006520584A (en) 2002-11-08 2006-09-14 アブリンクス エン.ヴェー. Stabilized single domain antibody
US9320792B2 (en) 2002-11-08 2016-04-26 Ablynx N.V. Pulmonary administration of immunoglobulin single variable domains and constructs thereof
CA2505994A1 (en) 2002-11-15 2004-06-03 Chiron Corporation Methods for preventing and treating cancer metastasis and bone loss associated with cancer metastasis
EP2363410B1 (en) 2002-11-27 2017-10-11 Minerva Biotechnologies Corporation Isoforms of MUC1
ATE472556T1 (en) 2002-12-02 2010-07-15 Amgen Fremont Inc ANTIBODIES DIRECTED AGAINST THE TUMOR NECROSIS FACTOR AND THEIR USES
WO2004061108A1 (en) 2002-12-29 2004-07-22 Toudai Tlo, Ltd. Adiponectin receptor and gene coding for the same
AU2004204494B2 (en) 2003-01-09 2011-09-29 Macrogenics, Inc. Identification and engineering of antibodies with variant Fc regions and methods of using same
DE10303974A1 (en) 2003-01-31 2004-08-05 Abbott Gmbh & Co. Kg Amyloid β (1-42) oligomers, process for their preparation and their use
US20040248798A1 (en) 2003-02-14 2004-12-09 Peter Sutovsky Contraceptive methods and compositions related to proteasomal interference
US7662387B2 (en) 2003-02-20 2010-02-16 Seattle Genetics Anti-cd70 antibody-drug conjugates and their use for the treatment of cancer and immune disorders
PL2248899T3 (en) 2003-03-19 2015-10-30 Biogen Ma Inc NOGO receptor binding protein
EP1613750B1 (en) 2003-03-19 2015-10-14 Amgen Fremont Inc. Antibodies against t cell immunoglobulin domain and mucin domain 1 (tim-1) antigen and uses thereof
JP4764818B2 (en) 2003-04-11 2011-09-07 メディミューン,エルエルシー Recombinant IL-9 antibody and use thereof
CA2522207A1 (en) * 2003-04-14 2004-10-28 Board Of Regents, The University Of Texas System Methods for ex vivo hybridoma-free production of polyclonal and monoclonal antibodies and generation of immortalized cell populations
GB2401040A (en) 2003-04-28 2004-11-03 Chugai Pharmaceutical Co Ltd Method for treating interleukin-6 related diseases
US9708410B2 (en) 2003-05-30 2017-07-18 Janssen Biotech, Inc. Anti-tissue factor antibodies and compositions
US7863042B2 (en) 2003-06-18 2011-01-04 Chugai Seiyaku Kabushiki Kaisha Fucose transporter
US7628986B2 (en) 2003-06-27 2009-12-08 Amgen Fremont Inc. Antibodies directed to the deletion mutants of epidermal growth factor receptor and uses thereof
JP2008500005A (en) 2003-07-15 2008-01-10 バロス リサーチ インスティテュート Compositions and methods for immunotherapy of cancer and infectious diseases
HN2004000285A (en) 2003-08-04 2006-04-27 Pfizer Prod Inc ANTIBODIES DIRECTED TO c-MET
WO2005014854A1 (en) 2003-08-08 2005-02-17 Licentia, Ltd. Materials and methods for colorectal cancer screening, diagnosis, and therapy
ATE420660T1 (en) 2003-08-08 2009-01-15 Amgen Fremont Inc ANTIBODIES TO PARATH HORMONE (PTH) AND THEIR USES
JP2007511738A (en) 2003-08-08 2007-05-10 ジーンニュース インコーポレーテッド Biomarkers for osteoarthritis and uses thereof
ATE528397T1 (en) 2003-08-08 2011-10-15 Perseus Proteomics Inc GENE OVEREXPRESSED IN CANCER
AR045563A1 (en) 2003-09-10 2005-11-02 Warner Lambert Co ANTIBODIES DIRECTED TO M-CSF
WO2005035753A1 (en) 2003-10-10 2005-04-21 Chugai Seiyaku Kabushiki Kaisha Double specific antibodies substituting for functional protein
EP1693448A4 (en) 2003-10-14 2008-03-05 Chugai Pharmaceutical Co Ltd Double specific antibodies substituting for functional protein
ATE548388T1 (en) 2003-11-07 2012-03-15 Immunex Corp ANTIBODIES BINDING TO THE INTERLEUKIN-4 RECEPTOR
US20050100965A1 (en) 2003-11-12 2005-05-12 Tariq Ghayur IL-18 binding proteins
US8454963B2 (en) * 2003-11-13 2013-06-04 Musc Foundation For Research Development Tissue targeted complement modulators
US7750123B2 (en) 2003-11-25 2010-07-06 Dana Farber Cancer Institute, Inc. Antibodies against SARS-CoV and methods of use thereof
ES2484340T3 (en) 2003-12-05 2014-08-11 Multimmune Gmbh Therapeutic and diagnostic anti hsp70 antibodies
US7312320B2 (en) 2003-12-10 2007-12-25 Novimmune Sa Neutralizing antibodies and methods of use thereof
MX361174B (en) 2003-12-23 2018-11-29 Genentech Inc Novel anti-il 13 antibodies and uses thereof.
SI2311873T1 (en) 2004-01-07 2018-12-31 Novartis Vaccines And Diagnostics, Inc. M-csf-specific monoclonal antibody and uses thereof
ATE501174T1 (en) 2004-01-09 2011-03-15 Pfizer ANTIBODIES AGAINST MADCAM
HUE027902T2 (en) 2004-02-09 2016-11-28 Human Genome Sciences Inc Corp Service Company Albumin fusion proteins
US7625549B2 (en) 2004-03-19 2009-12-01 Amgen Fremont Inc. Determining the risk of human anti-human antibodies in transgenic mice
EP2418224A3 (en) 2004-03-19 2013-07-24 Amgen Inc. Reducing the risk of human and anti-human antibodies through V gene manipulation
ATE496142T1 (en) 2004-03-23 2011-02-15 Oncotherapy Science Inc METHOD FOR DIAGNOSING NON-SMALL CELL LUNG CANCER
US7973139B2 (en) 2004-03-26 2011-07-05 Human Genome Sciences, Inc. Antibodies against nogo receptor
JP4879884B2 (en) 2004-04-12 2012-02-22 メディミューン,エルエルシー Anti-IL-9 antibody preparation and use thereof
CA2568201C (en) 2004-05-24 2013-07-30 Universitat Zu Koln Identification of ergothioneine transporter and therapeutic uses thereof
US8124101B2 (en) 2004-06-01 2012-02-28 Mount Sinai School Of Medicine Genetically engineered swine influenza virus and uses thereof
US8921528B2 (en) 2004-06-01 2014-12-30 Domantis Limited Bispecific fusion antibodies with enhanced serum half-life
EP1602926A1 (en) 2004-06-04 2005-12-07 University of Geneva Novel means and methods for the treatment of hearing loss and phantom hearing
AU2005258335B2 (en) 2004-06-24 2011-03-17 Biogen Ma Inc. Treatment of conditions involving demyelination
CA2601417C (en) 2004-07-01 2018-10-30 Novo Nordisk A/S Human anti-kir antibodies
EP2322215A3 (en) 2004-07-16 2011-09-28 Pfizer Products Inc. Combination treatment for non-hematologic malignancies using an anti-IGF-1R antibody
ES2557157T3 (en) 2004-07-22 2016-01-22 Eisai R&D Management Co., Ltd. Neuron precursor cell marker that produces Lrp4 / Corina dopamine
WO2006017673A2 (en) 2004-08-03 2006-02-16 Biogen Idec Ma Inc. Taj in neuronal function
PL1791568T3 (en) 2004-08-16 2013-01-31 Quark Pharmaceuticals Inc Therapeutic uses of inhibitors of rtp801
CA2478458A1 (en) 2004-08-20 2006-02-20 Michael Panzara Treatment of pediatric multiple sclerosis
CA2486285C (en) 2004-08-30 2017-03-07 Viktor S. Goldmakher Immunoconjugates targeting syndecan-1 expressing cells and use thereof
US20060051347A1 (en) 2004-09-09 2006-03-09 Winter Charles M Process for concentration of antibodies and therapeutic products thereof
WO2006034292A2 (en) 2004-09-21 2006-03-30 Medimmune, Inc. Antibodies against and methods for producing vaccines for respiratory syncytial virus
WO2006037604A1 (en) 2004-10-01 2006-04-13 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Novel antibodies directed to the mammalian eag1 ion channel protein
US20080026457A1 (en) 2004-10-22 2008-01-31 Kevin Wells Ungulates with genetically modified immune systems
WO2006047603A2 (en) 2004-10-22 2006-05-04 Revivicor, Inc. Ungulates with genetically modified immune systems
EP1809326A4 (en) 2004-10-27 2009-11-04 Medimmune Inc Modulation of antibody specificity by tailoring the affinity to cognate antigens
WO2006055638A2 (en) 2004-11-17 2006-05-26 Abgenix, Inc. Fully human monoclonal antibodies to il-13
WO2006055871A2 (en) 2004-11-19 2006-05-26 Biogen Idec Ma Inc. Treatment for multiple sclerosis
GB0426146D0 (en) 2004-11-29 2004-12-29 Bioxell Spa Therapeutic peptides and method
US20090214534A1 (en) 2004-12-02 2009-08-27 Steve Holmes Bispecific Domain Antibodies Targeting Serum Albumin And GLP-1 Or PYY
EP1819732A2 (en) 2004-12-06 2007-08-22 Kirin Beer Kabushiki Kaisha Human monoclonal antibodies to influenza m2 protein and methods of making and using same
CA2592249C (en) 2004-12-20 2014-07-29 Amgen Fremont Inc. Binding proteins specific for human matriptase
EP3699191A1 (en) 2004-12-21 2020-08-26 MedImmune Limited Antibodies directed to angiopoietin-2 and uses thereof
JPWO2006067847A1 (en) 2004-12-22 2008-06-12 中外製薬株式会社 Antibody production method using cells in which fucose transporter function is inhibited
KR20190016616A (en) 2005-01-21 2019-02-18 제넨테크, 인크. Fixed dosing of her antibodies
US7566772B2 (en) 2005-01-26 2009-07-28 Amgen Fremont Inc. Antibodies against interleukin-1β
CA2599589A1 (en) 2005-02-07 2006-08-17 Genenews,Inc. Mild osteoarthritis biomarkers and uses thereof
US7998695B2 (en) 2005-02-10 2011-08-16 Oncotherapy Science, Inc. Method of diagnosing bladder cancer
BRPI0606991A2 (en) 2005-02-14 2009-08-18 Wyeth Corp methods for screening test compounds capable of antagonizing il-17f signaling, to diagnose a disorder related to increased il-17f signaling in an individual, in vitro to inhibit at least one activity associated with il-21 signaling, in vitro to inhibit at least one activity associated with il-23 signaling, to purify the natural il-17a protein, and to isolate il-17a / il-17f heterodimers substantially free of il-17a homodimers and il-17f, use of a therapeutically effective amount of an il-17f signaling antagonist, pharmaceutical composition, vaccine adjuvant, isolated antibody, isolated il-17f and il-17a proteins, and il-17a / il-heterodimer. 17f
MX2007009810A (en) 2005-02-14 2008-03-07 Wyeth Corp Use of il17-f in diagnosis and therapy of airway inflammation.
HUE025945T2 (en) 2005-02-15 2016-07-28 Univ Duke Anti-cd19 antibodies and uses in oncology
US20090124993A1 (en) 2005-02-17 2009-05-14 Burkly Linda C Treating neurological disorders
US8329178B2 (en) 2005-02-18 2012-12-11 Dana-Farber Cancer Institute, Inc. Antibodies against CXCR4 and methods of use thereof
TWI406870B (en) 2005-02-21 2013-09-01 Chugai Pharmaceutical Co Ltd A method of making a protein using hamster IGF-1
PL1850874T3 (en) 2005-02-23 2014-03-31 Genentech Inc Extending time to disease progression or survival in ovarian cancer patients using pertuzumab
WO2006094134A2 (en) 2005-03-02 2006-09-08 Biogen Idec Ma Inc. Kim-1 antibodies for treatment of th2-mediated conditions
JP2008531730A (en) 2005-03-04 2008-08-14 キュアーディーエム、インク. Methods and pharmaceutical compositions for treating type I diabetes mellitus and other conditions
LT2620450T (en) 2005-03-08 2019-02-11 Pfizer Products Inc. Anti-ctla-4 antibody compositions
CA2610292C (en) 2005-03-30 2015-06-02 Minerva Biotechnologies Corporation Proliferation of muc1 expressing cells
DK1875244T3 (en) 2005-03-30 2019-04-29 Minerva Biotechnologies Corp Proliferation of MUC1-Expressing Cells
KR101374454B1 (en) 2005-03-31 2014-03-17 추가이 세이야쿠 가부시키가이샤 Methods for producing polypeptides by regulating polypeptide association
EP1863519B1 (en) 2005-03-31 2013-09-25 The General Hospital Corporation Modulating hgf/hgfr activity for treating lymphodema
US8124350B2 (en) 2005-04-04 2012-02-28 Biogen Idec Ma Inc. Methods and products for evaluating an immune response to a therapeutic protein
SI1876236T1 (en) 2005-04-08 2014-11-28 Chugai Seiyaku Kabushiki Kaisha Antibody substituting for function of blood coagulation factor viii
GT200600148A (en) 2005-04-14 2006-11-22 METHODS FOR THE TREATMENT AND PREVENTION OF FIBROSIS
ES2707152T3 (en) 2005-04-15 2019-04-02 Macrogenics Inc Covalent diabodies and uses thereof
JP4909988B2 (en) 2005-04-20 2012-04-04 アムジエン・フレモント・インコーポレイテツド High affinity fully human monoclonal antibodies to interleukin-8 and epitopes of such antibodies
EA015534B1 (en) 2005-04-25 2011-08-30 Пфайзер Инк. Antibodies to myostatin and methods of use thereof
NZ562234A (en) 2005-04-26 2009-09-25 Pfizer P-cadherin antibodies
PE20061324A1 (en) 2005-04-29 2007-01-15 Centocor Inc ANTI-IL-6 ANTIBODIES, COMPOSITIONS, METHODS AND USES
CA2607281C (en) 2005-05-05 2023-10-03 Duke University Anti-cd19 antibody therapy for autoimmune disease
WO2006124269A2 (en) * 2005-05-16 2006-11-23 Amgen Fremont Inc. Human monoclonal antibodies that bind to very late antigen-1 for the treatment of inflammation and other disorders
WO2007001677A2 (en) 2005-05-17 2007-01-04 University Of Connecticut Compositions and methods for immunomodulation in an organism
JP2008545712A (en) 2005-05-25 2008-12-18 キュアーディーエム、インク. Peptides, derivatives and analogs thereof, and methods of using them
DK2460831T3 (en) 2005-05-27 2016-12-19 Biogen Ma Inc TWEAK binding antibodies
WO2006132363A1 (en) 2005-06-10 2006-12-14 Chugai Seiyaku Kabushiki Kaisha Stabilizer for protein preparation comprising meglumine and use thereof
BRPI0613306A2 (en) * 2005-06-22 2010-12-28 Genentech Inc isolated antibodies, immunoglobulin polypeptides, ifnar2 antibody, nucleic acid molecule, host cell, cell line, antibody production method, composition, method for diagnosing the presence of ifnar2, method of treating a disease and methods
AU2006261920A1 (en) 2005-06-23 2007-01-04 Medimmune, Llc Antibody formulations having optimized aggregation and fragmentation profiles
WO2007005955A2 (en) 2005-06-30 2007-01-11 Centocor, Inc. Anti-il-23 antibodies, compositions, methods and uses
MX2008000253A (en) 2005-07-08 2008-04-02 Biogen Idec Inc Sp35 antibodies and uses thereof.
WO2007013479A2 (en) 2005-07-27 2007-02-01 Oncotherapy Science, Inc. Genes and polypeptides relating to prostate cancers
EP1913027B1 (en) 2005-07-28 2015-03-04 Novartis AG M-csf specific monoclonal antibody and uses thereof
ES2579602T3 (en) 2005-08-10 2016-08-12 Macrogenics, Inc. Identification and modification of antibodies with Fc regions variants and methods of use of these
DE602006019977D1 (en) 2005-08-18 2011-03-17 Genmab As THERAPY WITH ANTI-CD4 ANTIBODIES AND IRRADIATION
US7612181B2 (en) 2005-08-19 2009-11-03 Abbott Laboratories Dual variable domain immunoglobulin and uses thereof
EP2500358A3 (en) 2005-08-19 2012-10-17 Abbott Laboratories Dual variable domain immunoglobulin and uses thereof
SI1915397T1 (en) 2005-08-19 2015-05-29 Wyeth Llc Antagonist antibodies against gdf-8 and uses in treatment of als and other gdf-8-associated disorders
NZ597168A (en) 2005-08-19 2013-07-26 Abbott Lab Dual variable domain immunoglobin and uses thereof
DOP2006000195A (en) 2005-09-07 2017-08-15 Amgen Fremont Inc HUMAN MONOCLONAL ANTIBODIES FOR KINASE-1 ACTIVINE RECEPTOR TYPE
JP2009508494A (en) 2005-09-16 2009-03-05 ラプトール ファーマシューティカル インコーポレイテッド Compositions comprising receptor-binding protein (RAP) variants specific for proteins comprising CR and uses thereof
BRPI0617549A2 (en) 2005-09-26 2011-07-26 Medarex Inc isolated human monoclonal antibody, isolated human monoclonal antibody or antigen-binding portion thereof, composition, immunoconjugate, isolated nucleic acid molecule, expression vector, host cell, method of preparing an anti-cd70 antibody, method of treating or preventing a Disease, method for treating an autoimmune disease in an individual, Method for treating an inflammation in an individual, Method for treating a viral infection in an individual, antibody or antigen-binding portion thereof and use of an antibody or a portion thereof antigen thereof
US8906864B2 (en) 2005-09-30 2014-12-09 AbbVie Deutschland GmbH & Co. KG Binding domains of proteins of the repulsive guidance molecule (RGM) protein family and functional fragments thereof, and their use
US8470316B2 (en) 2005-10-14 2013-06-25 Chugai Seiyaku Kabushiki Kaisha Agents for suppressing damage to transplanted islets after islet transplantation
CA2626688C (en) 2005-10-21 2017-10-03 Chugai Seiyaku Kabushiki Kaisha Agents for treating cardiopathy
EP2319941A3 (en) 2005-10-21 2011-08-17 GeneNews Inc. Method and apparatus for correlating levels of biomarker products with disease
MX2008005764A (en) 2005-11-04 2008-11-18 Biogen Idec Inc Methods for promoting neurite outgrowth and survival of dopaminergic neurons.
KR20190026048A (en) 2005-11-04 2019-03-12 제넨테크, 인크. Use of complement pathway inhibitors to treat ocular diseases
US20100028358A1 (en) 2005-11-07 2010-02-04 Wolfram Ruf Compositions and Methods for Controlling Tissue Factor Signaling Specificity
JP2009515897A (en) 2005-11-10 2009-04-16 キュラジェン コーポレイション Methods of treating ovarian and renal cancer using antibodies to immunoglobulin domains of murine domain and mucin domain 1 (TIM-1) antigen
JP5398987B2 (en) 2005-11-14 2014-01-29 セルミド リミテッド Method for treating and preventing diseases based on abnormal function of regulatory T cells
AR057582A1 (en) 2005-11-15 2007-12-05 Nat Hospital Organization AGENTS TO DELETE INDUCTION OF CYTOTOXIC T LYMPHOCYTES
TWI461436B (en) 2005-11-25 2014-11-21 Kyowa Hakko Kirin Co Ltd Human monoclonal antibody human cd134 (ox40) and methods of making and using same
US20090269335A1 (en) 2005-11-25 2009-10-29 Keio University Therapeutic agent for prostate cancer
DK1963369T3 (en) 2005-11-28 2013-06-03 Zymogenetics Inc IL-21 Antagonists
KR101434935B1 (en) 2005-11-30 2014-10-01 애브비 인코포레이티드 Monoclonal antibodies against amyloid beta protein and uses thereof
PT2289909E (en) 2005-11-30 2015-02-10 Abbvie Inc Screening method, process for purifying of non-diffusible a-beta oligomers, selective antibodies against said non-diffusible a-beta oligomers and a process for manufacturing of said antibodies
CA2632094C (en) 2005-12-02 2015-01-27 Wayne A. Marasco Carbonic anhydrase ix (g250) antibodies and methods of use thereof
WO2007126439A2 (en) 2005-12-02 2007-11-08 Genentech, Inc. Compositions and methods for the treatment of diseases and disorders associated with cytokine signaling involving antibodies that bind to il-22 and il-22r
AP2911A (en) 2005-12-02 2014-05-31 Sinai School Medicine Chimeric Viruses presenting non-native surface proteins and uses thereof
WO2007064882A2 (en) 2005-12-02 2007-06-07 Biogen Idec Ma Inc. Treatment of conditions involving demyelination
EP1954311A4 (en) 2005-12-07 2009-12-23 Medarex Inc Ctla-4 antibody dosage escalation regimens
ATE552853T1 (en) 2005-12-13 2012-04-15 Medimmune Ltd PROTEINS THAT SPECIFICALLY BIND INSULIN-LIKE GROWTH FACTORS AND THEIR APPLICATIONS
US7763245B2 (en) 2005-12-15 2010-07-27 Genentech, Inc. Methods and compositions for targeting polyubiquitin
US9084777B2 (en) 2005-12-28 2015-07-21 Chugai Seiyaku Kabushiki Kaisha Stabilized antibody-containing formulations
AR056857A1 (en) 2005-12-30 2007-10-24 U3 Pharma Ag DIRECTED ANTIBODIES TO HER-3 (RECEIVER OF THE HUMAN EPIDERMAL GROWTH FACTOR-3) AND ITS USES
CA2635588C (en) 2005-12-30 2015-11-10 Dyax Corp. Metalloproteinase binding proteins
AU2007207764B2 (en) 2006-01-12 2012-06-07 Alexion Pharmaceuticals, Inc. Antibodies to OX-2/CD200 and uses thereof
CN103638522A (en) 2006-01-18 2014-03-19 通用医疗公司 Methods of increasing lymphatic function
NL2000439C2 (en) 2006-01-20 2009-03-16 Quark Biotech Therapeutic applications of inhibitors of RTP801.
CA2638117A1 (en) 2006-01-25 2007-08-30 Erasmus University Medical Center Rotterdam Generation of heavy-chain only antibodies in transgenic animals
US8771686B2 (en) 2006-01-27 2014-07-08 Chugai Seiyaku Kabushiki Kaisha Methods for treating a disease involving choroidal neovascularization by administering an IL-6 receptor antibody
US8669345B2 (en) 2006-01-27 2014-03-11 Biogen Idec Ma Inc. Nogo receptor antagonists
ATE491948T1 (en) 2006-02-06 2011-01-15 Rhode Island Hospital GPR30 ESTROGEN RECEPTOR IN MAMMARY CANCER
TWI417301B (en) 2006-02-21 2013-12-01 Wyeth Corp Antibodies against human il-22 and uses therefor
TW200744634A (en) 2006-02-21 2007-12-16 Wyeth Corp Methods of using antibodies against human IL-22
EP2311477B1 (en) 2006-03-20 2014-07-09 Japan Science and Technology Agency Use of ip3 receptor-binding protein for controlling phosphatidylinositol metabolism
JP2009529915A (en) 2006-03-20 2009-08-27 ゾーマ テクノロジー リミテッド Human antibodies and methods specific for gastrin substances
US7910798B2 (en) 2006-03-31 2011-03-22 Medarex, Inc. Transgenic animals expressing chimeric antibodies for use in preparing human antibodies
US9670269B2 (en) 2006-03-31 2017-06-06 Chugai Seiyaku Kabushiki Kaisha Methods of modifying antibodies for purification of bispecific antibodies
JP2009532033A (en) 2006-03-31 2009-09-10 ダナ ファーバー キャンサー インスティテュート,インコーポレイテッド Methods for quantifying cell chemosensitivity
JP5624276B2 (en) 2006-03-31 2014-11-12 中外製薬株式会社 Methods for controlling blood kinetics of antibodies
EP2007428A2 (en) 2006-04-05 2008-12-31 Genentech, Inc. Method for using boc/cdo to modulate hedgehog signaling
US9260516B2 (en) 2006-04-07 2016-02-16 Osaka University Method for promoting muscle regeneration by administering an antibody to the IL-6 receptor
EP2010567A2 (en) 2006-04-07 2009-01-07 The Government of the United States of America as Represented by The Department of Health and Human Services Antibody compositions and methods for treatment of neoplastic disease
TW200813091A (en) 2006-04-10 2008-03-16 Amgen Fremont Inc Targeted binding agents directed to uPAR and uses thereof
EP2011870A4 (en) 2006-04-14 2010-09-15 Medical & Biol Lab Co Ltd Mutant polypeptide having effector function
BRPI0712607A8 (en) 2006-05-25 2019-06-04 Biogen Idec Inc stroke treatment methods
SG10201501103RA (en) 2006-05-30 2015-04-29 Genentech Inc Antibodies And Immunoconjugates And Uses Therefor
EP2032604A2 (en) 2006-06-06 2009-03-11 Genentech, Inc. Anti-dll4 antibodies and methods using same
US9028821B2 (en) 2006-06-08 2015-05-12 Chugai Seiyaku Kabushiki Kaisha Method of treating an inflammatory disease comprising administering an NR 10 antibody antagonist
MX2008015771A (en) 2006-06-14 2009-01-27 Macrogenics Inc Methods for the treatment of autoimmune disorders using monoclonal antibodies with reduced toxicity.
PL2029173T3 (en) 2006-06-26 2017-04-28 Macrogenics, Inc. Fc riib-specific antibodies and methods of use thereof
US7572618B2 (en) 2006-06-30 2009-08-11 Bristol-Myers Squibb Company Polynucleotides encoding novel PCSK9 variants
CN101511181B (en) 2006-07-11 2013-08-21 新泽西医科和牙科大学 Proteins, nucleic acids encoding the same and associated methods of use
PE20081004A1 (en) 2006-07-13 2008-09-18 Chugai Pharmaceutical Co Ltd INDUCING AGENTS OF CELLULAR DEATH
EP2044122B1 (en) 2006-07-18 2018-03-28 Sanofi Antagonist antibody against epha2 for the treatment of cancer
EP2574625B1 (en) 2006-07-21 2015-02-25 HuBit genomix, Inc. Remedy for renal disease
CL2007002225A1 (en) 2006-08-03 2008-04-18 Astrazeneca Ab SPECIFIC UNION AGENT FOR A RECEIVER OF THE GROWTH FACTOR DERIVED FROM PLATES (PDGFR-ALFA); NUCLEIC ACID MOLECULA THAT CODIFIES IT; VECTOR AND CELL GUESTS THAT UNDERSTAND IT; CONJUGADO UNDERSTANDING THE AGENT; AND USE OF THE AGENT OF A
AU2007348941B2 (en) 2006-08-03 2011-08-04 Medimmune Limited Antibodies directed to alphaVbeta6 and uses thereof
US8586716B2 (en) 2006-08-04 2013-11-19 Novartis Ag EPHB3-specific antibody and uses thereof
PT2511301T (en) 2006-08-04 2018-03-08 Medimmune Ltd Human antibodies to erbb 2
JP5317697B2 (en) 2006-08-14 2013-10-16 中外製薬株式会社 Diagnosis and treatment of cancer using anti-Desmoglein3 antibody
CA2661023C (en) 2006-08-18 2017-08-15 Novartis Ag Prlr-specific antibody and uses thereof
NZ575163A (en) 2006-08-28 2011-12-22 Jolla Inst Allergy Immunolog Antagonistic human light-specific human monoclonal antibodies
EP2059533B1 (en) 2006-08-30 2012-11-14 Genentech, Inc. Multispecific antibodies
SG174053A1 (en) 2006-09-01 2011-09-29 Therapeutic Human Polyclonals Inc Enhanced expression of human or humanized immunoglobulin in non-human transgenic animals
ES2902063T3 (en) 2006-09-08 2022-03-24 Abbvie Bahamas Ltd Interleukin-13 binding proteins
ES2530438T3 (en) 2006-09-12 2015-03-02 Genentech Inc Procedures and compositions for the diagnosis and treatment of lung cancer using the KIT or KDR gene as a genetic marker
US20100297103A1 (en) 2006-09-14 2010-11-25 Medical & Biological Laboratories Co., Ltd. Antibody having enhanced adcc activity and method for production thereof
WO2008060776A2 (en) 2006-10-03 2008-05-22 University Of Medicine And Dentistry Of New Jersey Atap peptides, nucleic acids encoding the same and associated methods of use
JP2010506839A (en) 2006-10-12 2010-03-04 ワイス エルエルシー Methods and compositions with reduced opalescence
BRPI0719202A2 (en) 2006-10-12 2015-06-16 Forerunner Pharma Res Co Ltd Diagnosis and treatment of cancer using antiereg antibody
WO2008048545A2 (en) 2006-10-16 2008-04-24 Medimmune, Llc. Molecules with reduced half-lives, compositions and uses thereof
EP1914242A1 (en) 2006-10-19 2008-04-23 Sanofi-Aventis Novel anti-CD38 antibodies for the treatment of cancer
JP5378795B2 (en) 2006-10-20 2013-12-25 中外製薬株式会社 Pharmaceutical composition comprising anti-HB-EGF antibody as an active ingredient
WO2008047914A1 (en) 2006-10-20 2008-04-24 Forerunner Pharma Research Co., Ltd. Cancer therapeutic agent comprising anti-hb-egf antibody as active ingredient
US7846434B2 (en) 2006-10-24 2010-12-07 Trubion Pharmaceuticals, Inc. Materials and methods for improved immunoglycoproteins
PT2502938E (en) 2006-10-27 2015-06-05 Genentech Inc Antibodies and immunoconjugates and uses therefor
EP2395077A1 (en) 2006-11-03 2011-12-14 Wyeth LLC Glycolysis-inhibiting substances in cell culture
EP2094733A1 (en) 2006-11-03 2009-09-02 U3 Pharma GmbH Fgfr4 antibodies
WO2008064306A2 (en) 2006-11-22 2008-05-29 Curedm, Inc. Methods and compositions relating to islet cell neogenesis
US20080199475A1 (en) 2006-11-27 2008-08-21 Patrys Limited Novel glycosylated peptide target in neoplastic cells
US8455626B2 (en) 2006-11-30 2013-06-04 Abbott Laboratories Aβ conformer selective anti-aβ globulomer monoclonal antibodies
EP2687232A1 (en) 2006-12-06 2014-01-22 MedImmune, LLC Methods of treating systemic lupus erythematosus
US8377439B2 (en) 2006-12-07 2013-02-19 Novartis Ag Antagonist antibodies against EPHB3
US20100111852A1 (en) 2006-12-14 2010-05-06 Forerunner Pharma Research Co., Ltd. Anti-Claudin 3 Monoclonal Antibody and Treatment and Diagnosis of Cancer Using the Same
CL2007003661A1 (en) 2006-12-18 2008-07-18 Genentech Inc VARIABLE AND LIGHT VARIABLE HEAVY CHAIN REGIONS; NUCLEIC ACIDS THAT CODE THEM; METHOD OF PRODUCTION; ANTI-NOTCH3 ANTIBODIES THAT UNDERSTAND THEM; AND USE OF ANTIBODIES TO TREAT DISEASES RELATED TO THE RECEIVER NOTCH3.
AU2007333635B2 (en) 2006-12-20 2014-02-20 Xoma (Us) Llc Treatment of IL-1-beta related diseases
EP2123676A4 (en) 2007-01-05 2011-01-05 Univ Tokyo Diagnosis and treatment of cancer by using anti-prg-3 antibody
CA2674140C (en) 2007-01-05 2018-05-15 University Of Zurich Method of providing disease-specific binding molecules and targets
WO2008086006A2 (en) 2007-01-09 2008-07-17 Biogen Idec Ma Inc. Sp35 antibodies and uses thereof
US8128926B2 (en) 2007-01-09 2012-03-06 Biogen Idec Ma Inc. Sp35 antibodies and uses thereof
US7776331B1 (en) 2007-01-16 2010-08-17 Abbott Laboratories Methods of treating plaque psoriasis
CA2675625C (en) 2007-01-23 2016-09-13 Shinshu University Chronic rejection inhibitor
CN101652389A (en) 2007-02-09 2010-02-17 健泰科生物技术公司 Anti-ROBO4 antibodies and uses therefor
US8609405B2 (en) 2007-02-09 2013-12-17 Eisai R&D Management Co., Ltd. GABA neuron progenitor cell marker 65B13
WO2008101184A2 (en) 2007-02-16 2008-08-21 The Board Of Trustees Of Southern Illinois University Arl-1 specific antibodies
US8685666B2 (en) 2007-02-16 2014-04-01 The Board Of Trustees Of Southern Illinois University ARL-1 specific antibodies and uses thereof
WO2008103962A2 (en) 2007-02-22 2008-08-28 Genentech, Inc. Methods for detecting inflammatory bowel disease
EP2124952A2 (en) 2007-02-27 2009-12-02 Abbott GmbH & Co. KG Method for the treatment of amyloidoses
US8192740B2 (en) 2007-02-27 2012-06-05 Forerunner Pharma Research Co., Ltd. Pharmaceutical composition comprising anti-GRP78 antibody as active ingredient
BRPI0808418A2 (en) 2007-03-02 2014-07-22 Genentech Inc PREDICTION OF RESPONSE TO A HER INHIBITOR
CL2008000719A1 (en) 2007-03-12 2008-09-05 Univ Tokushima Chugai Seiyaku THERAPEUTIC AGENT FOR CANCER RESISTANT TO CHEMOTHERAPEUTIC AGENTS THAT UNDERSTAND AN ANTIBODY THAT RECOGNIZES IT CLASS I AS ACTIVE INGREDIENT; PHARMACEUTICAL COMPOSITION THAT INCLUDES SUCH ANTIBODY; AND METHOD TO TREAT CANCER RESISTANT TO
KR101570702B1 (en) 2007-03-13 2015-11-23 유니버시티 오브 취리히 - monoclonal human tumor-specific antibody
BR122020022640B1 (en) 2007-03-22 2022-03-29 UCB Biopharma SRL DNA molecule encoding cd154 binding proteins, vector, host cell and method of production of said proteins
US7960139B2 (en) 2007-03-23 2011-06-14 Academia Sinica Alkynyl sugar analogs for the labeling and visualization of glycoconjugates in cells
WO2008118324A2 (en) 2007-03-26 2008-10-02 Macrogenics, Inc. Composition and method of treating cancer with an anti-uroplakin ib antibody
EP2703007A1 (en) 2007-03-30 2014-03-05 MedImmune, LLC Antibodies with decreased deamidation profiles
US7867494B2 (en) 2007-04-02 2011-01-11 Amgen Fremont Inc. Anti-IgE antibodies
TW200902708A (en) 2007-04-23 2009-01-16 Wyeth Corp Methods of protein production using anti-senescence compounds
EP3072525B1 (en) 2007-05-14 2018-01-31 AstraZeneca AB Methods of reducing basophil levels
MX343167B (en) 2007-05-21 2016-10-26 Genentech Inc * Methods and compositions for identifying and treating lupus.
JP5117765B2 (en) 2007-05-28 2013-01-16 国立大学法人 東京大学 Tumor diagnostic agent for PET containing anti-ROBO1 antibody
EP2171090B1 (en) 2007-06-08 2013-04-03 Genentech, Inc. Gene expression markers of tumor resistance to her2 inhibitor treatment
US20080311119A1 (en) 2007-06-14 2008-12-18 Biogen Idec Ma Inc. Antibody formulations
EP2158221B1 (en) 2007-06-21 2018-08-29 MacroGenics, Inc. Covalent diabodies and uses thereof
SG10201913363VA (en) 2007-07-09 2020-03-30 Genentech Inc Prevention of disulfide bond reduction during recombinant production of polypeptides
JP5424330B2 (en) 2007-07-26 2014-02-26 国立大学法人大阪大学 A therapeutic agent for ocular inflammatory diseases comprising an interleukin 6 receptor inhibitor as an active ingredient
AU2008317495B2 (en) 2007-08-02 2013-08-01 Novimmune S.A. Anti-RANTES antibodies and methods of use thereof
AU2008290061B2 (en) 2007-08-20 2014-01-30 Oncotherapy Science, Inc. CDCA1 peptide and pharmaceutical agent comprising the same
SG183718A1 (en) 2007-08-20 2012-09-27 Oncotherapy Science Inc Cdh3 peptide and medicinal agent comprising the same
CN101835792B (en) 2007-08-20 2015-04-15 肿瘤疗法科学股份有限公司 FOXM1 peptide and medicinal agent comprising the same
EP4248976A3 (en) 2007-08-23 2024-04-10 Amgen Inc. Antigen binding proteins to proprotein convertase subtilisin kexin type 9 (pcsk9)
JOP20080381B1 (en) 2007-08-23 2023-03-28 Amgen Inc Antigen Binding Proteins to Proprotein Convertase subtillisin Kexin type 9 (pcsk9)
MX2010001975A (en) 2007-08-29 2010-03-10 Sanofi Aventis Humanized anti-cxcr5 antibodies, derivatives thereof and their uses.
WO2009029847A1 (en) 2007-08-30 2009-03-05 Curedm, Inc. Compositions and methods of using proislet peptides and analogs thereof
EP2527369A3 (en) 2007-09-13 2012-12-19 University Of Zurich Prorektorat Forschung Monoclonal amyloid beta (abeta)-specific antibody and uses thereof
ES2430068T3 (en) 2007-09-26 2013-11-18 U3 Pharma Gmbh Antigen-binding proteins of the epidermal growth factor type heparin-binding growth factor
JP5334319B2 (en) 2007-09-26 2013-11-06 中外製薬株式会社 Method for modifying isoelectric point of antibody by amino acid substitution of CDR
AU2008304111B2 (en) 2007-09-27 2014-04-24 Amgen Inc. Pharmaceutical formulations
DK2196541T3 (en) 2007-09-28 2012-11-26 Chugai Pharmaceutical Co Ltd Anti-glypican-3 antibody with improved plasma kinetics
AU2008308163B2 (en) 2007-10-02 2013-03-21 Chugai Seiyaku Kabushiki Kaisha Therapeutic agents for graft-versus-host disease comprising interleukin 6 receptor inhibitor as active ingredient
PL2202307T5 (en) 2007-10-15 2021-10-04 Chugai Seiyaku Kabushiki Kaisha Method for production of antibody
EP2050764A1 (en) 2007-10-15 2009-04-22 sanofi-aventis Novel polyvalent bispecific antibody format and uses thereof
CA2702880A1 (en) 2007-10-19 2009-04-23 Immunas Pharma, Inc. Antibody capable of specifically binding to a beta oligomer, and use thereof
US20120047586A9 (en) 2007-10-24 2012-02-23 Otsuka Chemical Co., Ltd Polypeptide having enhanced effector function
PE20091163A1 (en) 2007-11-01 2009-08-09 Wyeth Corp ANTIBODIES FOR GDF8
PT2219452E (en) 2007-11-05 2016-01-26 Medimmune Llc Methods of treating scleroderma
CN108815508A (en) 2007-11-07 2018-11-16 健泰科生物技术公司 For treating the composition and method of microbial conditions
CA2704499C (en) 2007-11-07 2020-03-10 Genentech, Inc. Methods and compositions for assessing responsiveness of b-cell lymphoma to treatment with anti-cd40 antibodies
EP2918605A1 (en) 2007-11-12 2015-09-16 U3 Pharma GmbH Axl antibodies
CN104109208A (en) 2007-11-14 2014-10-22 中外制药株式会社 Diagnosis And Treatment Of Cancer Using Anti-gpr49 Antibody
WO2009063965A1 (en) 2007-11-15 2009-05-22 Chugai Seiyaku Kabushiki Kaisha Monoclonal antibody capable of binding to anexelekto, and use thereof
EP3381445B1 (en) 2007-11-15 2023-10-25 Amgen Inc. Aqueous formulation of antibody stablised by antioxidants for parenteral administration
JP5490714B2 (en) 2007-11-28 2014-05-14 メディミューン,エルエルシー Protein preparation
TWI580694B (en) 2007-11-30 2017-05-01 建南德克公司 Anti-vegf antibodies
MX337081B (en) 2007-12-05 2016-02-10 Chugai Pharmaceutical Co Ltd Anti-nr10 antibody and use thereof.
RU2541780C2 (en) 2007-12-05 2015-02-20 Чугаи Сейяку Кабусики Кайся Therapeutic agent for itching
WO2009079259A2 (en) 2007-12-06 2009-06-25 Dana-Farber Cancer Institute, Inc. Antibodies against influenza virus and methods of use thereof
WO2009075344A1 (en) 2007-12-12 2009-06-18 Japan As Represented By Director General Of Agency Of National Cancer Center Therapeutic agent for mll leukemia and moz leukemia of which molecular target is m-csf receptor, and use thereof
RU2018100129A (en) 2007-12-20 2019-02-20 Ксома (Сша) Ллс GHOST TREATMENT METHODS
JP2011507933A (en) 2007-12-26 2011-03-10 バイオテスト・アクチエンゲゼルシヤフト Methods for reducing cytotoxic side effects and improving efficacy of immune complexes
US9446146B2 (en) 2007-12-26 2016-09-20 Biotest Ag Methods and agents for improving targeting of CD138 expressing tumor cells
EP2801584B1 (en) 2007-12-26 2019-07-10 Biotest AG Agents targeting CD138 and uses thereof
AU2008339911B2 (en) 2007-12-26 2014-02-27 Biotest Ag Immunoconjugates targeting CD138 and uses thereof
PE20091174A1 (en) 2007-12-27 2009-08-03 Chugai Pharmaceutical Co Ltd LIQUID FORMULATION WITH HIGH CONCENTRATION OF ANTIBODY CONTENT
US8962806B2 (en) 2007-12-28 2015-02-24 Dana-Farber Cancer Institute, Inc. Humanized monoclonal antibodies and methods of use
CN102083460A (en) 2008-01-18 2011-06-01 米迪缪尼有限公司 Cysteine engineered antibodies for site-specific conjugation
JP5701064B2 (en) 2008-01-25 2015-04-15 アムジエン・インコーポレーテツド Ferroportin antibody and method of use thereof
DK2246427T3 (en) 2008-02-08 2017-02-20 Immunas Pharma Inc Antibodies capable of binding specifically to amyloid-beta oligomers and their use
EP2250279B1 (en) 2008-02-08 2016-04-13 MedImmune, LLC Anti-ifnar1 antibodies with reduced fc ligand affinity
US8962803B2 (en) 2008-02-29 2015-02-24 AbbVie Deutschland GmbH & Co. KG Antibodies against the RGM A protein and uses thereof
BRPI0908715A2 (en) 2008-03-18 2016-05-03 Abbott Lab Methods for psoriasis treatment
WO2009118300A1 (en) 2008-03-25 2009-10-01 Novartis Forschungsstiftung Zweigniederlassung Friedrich Miescher Institute For Biomedical Research Treating cancer by down-regulating frizzled-4 and/or frizzled-1
CN102232113A (en) 2008-03-31 2011-11-02 健泰科生物技术公司 Compositions and methods for treating and diagnosing asthma
CL2009000647A1 (en) 2008-04-04 2010-06-04 Chugai Pharmaceutical Co Ltd Pharmaceutical composition for treating or preventing liver cancer comprising a combination of a chemotherapeutic agent and an anti-glypican 3 antibody; agent for attenuating a side effect comprising said antibody; method of treating or preventing liver cancer of a subject.
WO2009124109A1 (en) 2008-04-04 2009-10-08 The Government Of The U.S. A. As Represented By The Secretary Of The Dept. Of Health &Human Services Human monoclonal antibodies specific for cd22
TWI787643B (en) 2008-04-11 2022-12-21 日商中外製藥股份有限公司 Antigen-binding molecules that repeatedly bind multiple antigens
EP3670538A1 (en) 2008-04-25 2020-06-24 Dyax Corp. Antibodies against fcrn and use thereof
CN102076355B (en) 2008-04-29 2014-05-07 Abbvie公司 Dual varistructure domain immunoglobulins and uses thereof
WO2009139822A1 (en) 2008-05-01 2009-11-19 Amgen Inc. Anti-hepcidin antibodies and methods of use
JP5624535B2 (en) 2008-05-02 2014-11-12 シアトル ジェネティクス,インコーポレーテッド Methods and compositions for preparing antibodies and antibody derivatives having low core fucosylation
CN104558178A (en) 2008-05-09 2015-04-29 Abbvie公司 Antibodies to receptor of advanced glycation end products (rage) and uses thereof
EP2304439A4 (en) 2008-05-29 2012-07-04 Nuclea Biotechnologies Llc Anti-phospho-akt antibodies
WO2009147781A1 (en) 2008-06-02 2009-12-10 国立大学法人東京大学 Antitumor agent
SG191625A1 (en) 2008-06-03 2013-07-31 Abbott Lab Dual variable domain immunoglobulins and uses thereof
RU2010153580A (en) 2008-06-03 2012-07-20 Эбботт Лэборетриз (Us) IMMUNOGLOBULINS WITH TWO VARIABLE DOMAINS AND THEIR APPLICATION
TW201503898A (en) 2008-06-05 2015-02-01 Chugai Pharmaceutical Co Ltd Neuroinvasion inhibitor
WO2010004438A2 (en) 2008-06-16 2010-01-14 Patrys Limited Lm-antibodies, functional fragments, lm-1 target antigen, and methods for making and using same
CN102124030B (en) 2008-06-20 2015-06-17 国立大学法人冈山大学 Antibody against oxidized ldl/ss2gpi complex and use of the same
WO2010002862A2 (en) 2008-07-01 2010-01-07 Aveo Pharmaceuticals, Inc. Fibroblast growth factor receptor 3 (fgfr3) binding proteins
SG192496A1 (en) 2008-07-08 2013-08-30 Abbott Lab Prostaglandin e2 binding proteins and uses thereof
WO2010006060A2 (en) 2008-07-08 2010-01-14 Abbott Laboratories Prostaglandin e2 dual variable domain immunoglobulins and uses thereof
EP2982695B1 (en) 2008-07-09 2019-04-03 Biogen MA Inc. Compositions comprising antibodies to lingo or fragments thereof
JP5986745B2 (en) 2008-07-15 2016-09-06 アカデミア シニカAcademia Sinica Glycan arrays on PTFE-like aluminum-coated glass slides and related methods
JP5623401B2 (en) 2008-08-14 2014-11-12 テバ・ファーマシューティカルズ・オーストラリア・ピーティワイ・リミテッド Anti-IL-12 / IL-23 antibody
SG10201701323TA (en) 2008-08-18 2017-04-27 Amgen Fremont Inc Antibodies to ccr2
EP2328928A2 (en) 2008-08-25 2011-06-08 Dana-Farber Cancer Institute, Inc. Conserved influenza hemagglutinin epitope and antibodies thereto
MX353984B (en) 2008-09-03 2017-11-27 Genentech Inc Star Multispecific antibodies.
MX2011002478A (en) 2008-09-07 2011-04-05 Glyconex Inc Anti-extended type i glycosphingolipid antibody, derivatives thereof and use.
AU2009294415B2 (en) 2008-09-19 2015-09-24 Medimmune Llc Antibodies directed to DLL4 and uses thereof
JP2012504939A (en) 2008-09-23 2012-03-01 ワイス・エルエルシー Method for predicting the generation of activation signals by cross-linked proteins
DK2346994T3 (en) 2008-09-30 2022-02-28 Ablexis Llc Knock-in mice for the production of chimeric antibodies
KR20110069144A (en) 2008-10-09 2011-06-22 미네르바 바이오테크놀로지 코포레이션 Method for inducing pluripotency in cells
PL2352521T3 (en) 2008-10-14 2021-03-08 Genentech, Inc. Immunoglobulin variants and uses thereof
EP2349329A4 (en) 2008-10-14 2012-10-31 Dyax Corp Use of igf-ii/igf-iie binding for the treatment and prevention of systemic sclerosis associated pulmonary fibrosis
EP3351628B1 (en) 2008-10-24 2023-07-26 The Government of The United States of America as represented by The Secretary, Department of Health and Human Services Human ebola virus species and compositions and methods thereof
WO2010051288A1 (en) 2008-10-27 2010-05-06 Revivicor, Inc. Immunocompromised ungulates
KR20110079693A (en) 2008-10-29 2011-07-07 와이어쓰 엘엘씨 Methods for purification of single domain antigen binding molecules
CN102271707B (en) 2008-10-29 2015-04-08 阿布林克斯公司 Formulations of single domain antigen binding molecules
US8642280B2 (en) 2008-11-07 2014-02-04 Novartis Forschungsstiftung Zweigniederlassung Friedrich Miescher Institute For Biomedical Research Teneurin and cancer
KR20110094029A (en) 2008-11-10 2011-08-19 알렉시온 파마슈티칼스, 인코포레이티드 Methods and compositions for treating complement-associated disorders
EP2191841A1 (en) 2008-11-28 2010-06-02 Sanofi-Aventis Antitumor combinations containing antibodies recognizing specifically CD38 and vincristine
EP2191840A1 (en) 2008-11-28 2010-06-02 Sanofi-Aventis Antitumor combinations containing antibodies recognizing specifically CD38 and melphalan
EP2191843A1 (en) 2008-11-28 2010-06-02 Sanofi-Aventis Antitumor combinations containing antibodies recognizing specifically CD38 and cyclophosphamide
EP2191842A1 (en) 2008-11-28 2010-06-02 Sanofi-Aventis Antitumor combinations containing antibodies recognizing specifically CD38 and cytarabine
KR20170113681A (en) 2008-12-09 2017-10-12 제넨테크, 인크. Anti-pd-l1 antibodies and their use to enhance t-cell function
CN106220734A (en) 2008-12-19 2016-12-14 宏观基因有限公司 Covalent diabodies and application thereof
AU2009328505B2 (en) 2008-12-19 2014-11-27 Panima Pharmaceuticals Ag Human anti-alpha-synuclein autoantibodies
US8877449B2 (en) 2008-12-22 2014-11-04 Eisai R&D Management Co., Ltd. Method for obtaining pancreatic progenitor cell using NEPH3
WO2010075249A2 (en) 2008-12-22 2010-07-01 Genentech, Inc. A method for treating rheumatoid arthritis with b-cell antagonists
JP2012513194A (en) 2008-12-23 2012-06-14 アストラゼネカ アクチボラグ Targeted binding agents directed to α5β1 and uses thereof
US20120009182A1 (en) 2008-12-23 2012-01-12 Genentech, Inc. Immunoglobulin variants with altered binding to protein a
MX2011006908A (en) 2008-12-26 2011-10-06 Univ Tokio Diagnosis and treatment of cancer using anti-lgr7 antibody.
CN102341411A (en) 2008-12-31 2012-02-01 比奥根艾迪克Ma公司 Anti-lymphotoxin antibodies
EP2387584A1 (en) 2009-01-14 2011-11-23 IQ Therapeutics BV Combination antibodies for the treatment and prevention of disease caused by bacillus anthracis and related bacteria and their toxins
WO2010085510A1 (en) 2009-01-20 2010-07-29 Zadeh Homayoun H Antibody mediated osseous regeneration
US8852608B2 (en) 2009-02-02 2014-10-07 Medimmune, Llc Antibodies against and methods for producing vaccines for respiratory syncytial virus
US9085795B2 (en) 2009-02-04 2015-07-21 Molecular Innovations, Inc. Methods for screening candidate agents for modulating prorenin and renin, assays for detecting prorenin and antibodies
US8309530B2 (en) 2009-02-04 2012-11-13 Washington State University Compositions and methods for modulating ghrelin-mediated conditions
US20110014190A1 (en) 2009-02-12 2011-01-20 Human Genome Sciences, Inc. Use of b lymphocyte stimulator protein antagonists to promote transplantation tolerance
UY32477A (en) 2009-03-05 2010-06-30 Abbott Lab IL-17 UNION PROTEINS
EP2405920A1 (en) 2009-03-06 2012-01-18 Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research Novel therapy for anxiety
JP2010210772A (en) 2009-03-13 2010-09-24 Dainippon Screen Mfg Co Ltd Method of manufacturing liquid crystal display device
SG174378A1 (en) 2009-03-20 2011-10-28 Genentech Inc Bispecific anti-her antibodies
AU2010228990A1 (en) 2009-03-24 2011-10-27 Teva Biopharmaceuticals Usa, Inc. Humanized antibodies against LIGHT and uses thereof
EP2413962A1 (en) 2009-03-30 2012-02-08 Mount Sinai School of Medicine Influenza virus vaccines and uses thereof
MA33248B1 (en) 2009-04-01 2012-05-02 Genentech Inc TREATMENT OF INSULIN RESISTANT DISORDERS
US20100297127A1 (en) 2009-04-08 2010-11-25 Ghilardi Nico P Use of il-27 antagonists to treat lupus
JP5748653B2 (en) 2009-04-10 2015-07-15 協和発酵キリン株式会社 Hematological tumor therapy using anti-TIM-3 antibody
EP2241323A1 (en) 2009-04-14 2010-10-20 Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research Tenascin-W and brain cancers
SG175181A1 (en) 2009-04-16 2011-11-28 Abbott Biotherapeutics Corp ANTI-TNF-a ANTIBODIES AND THEIR USES
ES2641612T3 (en) 2009-04-17 2017-11-10 Immunas Pharma, Inc. Antibodies that specifically bind to beta A oligomers and use thereof
EP2419531B1 (en) 2009-04-18 2016-09-07 Genentech, Inc. Methods for assessing responsiveness of b-cell lymphoma to treatment with anti-cd40 antibodies
JP5694923B2 (en) 2009-04-27 2015-04-01 協和発酵キリン株式会社 Anti-IL-3Rα antibody for blood tumor treatment
EP2424891B1 (en) 2009-04-29 2014-06-11 The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Erg monoclonal antibodies
WO2010126137A1 (en) 2009-05-01 2010-11-04 国立大学法人 東京大学 Anti-cadherin antibody
BRPI1014544B8 (en) 2009-05-05 2021-05-25 Novimmune Sa isolated fully human monoclonal anti-il-17f antibody and pharmaceutical composition comprising the same
CA2800182A1 (en) 2009-05-26 2010-12-02 Mount Sinai School Of Medicine Monoclonal antibodies against influenza virus generated by cyclical administration and uses thereof
JP5808052B2 (en) 2009-05-29 2015-11-10 中外製薬株式会社 Pharmaceutical composition comprising antagonist of EGF family ligand as ingredient
WO2010146059A2 (en) 2009-06-16 2010-12-23 F. Hoffmann-La Roche Ag Biomarkers for igf-1r inhibitor therapy
TWI510248B (en) 2009-06-17 2015-12-01 Abbvie Biotherapeutics Inc Anti-vegf antibodies and their uses
CA2766405A1 (en) 2009-06-22 2011-01-13 Medimmune, Llc Engineered fc regions for site-specific conjugation
US20120226119A1 (en) 2009-07-09 2012-09-06 Hoffmann-La Roche Inc. Vivo tumor vasculature imaging
WO2011006001A1 (en) 2009-07-09 2011-01-13 Genentech, Inc. Animal model for the evaluation of adjuvant therapies of cancer
KR20120106935A (en) 2009-07-13 2012-09-27 제넨테크, 인크. Diagnostic methods and compositions for treatment of cancer
US9217157B2 (en) 2009-07-27 2015-12-22 Icahn School Of Medicine At Mount Sinai Recombinant influenza viruses and uses thereof
WO2011014457A1 (en) 2009-07-27 2011-02-03 Genentech, Inc. Combination treatments
EP2459585B1 (en) 2009-07-30 2024-09-04 Icahn School of Medicine at Mount Sinai Influenza viruses and uses thereof
NZ597531A (en) 2009-07-31 2014-05-30 Genentech Inc Inhibition of tumor metastasis using bv8- or g-csf-antagonists
EP2460538B1 (en) 2009-07-31 2017-09-13 Shin Maeda Cancer metastasis inhibitor
AU2010280981B2 (en) 2009-08-05 2016-01-28 Nexigen Gmbh Human HCV-interacting proteins and methods of use
EP2462162B1 (en) 2009-08-06 2016-10-12 Immunas Pharma, Inc. Antibodies that specifically bind to a beta oligomers and use thereof
DK2462161T3 (en) 2009-08-06 2017-06-06 Immunas Pharma Inc Antibodies specifically binding to A-beta oligomers and their use
US20110039300A1 (en) 2009-08-10 2011-02-17 Robert Bayer Antibodies with enhanced adcc functions
LT2464725T (en) 2009-08-11 2020-06-10 F. Hoffmann-La Roche Ag Production of proteins in glutamine-free cell culture media
IN2012DN01328A (en) 2009-08-13 2015-06-05 Crucell Holland Bv
WO2011019622A1 (en) 2009-08-14 2011-02-17 Genentech, Inc. Cell culture methods to make antibodies with enhanced adcc function
KR20120059553A (en) 2009-08-14 2012-06-08 제넨테크, 인크. Biological markers for monitoring patient response to vegf antagonists
AU2010285974A1 (en) 2009-08-17 2012-03-22 Forerunner Pharma Research Co., Ltd. Pharmaceutical composition comprising anti-HB-EGF antibody as active ingredient
WO2011024114A1 (en) 2009-08-25 2011-03-03 Ecole Polytechnique Federale De Lausanne (Epfl) Targeting extracellular matrix molecules for the treatment of cancer
EP2292266A1 (en) 2009-08-27 2011-03-09 Novartis Forschungsstiftung, Zweigniederlassung Treating cancer by modulating copine III
MY159837A (en) 2009-08-29 2017-02-15 Abbvie Inc Therapeutic dll4 binding proteins
PE20121530A1 (en) 2009-09-01 2012-12-22 Abbvie Inc IMMUNOGLOBULINS WITH DUAL VARIABLE DOMAIN
US9321823B2 (en) 2009-09-02 2016-04-26 Genentech, Inc. Mutant smoothened and methods of using the same
CA2772929A1 (en) 2009-09-03 2011-03-11 Genentech, Inc. Methods for treating, diagnosing, and monitoring rheumatoid arthritis
SG179070A1 (en) 2009-09-11 2012-04-27 Genentech Inc Method to identify a patient with an increased likelihood of responding to an anti-cancer agent
CN102630168A (en) 2009-09-14 2012-08-08 雅培制药有限公司 Methods for treating psoriasis
WO2011033006A1 (en) 2009-09-17 2011-03-24 F. Hoffmann-La Roche Ag Methods and compositions for diagnostics use in cancer patients
WO2011036118A1 (en) 2009-09-22 2011-03-31 Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research Treating cancer by modulating mex-3
TW201118166A (en) 2009-09-24 2011-06-01 Chugai Pharmaceutical Co Ltd HLA class I-recognizing antibodies
US8926976B2 (en) 2009-09-25 2015-01-06 Xoma Technology Ltd. Modulators
AU2010298036B2 (en) 2009-09-25 2015-05-21 Xoma Technology Ltd. Screening methods
EP2305285A1 (en) 2009-09-29 2011-04-06 Julius-Maximilians-Universität Würzburg Means and methods for treating ischemic conditions
MA33973B1 (en) 2009-09-30 2013-02-01 Genentech Inc Ways to treat cancer using notch antagonists
TW201116297A (en) 2009-10-02 2011-05-16 Sanofi Aventis Antibodies that specifically bind to the EphA2 receptor
TR201804897T4 (en) 2009-10-07 2018-06-21 Macrogenics Inc POLYPEPTIDES CONTAINING FC REGION WITH ADVANCED EFFECTOR FUNCTION DUE TO CHANGES OF FUCOSILATION SIZE AND METHODS FOR THEIR USE
CN106929568A (en) 2009-10-07 2017-07-07 弗·哈夫曼-拉罗切有限公司 Method for treating, diagnosing and monitor lupus
JP2013507618A (en) 2009-10-11 2013-03-04 バイオジェン・アイデック・エムエイ・インコーポレイテッド Anti-VLA-4 related assays
WO2011045352A2 (en) 2009-10-15 2011-04-21 Novartis Forschungsstiftung Spleen tyrosine kinase and brain cancers
AU2010306677B2 (en) 2009-10-15 2013-05-23 Abbvie Inc. Dual variable domain immunoglobulins and uses thereof
CA2778810C (en) 2009-10-26 2018-09-04 Genentech, Inc. Assays for detecting antibodies specific to therapeutic anti-ige antibodies and their use in anaphylaxis
WO2011056494A1 (en) 2009-10-26 2011-05-12 Genentech, Inc. Activin receptor-like kinase-1 antagonist and vegfr3 antagonist combinations
WO2011056502A1 (en) 2009-10-26 2011-05-12 Genentech, Inc. Bone morphogenetic protein receptor type ii compositions and methods of use
WO2011056497A1 (en) 2009-10-26 2011-05-12 Genentech, Inc. Activin receptor type iib compositions and methods of use
WO2011059762A1 (en) 2009-10-28 2011-05-19 Abbott Biotherapeutics Corp. Anti-egfr antibodies and their uses
UY32979A (en) 2009-10-28 2011-02-28 Abbott Lab IMMUNOGLOBULINS WITH DUAL VARIABLE DOMAIN AND USES OF THE SAME
US20120213801A1 (en) 2009-10-30 2012-08-23 Ekaterina Gresko Phosphorylated Twist1 and cancer
TW201121568A (en) 2009-10-31 2011-07-01 Abbott Lab Antibodies to receptor for advanced glycation end products (RAGE) and uses thereof
WO2011057188A1 (en) 2009-11-06 2011-05-12 Idexx Laboratories, Inc. Canine anti-cd20 antibodies
WO2011060015A1 (en) 2009-11-11 2011-05-19 Genentech, Inc. Methods and compositions for detecting target proteins
RS60390B1 (en) 2009-11-13 2020-07-31 Daiichi Sankyo Europe Gmbh Material and methods for treating or preventing her-3 associated diseases
CN102770529B (en) 2009-11-17 2018-06-05 Musc研究发展基金会 For the human monoclonal antibodies of people's paranuclein
CN104961829B (en) 2009-11-24 2018-08-21 米迪缪尼有限公司 For the targeting bonding agent of B7-H1
US11377485B2 (en) 2009-12-02 2022-07-05 Academia Sinica Methods for modifying human antibodies by glycan engineering
US10087236B2 (en) 2009-12-02 2018-10-02 Academia Sinica Methods for modifying human antibodies by glycan engineering
JP5951498B2 (en) 2009-12-08 2016-07-13 アッヴィ・ドイチュラント・ゲー・エム・ベー・ハー・ウント・コー・カー・ゲー Monoclonal antibody against RGMA protein for use in the treatment of retinal nerve fiber layer degeneration
AR078377A1 (en) 2009-12-11 2011-11-02 Genentech Inc ANTI-VEGF-C ANTIBODIES (ISOLATED ANTI-VASCULAR ENDOTELIAL GROWTH FACTOR C) AND ITS METHODS OF USE
EP2513148B1 (en) 2009-12-16 2016-08-31 AbbVie Biotherapeutics Inc. Anti-her2 antibodies and their uses
SG181834A1 (en) 2009-12-21 2012-07-30 Genentech Inc Antibody formulation
ES2585350T3 (en) 2009-12-23 2016-10-05 F. Hoffmann-La Roche Ag Anti Bv8 antibodies and uses thereof
JP6037841B2 (en) 2010-01-06 2016-12-07 ダイアックス コーポレーション Plasma kallikrein binding protein
IN2012DN06309A (en) 2010-01-11 2015-09-25 Alexion Pharma Inc
TWI609698B (en) 2010-01-20 2018-01-01 Chugai Pharmaceutical Co Ltd Stabilized antibody-containing solution preparation
JP5104996B2 (en) 2010-01-29 2012-12-19 東レ株式会社 Polylactic acid resin sheet
WO2011100403A1 (en) 2010-02-10 2011-08-18 Immunogen, Inc Cd20 antibodies and uses thereof
CA2789310C (en) 2010-02-10 2018-01-09 Fujifilm Ri Pharma Co., Ltd. Radioactive metal-labeled anti-cadherin antibody
AU2011217903B2 (en) 2010-02-18 2017-03-02 Mount Sinai School Of Medicine Vaccines for use in the prophylaxis and treatment of influenza virus disease
WO2011103426A2 (en) 2010-02-19 2011-08-25 The Board Of Regents Of The University Of Oklahoma Monoclonal antibodies that inhibit the wnt signaling pathway and methods of production and use thereof
MX348312B (en) 2010-03-02 2017-06-06 Abbvie Inc Therapeutic dll4 binding proteins.
WO2011108714A1 (en) 2010-03-04 2011-09-09 中外製薬株式会社 Antibody constant region variant
US20130004519A1 (en) 2010-03-05 2013-01-03 Ruth Chiquet-Ehrismann Smoci, tenascin-c and brain cancers
TWI667257B (en) 2010-03-30 2019-08-01 中外製藥股份有限公司 Antibodies with modified affinity to fcrn that promote antigen clearance
CN102939103A (en) 2010-03-30 2013-02-20 西奈山医学院 Influenza virus vaccines and uses thereof
EP4345163A3 (en) 2010-03-31 2024-06-19 Ablexis, LLC Genetic engineering of non-human animals for the production of chimeric antibodies
WO2011130332A1 (en) 2010-04-12 2011-10-20 Academia Sinica Glycan arrays for high throughput screening of viruses
EP3165540A1 (en) 2010-04-13 2017-05-10 Celldex Therapeutics, Inc. Antibodies that bind human cd27 and uses thereof
EP2558494B1 (en) 2010-04-15 2018-05-23 AbbVie Inc. Amyloid-beta binding proteins
BR112012026403B1 (en) 2010-04-16 2022-10-04 Biogen Ma Inc RECOMBINANT ANTIBODY MOLECULE OR A ?4-BINDING FRAGMENT THEREOF AND ITS USE
EP2561076A1 (en) 2010-04-19 2013-02-27 Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research Modulating xrn1
WO2011133931A1 (en) 2010-04-22 2011-10-27 Genentech, Inc. Use of il-27 antagonists for treating inflammatory bowel disease
ES2623799T3 (en) 2010-04-30 2017-07-12 Alexion Pharmaceuticals, Inc. Anti-C5a antibodies and methods for the use of antibodies
IL208820A0 (en) 2010-10-19 2011-01-31 Rachel Teitelbaum Biologic female contraceptives
CA2835489C (en) 2010-05-10 2018-03-06 Chi-Huey Wong Zanamivir phosphonate congeners with anti-influenza activity and determining oseltamivir susceptibility of influenza viruses
PT2571532T (en) 2010-05-14 2017-08-04 Abbvie Inc Il-1 binding proteins
EP2569335B1 (en) 2010-05-14 2018-08-22 Orega Biotech Methods of treating and/or preventing cell proliferation disorders with il-17 antagonists
WO2011146568A1 (en) 2010-05-19 2011-11-24 Genentech, Inc. Predicting response to a her inhibitor
ES2932398T3 (en) 2010-05-28 2023-01-18 Chugai Pharmaceutical Co Ltd Antitumor T cell response enhancer
EP2578233B1 (en) 2010-05-28 2017-04-26 National Cancer Center Therapeutic agent for pancreatic cancer
ES2648885T3 (en) 2010-06-02 2018-01-08 Dana-Farber Cancer Institute, Inc. Humanized monoclonal antibodies and methods of use
WO2011153224A2 (en) 2010-06-02 2011-12-08 Genentech, Inc. Diagnostic methods and compositions for treatment of cancer
MX336109B (en) 2010-06-03 2016-01-08 Genentech Inc Immuno-pet imaging of antibodies and immunoconjugates and uses therefor.
WO2011154485A1 (en) 2010-06-10 2011-12-15 Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research Treating cancer by modulating mammalian sterile 20-like kinase 3
EP4269563A3 (en) 2010-06-19 2024-01-10 Memorial Sloan-Kettering Cancer Center Anti-gd2 antibodies
US9815890B2 (en) 2010-06-22 2017-11-14 The Regents Of The University Of Colorado, A Body Corporate Antibodies to the C3d fragment of complement component 3
JP2013530981A (en) 2010-06-25 2013-08-01 アストン ユニバーシティ Glycoproteins with lipid mobilization properties and therapeutic uses thereof
US20120009196A1 (en) 2010-07-08 2012-01-12 Abbott Laboratories Monoclonal antibodies against hepatitis c virus core protein
JP5744196B2 (en) 2010-07-09 2015-07-08 クルセル ホランド ベー ヴェー Anti-human respiratory polynuclear virus (RSV) antibodies and methods of use
UY33492A (en) 2010-07-09 2012-01-31 Abbott Lab IMMUNOGLOBULINS WITH DUAL VARIABLE DOMAIN AND USES OF THE SAME
US20120100166A1 (en) 2010-07-15 2012-04-26 Zyngenia, Inc. Ang-2 Binding Complexes and Uses Thereof
CN103119062A (en) 2010-07-16 2013-05-22 埃博灵克斯股份有限公司 Modified single domain antigen binding molecules and uses thereof
WO2012010548A1 (en) 2010-07-19 2012-01-26 F. Hoffmann-La Roche Ag Method to identify a patient with an increased likelihood of responding to an anti-cancer therapy
CN104569395A (en) 2010-07-19 2015-04-29 霍夫曼-拉罗奇有限公司 Method to identify patient with increased likelihood of responding to anti-cancer therap
WO2012016203A1 (en) 2010-07-29 2012-02-02 Eleven Biotherapeutics, Inc. Chimeric il-1 receptor type i agonists and antagonists
SG187682A1 (en) 2010-08-02 2013-03-28 Macrogenics Inc Covalent diabodies and uses thereof
US8735546B2 (en) 2010-08-03 2014-05-27 Abbvie Inc. Dual variable domain immunoglobulins and uses thereof
WO2012018404A2 (en) 2010-08-06 2012-02-09 U3 Pharma Gmbh Use of her3 binding agents in prostate treatment
EP2420250A1 (en) 2010-08-13 2012-02-22 Universitätsklinikum Münster Anti-Syndecan-4 antibodies
MX358739B (en) 2010-08-14 2018-09-03 Abbvie Inc Star Amyloid-beta binding proteins.
DK3333188T3 (en) 2010-08-19 2022-03-07 Zoetis Belgium S A Anti-NGF antibodies and their use
JP2013539364A (en) 2010-08-26 2013-10-24 アッヴィ・インコーポレイテッド Dual variable domain immunoglobulins and uses thereof
WO2012025636A1 (en) 2010-08-27 2012-03-01 University Of Zurich Method for target and drug validation in inflammatory and/or cardiovascular diseases
WO2012028697A1 (en) 2010-09-01 2012-03-08 Eth Zürich, Institute Of Molecular Biology And Biophysics Affinity purification system based on donor strand complementation
WO2012032143A1 (en) 2010-09-10 2012-03-15 Novartis Forschungsstiftung, Zweigniederlassung, Friedrich Miescher Institute For Biomedical Research Phosphorylated twist1 and metastasis
PT2616090T (en) 2010-09-17 2023-10-16 Takeda Pharmaceuticals Co Stabilization of immunoglobulins through aqueous formulation with histidine at weak acidic to neutral ph
ES2588981T3 (en) 2010-10-05 2016-11-08 Genentech, Inc. Smoothened mutant and methods of using it
DK2627672T3 (en) 2010-10-11 2018-08-27 Biogen Idec Int Neuroscience Gmbh HUMAN ANTI-TAU ANTIBODIES
WO2012054748A2 (en) 2010-10-22 2012-04-26 Seattle Genetics, Inc. Synergistic effects between auristatin-based antibody drug conjugates and inhibitors of the pi3k-akt mtor pathway
WO2012061120A1 (en) 2010-10-25 2012-05-10 Regents Of The University Of Minnesota Therapeutic composition for treatment of glioblastoma
DK3404043T3 (en) 2010-10-29 2022-11-14 Perseus Proteomics Inc ANTI-CDH3 ANTIBODY WITH HIGH INTERNALIZATION CAPACITY
WO2012065937A1 (en) 2010-11-15 2012-05-24 Novartis Forschungsstiftung, Zweigniederlassung, Friedrich Miescher Institute For Biomedical Research Anti-fungal agents
TWI452135B (en) 2010-11-17 2014-09-11 中外製藥股份有限公司 A multiple specific antigen-binding molecule that replaces the function of Factor VIII in blood coagulation
TWI654204B (en) 2010-11-30 2019-03-21 中外製藥股份有限公司 Antibody with calcium-dependent antigen binding ability
KR102244173B1 (en) 2010-11-30 2021-04-26 추가이 세이야쿠 가부시키가이샤 Cytotoxicity-inducing therapeutic agent
UA112170C2 (en) 2010-12-10 2016-08-10 Санофі ANTI-TUMOR COMBINATION CONTAINING AN ANTIBODY SPECIFICALLY RECOGNIZING CD38 AND BORTESOMB
CA2818781C (en) 2010-12-17 2019-10-08 Neurimmune Holding Ag Human anti-sod1 antibodies
TW201307388A (en) 2010-12-21 2013-02-16 Abbott Lab IL-1 binding proteins
CA2822610C (en) 2010-12-21 2019-09-03 Selexys Pharmaceuticals Corporation Use of anti-p-selectin antibodies
SG10201604699VA (en) 2010-12-21 2016-07-28 Abbvie Inc Il-1 -alpha and -beta bispecific dual variable domain immunoglobulins and their use
BR112013016235B1 (en) 2010-12-22 2020-03-31 Cephalon Australia Pty Ltd ISOLATED ANTIBODY, USE OF AN ANTIBODY, NUCLEIC ACID, TRANSFORMED CELL AND PHARMACEUTICAL COMPOSITION
WO2012092539A2 (en) 2010-12-31 2012-07-05 Takeda Pharmaceutical Company Limited Antibodies to dll4 and uses thereof
CA2822969C (en) 2010-12-31 2018-03-13 Jay M. Short Comprehensive monoclonal antibody generation
US20120171195A1 (en) 2011-01-03 2012-07-05 Ravindranath Mepur H Anti-hla-e antibodies, therapeutic immunomodulatory antibodies to human hla-e heavy chain, useful as ivig mimetics and methods of their use
CN103619883A (en) 2011-01-19 2014-03-05 拜耳知识产权有限责任公司 Binding proteins to inhibitors of coagulation factors
SG192047A1 (en) 2011-01-24 2013-08-30 Univ Singapore Pathogenic mycobacteria-derived mannose-capped lipoarabinomannan antigen binding proteins
WO2012103240A2 (en) 2011-01-25 2012-08-02 Eleven Biotherapeutics, Inc. Receptor binding agents
US9540443B2 (en) 2011-01-26 2017-01-10 Kolltan Pharmaceuticals, Inc. Anti-kit antibodies
CA2826453A1 (en) 2011-02-03 2012-08-09 Alexion Pharmaceuticals, Inc. Use of an anti-cd200 antibody for prolonging the survival of allografts
WO2012104824A1 (en) 2011-02-04 2012-08-09 Ecole polytechnique fédérale de Lausanne (EPFL) Therapeutic antibodies targeting app-c99
US20140044644A1 (en) 2011-02-21 2014-02-13 University Of Zurich Ankyrin g and modulators thereof for the treatment of neurodegenerative disorders
US20140093496A1 (en) 2011-02-25 2014-04-03 Chugai Seiyaku Kabushiki Kaisha Fc-gamma-RIIb-SPECIFIC Fc ANTIBODY
WO2012133782A1 (en) 2011-03-30 2012-10-04 中外製薬株式会社 Retention of antigen-binding molecules in blood plasma and method for modifying immunogenicity
JP6271254B2 (en) 2011-02-28 2018-01-31 ジェネンテック, インコーポレイテッド Methods for predicting biological markers and responses to B cell antagonists
PL3235508T3 (en) 2011-03-16 2021-07-12 Sanofi Compositions comprising a dual v region antibody-like protein
EP4086338A1 (en) 2011-03-17 2022-11-09 Minerva Biotechnologies Corporation Method for making pluripotent stem cells
EP2500073A1 (en) 2011-03-17 2012-09-19 ChromaCon AG Method for identification and purification of multi-specific polypeptides
EP2687231A4 (en) 2011-03-18 2014-10-22 Univ Kagoshima Composition for treatment and diagnosis of pancreatic cancer
WO2012129520A1 (en) 2011-03-24 2012-09-27 Texas Tech University System Tcr mimic antibodies as vascular targeting tools
JP6130350B2 (en) 2011-03-30 2017-05-17 アブリンクス エン.ヴェー. Methods of treating immune disorders with single domain antibodies against TNFα
MX356426B (en) 2011-04-04 2018-05-29 Univ Iowa Res Found Methods of improving vaccine immunogenicity.
AU2012239997A1 (en) 2011-04-07 2013-10-17 Amgen Inc. Novel EGFR binding proteins
US9150644B2 (en) 2011-04-12 2015-10-06 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Human monoclonal antibodies that bind insulin-like growth factor (IGF) I and II
CA2833636A1 (en) 2011-04-20 2012-10-26 Amplimmune, Inc. Antibodies and other molecules that bind b7-h1 and pd-1
WO2012149197A2 (en) 2011-04-27 2012-11-01 Abbott Laboratories Methods for controlling the galactosylation profile of recombinantly-expressed proteins
JOP20200043A1 (en) 2011-05-10 2017-06-16 Amgen Inc Methods of treating or preventing cholesterol related disorders
WO2012158818A2 (en) 2011-05-16 2012-11-22 Fabion Pharmaceuticals, Inc. Multi-specific fab fusion proteins and methods of use
MX347818B (en) 2011-05-21 2017-05-15 Macrogenics Inc Deimmunized serum-binding domains and their use for extending serum half-life.
CA2837169C (en) 2011-05-24 2021-11-09 Zyngenia, Inc. Multispecific complexes comprising angiopoietin-2-binding peptide and their uses
AR086543A1 (en) 2011-05-25 2014-01-08 Bg Medicine Inc GALECTIN-3 INHIBITORS AND METHODS OF USE OF THE SAME, PHARMACEUTICAL COMPOSITION
EP2530088A1 (en) 2011-05-30 2012-12-05 Klinikum rechts der Isar der Technischen Universität München Means and methods for diagnosing and treating multiple sclerosis
AU2012262007B2 (en) 2011-06-02 2017-06-22 Takeda Pharmaceutical Company Limited Fc receptor binding proteins
PL2714735T3 (en) 2011-06-03 2022-02-21 Xoma Technology Ltd. Antibodies specific for tgf-beta
US9574002B2 (en) 2011-06-06 2017-02-21 Amgen Inc. Human antigen binding proteins that bind to a complex comprising β-Klotho and an FGF receptor
US9181553B2 (en) 2011-06-06 2015-11-10 Novartis Forschungsstiftung Zweigniederlassung Friedrich Miescher Institute For Biomedical Research Method of treatment of breast cancers over-expressing the SHP2 signature genes
CA2836373A1 (en) 2011-06-06 2012-12-13 Neotope Biosciences Limited Mcam antagonists and methods of treatment
US9244074B2 (en) 2011-06-07 2016-01-26 University Of Hawaii Biomarker of asbestos exposure and mesothelioma
US9561274B2 (en) 2011-06-07 2017-02-07 University Of Hawaii Treatment and prevention of cancer with HMGB1 antagonists
JP6058645B2 (en) 2011-06-10 2017-01-11 メディミューン,エルエルシー Anti-Pseudomonas Psl binding molecules and uses thereof
US20140120555A1 (en) 2011-06-20 2014-05-01 Pierre Fabre Medicament Anti-cxcr4 antibody with effector functions and its use for the treatment of cancer
CA2839563C (en) 2011-06-23 2019-10-29 Biogen Idec International Neuroscience Gmbh Anti-alpha synuclein binding molecules
TWI687441B (en) 2011-06-30 2020-03-11 中外製藥股份有限公司 Heterodimerized polypeptide
JP2013040160A (en) 2011-07-01 2013-02-28 Genentech Inc Use of anti-cd83 agonist antibody for treating autoimmune disease
DE202011103324U1 (en) 2011-07-12 2012-01-02 Nekonal S.A.R.L. Therapeutic anti-TIRC7 antibodies for use in immune and other diseases
RU2640025C2 (en) 2011-07-13 2017-12-25 Эббви Инк. Methods and compositions for asthma treatment using antibodies against il-13
EP2735315B1 (en) 2011-07-19 2019-10-02 Chugai Seiyaku Kabushiki Kaisha Stable protein-containing preparation containing argininamide or valinamide
BR112014002353B1 (en) 2011-08-01 2022-09-27 Genentech, Inc USES OF PD-1 AXIS BINDING ANTAGONISTS AND MEK INHIBITORS, PHARMACEUTICAL COMPOSITIONS, AND KIT
WO2013017656A1 (en) 2011-08-02 2013-02-07 Medizinische Universität Wien Antagonists of ribonucleases for treating obesity
WO2013017691A1 (en) 2011-08-04 2013-02-07 Medizinische Universität Innsbruck Cahgt1p inhibitors for use in the treatment of candidiasis
EP2756094B1 (en) 2011-08-15 2017-12-27 Medlmmune, LLC Anti-b7-h4 antibodies and their uses
EP2744825A1 (en) 2011-08-17 2014-06-25 F.Hoffmann-La Roche Ag Inhibition of angiogenesis in refractory tumors
US9550835B2 (en) 2011-08-23 2017-01-24 Chugai Seiyaku Kabushiki Kaisha Anti-DDR1 antibody having anti-tumor activity
JP6216317B2 (en) 2011-09-09 2017-10-18 メディミューン リミテッド Anti-Siglec-15 antibody and use thereof
CN116162175A (en) 2011-09-20 2023-05-26 西奈山伊坎医学院 Influenza virus vaccine and application thereof
RU2014115676A (en) 2011-09-21 2015-10-27 Фуджиребайо Инк. ANTIBODIES AGAINST AFFINE COMPLEX
AU2012311492A1 (en) 2011-09-23 2014-03-06 Amgen Research (Munich) Gmbh Bispecific binding molecules for 5T4 and CD3
EP3939996A1 (en) 2011-09-30 2022-01-19 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule promoting disappearance of antigens having plurality of biological activities
TW201817745A (en) 2011-09-30 2018-05-16 日商中外製藥股份有限公司 Therapeutic antigen-binding molecule with a FcRn-binding domain that promotes antigen clearance
CN110655578A (en) 2011-09-30 2020-01-07 中外制药株式会社 Antigen binding molecules that induce an immune response against a target antigen
EP3680251A1 (en) 2011-09-30 2020-07-15 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecules for promoting elimination of antigens
AU2012313594C1 (en) 2011-09-30 2018-05-10 Chugai Seiyaku Kabushiki Kaisha Ion concentration-dependent binding molecule library
SG11201401287SA (en) 2011-10-05 2014-05-29 Genentech Inc Methods of treating liver conditions using notch2 antagonists
JP6271251B2 (en) 2011-10-05 2018-01-31 中外製薬株式会社 An antigen-binding molecule that promotes elimination of an antigen containing a sugar chain receptor-binding domain from plasma
WO2013050540A1 (en) 2011-10-05 2013-04-11 University Of Bremen Wnt4 and med12 for use in the diagnosis and treatment of tumor diseases
EP2768945B1 (en) 2011-10-17 2022-01-05 Minerva Biotechnologies Corporation Media for stem cell proliferation and induction
ES2638331T3 (en) 2011-10-21 2017-10-19 Augurex Life Sciences Corp. Antigens derived from citrullinated 14-3-3 protein and their uses in the diagnosis of rheumatoid arthritis
KR20140084253A (en) 2011-10-24 2014-07-04 애브비 인코포레이티드 Immunobinders directed against tnf
MX2014004977A (en) 2011-10-24 2014-09-11 Abbvie Inc Immunobinders directed against sclerostin.
WO2013063419A2 (en) 2011-10-28 2013-05-02 The Trustees Of The University Of Pennsylvania A fully human, anti-mesothelin specific chimeric immune receptor for redirected mesothelin-expressing cell targeting
WO2013065708A1 (en) 2011-10-31 2013-05-10 中外製薬株式会社 Antigen-binding molecule having regulated conjugation between heavy-chain and light-chain
CA2849210C (en) 2011-10-31 2020-07-14 Genentech, Inc. Formulation comprising an anti-il13 antibody having extended stability
JP2014533247A (en) 2011-11-01 2014-12-11 バイオノミクス インコーポレイテッド Antibodies and methods of treating cancer
ES2697674T3 (en) 2011-11-01 2019-01-25 Bionomics Inc Procedures to block the growth of cancer stem cells
AU2012332590B2 (en) 2011-11-01 2016-10-20 Bionomics, Inc. Anti-GPR49 antibodies
EP2773667A1 (en) 2011-11-01 2014-09-10 Bionomics, Inc. Anti-gpr49 antibodies
ES2861435T3 (en) 2011-11-03 2021-10-06 Univ Pennsylvania Specific compositions of isolated B7-H4 and methods of using them
EP2776838A1 (en) 2011-11-08 2014-09-17 Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research Early diagnostic of neurodegenerative diseases
WO2013068431A1 (en) 2011-11-08 2013-05-16 Novartis Forschungsstiftung, Zweigniederlassung, Friedrich Miescher Institute For Biomedical Research New treatment for neurodegenerative diseases
EP2776565A1 (en) 2011-11-08 2014-09-17 Quark Pharmaceuticals, Inc. Methods and compositions for treating diseases, disorders or injury of the nervous system
BR112014011115A2 (en) 2011-11-08 2017-06-13 Pfizer Methods for treating inflammatory disorders using anti-csf antibodies
US20140322216A1 (en) 2011-11-08 2014-10-30 The Trustees Of The University Of Pennsylvania Glypican-3-specific antibody and uses thereof
TWI679212B (en) 2011-11-15 2019-12-11 美商安進股份有限公司 Binding molecules for e3 of bcma and cd3
WO2013075048A1 (en) 2011-11-16 2013-05-23 Amgen Inc. Methods of treating epidermal growth factor deletion mutant viii related disorders
US9624298B2 (en) 2011-11-28 2017-04-18 Merck Patent Gmbh Anti-PD-L1 antibodies and uses thereof
CA2857159C (en) 2011-11-30 2024-05-07 Chugai Seiyaku Kabushiki Kaisha Drug containing carrier into cell for forming immune complex
EP2602621A1 (en) 2011-12-08 2013-06-12 Julius-Maximilians-Universität Würzburg LASP-1, a novel urinary marker for transitional cell carcinoma detection
BR112014013694A2 (en) 2011-12-08 2017-06-13 Biotest Ag method to treat a disease and kit
CA2855840C (en) 2011-12-14 2023-08-29 AbbVie Deutschland GmbH & Co. KG Composition and method for the diagnosis and treatment of iron-related disorders
CN104136462B (en) 2011-12-14 2017-06-09 艾伯维德国有限责任两合公司 Composition and method for diagnosing and treating iron phase related disorders
JP6320300B2 (en) 2011-12-19 2018-05-09 ゾーマ (ユーエス) リミテッド ライアビリティ カンパニー Methods for treating acne
US20150030602A1 (en) 2011-12-23 2015-01-29 Phenoquest Ag Antibodies for the treatment and diagnosis of affective and anxiety disorders
EP2794653B1 (en) 2011-12-23 2019-03-13 Pfizer Inc Engineered antibody constant regions for site-specific conjugation and methods and uses therefor
CA2861695C (en) 2011-12-28 2021-03-30 Immunoqure Ag Method of isolating human antibodies
TWI593705B (en) 2011-12-28 2017-08-01 Chugai Pharmaceutical Co Ltd Humanized anti-epiregulin antibody and cancer therapeutic agent containing the antibody as an active ingredient
JP2015508994A (en) 2011-12-30 2015-03-26 アッヴィ・インコーポレイテッド Dual variable domain immunoglobulins against IL-13 and / or IL-17
US20140363448A1 (en) 2012-01-02 2014-12-11 Novartis Ag Cdcp1 and breast cancer
AU2013208003B2 (en) 2012-01-09 2017-12-14 The Scripps Research Institute Ultralong complementarity determining regions and uses thereof
US20150011431A1 (en) 2012-01-09 2015-01-08 The Scripps Research Institute Humanized antibodies
US20130177574A1 (en) 2012-01-11 2013-07-11 Paul I. Terasaki Foundation Laboratory ANTI-HLA CLASS-Ib ANTIBODIES MIMIC IMMUNOREACTIVITY AND IMMUNOMODULATORY FUNCTIONS OF INTRAVENOUS IMMUNOGLOBULIN (IVIg) USEFUL AS THERAPEUTIC IVIg MIMETICS AND METHODS OF THEIR USE
US10800847B2 (en) 2012-01-11 2020-10-13 Dr. Mepur Ravindranath Anti-HLA class-IB antibodies mimic immunoreactivity and immunomodulatory functions of intravenous immunoglobulin (IVIG) useful as therapeutic IVIG mimetics and methods of their use
SG11201403927XA (en) 2012-01-13 2014-08-28 Genentech Inc Biological markers for identifying patients for treatment with vegf antagonists
WO2013107290A1 (en) 2012-01-20 2013-07-25 The Government of the Hong Kong Special Administrative Region of the People's Republic of China A novel paramyxovirus and uses thereof
EP2807192B1 (en) 2012-01-27 2018-04-18 Abbvie Deutschland GmbH & Co. KG Composition and method for diagnosis and treatment of diseases associated with neurite degeneration
US20130243750A1 (en) 2012-01-31 2013-09-19 Genentech, Inc. Anti-ige antibodies and methods using same
AU2013217114B2 (en) 2012-02-06 2017-03-30 Inhibrx Biosciences, Inc. CD47 antibodies and methods of use thereof
SG10201704849PA (en) 2012-02-09 2017-07-28 Chugai Pharmaceutical Co Ltd Modified fc region of antibody
ES2725569T3 (en) 2012-02-10 2019-09-24 Seattle Genetics Inc Diagnosis and treatment of cancers that express CD30
CN108530535B (en) 2012-02-15 2021-02-26 诺和诺德股份有限公司 Antibody binding to peptidoglycan-recognizing protein 1
US9550830B2 (en) 2012-02-15 2017-01-24 Novo Nordisk A/S Antibodies that bind and block triggering receptor expressed on myeloid cells-1 (TREM-1)
JP6411218B2 (en) 2012-02-15 2018-10-24 ノヴォ ノルディスク アー/エス Antibodies that bind to and block trigger receptor 1 (TREM-1) expressed in bone marrow cells
AU2013221635B2 (en) 2012-02-16 2017-12-07 Santarus, Inc. Anti-VLA1 (CD49a) antibody pharmaceutical compositions
SG11201405137QA (en) 2012-02-24 2014-12-30 Chugai Pharmaceutical Co Ltd ANTIGEN-BINDING MOLECULE FOR PROMOTING DISAPPEARANCE OF ANTIGEN VIA FcγRIIB
US20150037334A1 (en) 2012-03-01 2015-02-05 Amgen Research (Munich) Gmbh Long life polypeptide binding molecules
US20140013456A1 (en) 2012-03-16 2014-01-09 Regeneron Pharmaceuticals, Inc. Histidine Engineered Light Chain Antibodies and Genetically Modified Non-Human Animals for Generating the Same
AU2013204581B2 (en) 2012-03-16 2015-06-25 Regeneron Pharmaceuticals, Inc. Non-human animals expressing pH-sensitive immunoglobulin sequences
EP2883449B1 (en) 2012-03-16 2018-02-07 Regeneron Pharmaceuticals, Inc. Histidine engineered light chain antibodies and genetically modified rodents for generating the same
SG11201405171WA (en) * 2012-03-16 2014-10-30 Regeneron Pharma Non-human animals expressing ph-sensitive immunoglobulin sequences
US9592289B2 (en) 2012-03-26 2017-03-14 Sanofi Stable IgG4 based binding agent formulations
AR090339A1 (en) 2012-03-27 2014-11-05 Genentech Inc METHODS OF FORECAST, DIAGNOSIS AND TREATMENT OF IDIOPATIC PULMONARY FIBROSIS
CN104220457A (en) 2012-03-27 2014-12-17 霍夫曼-拉罗奇有限公司 Diagnosis and treatments relating to her3 inhibitors
WO2013147153A1 (en) 2012-03-29 2013-10-03 株式会社未来創薬研究所 Anti-lamp5 antibody and utilization thereof
PL2831117T3 (en) 2012-03-29 2018-03-30 Novimmune Sa Anti-tlr4 antibodies and uses thereof
EP2831112A1 (en) 2012-03-29 2015-02-04 Friedrich Miescher Institute for Biomedical Research Inhibition of interleukin- 8 and/or its receptor cxcrl in the treatment her2/her3 -overexpressing breast cancer
RU2666627C2 (en) 2012-03-30 2018-09-11 Дженентек, Инк. Methods of diagnosis and composition for cancer treatment
US9764041B2 (en) 2012-04-04 2017-09-19 Perseus Proteomics Inc. Drug conjugate comprising anti-CDH3 (P-cadherin) antibody
WO2013151649A1 (en) 2012-04-04 2013-10-10 Sialix Inc Glycan-interacting compounds
WO2013155447A1 (en) 2012-04-13 2013-10-17 Children's Medical Center Corporation Tiki inhibitors
US10130714B2 (en) 2012-04-14 2018-11-20 Academia Sinica Enhanced anti-influenza agents conjugated with anti-inflammatory activity
US9505833B2 (en) 2012-04-20 2016-11-29 Abbvie Inc. Human antibodies that bind human TNF-alpha and methods of preparing the same
US9334319B2 (en) 2012-04-20 2016-05-10 Abbvie Inc. Low acidic species compositions
WO2013158273A1 (en) 2012-04-20 2013-10-24 Abbvie Inc. Methods to modulate c-terminal lysine variant distribution
US9067990B2 (en) 2013-03-14 2015-06-30 Abbvie, Inc. Protein purification using displacement chromatography
WO2013166043A1 (en) 2012-05-02 2013-11-07 Children's Hospital Medical Center Rejuvenation of precursor cells
EA039663B1 (en) 2012-05-03 2022-02-24 Амген Инк. Use of an anti-pcsk9 antibody for lowering serum cholesterol ldl and treating cholesterol related disorders
WO2013165590A1 (en) 2012-05-03 2013-11-07 Fibrogen, Inc. Methods for treating idiopathic pulmonary fibrosis
EP3511343A1 (en) 2012-05-04 2019-07-17 Dana Farber Cancer Institute, Inc. Affinity matured anti-ccr4 humanized monoclonal antibodies and methods of use
WO2013166290A1 (en) 2012-05-04 2013-11-07 Abbvie Biotherapeutics Inc. P21 biomarker assay
US9796780B2 (en) 2012-05-14 2017-10-24 Biogen Ma Inc. LINGO-2 antagonists for treatment of conditions involving motor neurons
KR102238317B1 (en) 2012-05-17 2021-04-12 익스텐드 바이오사이언시즈, 인크. Carriers for improved drug delivery
WO2013177386A1 (en) 2012-05-24 2013-11-28 Abbvie Biotherapeutics Inc. Biomarkers for predicting response to tweak receptor (tweakr) agonist therapy
WO2013176754A1 (en) 2012-05-24 2013-11-28 Abbvie Inc. Novel purification of antibodies using hydrophobic interaction chromatography
EP2857419B1 (en) 2012-05-30 2021-01-13 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule for eliminating aggregated antigens
KR102677704B1 (en) 2012-05-30 2024-06-21 추가이 세이야쿠 가부시키가이샤 Target-tissue-specific antigen-binding molecule
ES2742379T3 (en) 2012-05-31 2020-02-14 Hoffmann La Roche Cancer treatment procedures using PD-1 axis binding antagonists and VEGF antagonists
JP6629069B2 (en) 2012-06-06 2020-01-15 ゾエティス・エルエルシー Canine anti-NGF antibody and method thereof
EP2862875B1 (en) 2012-06-14 2023-09-06 Chugai Seiyaku Kabushiki Kaisha ANTIGEN-BINDING MOLECULE CONTAINING MODIFIED Fc REGION
JP6433889B2 (en) 2012-06-15 2018-12-05 ファイザー・インク Improved antagonistic antibodies against GDF-8 and uses thereof
US9127053B2 (en) 2012-06-22 2015-09-08 Cytomx Therapeutics, Inc. Anti-jagged 1/jagged 2 cross-reactive antibodies, activatable anti-jagged antibodies and methods of use thereof
EP2866831A1 (en) 2012-06-29 2015-05-06 Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research Treating diseases by modulating a specific isoform of mkl1
US20150184154A1 (en) 2012-07-05 2015-07-02 Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Resear New treatment for neurodegenerative diseases
US10656156B2 (en) 2012-07-05 2020-05-19 Mepur Ravindranath Diagnostic and therapeutic potential of HLA-E monospecific monoclonal IgG antibodies directed against tumor cell surface and soluble HLA-E
WO2014006115A1 (en) 2012-07-06 2014-01-09 Novartis Ag Combination of a phosphoinositide 3-kinase inhibitor and an inhibitor of the il-8/cxcr interaction
WO2014011955A2 (en) 2012-07-12 2014-01-16 Abbvie, Inc. Il-1 binding proteins
AU2013289971A1 (en) 2012-07-13 2015-01-22 The Trustees Of The University Of Pennsylvania Enhancing activity of CAR T cells by co-introducing a bispecific antibody
AU2013306098A1 (en) 2012-08-18 2015-02-12 Academia Sinica Cell-permeable probes for identification and imaging of sialidases
EP2888238A4 (en) 2012-08-21 2016-01-27 Academia Sinica Benzocyclooctyne compounds and uses thereof
JP6774164B2 (en) 2012-08-24 2020-10-21 中外製薬株式会社 Mouse FcγRII specific Fc antibody
US10919953B2 (en) 2012-08-24 2021-02-16 Chugai Seiyaku Kabushiki Kaisha FcgammaRIIB-specific Fc region variant
EP3718556A3 (en) 2012-08-31 2020-12-30 University Of Virginia Patent Foundation Target peptides for immunotherapy and diagnostics
LT2890717T (en) 2012-08-31 2020-06-10 Immunogen, Inc. Diagnostic assays and kits for detection of folate receptor 1
CA2883272A1 (en) 2012-09-02 2014-03-06 Abbvie Inc. Methods to control protein heterogeneity
US9512214B2 (en) 2012-09-02 2016-12-06 Abbvie, Inc. Methods to control protein heterogeneity
WO2014039675A2 (en) 2012-09-05 2014-03-13 University Of Virginia Patent Foundation Target peptides for colorectal cancer therapy and diagnostics
TW201922795A (en) 2012-09-10 2019-06-16 愛爾蘭商尼歐托普生物科學公司 Anti-MCAM antibodies and associated methods of use
JP6352924B2 (en) 2012-09-19 2018-07-04 ダナ−ファーバー キャンサー インスティテュート, インコーポレイテッド Dynamic BH3 profiling
EP2711016A1 (en) 2012-09-21 2014-03-26 Covagen AG Novel IL-17A binding molecules and medical uses thereof
EP2902489B9 (en) 2012-09-27 2018-02-07 Chugai Seiyaku Kabushiki Kaisha Fgfr3 fusion gene and pharmaceutical drug targeting same
JP6284481B2 (en) 2012-09-28 2018-02-28 中外製薬株式会社 Evaluation method of blood coagulation reaction
TW201414837A (en) 2012-10-01 2014-04-16 Univ Pennsylvania Compositions and methods for targeting stromal cells for the treatment of cancer
NO2760138T3 (en) 2012-10-01 2018-08-04
KR101947702B1 (en) 2012-10-04 2019-02-14 다나-파버 캔서 인스티튜트 인크. Human monoclonal anti-pd-l1 antibodies and methods of use
US9598489B2 (en) 2012-10-05 2017-03-21 The Trustees Of The Univeristy Of Pennsylvania Human alpha-folate receptor chimeric antigen receptor
AU2013334493B2 (en) 2012-10-26 2018-11-29 The University Of Queensland Use of endocytosis inhibitors and antibodies for cancer therapy
TWI601745B (en) 2012-11-01 2017-10-11 艾伯維有限公司 Anti-vegf/dll4 dual variable domain immunoglobulins and uses thereof
WO2014073641A1 (en) 2012-11-08 2014-05-15 国立大学法人 宮崎大学 Antibody capable of specifically recognizing transferrin receptor
US20140154255A1 (en) 2012-11-30 2014-06-05 Abbvie Biotherapeutics Inc. Anti-vegf antibodies and their uses
RU2693078C2 (en) 2012-12-03 2019-07-01 Новиммун С.А. Anti-cd47 antibodies and methods for use thereof
UA118255C2 (en) 2012-12-07 2018-12-26 Санофі Compositions comprising anti-cd38 antibodies and lenalidomide
US10342869B2 (en) 2012-12-07 2019-07-09 The Regents Of The University Of California Compositions comprising anti-CD38 antibodies and lenalidomide
KR20150094658A (en) 2012-12-10 2015-08-19 바이오젠 엠에이 인코포레이티드 Anti-blood dendritic cell antigen 2 antibodies and uses thereof
WO2014093855A1 (en) 2012-12-13 2014-06-19 University Of Virginia Patent Foundation Target peptides for ovarian cancer therapy and diagnostics
US9968670B2 (en) 2012-12-18 2018-05-15 Icahn School Of Medicine At Mount Sinai Influenza virus vaccines and uses thereof
CA2894689A1 (en) 2012-12-19 2014-06-26 Amplimmune, Inc. Anti-human b7-h4 antibodies and their uses
CN105324394B (en) 2012-12-21 2019-11-19 比奥根Ma公司 The anti-TAU antibody of people
JP6359031B2 (en) 2012-12-21 2018-07-18 メディミューン,エルエルシー Anti-H7CR antibody
KR102249779B1 (en) 2012-12-27 2021-05-07 추가이 세이야쿠 가부시키가이샤 Heterodimerized polypeptide
EP3517545A1 (en) 2012-12-31 2019-07-31 Neurimmune Holding AG Recombinant human antibodies for therapy and prevention of polyomavirus-related diseases
US10717965B2 (en) 2013-01-10 2020-07-21 Gloriana Therapeutics, Inc. Mammalian cell culture-produced neublastin antibodies
JO3519B1 (en) 2013-01-25 2020-07-05 Amgen Inc Antibody constructs for CDH19 and CD3
EP2948478B1 (en) 2013-01-25 2019-04-03 Amgen Inc. Antibodies targeting cdh19 for melanoma
EP2951199A4 (en) 2013-01-31 2016-07-20 Univ Jefferson Fusion proteins for modulating regulatory and effector t cells
SG10201706383XA (en) 2013-02-06 2017-09-28 Inhibrx Lp Non-platelet depleting and non-red blood cell depleting cd47 antibodies and methods of use thereof
JP6669500B2 (en) 2013-02-25 2020-03-18 ジェネンテック, インコーポレイテッド Methods and compositions for detecting and treating drug resistant AKT variants
AR095399A1 (en) 2013-03-13 2015-10-14 Genentech Inc FORMULATIONS WITH REDUCED OXIDATION, METHOD
US20160022813A1 (en) 2013-03-13 2016-01-28 Sanofi Compositions comprising anti-cd38 antibodies and carfilzomib
SI2968467T1 (en) 2013-03-13 2020-11-30 F. Hoffmann-La Roche Ag Formulations with reduced oxidation
US20140314778A1 (en) 2013-03-13 2014-10-23 Genentech, Inc. Formulations with reduced oxidation
NZ711566A (en) 2013-03-13 2020-06-26 Genentech Inc Formulations with reduced oxidation
NZ751452A (en) 2013-03-13 2020-04-24 Genentech Inc Antibody formulations
EP2968468B1 (en) 2013-03-13 2021-07-14 Buzzard Pharmaceuticals AB Chimeric cytokine formulations for ocular delivery
WO2014159764A1 (en) 2013-03-14 2014-10-02 Amgen Inc. Chrdl-1 antigen binding proteins and methods of treatment
US9017687B1 (en) 2013-10-18 2015-04-28 Abbvie, Inc. Low acidic species compositions and methods for producing and using the same using displacement chromatography
MX362075B (en) 2013-03-14 2019-01-07 Abbott Lab Hcv antigen-antibody combination assay and methods and compositions for use therein.
EP2970947A4 (en) 2013-03-14 2016-10-12 Abbott Lab Hcv ns3 recombinant antigens and mutants thereof for improved antibody detection
WO2014159242A1 (en) 2013-03-14 2014-10-02 Novartis Ag Notch 3 mutants and uses thereof
WO2014159579A1 (en) 2013-03-14 2014-10-02 Abbvie Inc. MUTATED ANTI-TNFα ANTIBODIES AND METHODS OF THEIR USE
WO2014159960A1 (en) 2013-03-14 2014-10-02 Icahn School Of Medicine At Mount Sinai Antibodies against influenza virus hemagglutinin and uses thereof
US9499614B2 (en) 2013-03-14 2016-11-22 Abbvie Inc. Methods for modulating protein glycosylation profiles of recombinant protein therapeutics using monosaccharides and oligosaccharides
BR112015023212A2 (en) 2013-03-14 2017-11-21 Gill Parkash cancer treatment using antibodies that bind to cell surface grp78
US9371374B2 (en) 2013-03-14 2016-06-21 Abbott Laboratories HCV core lipid binding domain monoclonal antibodies
US9469686B2 (en) 2013-03-15 2016-10-18 Abbott Laboratories Anti-GP73 monoclonal antibodies and methods of obtaining the same
MX367668B (en) 2013-03-15 2019-08-30 Dana Farber Cancer Inst Inc Flavivirus neutralizing antibodies and methods of use thereof.
MX2015013163A (en) 2013-03-15 2016-04-04 Zyngenia Inc Multivalent and monovalent multispecific complexes and their uses.
AR095348A1 (en) 2013-03-15 2015-10-07 Genentech Inc CELL CULTURE MEDIA AND ANTIBODY PRODUCTION METHODS
AR095374A1 (en) 2013-03-15 2015-10-14 Amgen Res (Munich) Gmbh UNION MOLECULES FOR BCMA AND CD3
PT2970449T (en) 2013-03-15 2019-11-06 Amgen Res Munich Gmbh Single chain binding molecules comprising n-terminal abp
AU2014236986A1 (en) 2013-03-15 2015-09-03 Biogen Ma Inc. Treatment and prevention of acute kidney injury using anti-alpha v beta 5 antibodies
AU2014227732A1 (en) 2013-03-15 2015-09-17 Abbvie Inc. Dual specific binding proteins directed against IL-1 beta and IL-17
MX360779B (en) 2013-03-15 2018-11-16 Genentech Inc Cell culture compositions with antioxidants and methods for polypeptide production.
JP6482525B2 (en) 2013-03-15 2019-03-13 メモリアル スローン ケタリング キャンサー センター High affinity anti-GD2 antibody
MX2015012563A (en) 2013-03-15 2016-10-26 Abbvie Biotechnology Ltd Anti-cd25 antibodies and their uses.
US20150010539A1 (en) 2013-03-15 2015-01-08 Abbvie Biotherapeutics Inc. Anti-cd25 antibodies and their uses
EP4079760A3 (en) 2013-03-15 2023-01-25 Sanofi Pasteur Inc. Antibodies against clostridium difficile toxins and methods of using the same
AU2014233528B2 (en) 2013-03-15 2019-02-28 Abbvie Biotherapeutics Inc. Fc variants
WO2014140368A1 (en) 2013-03-15 2014-09-18 Amgen Research (Munich) Gmbh Antibody constructs for influenza m2 and cd3
CN105246914B (en) 2013-04-02 2021-08-27 中外制药株式会社 Fc region variants
WO2014165818A2 (en) 2013-04-05 2014-10-09 T Cell Therapeutics, Inc. Compositions and methods for preventing and treating prostate cancer
US20160053023A1 (en) 2013-04-09 2016-02-25 Annexon, Inc. Methods of treatment for neuromyelitis optica
TWI679019B (en) 2013-04-29 2019-12-11 法商賽諾菲公司 Anti-il-4/anti-il-13 bispecific antibody formulations
CA2911514A1 (en) 2013-05-06 2014-11-13 Scholar Rock, Inc. Compositions and methods for growth factor modulation
WO2014182972A2 (en) 2013-05-10 2014-11-13 The Regents Of The University Of California Diagnostic and monitoring system for huntington's disease
WO2014185550A1 (en) 2013-05-16 2014-11-20 Kyoto University Method for determining prognosis of cancer
MX2015016111A (en) 2013-05-24 2016-10-26 Medimmune Llc Anti-b7-h5 antibodies and their uses.
CA2914369C (en) 2013-06-06 2023-02-14 Igenica Biotherapeutics, Inc. Anti-c10orf54 antibodies and uses thereof
WO2014197866A1 (en) 2013-06-06 2014-12-11 Igenica Biotherapeutics, Inc. Modified antibodies and related compounds, compositions, and methods of use
JP6581572B2 (en) 2013-06-07 2019-09-25 デューク ユニバーシティ Complement factor H inhibitor
EP3009518B1 (en) 2013-06-11 2020-08-12 National Center of Neurology and Psychiatry Method for predicting post-therapy prognosis of relapsing-remitting multiple sclerosis (rrms) patient, and method for determining applicability of novel therapy
US9499628B2 (en) 2013-06-14 2016-11-22 Children's Hospital Medical Center Method of boosting the immune response in neonates
EP3015115A4 (en) 2013-06-24 2017-02-22 Chugai Seiyaku Kabushiki Kaisha Therapeutic agent comprising humanized anti-epiregulin antibody as active ingredient for non-small-cell lung carcinoma excluding adenocarcinoma
EP3013365B1 (en) 2013-06-26 2019-06-05 Academia Sinica Rm2 antigens and use thereof
EP3013347B1 (en) 2013-06-27 2019-12-11 Academia Sinica Glycan conjugates and use thereof
AU2013396206B2 (en) 2013-06-28 2019-11-14 Amgen Inc. Methods for treating homozygous familial hypercholesterolemia
WO2015001013A2 (en) 2013-07-03 2015-01-08 Immunoqure Ag Human anti-ifn-alpha antibodies
EP3019240B1 (en) 2013-07-09 2024-03-13 Annexon, Inc. Anti-complement factor c1q antibodies and uses thereof
MY183503A (en) 2013-07-16 2021-02-23 Genentech Inc Method of treating cancer using pd-1 axis binding antagonists and tigit inhibitors
US10640574B2 (en) 2013-07-18 2020-05-05 Taurus Biosciences, Llc Humanized antibodies with ultralong complementary determining regions
EP3022224A2 (en) 2013-07-18 2016-05-25 Fabrus, Inc. Antibodies with ultralong complementarity determining regions
US20160178610A1 (en) 2013-08-07 2016-06-23 Friedrich Miescher Institute For Biomedical Research New screening method for the treatment Friedreich's ataxia
KR20160039682A (en) 2013-08-07 2016-04-11 아스튜트 메디컬 인코포레이티드 Assays for timp2 having improved performance in biological samples
WO2015023851A1 (en) 2013-08-14 2015-02-19 The Governing Council Of The University Of Toronto Antibodies against frizzled proteins and methods of use thereof
EP3916081A3 (en) 2013-08-19 2022-03-23 Biogen MA Inc. Control of protein glycosylation by culture medium supplementation and cell culture process parameters
US10456470B2 (en) 2013-08-30 2019-10-29 Genentech, Inc. Diagnostic methods and compositions for treatment of glioblastoma
US10617755B2 (en) 2013-08-30 2020-04-14 Genentech, Inc. Combination therapy for the treatment of glioblastoma
WO2015035044A2 (en) 2013-09-04 2015-03-12 Abbvie Biotherapeutics Inc. Fc VARIANTS WITH IMPROVED ANTIBODY-DEPENDENT CELL-MEDIATED CYTOTOXICITY
JP6486368B2 (en) 2013-09-06 2019-03-20 アカデミア シニカAcademia Sinica Activation of human iNKT cells using glycolipids containing modified glycosyl groups
SG11201510740YA (en) 2013-09-17 2016-01-28 Obi Pharma Inc Compositions of a carbohydrate vaccine for inducing immune responses and uses thereof in cancer treatment
US10739333B2 (en) 2013-09-19 2020-08-11 Dana-Farber Cancer Institute, Inc. Methods of BH3 profiling
US20160229922A1 (en) 2013-09-20 2016-08-11 Chugai Seiyaku Kabushiki Kaisha Treatment for hemorrhagic diseases by anti-protein-c antibody
US11124576B2 (en) 2013-09-27 2021-09-21 Chungai Seiyaku Kabushiki Kaisha Method for producing polypeptide heteromultimer
WO2015048520A1 (en) 2013-09-27 2015-04-02 Genentech, Inc. Anti-pdl1 antibody formulations
WO2015051293A2 (en) 2013-10-04 2015-04-09 Abbvie, Inc. Use of metal ions for modulation of protein glycosylation profiles of recombinant proteins
JP6534654B2 (en) 2013-10-10 2019-06-26 ベス イスラエル デアコネス メディカル センター インコーポレイティッド TM4SF1 binding protein and method of using the same
US9181337B2 (en) 2013-10-18 2015-11-10 Abbvie, Inc. Modulated lysine variant species compositions and methods for producing and using the same
US8946395B1 (en) 2013-10-18 2015-02-03 Abbvie Inc. Purification of proteins using hydrophobic interaction chromatography
US9085618B2 (en) 2013-10-18 2015-07-21 Abbvie, Inc. Low acidic species compositions and methods for producing and using the same
EP3063317B1 (en) 2013-10-28 2020-06-03 DOTS Technology Corp. Allergen detection
CA3185700A1 (en) 2013-11-06 2015-05-14 Astute Medical, Inc. Assays for igfbp7 having improved performance in biological samples
MX2016005762A (en) 2013-11-11 2016-08-19 Chugai Pharmaceutical Co Ltd Antigen-binding molecule containing modified antibody variable region.
US20150139988A1 (en) 2013-11-15 2015-05-21 Abbvie, Inc. Glycoengineered binding protein compositions
EA201691154A1 (en) 2013-12-04 2016-10-31 Чугаи Сейяку Кабусики Кайся ANTIGEN-BINDING MOLECULES, BINDING ACTIVITY OF ANTIGEN WHICH VARIABLE DEPENDING ON THE CONCENTRATION OF COMPOUNDS AND THE LIBRARY OF THE SPECIFIED MOLECULES
US9644023B2 (en) 2013-12-09 2017-05-09 New York University Compositions and methods for phagocyte delivery of anti-staphylococcal agents
WO2015088346A1 (en) 2013-12-13 2015-06-18 Rijksuniversiteit Groningen Antibodies against staphylococcus aureus and uses thereof.
MX2016007972A (en) 2013-12-17 2016-10-28 Genentech Inc Methods of treating cancers using pd-1 axis binding antagonists and taxanes.
US20150210772A1 (en) 2013-12-17 2015-07-30 Genentech, Inc. Methods of treating cancer using pd-1 axis binding antagonists and an anti-cd20 antibody
JP2017501167A (en) 2013-12-17 2017-01-12 ジェネンテック, インコーポレイテッド Combination therapy comprising OX40 binding agonist and PD-1 axis binding antagonist
WO2015090230A1 (en) 2013-12-19 2015-06-25 Novartis Ag Human mesothelin chimeric antigen receptors and uses thereof
CA3204788A1 (en) 2013-12-20 2015-06-25 Genentech, Inc. Antibodies comprising an antigen-binding site that specifically binds to two different epitopes and methods of making them
JP2017500017A (en) 2013-12-20 2017-01-05 バイオジェン・エムエイ・インコーポレイテッドBiogen MA Inc. Use of perfusion seed cultures to improve biopharmaceutical fed-batch production capacity and product quality
ES2920677T3 (en) 2013-12-24 2022-08-08 Janssen Pharmaceutica Nv Anti-VISTA Antibodies and Fragments
WO2015099127A1 (en) 2013-12-27 2015-07-02 中外製薬株式会社 Fgfr gatekeeper mutant gene and drug targeting same
WO2015099165A1 (en) 2013-12-27 2015-07-02 中外製薬株式会社 Method for purifying antibody having low isoelectric point
EP2893939A1 (en) 2014-01-10 2015-07-15 Netris Pharma Anti-netrin-1 antibody
KR20160104727A (en) 2014-01-16 2016-09-05 아카데미아 시니카 Compositions and methods for treatment and detection of cancers
US10023892B2 (en) 2014-05-27 2018-07-17 Academia Sinica Compositions and methods relating to universal glycoforms for enhanced antibody efficacy
US10150818B2 (en) 2014-01-16 2018-12-11 Academia Sinica Compositions and methods for treatment and detection of cancers
WO2016114819A1 (en) 2015-01-16 2016-07-21 Academia Sinica Compositions and methods for treatment and detection of cancers
WO2015116902A1 (en) 2014-01-31 2015-08-06 Genentech, Inc. G-protein coupled receptors in hedgehog signaling
US20170044232A1 (en) 2014-02-04 2017-02-16 Genentech, Inc. Mutant smoothened and methods of using the same
DK3105252T3 (en) 2014-02-12 2019-10-14 Michael Uhlin BISPECIFIC ANTIBODIES FOR USE IN STEM CELL TRANSPLANTATION
GB201403775D0 (en) 2014-03-04 2014-04-16 Kymab Ltd Antibodies, uses & methods
EP4043489A1 (en) 2014-03-19 2022-08-17 Dana-Farber Cancer Institute, Inc. Immunogenetic restriction on elicitation of antibodies
EP3122869B2 (en) 2014-03-24 2022-08-10 Biogen MA Inc. Methods for overcoming glutamine deprivation during mammalian cell culture
CN106414552B (en) 2014-03-25 2020-08-25 豪夫迈·罗氏有限公司 Methods of preparing poloxamers for use in cell culture media
EP3129767B1 (en) 2014-03-27 2021-09-01 Academia Sinica Reactive labelling compounds and uses thereof
WO2015150900A2 (en) 2014-03-31 2015-10-08 Debiopharm International Sa Fgfr fusions
SG11201608106PA (en) 2014-03-31 2016-10-28 Genentech Inc Combination therapy comprising anti-angiogenesis agents and ox40 binding agonists
CN106536556B (en) 2014-04-04 2020-02-07 生态学有限公司 Humanized antibodies that bind LGR5
DK3132053T3 (en) 2014-04-15 2020-12-14 Helmholtz Zentrum Muenchen Deutsches Forschungszentrum Gesundheit & Umwelt Gmbh DIFFERENTIAL DIAGNOSIS OF ECZEMA AND PSORIASIS
US10131704B2 (en) 2014-04-25 2018-11-20 Dana-Farber Cancer Institute, Inc. Middle east respiratory syndrome coronavirus neutralizing antibodies and methods of use thereof
CA2983794A1 (en) 2014-04-25 2015-10-29 The Brigham And Women's Hospital, Inc. Methods to manipulate alpha-fetoprotein (afp)
ES2750648T3 (en) 2014-04-30 2020-03-26 Klinikum Rechts Der Isar Der Technischen Univ Muenchen Diagnosis of multiple sclerosis
ES2869459T3 (en) 2014-05-16 2021-10-25 Medimmune Llc Molecules with altered neonate fc receptor binding that have enhanced therapeutic and diagnostic properties
US10118969B2 (en) 2014-05-27 2018-11-06 Academia Sinica Compositions and methods relating to universal glycoforms for enhanced antibody efficacy
TWI679020B (en) 2014-05-27 2019-12-11 中央研究院 Anti-her2 glycoantibodies and uses thereof
CN106573971A (en) 2014-05-27 2017-04-19 中央研究院 Anti-CD20 glycoantibodies and uses thereof
MA47849A (en) 2014-05-28 2020-01-29 Agenus Inc ANTI-GITR ANTIBODIES AND THEIR METHODS OF USE
AU2015267044A1 (en) 2014-05-28 2016-12-15 Academia Sinica Anti-TNF-alpha glycoantibodies and uses thereof
WO2015189816A1 (en) 2014-06-13 2015-12-17 Friedrich Miescher Institute For Biomedical Research New treatment against influenza virus
TWI695011B (en) 2014-06-18 2020-06-01 美商梅爾莎納醫療公司 Monoclonal antibodies against her2 epitope and methods of use thereof
TWI831106B (en) 2014-06-20 2024-02-01 日商中外製藥股份有限公司 Pharmaceutical compositions for the prevention and/or treatment of diseases that develop and/or progress due to reduced or deficient activity of coagulation factor VIII and/or activated coagulation factor VIII
WO2015198202A1 (en) 2014-06-23 2015-12-30 Friedrich Miescher Institute For Biomedical Research Methods for triggering de novo formation of heterochromatin and or epigenetic silencing with small rnas
US20170165261A1 (en) 2014-07-01 2017-06-15 Brian Arthur Hemmings Combination of a brafv600e inhibitor and mertk inhibitor to treat melanoma
EP3777535A1 (en) 2014-07-09 2021-02-17 F. Hoffmann-La Roche AG Ph adjustment to improve thaw recovery of cell banks
WO2016011052A1 (en) 2014-07-14 2016-01-21 Genentech, Inc. Diagnostic methods and compositions for treatment of glioblastoma
SG10202007111TA (en) 2014-07-15 2020-09-29 Genentech Inc Compositions for treating cancer using pd-1 axis binding antagonists and mek inhibitors
JP6738316B2 (en) 2014-07-17 2020-08-12 ノヴォ ノルディスク アクティーゼルスカブ Site-directed mutagenesis of TREM-1 antibody to reduce viscosity
WO2018140026A1 (en) 2017-01-27 2018-08-02 Memorial Sloan Kettering Cancer Center Bispecific her2 and cd3 binding molecules
CA2954738A1 (en) 2014-07-29 2016-02-04 Neurimmune Holding Ag Human-derived anti-huntingtin (htt) antibodies and uses thereof
MA44560B2 (en) 2014-07-31 2021-01-29 Sanofi Sa Anti-cd38 antibodies specific for the treatment of human cancers
AR101936A1 (en) 2014-07-31 2017-01-25 Amgen Res (Munich) Gmbh SPECIFIC BIESPECIFIC CHAIN ANTIBODY CONSTRUCTS SPECIFIED FOR OPTIMIZED CROSSED SPECIES
AU2015295242B2 (en) 2014-07-31 2020-10-22 Amgen Research (Munich) Gmbh Bispecific single chain antibody construct with enhanced tissue distribution
AR101669A1 (en) 2014-07-31 2017-01-04 Amgen Res (Munich) Gmbh ANTIBODY CONSTRUCTS FOR CDH19 AND CD3
CN107106679B (en) 2014-08-08 2022-07-26 艾利妥 anti-TREM 2 antibodies and methods of use thereof
EP3180359A1 (en) 2014-08-14 2017-06-21 Novartis AG Treatment of cancer using gfr alpha-4 chimeric antigen receptor
EP4056993A1 (en) 2014-08-20 2022-09-14 Chugai Seiyaku Kabushiki Kaisha Method for measuring viscosity of protein solution
EP3183002B1 (en) 2014-08-21 2021-03-03 Walter Reed Army Institute of Research Monoclonal antibodies for treatment of microbial infections
KR102626976B1 (en) 2014-09-02 2024-01-18 이뮤노젠 아이엔씨 Methods for formulating antibody drug conjugate compositions
CN107001404B (en) 2014-09-08 2021-06-29 中央研究院 Activation of human iNKT cells using glycolipids
WO2016040767A2 (en) 2014-09-12 2016-03-17 Amgen Inc. Chrdl-1 epitopes and antibodies
SG11201701821QA (en) 2014-09-15 2017-04-27 Genentech Inc Antibody formulations
WO2016046768A1 (en) 2014-09-24 2016-03-31 Friedrich Miescher Institute For Biomedical Research Lats and breast cancer
MA40764A (en) 2014-09-26 2017-08-01 Chugai Pharmaceutical Co Ltd THERAPEUTIC AGENT INDUCING CYTOTOXICITY
US10392447B2 (en) 2014-09-30 2019-08-27 Neurimmune Holding Ag Human-derived anti-dipeptide repeats (DPRs) antibody
MX2017004311A (en) 2014-10-03 2017-12-07 Dana Farber Cancer Inst Inc Glucocorticoid-induced tumor necrosis factor receptor (gitr) antibodies and methods of use thereof.
CA2962949C (en) 2014-10-06 2024-03-05 Dana-Farber Cancer Institute, Inc. Humanized cc chemokine receptor 4 (ccr4) antibodies and methods of use thereof
MA41685A (en) 2014-10-17 2017-08-22 Biogen Ma Inc COPPER SUPPLEMENT FOR THE REGULATION OF GLYCOSYLATION IN A MAMMAL CELL CULTURE PROCESS
EP3220961B1 (en) 2014-10-22 2023-07-05 Extend Biosciences, Inc. Therapeutic vitamin d conjugates
US9789197B2 (en) 2014-10-22 2017-10-17 Extend Biosciences, Inc. RNAi vitamin D conjugates
WO2016065052A1 (en) 2014-10-22 2016-04-28 Extend Biosciences, Inc. Insulin vitamin d conjugates
BR112017008693A2 (en) 2014-10-31 2018-02-27 The Trustees Of The University Of Pennsylvania modified t-cell, methods for generating a modified t-cell, for treating a disease or condition, for stimulating a t-cell mediated immune response and for adoptive cell transfer therapy, use of a modified t-cell, and, composition.
BR112017008945A2 (en) 2014-10-31 2018-01-16 Abbvie Biotherapeutics Inc ANTI-CS1 ANTIBODIES AND PHARMACEUTICAL-ANTIBODY CONJUGATES
CN107106609A (en) 2014-10-31 2017-08-29 宾夕法尼亚大学董事会 Stimulate and extend the composition and method of T cell
MA40864A (en) 2014-10-31 2017-09-05 Biogen Ma Inc HYPOTAURINE, GABA, BETA-ALANINE AND CHOLINE FOR THE REGULATION OF THE ACCUMULATION OF RESIDUAL BY-PRODUCTS IN MAMMAL CELL CULTURE PROCESSES
WO2016073685A1 (en) 2014-11-05 2016-05-12 Annexon, Inc. Humanized anti-complement factor c1q antibodies and uses thereof
CA2966573A1 (en) 2014-11-05 2016-05-12 Genentech, Inc. Methods of producing two chain proteins in bacteria
CN108064308B (en) 2014-11-05 2023-06-09 豪夫迈·罗氏有限公司 Method for producing double-stranded protein in bacteria
WO2016073157A1 (en) 2014-11-06 2016-05-12 Genentech, Inc. Anti-ang2 antibodies and methods of use thereof
CN107073126A (en) 2014-11-06 2017-08-18 豪夫迈·罗氏有限公司 Combination treatment comprising OX40 combinations activator and TIGIT inhibitor
ES2941897T3 (en) 2014-11-12 2023-05-26 Seagen Inc Compounds that interact with glycans and procedures for use
US9879087B2 (en) 2014-11-12 2018-01-30 Siamab Therapeutics, Inc. Glycan-interacting compounds and methods of use
BR112017010198A2 (en) 2014-11-17 2017-12-26 Genentech Inc combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists
EA201791093A1 (en) 2014-11-18 2018-04-30 Янссен Фармацевтика Нв ANTIBODIES TO CD47, METHODS AND USE
RU2758608C2 (en) 2014-11-19 2021-11-01 Конинклейке Филипс Н.В. Diagnostics method using hnl
US10517898B2 (en) 2014-11-20 2019-12-31 The Regents Of The University Of California Compositions and methods related to hematologic recovery
WO2016081835A2 (en) 2014-11-21 2016-05-26 University Of Maryland, Baltimore Targeted structure-specific particulate delivery systems
JP2017537929A (en) 2014-12-05 2017-12-21 ジェネンテック, インコーポレイテッド Methods and compositions for cancer treatment using PD-1 axis antagonists and HPK1 antagonists
WO2016094881A2 (en) 2014-12-11 2016-06-16 Abbvie Inc. Lrp-8 binding proteins
CN114230664A (en) 2014-12-11 2022-03-25 皮埃尔法布雷医药公司 anti-C10 ORF54 antibodies and uses thereof
JP6827928B2 (en) 2014-12-19 2021-02-10 ユニヴェルシテ・ドゥ・ナント Anti-IL-34 antibody
EP3789039A1 (en) 2014-12-22 2021-03-10 The Rockefeller University Anti-mertk agonistic antibodies and uses thereof
JP2018504400A (en) 2015-01-08 2018-02-15 バイオジェン・エムエイ・インコーポレイテッドBiogen MA Inc. LINGO-1 antagonist and use for treatment of demyelinating disorders
AU2016206682B2 (en) 2015-01-14 2021-11-11 The Brigham And Women's Hospital, Inc. Treatment of cancer with anti-LAP monoclonal antibodies
US9975965B2 (en) 2015-01-16 2018-05-22 Academia Sinica Compositions and methods for treatment and detection of cancers
US10495645B2 (en) 2015-01-16 2019-12-03 Academia Sinica Cancer markers and methods of use thereof
CA2974699A1 (en) 2015-01-23 2016-07-28 Icahn School Of Medicine At Mount Sinai Influenza virus vaccination regimens
KR102691114B1 (en) 2015-01-24 2024-08-01 아카데미아 시니카 Novel glycan conjugates and methods of using them
AU2016209056B2 (en) 2015-01-24 2021-01-28 Academia Sinica Cancer markers and methods of use thereof
EP3250927B1 (en) 2015-01-28 2020-02-19 H. Hoffnabb-La Roche Ag Gene expression markers and treatment of multiple sclerosis
CA2973886A1 (en) 2015-01-30 2016-08-04 Academia Sinica Compositions and methods relating to universal glycoforms for enhanced antibody efficacy
EP3250681B1 (en) 2015-01-31 2023-05-03 The Trustees of the University of Pennsylvania Compositions and methods for t cell delivery of therapeutic molecules
US10330683B2 (en) 2015-02-04 2019-06-25 Genentech, Inc. Mutant smoothened and methods of using the same
EA201791754A1 (en) 2015-02-05 2019-01-31 Чугаи Сейяку Кабусики Кайся ANTIBODIES CONTAINING ANTIGEN-BINDING DOMAIN DEPENDING ON THE CONCENTRATION OF IONS, Fc-AREA OPTIONS, IL-8-CONNECTING ANTIBODIES AND THEIR APPLICATIONS
CN107847584B (en) 2015-02-09 2022-01-25 纪念斯隆凯特琳癌症中心 Multispecific antibodies with human A33 antigen and DOTA metal complex affinity and uses thereof
CA2977767C (en) 2015-02-26 2024-04-09 Merck Patent Gmbh Pd-1 / pd-l1 inhibitors for the treatment of cancer
PL3263132T3 (en) 2015-02-27 2024-04-15 Chugai Seiyaku Kabushiki Kaisha Composition for treating il-6-related diseases
PL3265123T3 (en) 2015-03-03 2023-03-13 Kymab Limited Antibodies, uses & methods
EP3265491A1 (en) 2015-03-03 2018-01-10 Xoma (Us) Llc Treatment of post-prandial hyperinsulinemia and hypoglycemia after bariatric surgery
CA2978374A1 (en) 2015-03-06 2016-09-15 Csl Behring Recombinant Facility Ag Modified von willebrand factor having improved half-life
WO2016146702A1 (en) 2015-03-16 2016-09-22 Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) Trispecific binding molecules for treating hbv infection and associated conditions
CN115368460A (en) 2015-03-17 2022-11-22 纪念斯隆-凯特林癌症中心 anti-MUC 16 antibodies and uses thereof
KR20180026659A (en) 2015-03-18 2018-03-13 더 존스 홉킨스 유니버시티 A novel monoclonal antibody inhibitor targeting the potassium channel KCNK9
EP3274724A1 (en) 2015-03-25 2018-01-31 Alexion Pharmaceuticals, Inc. A method for measuring the protease activity of factor d of the alternative complement pathway
WO2016151557A1 (en) 2015-03-25 2016-09-29 Alexion Pharmaceuticals, Inc. A method for measuring the protease activity of c5 convertase of the alternative complement pathway
EP3770171A1 (en) 2015-04-03 2021-01-27 XOMA Technology Ltd. Treatment of cancer using inhibitors of tgf-beta and pd-1
LT3280441T (en) 2015-04-07 2021-11-25 Alector Llc Anti-sortilin antibodies and methods of use thereof
US10849992B1 (en) 2015-04-07 2020-12-01 Alector Llc Methods of screening for sortilin binding antagonists
JP6960856B2 (en) 2015-04-08 2021-11-05 デイナ ファーバー キャンサー インスティチュート,インコーポレイテッド Humanized influenza monoclonal antibody and how to use it
JP6698102B2 (en) 2015-04-17 2020-05-27 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Combination therapy with coagulation factors and multispecific antibodies
CA2982682A1 (en) 2015-04-17 2016-10-20 Amgen Research (Munich) Gmbh Bispecific antibody constructs for cdh3 and cd3
KR20180018507A (en) 2015-04-20 2018-02-21 톨레로 파마수티컬스, 인크. Prediction of Response to Albosis Dip by Mitochondrial Profiling
CA2983024A1 (en) 2015-04-27 2016-11-03 Dana-Farber Cancer Institute, Inc. Compositions and methods for assessing toxicity using dynamic bh3 profiling
CN107849134B (en) 2015-05-01 2022-05-03 达纳-法伯癌症研究所公司 Methods of mediating cytokine expression with anti-CCR 4 antibodies
TWI820377B (en) 2015-05-07 2023-11-01 美商艾吉納斯公司 Anti-ox40 antibodies and methods of use thereof
EP3936524A3 (en) 2015-05-11 2022-06-15 F. Hoffmann-La Roche AG Compositions and methods of treating lupus nephritis
MX2017014381A (en) 2015-05-12 2018-03-02 Genentech Inc Therapeutic and diagnostic methods for cancer.
CN107849142B (en) 2015-05-15 2022-04-26 综合医院公司 Antagonistic anti-tumor necrosis factor receptor superfamily antibodies
PL3298021T3 (en) 2015-05-18 2019-11-29 Tolero Pharmaceuticals Inc Alvocidib prodrugs having increased bioavailability
AU2016267059B2 (en) 2015-05-22 2020-08-13 Translational Drug Development Llc Benzamide and active compound compositions and methods of use
EP3303632B2 (en) 2015-05-29 2023-05-10 F. Hoffmann-La Roche AG Therapeutic and diagnostic methods for cancer
EP4047022A1 (en) 2015-05-29 2022-08-24 AbbVie Inc. Anti-cd40 antibodies and uses thereof
ES2803655T3 (en) 2015-05-29 2021-01-28 Agenus Inc Anti-ctla-4 antibodies and methods of using them
AU2016269839B2 (en) 2015-06-03 2021-07-08 The University Of Queensland Mobilizing agents and uses therefor
WO2016201388A2 (en) 2015-06-12 2016-12-15 Alector Llc Anti-cd33 antibodies and methods of use thereof
US11174313B2 (en) 2015-06-12 2021-11-16 Alector Llc Anti-CD33 antibodies and methods of use thereof
TW201710286A (en) 2015-06-15 2017-03-16 艾伯維有限公司 Binding proteins against VEGF, PDGF, and/or their receptors
UA126892C2 (en) 2015-06-16 2023-02-22 Мерк Патент Гмбх Pd-l1 antagonist combination treatments
CA2986263A1 (en) 2015-06-17 2016-12-22 Genentech, Inc. Methods of treating locally advanced or metastatic breast cancers using pd-1 axis binding antagonists and taxanes
DK3313882T3 (en) 2015-06-24 2020-05-11 Janssen Pharmaceutica Nv Anti-VISTA antibodies and fragments
CA2989936A1 (en) 2015-06-29 2017-01-05 Genentech, Inc. Type ii anti-cd20 antibody for use in organ transplantation
TWI829617B (en) 2015-07-31 2024-01-21 德商安美基研究(慕尼黑)公司 Antibody constructs for flt3 and cd3
TW202346349A (en) 2015-07-31 2023-12-01 德商安美基研究(慕尼黑)公司 Antibody constructs for dll3 and cd3
TWI796283B (en) 2015-07-31 2023-03-21 德商安美基研究(慕尼黑)公司 Antibody constructs for msln and cd3
TWI744242B (en) 2015-07-31 2021-11-01 德商安美基研究(慕尼黑)公司 Antibody constructs for egfrviii and cd3
TWI717375B (en) 2015-07-31 2021-02-01 德商安美基研究(慕尼黑)公司 Antibody constructs for cd70 and cd3
JP7083497B2 (en) 2015-08-03 2022-06-13 スミトモ ファーマ オンコロジー, インコーポレイテッド Combination therapy for the treatment of cancer
TW202340452A (en) 2015-08-04 2023-10-16 美商再生元醫藥公司 Taurine supplemented cell culture medium and methods of use
WO2017024285A2 (en) 2015-08-06 2017-02-09 Xoma (Us) Llc Antibody fragments against the insulin receptor and uses thereof to treat hypoglycemia
MA45352A (en) 2015-08-07 2018-06-13 Univ Birmingham IDENTIFICATION OF GLYCOPEPTIDES ASSOCIATED WITH CATEGORY I HCM AS TARGETS FOR CANCER IMMUNOTHERAPY
CN105384825B (en) 2015-08-11 2018-06-01 南京传奇生物科技有限公司 A kind of bispecific chimeric antigen receptor and its application based on single domain antibody
WO2017031353A1 (en) 2015-08-19 2017-02-23 Rutgers, The State University Of New Jersey Novel methods of generating antibodies
CN107923911A (en) 2015-08-20 2018-04-17 豪夫迈·罗氏有限公司 Use the immunoassay based on particle of Pegylation analyte specific-binding agent
US10590198B2 (en) 2015-08-28 2020-03-17 Alector Llc Anti-siglec-7 antibodies and methods of use thereof
KR20220131277A (en) 2015-09-01 2022-09-27 아게누스 인코포레이티드 Anti-pd-1 antibodies and methods of use thereof
JP2018532990A (en) 2015-09-04 2018-11-08 オービーアイ ファーマ,インコーポレイテッド Glycan arrays and methods of use
KR102538745B1 (en) 2015-09-18 2023-06-01 추가이 세이야쿠 가부시키가이샤 Il-8-binding antibodies and uses thereof
MA42925A (en) 2015-09-25 2018-08-01 Hoffmann La Roche ANTI-TIGIT ANTIBODIES AND METHODS OF USE
WO2017058780A1 (en) 2015-09-30 2017-04-06 Merck Patent Gmbh Combination of a pd-1 axis binding antagonist and an alk inhibitor for treating alk-negative cancer
EP3359569A2 (en) 2015-10-06 2018-08-15 Alector LLC Anti-trem2 antibodies and methods of use thereof
US20180348224A1 (en) 2015-10-28 2018-12-06 Friedrich Miescher Institute For Biomedical Resear Ch Tenascin-w and biliary tract cancers
JP7060502B2 (en) 2015-10-29 2022-04-26 アレクトル エルエルシー Anti-Sigma-9 antibody and its usage
TW201720459A (en) 2015-11-02 2017-06-16 妮翠斯製藥公司 Combination therapy of NTN1 neutralizing agent with drugs inhibiting epigenetic control
EP3909984A1 (en) 2015-11-03 2021-11-17 Merck Patent GmbH Affinity matured c-met antibodies
AU2016353153B2 (en) 2015-11-12 2023-11-23 Seagen Inc. Glycan-interacting compounds and methods of use
JP6925278B2 (en) 2015-11-18 2021-08-25 中外製薬株式会社 Method of enhancing humoral immune response
JP6931329B2 (en) 2015-11-18 2021-09-01 中外製薬株式会社 Combination therapy using T cell redirection antigen-binding molecule for cells with immunosuppressive function
DK3380525T3 (en) 2015-11-25 2024-01-29 Immunogen Inc PHARMACEUTICAL FORMULATIONS AND METHODS OF USING THEREOF
AU2016365114A1 (en) 2015-11-30 2018-05-17 Abbvie Biotherapeutics Inc. Anti-huLRRC15 antibody drug conjugates and methods for their use
EP3383910A1 (en) 2015-11-30 2018-10-10 AbbVie Inc. ANTI-huLRRC15 ANTIBODY DRUG CONJUGATES AND METHODS FOR THEIR USE
JP7227007B2 (en) 2015-12-02 2023-02-21 ストサイエンシス, インコーポレイテッド Antibodies specific for glycosylated BTLA (B- and T-lymphocyte-attenuating factor)
CA3006769A1 (en) 2015-12-02 2017-06-08 Stcube & Co., Inc. Antibodies and molecules that immunospecifically bind to btn1a1 and the therapeutic uses thereof
EP3184544A1 (en) 2015-12-23 2017-06-28 Julius-Maximilians-Universität Würzburg Glycoprotein v inhibitors for use as coagulants
JP6954842B2 (en) 2015-12-25 2021-10-27 中外製薬株式会社 Antibodies with enhanced activity and methods for modifying them
US20170239355A1 (en) 2015-12-30 2017-08-24 Genentech, Inc. Use of tryptophan derivatives for protein formulations
US10525137B2 (en) 2015-12-30 2020-01-07 Genentech, Inc. Formulations with reduced degradation of polysorbate
CN108700588A (en) 2015-12-31 2018-10-23 普莱戈斯瑞恩癌症有限责任公司 Composition for detecting and treating gastric cancer and method
CA3009768A1 (en) 2015-12-31 2017-07-06 Syncerus S.A R.L. Compositions and methods for assessing the risk of cancer occurrence
ES2901602T3 (en) 2015-12-31 2022-03-23 Progastrine Et Cancers S A R L Compositions and methods for detecting and treating ovarian cancer
ES2861587T3 (en) 2015-12-31 2021-10-06 Progastrine Et Cancers S A R L Compositions and methods for detecting and treating esophageal cancer
PL3400246T3 (en) 2016-01-08 2021-03-08 F. Hoffmann-La Roche Ag Methods of treating cea-positive cancers using pd-1 axis binding antagonists and anti-cea/anti-cd3 bispecific antibodies
US11103589B2 (en) 2016-01-08 2021-08-31 Apg Therapeutics, Inc. Polyethylenimine (PEI)-polypeptide conjugates and methods of use thereof
EA039859B1 (en) 2016-02-03 2022-03-21 Эмджен Рисерч (Мюник) Гмбх Bispecific antibody constructs binding egfrviii and cd3
CN109219617A (en) 2016-02-03 2019-01-15 安进研发(慕尼黑)股份有限公司 BCMA and CD3 Bispecific T Cell Engaging Antibody Constructs
EP3411404B1 (en) 2016-02-03 2022-11-09 Amgen Research (Munich) GmbH Psma and cd3 bispecific t cell engaging antibody constructs
CN109071625A (en) 2016-02-04 2018-12-21 柯瑞斯公司 Smooth mutant and its application method
US11262359B2 (en) 2016-02-05 2022-03-01 NanoView Biosciences, Inc. Detection of exosomes having surface markers
CA3014013A1 (en) 2016-02-12 2017-08-17 Janssen Pharmaceutica Nv Anti-vista (b7h5) antibodies
WO2017151502A1 (en) 2016-02-29 2017-09-08 Genentech, Inc. Therapeutic and diagnostic methods for cancer
US11472877B2 (en) 2016-03-04 2022-10-18 Alector Llc Anti-TREM1 antibodies and methods of use thereof
US11357849B2 (en) 2016-03-07 2022-06-14 Musc Foundation For Research Development Anti-nucleolin antibodies
US10336784B2 (en) 2016-03-08 2019-07-02 Academia Sinica Methods for modular synthesis of N-glycans and arrays thereof
KR20180116215A (en) 2016-03-14 2018-10-24 추가이 세이야쿠 가부시키가이샤 Cytotoxicity-inducing therapeutic agent for treating cancer
JP6430025B2 (en) 2016-03-15 2018-11-28 中外製薬株式会社 Methods of treating cancer using PD-1 binding antagonists and anti-GPC3 antibodies
EP3430058A4 (en) 2016-03-15 2019-10-23 Generon (Shanghai) Corporation Ltd. Multispecific fab fusion proteins and use thereof
EP4302782A3 (en) 2016-03-15 2024-03-27 Mersana Therapeutics, Inc. Napi2b-targeted antibody-drug conjugates and methods of use thereof
RS61412B1 (en) 2016-03-17 2021-03-31 Tillotts Pharma Ag Anti-tnf alpha-antibodies and functional fragments thereof
CN109071649B (en) 2016-03-17 2021-10-01 努玛创新有限公司 anti-TNF alpha antibodies and functional fragments thereof
AU2017235465B2 (en) 2016-03-17 2024-03-28 Numab Therapeutics AG Anti-TNFα-antibodies and functional fragments thereof
CN108884156B (en) 2016-03-17 2021-10-01 努玛创新有限公司 anti-TNF alpha antibodies and functional fragments thereof
PT3219726T (en) 2016-03-17 2020-12-15 Tillotts Pharma Ag Anti-tnf alpha-antibodies and functional fragments thereof
CN108697799A (en) 2016-03-22 2018-10-23 生态学有限公司 The application of anti-LGR5 monoclonal antibodies
EP3432924A1 (en) 2016-03-23 2019-01-30 Novartis AG Cell secreted minibodies and uses thereof
KR20240034883A (en) 2016-03-29 2024-03-14 얀센 바이오테크 인코포레이티드 Treating psoriasis with increased interval dosing of anti-il12 and/or -23 antibody
US11041017B2 (en) 2016-03-29 2021-06-22 Obi Pharma, Inc. Antibodies, pharmaceutical compositions and methods
US10980894B2 (en) 2016-03-29 2021-04-20 Obi Pharma, Inc. Antibodies, pharmaceutical compositions and methods
WO2017175058A1 (en) 2016-04-07 2017-10-12 Janssen Pharmaceutica Nv Anti-vista antibodies and fragments, uses thereof, and methods of identifying same
JP2019515670A (en) 2016-04-15 2019-06-13 ジェネンテック, インコーポレイテッド Methods for monitoring and treating cancer
MX2018012492A (en) 2016-04-15 2019-06-06 Genentech Inc Methods for monitoring and treating cancer.
JOP20170091B1 (en) 2016-04-19 2021-08-17 Amgen Res Munich Gmbh Administration of a bispecific construct binding to CD33 and CD3 for use in a method for the treatment of myeloid leukemia
RU2018140976A (en) 2016-04-22 2020-05-22 Оби Фарма, Инк. CANCER IMMUNOTHERAPY BY IMMUNE ACTIVATION OR IMMUNE MODULATION THROUGH GLOBO SERIES ANTIGENS
KR20190005966A (en) 2016-05-10 2019-01-16 제넨테크, 인크. Methods for reducing trisulfide bonds during recombinant production of polypeptides
TWI808055B (en) 2016-05-11 2023-07-11 美商滬亞生物國際有限公司 Combination therapies of hdac inhibitors and pd-1 inhibitors
TWI794171B (en) 2016-05-11 2023-03-01 美商滬亞生物國際有限公司 Combination therapies of hdac inhibitors and pd-l1 inhibitors
TW201808336A (en) 2016-05-11 2018-03-16 賽諾菲公司 Treatment regimen using anti-MUC1 maytansinoid immunoconjugate antibody for the treatment of tumors
AU2017268342B2 (en) 2016-05-17 2023-08-17 Abbvie Biotherapeutics Inc. Anti-cMet antibody drug conjugates and methods for their use
US11649291B2 (en) 2016-05-24 2023-05-16 Insmed Incorporated Antibodies and methods of making same
JP2019516748A (en) 2016-05-26 2019-06-20 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung PD-1 / PD-L1 inhibitor for treating cancer
UA123111C2 (en) 2016-05-27 2021-02-17 Еббві Байотерапьютікс Інк. Anti-cd40 antibodies and their uses
SG10201912563XA (en) 2016-05-27 2020-02-27 Agenus Inc Anti-tim-3 antibodies and methods of use thereof
EP3464362B1 (en) 2016-05-27 2020-12-09 AbbVie Biotherapeutics Inc. Anti-4-1bb antibodies and their uses
KR20190079713A (en) 2016-06-13 2019-07-05 아이-맵 Anti-pd-l1 antibodies and uses thereof
CN109641041A (en) 2016-06-15 2019-04-16 西奈山伊坎医学院 Influenza virus haemagglutinin albumen and application thereof
AU2017292184A1 (en) 2016-07-08 2019-02-07 Staten Biotechnology B.V. Anti-Apoc3 antibodies and methods of use thereof
JP2018035137A (en) 2016-07-13 2018-03-08 マブイミューン ダイアグノスティックス エイジーMabimmune Diagnostics Ag Novel anti-fibroblast activated protein (FAP) binding agent and use thereof
WO2018014260A1 (en) 2016-07-20 2018-01-25 Nanjing Legend Biotech Co., Ltd. Multispecific antigen binding proteins and methods of use thereof
WO2018017964A2 (en) 2016-07-21 2018-01-25 Emory University Ebola virus antibodies and binding agents derived therefrom
KR102534568B1 (en) 2016-07-22 2023-05-18 다나-파버 캔서 인스티튜트 인크. Glucocorticoid-Induced Tumor Necrosis Factor Receptor (GITR) Antibodies and Methods of Use Thereof
WO2018022479A1 (en) 2016-07-25 2018-02-01 Biogen Ma Inc. Anti-hspa5 (grp78) antibodies and uses thereof
AU2017302038B2 (en) 2016-07-27 2024-03-21 Obi Pharma, Inc. Immunogenic/therapeutic glycan compositions and uses thereof
NL2017267B1 (en) 2016-07-29 2018-02-01 Aduro Biotech Holdings Europe B V Anti-pd-1 antibodies
EP3491026A4 (en) 2016-07-29 2020-07-29 OBI Pharma, Inc. Human antibodies, pharmaceutical compositions and methods
JP7148493B2 (en) 2016-08-01 2022-10-05 ゾーマ (ユーエス) リミテッド ライアビリティ カンパニー Parathyroid hormone receptor 1 (PTH1R) antibodies and uses thereof
NL2017270B1 (en) 2016-08-02 2018-02-09 Aduro Biotech Holdings Europe B V New anti-hCTLA-4 antibodies
WO2018029124A1 (en) 2016-08-08 2018-02-15 F. Hoffmann-La Roche Ag Therapeutic and diagnostic methods for cancer
KR20190038829A (en) 2016-08-12 2019-04-09 제넨테크, 인크. Combination therapy with MEK inhibitor, PD-1 axis inhibitor, and VEGF inhibitor
KR102588027B1 (en) 2016-08-22 2023-10-12 초 파마 인크. Antibodies, binding fragments and methods of use
US10870694B2 (en) 2016-09-02 2020-12-22 Dana Farber Cancer Institute, Inc. Composition and methods of treating B cell disorders
MX2019002696A (en) 2016-09-06 2019-09-27 Dana Farber Cancer Inst Inc Methods of treating or preventing zika virus infection.
KR102560808B1 (en) 2016-09-06 2023-07-27 추가이 세이야쿠 가부시키가이샤 Use of Bispecific Antibodies Recognizing Coagulant IX and/or Activated Coagulant IX and Factor X and/or Activated Coagulant X
WO2018049083A1 (en) 2016-09-07 2018-03-15 The Regents Of The University Of California Antibodies to oxidation-specific epitopes
TW201825511A (en) 2016-09-09 2018-07-16 美商艾斯合顧問有限公司 Oncolytic virus expressing immune checkpoint modulators
CR20190199A (en) 2016-09-14 2019-08-27 Abbvie Biotherapeutics Inc Anti-pd-1(cd279) antibodies
US10647767B2 (en) 2016-09-19 2020-05-12 I-Mab Biopharma Co., Ltd. Anti-GM-CSF antibodies and uses thereof
JOP20190009A1 (en) 2016-09-21 2019-01-27 Alx Oncology Inc Antibodies against signal-regulatory protein alpha and methods of use
WO2018057735A1 (en) 2016-09-21 2018-03-29 Nextcure, Inc. Antibodies for siglec-15 and methods of use thereof
EP4360714A3 (en) 2016-09-21 2024-07-24 Nextcure, Inc. Antibodies for siglec-15 and methods of use thereof
JP2019534710A (en) 2016-09-28 2019-12-05 ゾーマ (ユーエス) リミテッド ライアビリティ カンパニー Antibody binding to interleukin 2 and use thereof
BR112019005815A2 (en) 2016-09-29 2019-06-25 Genentech Inc methods of treating an individual with breast cancer, breast cancer treatment kit, and breast cancer therapy drug combination
EP3519049A4 (en) 2016-09-30 2020-05-27 Janssen Biotech, Inc. Safe and effective method of treating psoriasis with anti-il23 specific antibody
CN110249226B (en) 2016-10-03 2023-08-25 雅培实验室 Improved method for assessing GFAP status in patient samples
MX2019003934A (en) 2016-10-06 2019-07-10 Genentech Inc Therapeutic and diagnostic methods for cancer.
EP3522923A1 (en) 2016-10-06 2019-08-14 Pfizer Inc Dosing regimen of avelumab for the treatment of cancer
TWI843168B (en) 2016-10-11 2024-05-21 美商艾吉納斯公司 Anti-lag-3 antibodies and methods of use thereof
WO2018068201A1 (en) 2016-10-11 2018-04-19 Nanjing Legend Biotech Co., Ltd. Single-domain antibodies and variants thereof against ctla-4
CN114773472A (en) 2016-10-20 2022-07-22 天境生物科技(上海)有限公司 Novel CD47 monoclonal antibody and application thereof
WO2018081531A2 (en) 2016-10-28 2018-05-03 Ariad Pharmaceuticals, Inc. Methods for human t-cell activation
US20190263926A1 (en) 2016-10-28 2019-08-29 Astute Medical, Inc. Use of Antibodies to TIMP-2 for the Improvement of Renal Function
US20200261470A1 (en) 2016-11-02 2020-08-20 Immunogen, Inc. Combination treatment with antibody-drug conjugates and parp inhibitors
WO2018083248A1 (en) 2016-11-03 2018-05-11 Kymab Limited Antibodies, combinations comprising antibodies, biomarkers, uses & methods
AU2017353936A1 (en) 2016-11-04 2019-05-02 Novimmune Sa Anti-CD19 antibodies and methods of use thereof
AU2017353939A1 (en) 2016-11-07 2019-06-06 Neuracle Science Co., Ltd. Anti-family with sequence similarity 19, member A5 antibodies and method of use thereof
KR20240065333A (en) 2016-11-16 2024-05-14 얀센 바이오테크 인코포레이티드 Method of treating psoriasis with anti-il-23 specific antibody
US11401330B2 (en) 2016-11-17 2022-08-02 Seagen Inc. Glycan-interacting compounds and methods of use
US11279694B2 (en) 2016-11-18 2022-03-22 Sumitomo Dainippon Pharma Oncology, Inc. Alvocidib prodrugs and their use as protein kinase inhibitors
KR20190077103A (en) 2016-11-21 2019-07-02 오비아이 파머 인코퍼레이티드 Conjugated biological molecules, pharmaceutical compositions and methods
CN110234319B (en) 2016-11-23 2022-09-27 转化药物开发有限责任公司 Compositions of benzamide and active compound and methods of use thereof
EP3546480A4 (en) 2016-11-28 2020-07-29 Chugai Seiyaku Kabushiki Kaisha Ligand-binding molecule having adjustable ligand binding activity
KR102504605B1 (en) 2016-12-07 2023-03-02 아게누스 인코포레이티드 Anti-CTLA-4 Antibodies and Methods of Using The Same
BR112019011582A2 (en) 2016-12-07 2019-10-22 Agenus Inc. antibodies and their methods of use
EP3725809A1 (en) 2016-12-15 2020-10-21 AbbVie Biotherapeutics Inc. Anti-ox40 antibodies and their uses
AU2017379847B2 (en) 2016-12-19 2022-05-26 Sumitomo Pharma Oncology, Inc. Profiling peptides and methods for sensitivity profiling
WO2018122043A1 (en) 2016-12-27 2018-07-05 F. Hoffmann-La Roche Ag Novel biotin-specific monoclonal antibody and use thereof
CN110088129A (en) 2016-12-27 2019-08-02 豪夫迈·罗氏有限公司 New biotin monoclonal antibody specific and application thereof
CN110088139A (en) 2016-12-27 2019-08-02 豪夫迈·罗氏有限公司 New biotin monoclonal antibody specific and application thereof
WO2018129284A1 (en) 2017-01-05 2018-07-12 The Johns Hopkins University Development of new monoclonal antibodies recognizing human prostate-specific membrane antigen (psma)
CA3048347A1 (en) 2017-01-05 2018-07-12 Institut National De La Sante Et De La Recherche Medicale Combined treatment with netrin-1 interfering drug and immune checkpoint inhibitors drugs
KR102536145B1 (en) 2017-01-20 2023-05-30 타유 후아시아 바이오테크 메디컬 그룹 컴퍼니 리미티드 Anti-pd-1 antibodies and uses thereof
NZ753714A (en) 2017-01-24 2023-03-31 I Mab Biopharma Co Ltd Anti-cd73 antibodies and uses thereof
WO2018140510A1 (en) 2017-01-25 2018-08-02 Biogen Ma Inc. Compositions and methods for treatment of stroke and other cns disorders
JP2020506916A (en) 2017-01-30 2020-03-05 ヤンセン バイオテツク,インコーポレーテツド Anti-TNF antibodies, compositions and methods for the treatment of active psoriatic arthritis
JOP20190189A1 (en) 2017-02-02 2019-08-01 Amgen Res Munich Gmbh Low ph pharmaceutical composition comprising t cell engaging antibody constructs
CN110234995A (en) 2017-02-02 2019-09-13 豪夫迈·罗氏有限公司 Immunoassay using at least two pegylated analyte-specific binding reagents
EP3579871A4 (en) 2017-02-07 2021-07-21 Janssen Biotech, Inc. Anti-tnf antibodies, compositions, and methods for the treatment of active ankylosing spondylitis
CN108456251A (en) 2017-02-21 2018-08-28 上海君实生物医药科技股份有限公司 Anti- PD-L1 antibody and its application
ES2953595T3 (en) 2017-03-01 2023-11-14 Hoffmann La Roche Diagnostic and therapeutic procedures for cancer
SG11201907889YA (en) 2017-03-03 2019-09-27 Seattle Genetics Inc Glycan-interacting compounds and methods of use
TWI808963B (en) 2017-03-22 2023-07-21 法商賽諾菲公司 Treatment of lupus using humanized anti-cxcr5 antibodies
US11016092B2 (en) 2017-03-23 2021-05-25 Abbott Laboratories Methods for aiding in the diagnosis and determination of the extent of traumatic brain injury in a human subject using the early biomarker ubiquitin carboxy-terminal hydrolase L1
CA3057808A1 (en) 2017-03-24 2018-09-27 Zenyaku Kogyo Co., Ltd. Anti-igm/b cell surface antigen bispecific antibody
IL269718B2 (en) 2017-03-30 2024-10-01 Merck Patent Gmbh Combination of an anti-pd-l1 antibody and a dna-pk inhibitor for the treatment of cancer
WO2018178364A1 (en) 2017-03-30 2018-10-04 Progastrine Et Cancers S.À R.L. Compositions and methods for treating lung cancer
SG11201908998XA (en) 2017-03-30 2019-10-30 Progastrine Et Cancers S A R L Compositions and methods for detecting and treating prostate cancer using progastrin binding molecule
JP7209298B2 (en) 2017-03-31 2023-01-20 公立大学法人奈良県立医科大学 A pharmaceutical composition used for the prevention and/or treatment of blood coagulation factor IX disorders, containing a multispecific antigen-binding molecule that substitutes for the function of blood coagulation factor VIII
US10722589B2 (en) 2017-04-03 2020-07-28 Covagen Ag FGFR3 binding molecules
EP3606554A4 (en) 2017-04-05 2020-12-09 Astute Medical, Inc. Assays for timp2 having improved performance in biological samples
WO2018187706A2 (en) 2017-04-07 2018-10-11 Icahn School Of Medicine At Mount Sinai Anti-influenza b virus neuraminidase antibodies and uses thereof
WO2018191502A2 (en) 2017-04-13 2018-10-18 Agenus Inc. Anti-cd137 antibodies and methods of use thereof
JP7344797B2 (en) 2017-04-15 2023-09-14 アボット・ラボラトリーズ Methods to aid in hyperacute diagnosis and determination of traumatic brain injury in human subjects using early biomarkers
WO2018193427A1 (en) 2017-04-21 2018-10-25 Staten Biotechnology B.V. Anti-apoc3 antibodies and methods of use thereof
JP2020517271A (en) 2017-04-22 2020-06-18 イミュノミック セラピューティックス, インコーポレイテッドImmunomic Therapeutics, Inc. Improved LAMP construct
WO2018196782A1 (en) 2017-04-27 2018-11-01 The University Of Hong Kong Use of hcn inhibitors for treatment of cancer
US20200109390A1 (en) 2017-04-27 2020-04-09 Chugai Seiyaku Kabushiki Kaisha Coagulation factor ix with improved pharmacokinetics
AU2018256845B2 (en) 2017-04-28 2024-03-14 Abbott Laboratories Methods for aiding in the hyperacute diagnosis and determination of traumatic brain injury using early biomarkers on at least two samples from the same human subject
RS64576B1 (en) 2017-05-01 2023-10-31 Agenus Inc Anti-tigit antibodies and methods of use thereof
WO2018203545A1 (en) 2017-05-02 2018-11-08 国立研究開発法人国立精神・神経医療研究センター Method for predicting and evaluating therapeutic effect in diseases related to il-6 and neutrophils
WO2018204534A1 (en) 2017-05-02 2018-11-08 Immunomic Therapeutics, Inc. Lamp (lysosomal associated membrane protein) constructs comprising cancer antigens
US10865238B1 (en) 2017-05-05 2020-12-15 Duke University Complement factor H antibodies
MX2019013142A (en) 2017-05-05 2019-12-16 Amgen Inc Pharmaceutical composition comprising bispecific antibody constructs for improved storage and administration.
JOP20190256A1 (en) 2017-05-12 2019-10-28 Icahn School Med Mount Sinai Newcastle disease viruses and uses thereof
WO2018213316A1 (en) 2017-05-16 2018-11-22 Alector Llc Anti-siglec-5 antibodies and methods of use thereof
US10914729B2 (en) 2017-05-22 2021-02-09 The Trustees Of Princeton University Methods for detecting protein binding sequences and tagging nucleic acids
EP3630830A1 (en) 2017-05-23 2020-04-08 Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) Novel cd73 antibody, preparation and uses thereof
BR112019024701A2 (en) 2017-05-25 2020-06-09 Abbott Lab methods to assist in determining whether an imaging test should be performed on a human individual who has suffered or may have suffered a head injury with the use of early biomarkers
CA3065008A1 (en) 2017-05-26 2018-11-29 Novimmune Sa Anti-cd47 x anti-mesothelin antibodies and methods of use thereof
JP7269182B2 (en) 2017-05-30 2023-05-08 アボット・ラボラトリーズ Methods to Help Diagnose and Assess Mild Traumatic Brain Injury in Human Subjects Using Cardiac Troponin I and Early Biomarkers
KR20200015602A (en) 2017-05-31 2020-02-12 주식회사 에스티큐브앤컴퍼니 Antibodies and molecules immunospecifically binding to BTN1A1 and therapeutic uses thereof
AU2018277545A1 (en) 2017-05-31 2019-12-19 Stcube & Co., Inc. Methods of treating cancer using antibodies and molecules that immunospecifically bind to BTN1A1
EP3635007A1 (en) 2017-06-06 2020-04-15 STCube & Co., Inc. Methods of treating cancer using antibodies and molecules that bind to btn1a1 or btn1a1-ligands
WO2019000223A1 (en) 2017-06-27 2019-01-03 Nanjing Legend Biotech Co., Ltd. Chimeric antibody immune effctor cell engagers and methods of use thereof
WO2019014572A1 (en) 2017-07-14 2019-01-17 Pfizer, Inc. Antibodies to madcam
EP3655034A1 (en) 2017-07-21 2020-05-27 Genentech, Inc. Therapeutic and diagnostic methods for cancer
US20210032364A1 (en) 2017-07-27 2021-02-04 Nomocan Pharmaceuticals Llc Antibodies to m(h)dm2/4 and their use in diagnosing and treating cancer
WO2020159504A1 (en) 2019-01-30 2020-08-06 Nomocan Pharmaceuticals Llc Antibodies to m(h)dm2/4 and their use in diagnosing and treating cancer
WO2019028292A1 (en) 2017-08-03 2019-02-07 Alector Llc Anti-trem2 antibodies and methods of use thereof
PE20200486A1 (en) 2017-08-03 2020-03-03 Alector Llc ANTI-CD33 ANTIBODIES AND METHODS OF USING THEM
US11585014B2 (en) 2017-08-21 2023-02-21 Adagene Inc. Dynamic human antibody light chain libraries
CN111279024B (en) 2017-08-21 2024-07-19 天演药业公司 Dynamic human heavy chain antibody libraries
EP3679070A1 (en) 2017-09-07 2020-07-15 Augusta University Research Institute, Inc. Antibodies to programmed cell death protein 1
WO2019055579A1 (en) 2017-09-12 2019-03-21 Tolero Pharmaceuticals, Inc. Treatment regimen for cancers that are insensitive to bcl-2 inhibitors using the mcl-1 inhibitor alvocidib
JP7382922B2 (en) 2017-09-20 2023-11-17 中外製薬株式会社 Dosing regimen for combination therapy using PD-1 system binding antagonists and GPC3 targeting agents
WO2019057816A1 (en) 2017-09-22 2019-03-28 F. Hoffmann-La Roche Ag Multivalent mono- or bispecific recombinant antibodies for analytic purpose
TW201922780A (en) 2017-09-25 2019-06-16 美商健生生物科技公司 Safe and effective method of treating Lupus with anti-IL12/IL23 antibody
WO2019075090A1 (en) 2017-10-10 2019-04-18 Tilos Therapeutics, Inc. Anti-lap antibodies and uses thereof
WO2019075270A1 (en) 2017-10-12 2019-04-18 Amesino Llc Vegfr-antibody light chain fusion protein
EP3698808A4 (en) 2017-10-20 2021-07-14 Hyogo College Of Medicine Anti-il-6 receptor antibody-containing medicinal composition for preventing post-surgical adhesion
US11826414B2 (en) 2017-10-23 2023-11-28 Cz Biohub Sf, Llc Measurement of afucosylated IgG Fc glycans and related vaccination methods
WO2019084057A2 (en) 2017-10-24 2019-05-02 Magenta Therapeutics, Inc. Compositions and methods for the depletion of cd117+ cells
WO2019084460A1 (en) 2017-10-26 2019-05-02 The Regents Of The University Of California Inhibition of oxidation-specific epitopes to treat ischemic reperfusion injury
TW201922294A (en) 2017-10-31 2019-06-16 美商伊繆諾金公司 Combination treatment with antibody-drug conjugates and cytarabine
CA3080103A1 (en) 2017-10-31 2019-05-09 Staten Biotechnology B.V. Anti-apoc3 antibodies and methods of use thereof
EP3707510B1 (en) 2017-11-06 2024-06-26 F. Hoffmann-La Roche AG Diagnostic and therapeutic methods for cancer
EP3717069A1 (en) 2017-11-27 2020-10-07 Purdue Pharma L.P. Humanized antibodies targeting human tissue factor
JP7266532B2 (en) 2017-11-28 2023-04-28 中外製薬株式会社 Ligand-binding molecules with tunable ligand-binding activity
WO2019110662A1 (en) 2017-12-05 2019-06-13 Progastrine Et Cancers S.À R.L. Combination therapy between anti-progastrin antibody and immunotherapy to treat cancer
KR20200096942A (en) 2017-12-06 2020-08-14 마젠타 테라퓨틱스 인코포레이티드 Dosing regimen for mobilization of hematopoietic stem and progeny cells
AU2018378084A1 (en) 2017-12-09 2020-05-14 Abbott Laboratories Methods for aiding in diagnosing and evaluating a traumatic brain injury in a human subject using a combination of GFAP and UCH-L1
BR112019028254A2 (en) 2017-12-09 2020-07-14 Abbott Laboratories methods to assist in the diagnosis and evaluation of a patient who has suffered an orthopedic injury and who has suffered or may have suffered a head injury, such as a mild traumatic brain injury (lct), using glial fibrillar acid protein (gfap) and / or the carboxy-terminal hydrolase of ubiquitin l1 (uch-l1)
JP7344206B2 (en) 2017-12-11 2023-09-13 アムジェン インコーポレイテッド Continuous manufacturing process for bispecific antibody products
NZ765588A (en) 2017-12-20 2024-08-30 Harbour Biomed Shanghai Co Ltd Antibodies binding ctla-4 and uses thereof
EP3732196A4 (en) 2017-12-28 2022-01-05 Astute Medical, Inc. Antibodies and assays for ccl14
CA3082280A1 (en) 2017-12-28 2019-07-04 Nanjing Legend Biotech Co., Ltd. Single-domain antibodies and variants thereof against tigit
AU2018396964C1 (en) 2017-12-28 2024-10-03 Nanjing Legend Biotech Co., Ltd. Antibodies and variants thereof against PD-L1
JP7314146B2 (en) 2017-12-28 2023-07-25 中外製薬株式会社 Cytotoxicity-inducing therapeutic agent
TW201940518A (en) 2017-12-29 2019-10-16 美商安進公司 Bispecific antibody construct directed to MUC17 and CD3
CA3084518A1 (en) 2018-01-15 2019-07-18 Nanjing Legend Biotech Co., Ltd. Single-domain antibodies and variants thereof against pd-1
EP3743101A2 (en) 2018-01-25 2020-12-02 ACM Biolabs Pte Ltd Polymersomes comprising a soluble encapsulated antigen as well as methods of making and uses thereof
TW201940881A (en) 2018-01-26 2019-10-16 瑞士商Ecs前胃泌激素公司 Combining progastrin detection with other cancer biomarkers in cancer diagnosis
US20210363238A1 (en) 2018-01-31 2021-11-25 Motokazu Kato Therapeutic agent for asthma containing il-6 inhibitor
MX2020008882A (en) 2018-02-26 2021-01-08 Genentech Inc Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies.
KR102699073B1 (en) 2018-02-27 2024-08-26 이씨에스-프로가스트린 에스에이 Progastrin as a biomarker for immunotherapy
US20210002373A1 (en) 2018-03-01 2021-01-07 Nextcure, Inc. KLRG1 Binding Compositions and Methods of Use Thereof
NL2020520B1 (en) 2018-03-02 2019-09-12 Labo Bio Medical Invest B V Multispecific binding molecules for the prevention, treatment and diagnosis of neurodegenerative disorders
JP7516250B2 (en) 2018-03-05 2024-07-16 ヤンセン バイオテツク,インコーポレーテツド Method for treating Crohn's disease using anti-IL-23 specific antibodies
BR112020017701A2 (en) 2018-03-12 2020-12-29 Zoetis Services Llc ANTI-NGF ANTIBODIES AND METHODS OF THE SAME
EP3765520A1 (en) 2018-03-14 2021-01-20 NovImmune SA Anti-cd3 epsilon antibodies and methods of use thereof
RU2020128013A (en) 2018-03-14 2022-04-15 Бейцзин Сюаньи Фармасайенсиз Ко., Лтд. ANTIBODIES AGAINST CLAUDIN 18.2
PE20201265A1 (en) 2018-03-21 2020-11-19 Alx Oncology Inc ANTIBODIES AGAINST SIGNAL REGULATORY ALPHA PROTEIN AND METHODS OF USE
WO2019180272A1 (en) 2018-03-23 2019-09-26 Fundación Instituto De Investigación Sanitaria De Santiago De Compostela Anti-leptin affinity reagents for use in the treatment of obesity and other leptin-resistance associated diseases
PL3775909T3 (en) 2018-03-26 2023-09-18 Glycanostics S.R.O. Means and methods for glycoprofiling of a protein
EP3774917A4 (en) 2018-03-30 2022-01-19 Nanjing Legend Biotech Co., Ltd. Single-domain antibodies against lag-3 and uses thereof
CR20200450A (en) 2018-04-02 2021-02-11 Bristol Myers Squibb Co Anti-trem-1 antibodies and uses thereof
EP3773739A1 (en) 2018-04-12 2021-02-17 MediaPharma S.r.l. Lgals3bp antibody-drug-conjugate and its use for the treatment of cancer
BR112020021271A2 (en) 2018-04-17 2021-01-26 Celldex Therapeutics, Inc. bispecific constructs and anti-cd27 and anti-pd-l1 antibodies
US20210230255A1 (en) 2018-04-27 2021-07-29 Fondazione Ebri Rita Levi-Montalcini Antibody directed against a tau-derived neurotoxic peptide and uses thereof
CN112512576A (en) 2018-05-04 2021-03-16 默克专利有限公司 Combined inhibition of PD-1/PD-L1, TGF beta and DNA-PK for the treatment of cancer
KR102661891B1 (en) 2018-05-10 2024-05-23 주식회사 뉴라클사이언스 Anti-family with sequence similarity 19, member A5 antibody and methods of use thereof
JP2021523138A (en) 2018-05-11 2021-09-02 ヤンセン バイオテツク,インコーポレーテツド How to treat depression with IL-23 antibody
TW202003048A (en) 2018-05-15 2020-01-16 美商伊繆諾金公司 Combination treatment with antibody-drug conjugates and FLT3 inhibitors
CA3100004A1 (en) 2018-05-15 2019-11-21 Immunomic Therapeutics, Inc. Improved lamp constructs comprising allergens
US20210196568A1 (en) 2018-05-21 2021-07-01 Chugai Seiyaku Kabushiki Kaisha Lyophilized formulation sealed in glass container
TWI840364B (en) 2018-05-25 2024-05-01 美商阿列克特有限責任公司 Anti-sirpa antibodies and methods of use thereof
US20210364412A1 (en) 2018-06-01 2021-11-25 NanoView Biosciences, Inc. Compositions, systems, and methods for enhanced label-free and fluorescence - based detection of nanoparticles
US12037398B2 (en) 2018-06-04 2024-07-16 Biogen Ma Inc. Anti-VLA-4 antibodies having reduced effector function
EP3802610A1 (en) 2018-06-05 2021-04-14 Amgen Inc. Modulating antibody dependent cellular phagocytosis
EA202092595A1 (en) 2018-06-08 2021-04-12 Алектор Ллс ANTIBODIES TO SIGLEC-7 AND METHODS OF THEIR APPLICATION
US11241417B2 (en) 2018-06-21 2022-02-08 Yumanity Therapeutics, Inc. Compositions and methods for the treatment and prevention of neurological disorders
KR20210024550A (en) 2018-06-23 2021-03-05 제넨테크, 인크. PD-1 axis binding antagonist, platinum agent, and method of treating lung cancer using topoisomerase II inhibitor
WO2020006176A1 (en) 2018-06-27 2020-01-02 Obi Pharma, Inc. Glycosynthase variants for glycoprotein engineering and methods of use
WO2020003210A1 (en) 2018-06-29 2020-01-02 Kangwon National University University-Industry Cooperation Foundation Anti-l1cam antibodies and uses thereof
BR112019022666A2 (en) 2018-07-13 2020-09-01 Alector Llc antisortiline antibodies and methods of using them
KR20210031898A (en) 2018-07-13 2021-03-23 난징 레전드 바이오테크 씨오., 엘티디. Co-receptor system to treat infectious diseases
EP3824295A4 (en) 2018-07-18 2022-04-27 Janssen Biotech, Inc. Sustained response predictors after treatment with anti-il23 specific antibody
KR20210034622A (en) 2018-07-18 2021-03-30 제넨테크, 인크. Lung cancer treatment method using PD-1 axis binding antagonist, anti-metabolite, and platinum agent
MX2021000786A (en) 2018-07-20 2021-06-15 Pf Medicament Receptor for vista.
KR20210049106A (en) 2018-07-27 2021-05-04 알렉터 엘엘씨 Anti-SIGLEC-5 antibodies and methods of use thereof
TW202021616A (en) 2018-07-30 2020-06-16 美商安進公司 Prolonged administration of a bispecific antibody construct binding to cd33 and cd3
TWI830761B (en) 2018-08-03 2024-02-01 德商安美基研究(慕尼黑)公司 Antibody constructs for cldn18.2 and cd3
KR20210042936A (en) 2018-08-08 2021-04-20 제넨테크, 인크. Use of tryptophan derivatives and L-methionine for protein preparation
FI3843757T3 (en) 2018-08-27 2024-06-06 Affimed Gmbh Cryopreserved nk cells preloaded with an antibody construct
AU2019336214A1 (en) 2018-09-06 2021-04-29 Kira Pharmaceuticals (Us) Llc Humanized anti-C5 antibodies and uses thereof
CA3110750A1 (en) 2018-09-10 2020-03-19 Nanjing Legend Biotech Co., Ltd. Single-domain antibodies against cd33 and constructs thereof
CA3110530A1 (en) 2018-09-11 2020-03-19 Amgen Inc. Methods of modulating antibody-dependent cell-mediated cytotoxicity
CN112996539A (en) 2018-09-12 2021-06-18 Acm生物实验室私人有限公司 Polymersomes comprising covalently bound antigens, methods of making and uses thereof
CA3111401A1 (en) 2018-09-19 2020-03-26 Genentech, Inc. Therapeutic and diagnostic methods for bladder cancer
PL3857230T3 (en) 2018-09-21 2023-10-16 F. Hoffmann-La Roche Ag Diagnostic methods for triple-negative breast cancer
CA3160103A1 (en) 2018-09-24 2020-04-02 Janssen Biotech, Inc. Safe and effective method of treating ulcerative colitis with anti-il12/il23 antibody
KR20210066837A (en) 2018-09-26 2021-06-07 메르크 파텐트 게엠베하 Combination of PD-1 antagonists, ATR inhibitors and platinizing agents for the treatment of cancer
TW202028239A (en) 2018-09-28 2020-08-01 美商安進公司 Antibodies against soluble bcma
CA3113575A1 (en) 2018-10-03 2020-04-09 Staten Biotechnology B.V. Antibodies specific for human and cynomolgus apoc3 and methods of use thereof
EP3863722A2 (en) 2018-10-10 2021-08-18 Tilos Theapeutics, Inc. Anti-lap antibody variants and uses thereof
EP3863670A1 (en) 2018-10-11 2021-08-18 Amgen Inc. Downstream processing of bispecific antibody constructs
WO2020078905A1 (en) 2018-10-15 2020-04-23 Merck Patent Gmbh Combination therapy utilizing dna alkylating agents and atr inhibitors
JP2022512744A (en) 2018-10-18 2022-02-07 ジェネンテック, インコーポレイテッド Diagnosis and treatment for sarcomatoid kidney cancer
US12129305B2 (en) 2018-10-25 2024-10-29 The Medical College Of Wisconsin, Inc. Targeting CLPTM1L for treatment and prevention of cancer
WO2020086408A1 (en) 2018-10-26 2020-04-30 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services A high-yield perfusion-based transient gene expression bioprocess
US20220170097A1 (en) 2018-10-29 2022-06-02 The Broad Institute, Inc. Car t cell transcriptional atlas
US20200140533A1 (en) 2018-11-02 2020-05-07 Annexon, Inc. Compositions and methods for treating brain injury
TW202031899A (en) 2018-11-05 2020-09-01 美商建南德克公司 Methods of producing two chain proteins in prokaryotic host cells
KR102624804B1 (en) 2018-11-16 2024-01-12 에프. 호프만-라 로슈 아게 Streptavidin coated solid phase with absence of binding pairs
MX2021005905A (en) 2018-11-20 2021-06-23 Janssen Biotech Inc Safe and effective method of treating psoriasis with anti-il-23 specific antibody.
WO2020117988A1 (en) 2018-12-04 2020-06-11 Tolero Pharmaceuticals, Inc. Cdk9 inhibitors and polymorphs thereof for use as agents for treatment of cancer
US20220098310A1 (en) 2018-12-06 2022-03-31 Alexion Pharmaceuticals, Inc. Anti-alk2 antibodies and uses thereof
WO2020118293A2 (en) 2018-12-07 2020-06-11 Georgia Tech Research Corporation Antibodies that bind to natively folded myocilin
JP2022514561A (en) 2018-12-18 2022-02-14 ヤンセン バイオテツク,インコーポレーテツド A safe and effective way to treat lupus with anti-IL12 / IL23 antibodies
KR20210116525A (en) 2019-01-14 2021-09-27 제넨테크, 인크. Methods of treating cancer with PD-1 axis binding antagonists and RNA vaccines
JP2022518208A (en) 2019-01-15 2022-03-14 ヤンセン バイオテツク,インコーポレーテツド Anti-TNF Antibodies, Compositions, and Methods for the Treatment of Juvenile Idiopathic Arthritis
KR20210118878A (en) 2019-01-23 2021-10-01 얀센 바이오테크 인코포레이티드 Anti-TNF antibody composition for use in a method of treating psoriatic arthritis
EP3914615A1 (en) 2019-01-23 2021-12-01 F. Hoffmann-La Roche AG Methods of producing multimeric proteins in eukaryotic host cells
WO2020153467A1 (en) 2019-01-24 2020-07-30 中外製薬株式会社 Novel cancer antigens and antibodies of said antigens
CA3125697A1 (en) 2019-01-29 2020-08-06 Helmholtz Zentrum Munchen - Deutsches Forschungszentrum Fur Gesundheit Und Umwelt (Gmbh) Treating the causative agent in adhesiogenesis
JP2022519649A (en) 2019-02-08 2022-03-24 ジェネンテック, インコーポレイテッド How to diagnose and treat cancer
WO2020167912A1 (en) 2019-02-13 2020-08-20 The Brigham And Women's Hospital, Inc. Anti-peripheral lymph node addressin antibodies and uses thereof
CN112703013B (en) 2019-02-22 2022-09-30 武汉友芝友生物制药股份有限公司 CD3 antigen binding fragment and application thereof
CA3130303A1 (en) 2019-02-26 2020-09-03 Rgenix, Inc. High-affinity anti-mertk antibodies and uses thereof
CA3130695A1 (en) 2019-02-27 2020-09-03 Genentech, Inc. Dosing for treatment with anti-tigit and anti-cd20 or anti-cd38 antibodies
KR20210134705A (en) 2019-02-28 2021-11-10 각코우호우진 쥰텐도 Antibodies that bind to truncated variant Calreticulin, and drugs for diagnosis, prevention or treatment of myeloproliferative tumors
MA55282A (en) 2019-03-14 2022-01-19 Janssen Biotech Inc MANUFACTURING METHODS FOR THE PRODUCTION OF ANTI-TNF ANTIBODY COMPOSITIONS
EA202192505A1 (en) 2019-03-14 2022-03-29 Янссен Байотек, Инк. METHODS FOR OBTAINING COMPOSITIONS OF ANTIBODIES TO TNF
JP2022524860A (en) 2019-03-14 2022-05-10 ヤンセン バイオテツク,インコーポレーテツド Methods for Producing Anti-TNF Antibody Compositions
JP2022525145A (en) 2019-03-14 2022-05-11 ヤンセン バイオテツク,インコーポレーテツド A production method for producing an anti-IL12 / IL23 antibody composition.
AU2020241428A1 (en) 2019-03-15 2021-08-12 Cartesian Therapeutics, Inc. Anti-BCMA chimeric antigen receptors
JP2022526493A (en) 2019-03-18 2022-05-25 ヤンセン バイオテツク,インコーポレーテツド Treatment of Psoriasis in Pediatric Subjects Using Anti-IL12 / IL23 Antibodies
CN113613676A (en) 2019-03-19 2021-11-05 中外制药株式会社 Antigen binding molecule comprising antigen binding domain whose binding activity to antigen is changed by MTA and library for obtaining the same
JP2022525149A (en) 2019-03-20 2022-05-11 スミトモ ダイニッポン ファーマ オンコロジー, インコーポレイテッド Treatment of Acute Myeloid Leukemia (AML) with Venetoclax Failure
JP2022527297A (en) 2019-03-27 2022-06-01 ザ トラスティーズ オブ ザ ユニバーシティ オブ ペンシルバニア Tn-MUC1 Chimeric Antigen Receptor (CAR) T Cell Therapy
WO2020198731A2 (en) 2019-03-28 2020-10-01 Danisco Us Inc Engineered antibodies
CA3136398A1 (en) 2019-04-10 2020-10-15 Chugai Seiyaku Kabushiki Kaisha Method for purifying fc region-modified antibody
BR112021020525A2 (en) 2019-04-17 2021-12-14 Chugai Pharmaceutical Co Ltd Therapeutic agent for urological cancer that is characterized by being administered with an IL-6 inhibitor and CCR2 inhibitor in combination
CN114174317A (en) 2019-04-24 2022-03-11 海德堡医药研究有限责任公司 Amatoxin antibody-drug conjugates and uses thereof
CN114269376A (en) 2019-05-03 2022-04-01 豪夫迈·罗氏有限公司 Methods of treating cancer with anti-PD-L1 antibodies
BR112021023295A2 (en) 2019-05-23 2022-02-08 Janssen Biotech Inc Method of treating inflammatory bowel disease with a combination therapy of antibodies to il-23 and tnf-alpha
US20200369759A1 (en) 2019-05-23 2020-11-26 Fibrogen, Inc. Methods of treatment of muscular dystrophies
AU2020289070A1 (en) 2019-06-03 2022-02-03 Janssen Biotech, Inc. Anti-TNF antibody compositions, and methods for the treatment of Psoriatic Arthritis
CN114173873A (en) 2019-06-03 2022-03-11 詹森生物科技公司 anti-TNF antibodies, compositions and methods for treating active ankylosing spondylitis
KR20220017430A (en) 2019-06-05 2022-02-11 추가이 세이야쿠 가부시키가이샤 Antibody Cleavage Site Binding Molecules
EP3983520A1 (en) 2019-06-13 2022-04-20 Amgen, Inc Automated biomass-based perfusion control in the manufacturing of biologics
EP4004041A1 (en) 2019-07-26 2022-06-01 Amgen Inc. Anti-il13 antigen binding proteins
WO2021028752A1 (en) 2019-08-15 2021-02-18 Janssen Biotech, Inc. Anti-tfn antibodies for treating type i diabetes
EP4021486A1 (en) 2019-08-30 2022-07-06 Agenus Inc. Anti-cd96 antibodies and methods of use thereof
CN117683133A (en) 2019-09-03 2024-03-12 百奥泰生物制药股份有限公司 anti-TIGIT immunosuppressant and application
KR20220057563A (en) 2019-09-04 2022-05-09 제넨테크, 인크. CD8 binders and uses thereof
WO2021050640A1 (en) 2019-09-10 2021-03-18 Amgen Inc. Purification method for bispecific antigen-binding polypeptides with enhanced protein l capture dynamic binding capacity
KR20220062304A (en) 2019-09-12 2022-05-16 제넨테크, 인크. Compositions and methods for treating lupus nephritis
US20220411511A1 (en) 2019-09-26 2022-12-29 Stcube & Co. Antibodies specific to glycosylated ctla-4 and methods of use thereof
JP2022548978A (en) 2019-09-27 2022-11-22 ジェネンテック, インコーポレイテッド Dosing for Treatment with Drugs Anti-TIGIT and Anti-PD-L1 Antagonist Antibodies
WO2021072277A1 (en) 2019-10-09 2021-04-15 Stcube & Co. Antibodies specific to glycosylated lag3 and methods of use thereof
JP2022551732A (en) 2019-10-18 2022-12-13 イミュノミック セラピューティックス, インコーポレイテッド Improved LAMP constructs containing cancer antigens
JP2023501971A (en) 2019-11-01 2023-01-20 アレス トレーディング ソシエテ アノニム Combinatorial inhibition of PD-1, TGFβ, and ATM with radiotherapy for the treatment of cancer
EP4051298A1 (en) 2019-11-01 2022-09-07 Magenta Therapeutics, Inc. Dosing regimens for the mobilization of hematopoietic stem and progentor cells
WO2021089704A1 (en) 2019-11-05 2021-05-14 Merck Patent Gmbh Combined inhibition of pd-1, tgfb and tigit for the treatment of cancer
IL292458A (en) 2019-11-06 2022-06-01 Genentech Inc Diagnostic and therapeutic methods for treatment of hematologic cancers
CA3156683A1 (en) 2019-11-13 2021-05-20 Amgen Inc. Method for reduced aggregate formation in downstream processing of bispecific antigen-binding molecules
EP3825330A1 (en) 2019-11-19 2021-05-26 International-Drug-Development-Biotech Anti-cd117 antibodies and methods of use thereof
EP3986937A1 (en) 2019-12-05 2022-04-27 Alector LLC Methods of use of anti-trem2 antibodies
US11897950B2 (en) 2019-12-06 2024-02-13 Augusta University Research Institute, Inc. Osteopontin monoclonal antibodies
PE20221281A1 (en) 2019-12-09 2022-09-05 Genentech Inc ANTI-PD-L1 ANTIBODY FORMULATIONS
CN115066437A (en) 2019-12-12 2022-09-16 艾利妥 Methods of using anti-CD 33 antibodies
CA3164129A1 (en) 2019-12-20 2021-06-24 Amgen Inc. Mesothelin-targeted cd40 agonistic multispecific antibody constructs for the treatment of solid tumors
KR20220119467A (en) 2019-12-27 2022-08-29 아피메트 게엠베하 Methods of making the bispecific FCYRIII X CD30 antibody construct
CN115052663A (en) 2020-01-08 2022-09-13 辛瑟斯治疗股份有限公司 ALK5 inhibitor conjugates and uses thereof
US20230093169A1 (en) 2020-01-22 2023-03-23 Amgen Research (Munch) Gmbh Combinations of antibody constructs and inhibitors of cytokine release syndrome and uses thereof
WO2022050954A1 (en) 2020-09-04 2022-03-10 Genentech, Inc. Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
WO2021194481A1 (en) 2020-03-24 2021-09-30 Genentech, Inc. Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
CN115397459A (en) 2020-01-31 2022-11-25 基因泰克公司 Method for inducing new epitope-specific T cells using PD-1 axis binding antagonists and RNA vaccines
CN113248611A (en) 2020-02-13 2021-08-13 湖南华康恒健生物技术有限公司 anti-BCMA antibody, pharmaceutical composition and application thereof
JP2023515478A (en) 2020-02-24 2023-04-13 アレクトル エルエルシー Method of using anti-TREM2 antibody
WO2021177980A1 (en) 2020-03-06 2021-09-10 Genentech, Inc. Combination therapy for cancer comprising pd-1 axis binding antagonist and il6 antagonist
CN115315446A (en) 2020-03-06 2022-11-08 Go医疗股份有限公司 anti-sugar-CD 44 antibodies and uses thereof
EP4118112A1 (en) 2020-03-10 2023-01-18 Massachusetts Institute of Technology Compositions and methods for immunotherapy of npm1c-positive cancer
TW202200615A (en) 2020-03-12 2022-01-01 美商安進公司 Method for treatment and prophylaxis of crs in patients
MX2022011632A (en) 2020-03-19 2022-10-13 Amgen Inc Antibodies against mucin 17 and uses thereof.
US20230135752A1 (en) 2020-03-27 2023-05-04 PhotoQ3 Inc. Medicament for killing tumor cells
WO2021202473A2 (en) 2020-03-30 2021-10-07 Danisco Us Inc Engineered antibodies
WO2021197340A1 (en) 2020-03-31 2021-10-07 百奥泰生物制药股份有限公司 Antibody and fusion protein for treating coronaviruses and use thereof
WO2021202959A1 (en) 2020-04-03 2021-10-07 Genentech, Inc. Therapeutic and diagnostic methods for cancer
EP4126953A2 (en) 2020-04-03 2023-02-08 Alector LLC Methods of use of anti-trem2 antibodies
EP4134099A4 (en) 2020-04-06 2024-05-29 PhotoQ3 Inc. Medicine for killing tumor cells
US20230272056A1 (en) 2020-04-09 2023-08-31 Merck Sharp & Dohme Llc Affinity matured anti-lap antibodies and uses thereof
CA3175523A1 (en) 2020-04-13 2021-10-21 Antti Virtanen Methods, complexes and kits for detecting or determining an amount of a .beta.-coronavirus antibody in a sample
WO2021209458A1 (en) 2020-04-14 2021-10-21 Ares Trading S.A. Combination treatment of cancer
JP2023106635A (en) 2020-04-17 2023-08-02 中外製薬株式会社 Bispecific antigen binding molecules and compositions related thereto, uses, kits and methods for producing compositions
EP4143225A4 (en) 2020-04-27 2024-05-15 The Regents of the University of California Isoform-independent antibodies to lipoprotein(a)
AU2021263754A1 (en) 2020-04-27 2022-12-01 Ensoma, Inc. Methods and compositions for transducing hematopoietic stem and progenitor cells in vivo
WO2021222167A1 (en) 2020-04-28 2021-11-04 Genentech, Inc. Methods and compositions for non-small cell lung cancer immunotherapy
WO2021236638A1 (en) 2020-05-19 2021-11-25 Amgen Inc. Mageb2 binding constructs
WO2021235537A1 (en) 2020-05-22 2021-11-25 中外製薬株式会社 Antibody for neutralizing substance having coagulation factor viii (f.viii) function-substituting activity
EP3915641A1 (en) 2020-05-27 2021-12-01 International-Drug-Development-Biotech Anti-cd5 antibodies and methods of use thereof
CA3183693A1 (en) 2020-05-29 2021-12-02 Amgen Inc. Adverse effects-mitigating administration of a bispecific construct binding to cd33 and cd3
US20230235080A1 (en) 2020-06-03 2023-07-27 Bionecure Therapeutics, Inc. Trophoblast cell-surface antigen-2 (trop-2) antibodies
WO2021249969A1 (en) 2020-06-10 2021-12-16 Merck Patent Gmbh Combination product for the treatment of cancer diseases
IL299039A (en) 2020-06-16 2023-02-01 Genentech Inc Methods and compositions for treating triple-negative breast cancer
CN115916348A (en) 2020-06-18 2023-04-04 基因泰克公司 Treatment with anti-TIGIT antibodies and PD-1 axis binding antagonists
WO2021261546A1 (en) 2020-06-24 2021-12-30 国立大学法人 東京大学 Photosensitizing dye
WO2022006562A1 (en) 2020-07-03 2022-01-06 Dana-Farber Cancer Institute, Inc. Multispecific coronavirus antibodies
US20230322867A1 (en) 2020-07-24 2023-10-12 Amgen Inc. Immunogens derived from sars-cov2 spike protein
JPWO2022025030A1 (en) 2020-07-28 2022-02-03
TW202222832A (en) 2020-07-31 2022-06-16 美商建南德克公司 Anti-integrin beta7 antibody formulations and devices
KR20230048059A (en) 2020-07-31 2023-04-10 추가이 세이야쿠 가부시키가이샤 Pharmaceutical composition comprising cells expressing chimeric receptors
WO2022031749A1 (en) 2020-08-03 2022-02-10 Genentech, Inc. Diagnostic and therapeutic methods for lymphoma
KR20230042301A (en) 2020-08-04 2023-03-28 애벗트 라보라토리이즈 Improved methods and kits for detecting SARS-COV-2 proteins in samples
US20230287126A1 (en) 2020-08-07 2023-09-14 Bio-Thera Solutions, Ltd. Anti-pd-l1 antibody and use thereof
EP4196612A1 (en) 2020-08-12 2023-06-21 Genentech, Inc. Diagnostic and therapeutic methods for cancer
CN114106173A (en) 2020-08-26 2022-03-01 上海泰槿生物技术有限公司 anti-OX 40 antibodies, pharmaceutical compositions and uses thereof
EP4205764A4 (en) 2020-08-27 2024-10-30 Juntendo Educational Found Anti-truncated mutant calr-cd3 bispecific antibody and pharmaceutical composition
CN116113707A (en) 2020-08-31 2023-05-12 基因泰克公司 Methods for producing antibodies
EP4208197A1 (en) 2020-09-04 2023-07-12 Rutgers, The State University of New Jersey Sars-cov-2 vaccines and antibodies
WO2022056490A1 (en) 2020-09-14 2022-03-17 Vor Biopharma, Inc. Chimeric antigen receptors for treatment of cancer
CA3187272A1 (en) 2020-10-08 2022-04-14 Thorsten Ross Trispecific binders
US12006550B2 (en) 2020-10-12 2024-06-11 University Of South Carolina Targeting treatment for ADAM30 in pathological cells
WO2022081436A1 (en) 2020-10-15 2022-04-21 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Antibody specific for sars-cov-2 receptor binding domain and therapeutic methods
WO2022087274A1 (en) 2020-10-21 2022-04-28 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Antibodies that neutralize type-i interferon (ifn) activity
WO2022093981A1 (en) 2020-10-28 2022-05-05 Genentech, Inc. Combination therapy comprising ptpn22 inhibitors and pd-l1 binding antagonists
AU2021370991A1 (en) 2020-11-02 2023-06-22 Ares Trading S.A. Combination treatment of cancer
CA3196557A1 (en) 2020-11-02 2022-05-05 Ada SALA-HOJMAN Combination treatment of cancer
US20230406909A1 (en) 2020-11-02 2023-12-21 Roche Diagnostics Operations, Inc. Sars-cov-2 nucleocapsid antibodies
EP4240768A2 (en) 2020-11-06 2023-09-13 Amgen Inc. Multitargeting bispecific antigen-binding molecules of increased selectivity
AR124019A1 (en) 2020-11-06 2023-02-01 Amgen Res Munich Gmbh POLYPEPTIDE CONSTRUCTIONS THAT BIND CD3
TW202233678A (en) 2020-11-06 2022-09-01 德商安美基研究(慕尼黑)公司 Polypeptides with enhanced clipping profile
US20240067728A1 (en) 2020-11-06 2024-02-29 Bio-Thera Solutions, Ltd. Bispecific antibody and use thereof
MX2023005343A (en) 2020-11-06 2023-05-22 Amgen Res Munich Gmbh Polypeptide constructs selectively binding to cldn6 and cd3.
WO2022100694A1 (en) 2020-11-12 2022-05-19 迈威(上海)生物科技股份有限公司 Antibody and preparation method therefor
WO2023102384A1 (en) 2021-11-30 2023-06-08 Abbott Laboratories Use of one or more biomarkers to determine traumatic brain injury (tbi) in a subject having received a head computerized tomography scan that is negative for a tbi
WO2022119841A1 (en) 2020-12-01 2022-06-09 Abbott Laboratories Use of one or more biomarkers to determine traumatic brain injury (tbi) in a subject having received a head computerized tomography scan that is negative for a tbi
WO2022140797A1 (en) 2020-12-23 2022-06-30 Immunowake Inc. Immunocytokines and uses thereof
WO2022147147A1 (en) 2020-12-30 2022-07-07 Abbott Laboratories Methods for determining sars-cov-2 antigen and anti-sars-cov-2 antibody in a sample
WO2022187591A1 (en) 2021-03-05 2022-09-09 Go Therapeutics, Inc. Anti-glyco-cd44 antibodies and their uses
WO2022192898A2 (en) 2021-03-10 2022-09-15 Immunowake Inc. Immunomodulatory molecules and uses thereof
JP2024510744A (en) 2021-03-12 2024-03-11 ヤンセン バイオテツク,インコーポレーテツド A safe and effective method to treat psoriatic arthritis with anti-IL23-specific antibodies
JP2024510588A (en) 2021-03-12 2024-03-08 ヤンセン バイオテツク,インコーポレーテツド Method of treating psoriatic arthritis patients with inadequate response to TNF therapy with anti-IL23-specific antibodies
AU2022232856A1 (en) 2021-03-12 2023-10-26 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical composition for treatment or prevention of myasthenia gravis
BR112023018621A2 (en) 2021-03-15 2023-10-24 Hoffmann La Roche METHODS TO TREAT LUPUS NEPHRITIS, DEPLETION OF PERIPHERAL B CELLS, KITS TO TREAT LUPUS NEPHRITIS AND ANTI-CD20 TYPE II ANTIBODIES
WO2022197776A1 (en) 2021-03-16 2022-09-22 Magenta Therapeutics, Inc. Dosing regimens for hematopoietic stem cell mobilization for stem cell transplants in multiple myeloma patients
WO2022200389A1 (en) 2021-03-22 2022-09-29 Novimmune S.A. Bispecific antibodies targeting cd47 and pd-l1 and methods of use thereof
EP4313309A1 (en) 2021-03-22 2024-02-07 Novimmune S.A. Bispecific antibodies targeting cd47 and pd-l1 and methods of use thereof
EP4314068A1 (en) 2021-04-02 2024-02-07 The Regents Of The University Of California Antibodies against cleaved cdcp1 and uses thereof
MX2023011690A (en) 2021-04-02 2023-12-15 Amgen Inc Mageb2 binding constructs.
CN117202897A (en) 2021-04-09 2023-12-08 基因泰克公司 Combination therapy using RAF inhibitors and PD-1 axis inhibitors
JP2024518710A (en) 2021-04-12 2024-05-02 エイシーエム バイオラブズ プライベート リミテッド Polymersomes containing soluble encapsulated polynucleotides and ionizable lipids and methods of making and using same - Patents.com
IL308163A (en) 2021-05-03 2024-01-01 Merck Patent Gmbh Her2 targeting fc antigen binding fragment-drug conjugates
TW202307007A (en) 2021-05-04 2023-02-16 美商再生元醫藥公司 Multispecific fgf21 receptor agonists and their uses
WO2022235940A1 (en) 2021-05-06 2022-11-10 Dana-Farber Cancer Institute, Inc. Antibodies against alk and methods of use thereof
CA3217180A1 (en) 2021-05-06 2022-11-10 Amgen Research (Munich) Gmbh Cd20 and cd22 targeting antigen-binding molecules for use in proliferative diseases
AU2022279156A1 (en) 2021-05-18 2023-11-02 Abbott Laboratories Methods of evaluating brain injury in a pediatric subject
AU2022280341A1 (en) 2021-05-25 2024-01-04 Merck Patent Gmbh Egfr targeting fc antigen binding fragment-drug conjugates
CN117858723A (en) 2021-06-07 2024-04-09 阿雷斯贸易股份有限公司 Combination therapy for cancer
AU2022293389A1 (en) 2021-06-14 2024-01-04 Abbott Laboratories Methods of diagnosing or aiding in diagnosis of brain injury caused by acoustic energy, electromagnetic energy, an over pressurization wave, and/or blast wind
CA3218481A1 (en) 2021-06-14 2022-12-22 argenx BV Anti-il-9 antibodies and methods of use thereof
JP2024527586A (en) 2021-07-09 2024-07-25 ヤンセン バイオテツク,インコーポレーテツド Methods of production for producing anti-TNF antibody compositions
WO2023281466A1 (en) 2021-07-09 2023-01-12 Janssen Biotech, Inc. Manufacturing methods for producing anti-il12/il23 antibody compositions
KR20240032991A (en) 2021-07-09 2024-03-12 얀센 바이오테크 인코포레이티드 Manufacturing Methods for Producing Anti-TNF Antibody Compositions
US20240352481A1 (en) 2021-07-29 2024-10-24 Vor Biopharma Inc. Nfat-responsive reporter systems for assessing chimeric antigen receptor activation and methods of making and using the same
CA3216098A1 (en) 2021-07-30 2023-02-02 Uwe Reusch Duplexbodies
JP2024531915A (en) 2021-08-05 2024-09-03 ジーオー セラピューティクス,インコーポレイテッド Anti-glyco-MUC antibodies and uses thereof
WO2023018803A1 (en) 2021-08-10 2023-02-16 Byomass Inc. Anti-gdf15 antibodies, compositions and uses thereof
KR20240057457A (en) 2021-08-16 2024-05-02 헤모제닉스 파마슈티컬스 엘엘씨 Anti-FLT3 antibodies, CAR, CAR T cells and methods of use
CA3229520A1 (en) 2021-08-17 2023-02-23 Hemogenyx Pharmaceuticals Llc Bispecific anti-flt3/cd3 antibodies and methods of use
CN118715440A (en) 2021-08-31 2024-09-27 雅培实验室 Method and system for diagnosing brain injury
EP4396587A1 (en) 2021-08-31 2024-07-10 Abbott Laboratories Methods and systems of diagnosing brain injury
CA3230933A1 (en) 2021-09-03 2023-03-09 Go Therapeutics, Inc. Anti-glyco-lamp1 antibodies and their uses
EP4395810A1 (en) 2021-09-03 2024-07-10 Go Therapeutics, Inc. Anti-glyco-cmet antibodies and their uses
JPWO2023048231A1 (en) 2021-09-24 2023-03-30
JP2024534661A (en) 2021-09-30 2024-09-20 バイオ-テラ ソリュ-ションズ,エルティーディー. Anti-B7-H3 antibody and its applications
CA3232176A1 (en) 2021-09-30 2023-04-06 Beth MCQUISTON Methods and systems of diagnosing brain injury
JP2024538654A (en) 2021-10-04 2024-10-23 ノバルティス アーゲー Surfactant Stabilizer
KR20240082388A (en) 2021-10-08 2024-06-10 추가이 세이야쿠 가부시키가이샤 Method for preparing prefilled syringe formulations
IL312101A (en) 2021-10-18 2024-06-01 Adimab Llc Anti-activin a antibodies, compositions and uses thereof
EP4423122A1 (en) 2021-10-26 2024-09-04 F. Hoffmann-La Roche AG Monoclonal antibodies specific for sars-cov-2 rbd
WO2023073615A1 (en) 2021-10-29 2023-05-04 Janssen Biotech, Inc. Methods of treating crohn's disease with anti-il23 specific antibody
MX2024005397A (en) 2021-11-03 2024-05-23 Affimed Gmbh Bispecific cd16a binders.
EP4426439A1 (en) 2021-11-03 2024-09-11 Affimed GmbH Bispecific cd16a binders
CA3237090A1 (en) 2021-11-05 2023-05-11 Dana-Farber Cancer Institute, Inc. Human broadly crossreactive influenza monoclonal antibodies and methods of use thereof
WO2023081898A1 (en) 2021-11-08 2023-05-11 Alector Llc Soluble cd33 as a biomarker for anti-cd33 efficacy
WO2023084488A1 (en) 2021-11-15 2023-05-19 Janssen Biotech, Inc. Methods of treating crohn's disease with anti-il23 specific antibody
US20230159633A1 (en) 2021-11-23 2023-05-25 Janssen Biotech, Inc. Method of Treating Ulcerative Colitis with Anti-IL23 Specific Antibody
KR20240123846A (en) 2021-11-24 2024-08-14 다나-파버 캔서 인스티튜트 인크. Antibodies to CTLA-4 and methods of use thereof
TW202333787A (en) 2021-12-01 2023-09-01 日商中外製藥股份有限公司 Method for preparing antibody-containing formulation
CA3240822A1 (en) 2021-12-17 2023-06-22 Tony Lee Systems and methods for determining uch-l1, gfap, and other biomarkers in blood samples
WO2023114544A1 (en) 2021-12-17 2023-06-22 Dana-Farber Cancer Institute, Inc. Antibodies and uses thereof
WO2023114543A2 (en) 2021-12-17 2023-06-22 Dana-Farber Cancer Institute, Inc. Platform for antibody discovery
EP4448564A1 (en) 2021-12-17 2024-10-23 F. Hoffmann-La Roche AG A novel antibody for detection of amyloid beta 42 (a-beta42)
EP4452316A1 (en) 2021-12-22 2024-10-30 BYOMass Inc. Targeting gdf15-gfral pathway
JPWO2023144973A1 (en) 2022-01-27 2023-08-03
WO2023147107A1 (en) 2022-01-31 2023-08-03 Byomass Inc. Myeloproliferative conditions
WO2023150652A1 (en) 2022-02-04 2023-08-10 Abbott Laboratories Lateral flow methods, assays, and devices for detecting the presence or measuring the amount of ubiquitin carboxy-terminal hydrolase l1 and/or glial fibrillary acidic protein in a sample
AU2023225020A1 (en) 2022-02-23 2024-09-12 Alector Llc Methods of use of anti-trem2 antibodies
CN118742324A (en) 2022-02-25 2024-10-01 学校法人顺天堂 Medicine formed by combining anti-mutation CALR antibody and other medicaments
IL315308A (en) 2022-03-09 2024-10-01 Astrazeneca Ab Binding molecules against frα
WO2023170216A1 (en) 2022-03-11 2023-09-14 Astrazeneca Ab A SCORING METHOD FOR AN ANTI-FRα ANTIBODY-DRUG CONJUGATE THERAPY
AU2023236910A1 (en) 2022-03-14 2024-08-01 LamKap Bio gamma AG Bispecific gpc3xcd28 and gpc3xcd3 antibodies and their combination for targeted killing of gpc3 positive malignant cells
EP4245772A1 (en) 2022-03-18 2023-09-20 Netris Pharma Anti-netrin-1 antibody to treat liver inflammation
IL315714A (en) 2022-03-18 2024-11-01 Evolveimmune Therapeutics Inc Bispecific antibody fusion molecules and methods of use thereof
EP4249509A1 (en) 2022-03-22 2023-09-27 Netris Pharma Anti-netrin-1 antibody against arthritis-associated pain
IL315834A (en) 2022-03-29 2024-11-01 Netris Pharma Novel mcl-1 inhibitor and combination of mcl-1 and a bh3 mimetic, such as a bcl-2 inhibitor
AU2023247337A1 (en) 2022-03-30 2024-11-14 Janssen Biotech, Inc. Method of treating mild to moderate psoriasis with il-23 specific antibody
WO2023194539A1 (en) 2022-04-07 2023-10-12 Heidelberg Pharma Research Gmbh Methods of improving the therapeutic index of amatoxin-antibody conjugates
AU2023254186A1 (en) 2022-04-10 2024-10-17 Immunomic Therapeutics, Inc. Bicistronic lamp constructs comprising immune response enhancing genes and methods of use thereof
WO2023215498A2 (en) 2022-05-05 2023-11-09 Modernatx, Inc. Compositions and methods for cd28 antagonism
AU2023268600A1 (en) 2022-05-12 2024-11-07 Amgen Research (Munich) Gmbh Multichain multitargeting bispecific antigen-binding molecules of increased selectivity
US20230374122A1 (en) 2022-05-18 2023-11-23 Janssen Biotech, Inc. Method for Evaluating and Treating Psoriatic Arthritis with IL23 Antibody
WO2023235415A1 (en) 2022-06-01 2023-12-07 Genentech, Inc. Method to identify a patient with an increased likelihood of chemotherapy-induced peripheral neuropathy
WO2023240124A1 (en) 2022-06-07 2023-12-14 Regeneron Pharmaceuticals, Inc. Pseudotyped viral particles for targeting tcr-expressing cells
AU2023285085A1 (en) 2022-06-07 2024-12-19 Regeneron Pharmaceuticals, Inc. Multispecific molecules for modulating t-cell activity, and uses thereof
WO2023240058A2 (en) 2022-06-07 2023-12-14 Genentech, Inc. Prognostic and therapeutic methods for cancer
AU2023298134A1 (en) 2022-06-29 2024-11-28 Abbott Laboratories Magnetic point-of-care systems and assays for determining gfap in biological samples
WO2024015953A1 (en) 2022-07-15 2024-01-18 Danisco Us Inc. Methods for producing monoclonal antibodies
WO2024039672A2 (en) 2022-08-15 2024-02-22 Dana-Farber Cancer Institute, Inc. Antibodies against msln and methods of use thereof
WO2024039670A1 (en) 2022-08-15 2024-02-22 Dana-Farber Cancer Institute, Inc. Antibodies against cldn4 and methods of use thereof
WO2024038165A1 (en) 2022-08-18 2024-02-22 Immunocore Ltd T cell receptor fusion proteins specific for mage a4
TW202421650A (en) 2022-09-14 2024-06-01 美商安進公司 Bispecific molecule stabilizing composition
WO2024059708A1 (en) 2022-09-15 2024-03-21 Abbott Laboratories Biomarkers and methods for differentiating between mild and supermild traumatic brain injury
WO2024084052A1 (en) 2022-10-21 2024-04-25 Novimmune Sa Pd-l1xcd28 bispecific antibodies for immune checkpoint-dependent t cell activation
WO2024097639A1 (en) 2022-10-31 2024-05-10 Modernatx, Inc. Hsa-binding antibodies and binding proteins and uses thereof
WO2024097441A1 (en) 2022-11-02 2024-05-10 Kira Pharmaceuticals (Us) Llc Anti-c5 antibody fused to factor h for use in the treatment of complement-mediated diseases
WO2024097796A1 (en) 2022-11-02 2024-05-10 Kira Pharmaceuticals (Us) Llc Anti-c5 antibody fused to factor h for use in the treatment of complement-mediated diseases
WO2024102734A1 (en) 2022-11-08 2024-05-16 Genentech, Inc. Compositions and methods of treating childhood onset idiopathic nephrotic syndrome
US20240199734A1 (en) 2022-11-22 2024-06-20 Janssen Biotech, Inc. Method of Treating Ulcerative Colitis with Anti-IL23 Specific Antibody
WO2024118866A1 (en) 2022-12-01 2024-06-06 Modernatx, Inc. Gpc3-specific antibodies, binding domains, and related proteins and uses thereof
WO2024137589A2 (en) 2022-12-20 2024-06-27 Genentech, Inc. Methods of treating pancreatic cancer with a pd-1 axis binding antagonist and an rna vaccine
WO2024133858A1 (en) 2022-12-22 2024-06-27 Julius-Maximilians-Universität-Würzburg Antibodies for use as coagulants
WO2024152014A1 (en) 2023-01-13 2024-07-18 Regeneron Pharmaceuticals, Inc. Fgfr3 binding molecules and methods of use thereof
WO2024167898A1 (en) 2023-02-07 2024-08-15 Go Therapeutics, Inc. ANTIBODY FUSION PROTEINS COMPRISING ANTI-GLYCO-MUC4 ANTIBODIES AND MIC PROTEIN α1-α2 DOMAINS, AND THEIR USES
WO2024173607A2 (en) 2023-02-14 2024-08-22 Evolveimmune Therapeutics, Inc. Combination of bispecific antibodies and chimeric antigen receptor t cells for treatment
WO2024170660A1 (en) 2023-02-16 2024-08-22 Astrazeneca Ab Combination therapies for treatment of cancer with therapeutic binding molecules
WO2024178305A1 (en) 2023-02-24 2024-08-29 Modernatx, Inc. Compositions of mrna-encoded il-15 fusion proteins and methods of use thereof for treating cancer
WO2024180085A1 (en) 2023-02-27 2024-09-06 Netris Pharma Anti-netrin-1 monoclonal antibody for treating endometriosis and associated pains
WO2024187062A1 (en) 2023-03-08 2024-09-12 Amgen Inc. Controlled-ice nucleation lyophilization process for bispecific molecules
WO2024188355A1 (en) 2023-03-16 2024-09-19 Itabmed Biopharmaceutical (Shanghai) Co., Ltd. Multispecific antigen binding proteins and uses thereof
WO2024188356A1 (en) 2023-03-16 2024-09-19 Inmagene Biopharmaceuticals (Hangzhou) Co., Ltd. Ilt7-targeting antibodies and uses thereof
EP4431526A1 (en) 2023-03-16 2024-09-18 Emfret Analytics GmbH & Co. KG Anti-gpvi antibodies and functional fragments thereof
WO2024194685A2 (en) 2023-03-17 2024-09-26 Oxitope Pharma B.V. Anti-phosphocholine antibodies and methods of use thereof
WO2024194686A2 (en) 2023-03-17 2024-09-26 Oxitope Pharma B.V. Anti-phosphocholine antibodies and methods of use thereof
WO2024206126A1 (en) 2023-03-27 2024-10-03 Modernatx, Inc. Cd16-binding antibodies and uses thereof
WO2024211475A1 (en) 2023-04-04 2024-10-10 Abbott Laboratories Use of biomarkers to determine whether a subject has sustained, may have sustained or is suspected of sustaining a subacute acquired brain injury (abi)
WO2024226971A1 (en) 2023-04-28 2024-10-31 Abbott Point Of Care Inc. Improved assays, cartridges, and kits for detection of biomarkers, including brain injury biomarkers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994002602A1 (en) * 1992-07-24 1994-02-03 Cell Genesys, Inc. Generation of xenogeneic antibodies
WO1994025585A1 (en) * 1993-04-26 1994-11-10 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1996033735A1 (en) * 1995-04-27 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204244A (en) * 1987-10-27 1993-04-20 Oncogen Production of chimeric antibodies by homologous recombination
WO1991000906A1 (en) * 1989-07-12 1991-01-24 Genetics Institute, Inc. Chimeric and transgenic animals capable of producing human antibodies

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994002602A1 (en) * 1992-07-24 1994-02-03 Cell Genesys, Inc. Generation of xenogeneic antibodies
WO1994025585A1 (en) * 1993-04-26 1994-11-10 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1996033735A1 (en) * 1995-04-27 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JAKOBOVITS A ET AL: "PRODUCTION OF ANTIGEN-SPECIFIC HUMAN ANTIBODIES FROM MICE ENGINEERED WITH HUMAN HEAVY AND LIGHT CHAIN YACS" ANNALS OF THE NEW YORK ACADEMY OF SCIENCES,US,NEW YORK ACADEMY OF SCIENCES, NEW YORK, NY, vol. 764, 29 September 1995 (1995-09-29), pages 525-535, XP002067728 ISSN: 0077-8923 *
See also references of WO9634096A1 *

Also Published As

Publication number Publication date
WO1996034096A1 (en) 1996-10-31
AU2466895A (en) 1996-11-18
EP0823941A4 (en) 2001-09-19
CA2219486A1 (en) 1996-10-31

Similar Documents

Publication Publication Date Title
US6075181A (en) Human antibodies derived from immunized xenomice
WO1996034096A1 (en) Human antibodies derived from immunized xenomice
CA2219361C (en) Human antibodies derived from immunized xenomice
US20060040363A1 (en) Human antibodies derived from immunized xenomice
US20050054055A1 (en) Human antibodies derived from immunized xenomice
US6150584A (en) Human antibodies derived from immunized xenomice
KR19990008197A (en) Human Antibodies from Immunized Genomous
US20050287630A1 (en) Human antibodies derived from immunized xenomice
US20050241006A1 (en) Human antibodies derived from immunized xenomice
AU2006200868B2 (en) Human Antibodies Derived From Immunized Xenomice
AU5336100A (en) Human antibodies derived from immunized xenomice
AU2008202860B9 (en) Human Antibodies Derived From Immunized Xenomice
AU2003227322B2 (en) Human Antibodies Derived From Immunized Xenomice

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971128

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

A4 Supplementary search report drawn up and despatched

Effective date: 20010806

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

RIC1 Information provided on ipc code assigned before grant

Free format text: 7C 12N 15/00 A, 7C 07K 16/00 B

17Q First examination report despatched

Effective date: 20020205

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030308

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1009153

Country of ref document: HK