EP0821334A1 - Procédé et dispositif de réglage de trafic - Google Patents

Procédé et dispositif de réglage de trafic Download PDF

Info

Publication number
EP0821334A1
EP0821334A1 EP96111984A EP96111984A EP0821334A1 EP 0821334 A1 EP0821334 A1 EP 0821334A1 EP 96111984 A EP96111984 A EP 96111984A EP 96111984 A EP96111984 A EP 96111984A EP 0821334 A1 EP0821334 A1 EP 0821334A1
Authority
EP
European Patent Office
Prior art keywords
vehicle
detectors
simulated
model
vehicles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96111984A
Other languages
German (de)
English (en)
Other versions
EP0821334B1 (fr
Inventor
Riedel Thomas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIEDEL, THOMAS, DR.
Original Assignee
RIEDEL THOMAS DR THOMAS RIEDEL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIEDEL THOMAS DR THOMAS RIEDEL filed Critical RIEDEL THOMAS DR THOMAS RIEDEL
Priority to EP96111984A priority Critical patent/EP0821334B1/fr
Priority to AT96111984T priority patent/ATE205321T1/de
Priority to DE59607632T priority patent/DE59607632D1/de
Publication of EP0821334A1 publication Critical patent/EP0821334A1/fr
Application granted granted Critical
Publication of EP0821334B1 publication Critical patent/EP0821334B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals
    • G08G1/08Controlling traffic signals according to detected number or speed of vehicles

Definitions

  • the invention relates to a method and Device for traffic control according to the preamble of the independent claims.
  • the detectors coming signals not in their raw form Traffic control or regulation used, but they are used to create a model that matches the locations and the movement (e.g. speed) of individuals Vehicles, preferably essentially all vehicles, simulated.
  • the detector signals diverse and rich information about the Traffic can be determined. With this information can then a more efficient control of the Traffic can be carried out.
  • the detector signals are preferably used for this purpose used to track sizes used in the model, especially to create a vehicle in the model that Position and / or speed of an existing vehicle to correct or an existing vehicle delete the model. Furthermore, by means of the detector signals and / or with data from the model typical Values of individual sizes, e.g. the speed of a vehicle entering the simulation will. These sizes can be used to e.g. the initial speed of a new one created in the model Vehicle. These sizes are preferred constantly updated, so that a change in traffic behavior (e.g. due to rain or fog) leads to an adaptation of the model.
  • a change in traffic behavior e.g. due to rain or fog
  • first 1 shows a conventional system.
  • This System is to control traffic lights 2 at an intersection 1 provided.
  • a controller is used to control traffic lights 2 3 provided that receives signals DS from detectors 4.
  • the detectors 4 are generally simple vehicle detectors, which give a signal when a vehicle passes through its measuring range, e.g. Induction loops, Ultrasonic detectors, infrared detectors or even Cameras with image processing.
  • the controller 3 controls by means of traffic control signals VS the traffic lights 2 based on the detector signals DS.
  • the traffic lights 2 can be controlled directly, however, there is usually between controller 3 and the traffic lights 2 to ensure the necessary safety a local traffic light control is arranged.
  • controller 3 Due to the detector signals DS the Controller provides feedback on the current traffic situation. Because controller 3 has this feedback in its algorithms considered, it is a regulation in the sense the automatic. Instead of controller 3, however, can also simple control can be provided.
  • One control a route (an object to be controlled, here the Intersection or a system of several intersections) works without feedback; contrary to that the regulation of a route on a feedback. Feedback notice the result of an action, not only their requirements. With feedback it is possible to strive for a desired goal and to be verifiable to reach. The feedback is done by measuring the Condition of the route to be regulated.
  • Traffic junctions are controlled in conventional systems mostly through cyclical Sequence of phases that are displayed on the traffic lights. Measure to control a traffic intersection Detectors the traffic around the intersection (Private transport, public transport, pedestrians). Based on the measurements by the detectors, driving can certain road sections recognized and it can Vehicles are counted. According to criteria used in the design the rules have been chosen, the traffic lights Allotted phase lengths and sequences.
  • the regulator is provided with reliable information, on the other hand, that he gets the information in a form which he understands.
  • a control algorithm can or a control algorithm on the appearance of Detector pulses are difficult to build up, but rather on information about the number of vehicles and their speeds and positions in the driveways to the intersection: only when a controller knows these sizes can guide traffic in the best possible way. To this The purpose of the inventive execution of 2 realized device.
  • an observer 5 provided that processes the detector signals DS and controller 3 (or a controller) in more detail Information in the form of observer information BA forwards.
  • the observer is one Computer or program unit that is logical and / or physically between the detectors 4 and the controller 3 is switched.
  • the task of the observer 5 lies in designing a model of traffic. In the The formation and updating of the model is based on the Observers on the continuously incoming detector signals, previous detector signals and the positions of the traffic lights. It also draws on past experience Measurements or simulations, from which he in particular typical speeds and norms of behavior of the Vehicles determined.
  • the model that consists of these values is generated, the positions and are continuously simulated Speeds of individual vehicles in the range of Intersection or route.
  • the determined from the model Values especially e.g. the positions and speeds, but possibly also derived from it Information such as a column length in front of a traffic light, are then passed to the controller 3, which they for Calculation of traffic lights used at the intersection.
  • the controller 3 essential more meaningful input signals are made available, that enable more precise and efficient traffic regulation. It won't just be the presence of one Vehicle in a section of the route, but its location and movement.
  • Fig. 3 It is a matter of a one-way street 8 (with traffic in the figure from the left to the right), with a simple entrance 9 at one Intersection 1. At the intersection is a traffic light to be regulated 2 arranged. Before the intersection are along the Street 8 three detectors 4a, 4b, 4c at the positions xa, xb and xc. The last position xc lies on or after the traffic light stop bar 2.
  • the Observer 5 lists the vehicles according to the "vehicle table", which according to its model in the area the street 8 between the positions xa and xc. In this table there is one for each simulated vehicle Speed and a position entered. Further the table contains further information, e.g. if a certain vehicle has already been detected by a detector has been. In another version, the one below the observer maintains several vehicle tables for individual sections of the route.
  • the initial speed v0 is an empirical value which, as described below, can be obtained from previous measurements or simulations or can be predetermined.
  • the detector 4b checks the observer 5 in step 22 of FIG. 5 first of all whether in a vehicle is entered in the vehicle table, which currently in an environment Eb to Ab (see Fig. 3) from detector 4b but should still be from detector 4b has not been detected.
  • Eb to Ab takes into account the fact that the speeds assumed by the observer 5 and the positions calculated from this are usually not correspond exactly to reality.
  • the observer can also determine at what average speed the vehicle moves between positions xa and xb Has. This average speed is for each Vehicle identified and used to be a typical Value for the initial speed v0 at position xa too calculate.
  • the observer finds 5 after a signal from Detector 4b in the vehicle table is not a suitable vehicle, so he assumes that the vehicle is between Position xa and xb newly inserted in the traffic. Accordingly, he adds a new vehicle to the vehicle table on, with an initial position xb and an initial velocity v1 (step 26).
  • the initial speed v1 can in turn be from previous measurements determined value or a predetermined size.
  • step 28 first checked in step 28 whether a vehicle in the vehicle table is listed, which is from detector 4c has not yet been detected and is in an area Ec to xc is located. In this case, an asymmetrical Tolerance range selected because the "simulation path" of the observer only extends to xc.
  • step 30 If such a vehicle is found (step 30), the observer knows that this vehicle is now run over the stop bar and thus the simulation route has left. The vehicle turns off accordingly removed from the vehicle table.
  • step 28 Vehicle If the observer does not find a suitable one in step 28 Vehicle, so it ignores the signal from the detector 4c, or he creates a new vehicle, which shortly afterwards, however, because it leaves the simulated area.
  • the observer create a model based on the detector signals and track which the individual vehicles in Range xa to xc simulated.
  • the detector signals are used to create, delete individual vehicles or correct their data.
  • the observer 5 carries out synchronization steps the values in the vehicle table by looking in simulation steps the vehicle positions due to the Vehicle speeds and other parameters continuously recalculated. The speeds will change accordingly track real or simulated information.
  • the observer checks whether traffic light 2 is red. If so, he reduces it its speed or set it to zero. Poses the observer based on that stored in the vehicle table Data shows that there is a traffic light in front of traffic light 2 Column has formed, he determines the end of it. Approaching If a simulated vehicle gets to this end, then it continues its speed back.
  • the observer determines that a simulated Vehicle exceeds the Ab position without it was detected by detector 4b, it assumes that the vehicle has left traffic (e.g. has been parked) and deletes it from the vehicle table. In another version, he can continue the vehicle keep in the model and e.g. only leave when it is also not detected by a next detector.
  • a further detector 4d is arranged at position xa public transport (or another, special vehicle type, e.g. Trucks, two-wheelers, etc.) detected. Then in the vehicle table the type of each vehicle is also listed. Thereby can provide additional information for the controller 3 to be provided. The vehicle type can also be used for a more individual simulation of the movements.
  • the number and position of the detectors is the adapted to the respective circumstances. The more detectors there are the greater the amount of measurable information, and the more accurate the state of the system be modeled. Also with the increase in measuring points the observer becomes more tolerant of faulty ones Measurements.
  • the synchronization of the simulated vehicles by means of the detector signals enables the vehicles track individually through the system and also their speeds to determine.
  • the determined speed serves the observer to estimate the speed of vehicles to adapt to the first Times to be noted (during generation of vehicles in the observer).
  • each vehicle with position and Speed can be tracked through the entire system can also be a subsequent evaluation of parameters possible that directly through the detectors not are measurable (so the average speed or the length of the queue in a certain access to Crossing).
  • the observer leads both Simulation and synchronization steps by.
  • the observer uses in the simulation steps the data stored in the vehicle table, and Information about the current state of the street or crossing (e.g. the traffic light state) to the movements to calculate the vehicles of his model.
  • Information about the current state of the street or crossing e.g. the traffic light state
  • the synchronization steps leads the observer his model based on the signals from the detectors or correct it.
  • the process is based on the streets, Crossings, e.g. the positions of the detectors, the Signal paths and the desired synchronization, i.e. the Show route graphically.
  • FIG. 7 An example of such a representation of the Street 8 (without the entrance 9) according to FIG. 3 is in Fig. 7 shown.
  • the presentation comprises three areas: a simulation level 40, a synchronization level 42 and a detector plane 44.
  • the simulation level 40 defines the geometric structure of the route and the position of the detectors, traffic lights, etc. arranged thereon Street 8 itself is represented by a solid, directed line shown.
  • Points 4a, 4b and 4c correspond to Positions of the detectors 4a - 4c and are to scale arranged along the street.
  • the points Eb, Ab and Ec limit the tolerance ranges of the detectors.
  • the geometric Structure of the route very simple. Because the intersection itself the representation does not exist from a single traffic lane, which from a line is represented with directional information. For more complex ones The geometric structure is more complicated and systems contains information about all traffic lanes, the directions of the traffic running on the tracks, the length the tracks, the crossings and the possibilities to one Lane change, the position of the traffic lights (traffic control signals), the locations and tolerance ranges of the detectors. she may also contain additional information such as e.g. any speed restrictions on the individual lanes or streets.
  • the synchronization level 42 of FIG. 7 defines the synchronization steps that the observer can perform.
  • This level contains synchronization symbols 46a, 46b, 46c. As shown in Fig. 8 , each symbol has four inputs 50 - 53 for Parameters from the range 40 and a signal input 54. Their function is explained below.
  • the detector plane 44 of FIG. 7 defines finally the detectors 4a - 4c.
  • the information of the simulation level 40 are used to define the simulation steps.
  • the simulation steps extend here each only over a single section between two Symbols (nodes) of the solid line of the simulation level 40.
  • the observer creates a vehicle list for each section. If a vehicle enters a section, it will (with position and speed and possibly driving behavior) in the respective vehicle list entered. Leaves the vehicle the section, it will be deleted from the list. Entry and deletion (as well as any other Events) generate signals or messages which are sent via the dashed lines to the synchronization level 42 be passed on.
  • the synchronization level information 42 are used to perform the synchronization steps define. These also only extend over a local section of the route through the respective synchronization symbol 46a, 46b, 46c defined is.
  • the synchronization steps are as follows explained briefly with reference to FIGS. 9-12.
  • the observer receives a detector signal on a detector input 54, as in FIG. 9 shown, a message via output 52 in step 60 give up. This message is then generated in the simulator section an entry of a vehicle in the vehicle list of the corresponding route section. The simulator checks whether the vehicle is an already simulated vehicle corresponds.
  • connection 51 e.g. if a simulated vehicle drives over point Eb
  • a message on connection 51 e.g. if a simulated vehicle drives over point Eb
  • a message on connection 53 e.g. the first one in the list Vehicles
  • connection 52 If there is a message on connection 52 (which in turn triggered by the sequence shown in FIG. 9 is) in the list of the respective synchronization symbol the corresponding vehicle is determined and its Position on each connected to connection 52 Point set. Furthermore, the speed of the vehicle determined, from the times when the Vehicle was at the point that connected to port 50 and at the point that connects to port 52 and the distance between the two points. To do this a global list of times for each vehicle, to which it is at the points shown in area 40 arrived. Connection 53 is not with the simulation level connected, the vehicle is already removed from the list here deleted.
  • connection 50 If there is a message on connection 50, the Vehicle imprinted a speed based on experience based. (Measured travel time between Connection 50 and 52 for earlier vehicles.)
  • FIGS. 9-12 are simplified shown. Included in a practical implementation they e.g. additional test steps, as in Figures 4 to 6 are shown to determine whether a vehicle is out of traffic or new in this has occurred.
  • the works Compilation part not as a compiler in the classic sense but as an interpreter, i.e. he translates that in Fig. 7 shown representation during the operation of the Observer.
  • the instructions generated by the compilation part are stored in the observer 5. You define the synchronization and simulation steps that be carried out by this.
  • the Observer 5 and controller 3 designed as separate computers, on which suitable programs are running. It is also conceivable, the controller and the observer as two separate Programs on a computer or as part of a individual program to implement.
  • controller 3 can also via a graphical user interface that can be used as a supplement 7 is implemented for the definition according to FIG.
  • traffic was directed via traffic lights.
  • the inventive Concept can however also be applied if instead of or in addition to the traffic lights, others traffic control signals actuable by the controller are used such as adjustable speed limits, Detour boards or barriers.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Traffic Control Systems (AREA)
  • Circuits Of Receivers In General (AREA)
EP96111984A 1996-07-25 1996-07-25 Procédé et dispositif de réglage de trafic Expired - Lifetime EP0821334B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP96111984A EP0821334B1 (fr) 1996-07-25 1996-07-25 Procédé et dispositif de réglage de trafic
AT96111984T ATE205321T1 (de) 1996-07-25 1996-07-25 Verfahren und vorrichtung zur verkehrsregelung
DE59607632T DE59607632D1 (de) 1996-07-25 1996-07-25 Verfahren und Vorrichtung zur Verkehrsregelung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP96111984A EP0821334B1 (fr) 1996-07-25 1996-07-25 Procédé et dispositif de réglage de trafic

Publications (2)

Publication Number Publication Date
EP0821334A1 true EP0821334A1 (fr) 1998-01-28
EP0821334B1 EP0821334B1 (fr) 2001-09-05

Family

ID=8223038

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96111984A Expired - Lifetime EP0821334B1 (fr) 1996-07-25 1996-07-25 Procédé et dispositif de réglage de trafic

Country Status (3)

Country Link
EP (1) EP0821334B1 (fr)
AT (1) ATE205321T1 (fr)
DE (1) DE59607632D1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002048986A1 (fr) * 2000-12-11 2002-06-20 Malcolm Graham Lawrence Controle du flux de circulation des vehicules sur autoroute
WO2003050779A1 (fr) * 2001-12-11 2003-06-19 Malcolm Graham Lawrence Systeme, appareil et procede pour faciliter l'amelioration du debit routier le long d'une autoroute
DE102004039854A1 (de) * 2004-08-17 2006-03-09 Siemens Ag Verfahren zum Ermitteln von Verkehrsinformationen, Verfahren zum Steuern des Verkehrs, sowie System zum Durchführen der Verfahren
DE102007045991A1 (de) * 2007-09-26 2009-04-02 Siemens Ag Verfahren zur Ermittlung von Verbrauchs- und/oder Emissionswerten
EP2280383A1 (fr) * 2009-07-31 2011-02-02 Siemens Aktiengesellschaft Procédé d'établissement d'informations de circulation pour un traject routier d'un réseau routier et calculateur de circulation destiné à l'exécution du procédé
CN102446417A (zh) * 2011-11-10 2012-05-09 中盟智能科技(苏州)有限公司 交通照相机抓拍控制的方法和装置
CN102915644A (zh) * 2012-09-17 2013-02-06 上海交大高新技术股份有限公司 无线智能交通控制系统及方法
DE102004002808B4 (de) * 2003-03-07 2015-08-20 Deutsche Telekom Ag Verkehrssteuerungssystem
CN105100630A (zh) * 2015-09-09 2015-11-25 苏州科达科技股份有限公司 用于摄像机的电网同步实现方法和装置
DE102016212759A1 (de) * 2016-07-13 2018-01-18 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren und Vorrichtung zur Freigabezeitbemessung bei einer verkehrsabhängig steuerbaren Lichtsignalanlage

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104966402B (zh) * 2015-06-05 2017-03-01 吉林大学 一种过饱和交通流交叉口排队溢出防控方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2351453A1 (fr) * 1976-05-11 1977-12-09 Thomson Csf Simulateur de circulation en temps accelere
US4370718A (en) * 1979-02-06 1983-01-25 Chasek Norman E Responsive traffic light control system and method based on conservation of aggregate momentum
EP0476562A2 (fr) * 1990-09-19 1992-03-25 Hitachi, Ltd. Méthode et dispositif pour le contrôle de corps en mouvement et de services
FR2711000A1 (fr) * 1993-10-08 1995-04-14 Garbarini Sa A Dispositif de gestion de feux de carrefours.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2351453A1 (fr) * 1976-05-11 1977-12-09 Thomson Csf Simulateur de circulation en temps accelere
US4370718A (en) * 1979-02-06 1983-01-25 Chasek Norman E Responsive traffic light control system and method based on conservation of aggregate momentum
EP0476562A2 (fr) * 1990-09-19 1992-03-25 Hitachi, Ltd. Méthode et dispositif pour le contrôle de corps en mouvement et de services
FR2711000A1 (fr) * 1993-10-08 1995-04-14 Garbarini Sa A Dispositif de gestion de feux de carrefours.

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002048986A1 (fr) * 2000-12-11 2002-06-20 Malcolm Graham Lawrence Controle du flux de circulation des vehicules sur autoroute
WO2003050779A1 (fr) * 2001-12-11 2003-06-19 Malcolm Graham Lawrence Systeme, appareil et procede pour faciliter l'amelioration du debit routier le long d'une autoroute
DE102004002808B4 (de) * 2003-03-07 2015-08-20 Deutsche Telekom Ag Verkehrssteuerungssystem
DE102004039854A1 (de) * 2004-08-17 2006-03-09 Siemens Ag Verfahren zum Ermitteln von Verkehrsinformationen, Verfahren zum Steuern des Verkehrs, sowie System zum Durchführen der Verfahren
DE102007045991A1 (de) * 2007-09-26 2009-04-02 Siemens Ag Verfahren zur Ermittlung von Verbrauchs- und/oder Emissionswerten
US8457869B2 (en) 2007-09-26 2013-06-04 Siemens Aktiengesellschaft Method for ascertaining consumption and/or emission values
EP2280383A1 (fr) * 2009-07-31 2011-02-02 Siemens Aktiengesellschaft Procédé d'établissement d'informations de circulation pour un traject routier d'un réseau routier et calculateur de circulation destiné à l'exécution du procédé
CN102446417A (zh) * 2011-11-10 2012-05-09 中盟智能科技(苏州)有限公司 交通照相机抓拍控制的方法和装置
CN102915644A (zh) * 2012-09-17 2013-02-06 上海交大高新技术股份有限公司 无线智能交通控制系统及方法
CN105100630A (zh) * 2015-09-09 2015-11-25 苏州科达科技股份有限公司 用于摄像机的电网同步实现方法和装置
DE102016212759A1 (de) * 2016-07-13 2018-01-18 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren und Vorrichtung zur Freigabezeitbemessung bei einer verkehrsabhängig steuerbaren Lichtsignalanlage
DE102016212759B4 (de) 2016-07-13 2019-01-24 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren und Vorrichtung zur Freigabezeitbemessung bei einer verkehrsabhängig steuerbaren Lichtsignalanlage

Also Published As

Publication number Publication date
EP0821334B1 (fr) 2001-09-05
ATE205321T1 (de) 2001-09-15
DE59607632D1 (de) 2001-10-11

Similar Documents

Publication Publication Date Title
DE102015207123B4 (de) Fahrassistenzvorrichtung und -verfahren
DE102017213634A1 (de) Verfahren und Vorrichtung für die Durchführung von virtuellen Tests in einer virtuellen Realitätsumgebung für ein autonom fahrendes Fahrzeug
DE102009008745B4 (de) Verfahren und System zur automatischen Verkehrsführung
EP2881829A2 (fr) Procédé destiné à la commande automatique d'un véhicule, dispositif de production de signaux de commande pour un véhicule et véhicule
EP1154389A1 (fr) Procédé de détermination de l'état du trafic sur un réseau routier
DE102019212791A1 (de) Verfahren zur Durchführung von automatischem Valet-Parken
EP0821334B1 (fr) Procédé et dispositif de réglage de trafic
DE102016007899B4 (de) Verfahren zum Betreiben einer Einrichtung zur Verkehrssituationsanalyse, Kraftfahrzeug und Datenverarbeitungseinrichtung
DE112011105829T5 (de) Autonomes Fahrsystem
DE102018216082A1 (de) Verfahren zur kooperativen Manöverabstimmung
DE112016007501T5 (de) Regel-/steuervorrichtung und regel-/steuerverfahren
DE102019211098B4 (de) Verfahren, Vorrichtung und Computerprogramm zum Bestimmen einer Ampelphase einer Ampel einer Ampelanlage
DE102020215780A1 (de) Verfahren zur Auswahl eines automatisierten Fahrvorgangs mittels eines Fahrassistenzsystems
EP3770879A1 (fr) Procédé, dispositif et programme informatique permettant de traiter des données au niveau d'un feu de signalisation
DE102015218942A1 (de) Verfahren zum Steuern einer Anzeige einer Restzeit
DE102012214164B3 (de) Verfahren und Vorrichtung zur dynamischen Steuerung mindestens einer Lichtsignalanlage
DE102007056225A1 (de) Verfahren und Vorrichtung zum Steuern eines Verkehrsflusses an einer Kreuzung
EP3723062A1 (fr) Procédé et dispositif de guidage routier assisté par ordinateur des véhicules automobiles dans une zone prédéfini
EP2161698B1 (fr) Procédé de coordination de noeuds commandés par signal lumineux dans un réseau routier
WO2021254906A1 (fr) Procédé de détermination d'un type d'utilisation d'un motif de points de repère destinée à une localisation autonome d'un véhicule, et système de localisation autonome électronique d'un véhicule
DE102019217144B4 (de) Ampelspurzuordnung aus Schwarmdaten
EP2254104B1 (fr) Procédé de reconnaissance automatique d'une modification de situation
DE2922927B1 (de) Verfahren und Schaltungsanordnung zum Modifizieren von Steuerinformationen in einer Verkehrssignalanlage,insbesondere einer Strassenverkehrssignalanlage
EP2466530A1 (fr) Procédé de simulation d'un flux de personnes et dispositif de génération d'un automate cellulaire pour la simulation d'un flux de personnes
DE102018220844A1 (de) Verfahren zum Steuern eines Fahrerassistenzsystems, Fahrerassistenzsystem, Kraftfahrzeug und zentrale Datenverarbeitungseinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE LI

AX Request for extension of the european patent

Free format text: AL;LT;LV;SI

17P Request for examination filed

Effective date: 19980625

RBV Designated contracting states (corrected)

Designated state(s): AT CH DE LI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RIEDEL, THOMAS, DR.

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RIEDEL, THOMAS, DR.

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20001109

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE LI

REF Corresponds to:

Ref document number: 205321

Country of ref document: AT

Date of ref document: 20010915

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. PATENTANWAELTE

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59607632

Country of ref document: DE

Date of ref document: 20011011

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20040604

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20040705

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040706

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL