EP0816632B1 - Vorrichtung und Verfahren zur Übertragung von Nachrichten mittels elektromagnetischer Wellen - Google Patents

Vorrichtung und Verfahren zur Übertragung von Nachrichten mittels elektromagnetischer Wellen Download PDF

Info

Publication number
EP0816632B1
EP0816632B1 EP97401341A EP97401341A EP0816632B1 EP 0816632 B1 EP0816632 B1 EP 0816632B1 EP 97401341 A EP97401341 A EP 97401341A EP 97401341 A EP97401341 A EP 97401341A EP 0816632 B1 EP0816632 B1 EP 0816632B1
Authority
EP
European Patent Office
Prior art keywords
tubes
unit
well
contact
intended
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97401341A
Other languages
English (en)
French (fr)
Other versions
EP0816632A1 (de
Inventor
Louis Soulier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Geoservices SA
Original Assignee
Geoservices SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Geoservices SA filed Critical Geoservices SA
Publication of EP0816632A1 publication Critical patent/EP0816632A1/de
Application granted granted Critical
Publication of EP0816632B1 publication Critical patent/EP0816632B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/26Storing data down-hole, e.g. in a memory or on a record carrier
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/13Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency

Definitions

  • the present invention is in the field of well production tests drilled in a geological formation, usually for the purpose of qualitatively and quantitatively the effluents contained in the geological formation crossed by the drilling.
  • This type of test called “DST” for "Drill Stem Test” is generally performed in course of drilling an exploration well. We will not, however, depart from the framework of the present invention, if these tests are carried out in production wells, at the start or in during the production phase.
  • the present invention relates to a device for transmitting, in particular in real time, information on both sides of a test valve placed in a packing of tubes, commonly called test packing, the packing being introduced into a well drilled in the ground, according to conventional procedures.
  • Some systems use a hydraulic channel located in the wall of the train test, which connects the pressurized volume located under the test valve up to pressure measurement gauges located above the valve. Measures these gauges are then transmitted to the surface via an electric cable connected to a fitting with special electronic means.
  • the connection is made by coupling by means of a mutual induction transformer or by a loop of current.
  • the first systems have the main disadvantage of requiring a train test, and more specifically a test valve including the integration of a passage hydraulic.
  • This type of implementation is very complex and very expensive to manufacture and maintenance.
  • the connection, electrical or mutual induction, of the electric cable connecting to the surface the measurement means located above of the test valve is very sensitive to the nature of the fluid located inside the tube production. In particular, transmission is very difficult when the fluids are conductors.
  • the transmission distance is practically limited to a length of tubes, about ten meters. Therefore the connector attached to the lower end of the electrical cable must be positioned approximately ten meters above the test valve. In the event that the well produces a effluent containing sand, this sediments after the flow corresponding to closing the test valve, thus forming a plug that can reach several tens of meters high, which can prevent the proper functioning of the connector, its anchoring or undocking.
  • the present invention relates to an information transmission device between the bottom of a well and the ground surface, said device comprising a set of tubes separated into a lower part and an upper part by sealing means of the interior space of said tubes, annular sealing means between said tubes and said well.
  • said lower part comprises a first set comprising means of acquiring information and means of transmitting and reception of electromagnetic signals
  • a second set of transmission and reception of electromagnetic signals is placed in the interior space of the party upper tubes by maneuvering means comprising at least one line of electrical or optical communication going up to the surface and said second set comprises means of electrical contact with said tubes.
  • the first and second assemblies may include means for injecting a low frequency electric current along the tubes.
  • the first set may include a toroidal transformer substantially concentric with the axis of the tubes.
  • the second part of the transformer can be a single turn constituted by the tubes looping through the casing or the ground.
  • the operating means may consist of at least one length of cable with coaxial conductors and metallic outer armor.
  • the upper part of the tubes may include an electrical insulation means placed between two tube elements.
  • at least one of the means of contact between the second set and the tubes is located between the insulation means and the means shutter.
  • the information acquisition means may include at least one sensor and a temperature sensor.
  • the operating means of the second set may include means of contact with the tubes on which the electromagnetic current flows, said contacts advantageously being spaced several meters apart.
  • the well can be cased by metal tubing, and the portion of tubes included between said assemblies can be partially electrically isolated from said casing by centering means.
  • the tubes may include at least two means of electrical contact with the metal casing, the contacts being located on either side of said portion of tubes centered.
  • One of the means of contact with the metal casing can be constituted by said annular sealing means.
  • the information acquisition means can be remotely controlled from the surface through the line channel and electromagnetic transmission between said two sets.
  • the invention also relates to a method of transmitting information between the bottom of a well and the soil surface, said device comprising a set of tubes separated into a lower part and an upper part by means for closing off the interior space of said tubes, annular sealing means between said tubes and said well, means for acquiring information.
  • a electromagnetic current carrying said information from the lower part to the upper by a first assembly placed under said closure means and a second set placed in the interior space of the upper part, and said information is transmitted to the surface by an electrical or optical communication line connecting said second set on the ground surface.
  • Information acquisition can be remotely controlled from the surface by the channel of said line and of the second and first sets.
  • Said second assembly can be maneuvered above the shutter means by by means of a coaxial cable of the "logging" type.
  • the device which is the subject of the present invention comprises a first communication set 1 equipped with transmitter / receiver means and various means measurement, including pressure and temperature sensors.
  • the device includes also a second communication set 2 called shuttle, and equipped with additional transmitter / receiver means of the first set 1 and means of bidirectional digital telemetry with the surface via a cable 3 (type logging) comprising electrical conductors or optical fibers.
  • Cable 3 is operated in tubes 4 using a surface installation known to technicians concerned, i.e. a winch and a control, recording and processing of signals passing through the communication lines integrated into the cable 3.
  • the tubes 4 are lowered into a well 5 drilled through a geological layer whose effluents that may be contained in the pores of the layer.
  • a so-called test lining is assembled. comprising the assemblies 1 and 2, a sealing means of the “packer” type 6 for performing an annular seal around the tubes, a strainer 7 placed below the packer and intended to allow access of the effluent to the interior space of the tubes 4, a sliding joint 8 and / or a threshing slide ("jar") to allow installation and facilitate removal of the packer, a test valve 9 which can be opened or closed several times in order to open or to close the communication between the geological layer and the interior space of the tubes 4 in communication with the surface.
  • Other conventional equipment, not shown here, can complete the test train: circulation fitting, safety seal, etc.
  • the well 5 is cased by a tube in steel 16, usually cemented in the drilled hole.
  • the link between the producing layer and the hole is made either by perforations through the casing tube, or by a borehole 17 extending to the beyond the shoe of column 16.
  • the test lining includes preferably contacts 10 and 11, for example in the form of blade centralizers metallic, packer or natural contacts provided by a set of tubes offset in a well.
  • the contact points 10 and 11 to be the most spaced possible along the lining, on either side of the valve 9 and at least separated more than one tube segment, i.e. at least 10 meters.
  • assembly 1 is of the insulating junction type and not of the transformer type, there will be a electrical interruption substantially to the right of the transmission / reception dipole of the assembly 2 and of assembly 1, according to the very principle of the transmission of the insulating junction type.
  • Sets 1 and 2 communicate with each other by means of currents electromagnetic guided by the casing 16 and / or the test train.
  • PSK phase jump
  • the sets 1 and 2 being located most often inside a casing 16, it is very advantageous to constitute the widest possible injection dipole in order to create behind casing as large a propagation signal as possible.
  • Such a dipole is described in the document US-A-5394141 cited here for reference.
  • the operation of this transmission device is always possible. But in this case, the transmission distance between set 1 and assembly 2 and / or the information rate can be reduced in order to reduce the energy of the noise according to well-known principles for improving the signal-to-noise ratio.
  • Standard tube protectors can be used in rubber or any other insulating ring 13 and 14 mounted on a tube element and inserted in the test train at adequate distances. Note that whatever the nature of the fluid in the annular test lining / well, including brines, difference in conductivity between the fluid and the packing tubes constitutes a dipole apparent more than 10 meters, which is generally sufficient for this transmission.
  • each set 1 and 2 of this device used to inject, or receive the carrier frequency propagating along the test train may be realized using one of the well known techniques, namely either an insulating junction such as described in document US-A-5163714, either an extended dipole, or else a transformer whose toroidal magnetic circuit surrounds the assembly 1.
  • the second transmitter / receiver assembly 2 called shuttle, includes a link insulator 21 and a lower electrical contact means 18 with the inside of the tube 4, said means that can be achieved, either by dogs anchored in a corresponding groove machined in a screw connection on the tubes 4 or by extractable pads remotely controlled from the surface via the electrical connection used for data transfer measured.
  • the second pole, or upper pole, of the receive / transmit dipole is constituted by the metal reinforcement of the coaxial cable 3 (for example, of the logging type).
  • This cable being sufficiently centered in the tubes up to a height where there is a point of contact 15, it can only be in contact with the wall of the tubes at a sufficient distance large allowing to realize a long transmitter / receiver dipole.
  • the contact 11 is located below the point of contact 15, or in the vicinity.
  • FIG. 2 represents the configuration where the well 20 is not cased by a steel casing.
  • the test lining comprises at least one strainer 7, one packer 6, one test valve 9 assembled to tubes 4.
  • the first assembly 1 includes means for measures, electronic and electromagnetic means to ensure communication by electromagnetic waves with shuttle 2.
  • Shuttle 2 descended into space inside the tubes, above the test valve 9, by means of a cable 3 comprising at least one electrical or optical communication line.
  • Set 2 or shuttle comprises electrical contact means 18, preferably in the form of fingers remotely controlled or wipers.
  • the shuttle has an insulating connection 21 so as to constitute a first lower pole thanks to contact 18 and a second pole with the cable frame 3.
  • the pressure and temperature measurement is ensured by three standard 30 gauges, say by memory, powered by three independent energy sources.
  • the measurements are stored in non-volatile memory with a programmed sampling frequency on the surface by an operator.
  • Each gauge measures, as desired, the internal pressure in the channel 31 via conduit 32 or the pressure in the ring finger, that is to say outside of the assembly 1.
  • the gauges 30 are connected to an electronic cartridge 33 by via an electrical connection 34.
  • the electronic cartridge 33 collects the data measured by one of the three gauges and injects a signal in the preferential form a representative low frequency phase modulated electromagnetic current (PSK) of this data to the torus 35.
  • PSK phase modulated electromagnetic current
  • a cover 36 integral with the assembly 1 is electrically insulated at least on one of its ends 37 while protecting the torus 35 and the electronic cartridge 33.
  • the operating command signal emitted from the surface, also makes it possible to choose the gauge which will be read by the electronic cartridge.
  • each gauge 30 can also be read on the surface at the end of the test.
  • the second set 2 or shuttle ( Figure 1 and Figure 2) is connected to the surface by a coaxial cable 3.
  • the cable provides power to the electronic compartment included in the shuttle and the bidirectional dialogue between the shuttle and the surface.
  • the electronic compartment mainly consists of: a electromagnetic transmitter / receiver and a two-way electrical transmitter allowing dialogue with the surface via the cable conductors.
  • the shuttle's electromagnetic transmitter generates a low frequency signal modulated in phase between the armouring of the cable and the contact means 18, these two points being electrically isolated by insulating junction 21.
  • the shuttle generates this signal on reception of an order signal from the surface via the coaxial cable.
  • the signal generated by the shuttle is received and then decoded by set 1 to allow it to modify its operating mode.
  • the shuttle can inject or receive an electromagnetic current using means comprising a transformer.
  • the shuttle's electromagnetic receiver receives, then decodes, the low signal frequency emitted by the assembly 1. This signal is measured between the armouring of the cable 3 and the contact 18. It is generally representative of the data measured by the gauges of the set 1.
  • the contact means 18 can, in addition to ensuring electrical contact between the shuttle and the test train, ensure mechanical anchoring of the shuttle in the test train. This anchoring may be necessary if, as in the case of using an insulation fitting 12 in the test set, a specific position of the shuttle is required, or if the flow of the effluent risks creating untimely movements, or vibrations which can be troublesome for the proper functioning of the transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geophysics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Electromagnetism (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Geophysics And Detection Of Objects (AREA)

Claims (15)

  1. Vorrichtung zur Datenübertragung zwischen dem Grund eines Bohrloches (5) und dem Erdboden, wobei die besagte Vorrichtung eine Reihe von Rohren (4) enthält, die durch Mittel (9) zum Abdichten des Innenraumes der besagten Rohre in ein Unterteil und ein Oberteil getrennt sind, sowie Ringraumdichtungsmittel (6) zwischen den besagten Rohren und dem besagten Bohrloch, wobei das besagte Unterteil eine erste aus Datenerfassungsmittel und Mittel zur Übertragung und zum Empfang elektromagnetischer Signale bestehende Einheit (1) enthält, dadurch gekennzeichnet, daß eine zweite Einheit (2) zur Übertragung und zum Empfang elektromagnetischer Signale mittels Betätigungsmittel (3), die mindestens eine bis zum Erdboden laufende elektrische oder optische Verbindungsleitung enthalten, in den Innenraum des Rohren-Oberteils eingesetzt wird, und daß die besagte zweite Einheit (2) Mittel (18, 15) zum elektrischen Kontakt mit den besagten Rohren enthält.
  2. Vorrichtung gemäß Anspruch 1, in welcher die erste und die zweite Einheit (1, 2) Mittel zur Injektion eines elektrischen Niederfrequenz-Stroms längs den Rohren (4) enthält.
  3. Vorrichtung gemäß Anspruch 2, in welcher die besagte erste Einheit (1) einen der Achse der besagten Rohre (4) gegenüber konzentrisch angeordneten Ringkerntransformator (35) enthält.
  4. Vorrichtung gemäß irgendeinem der vorstehenden Ansprüche, in welcher die besagten Betätigungsmittel (3) aus mindestens einer mit Koaxadern und einer äußeren Metallarmierung versehenen Kabellänge bestehen.
  5. Vorrichtung gemäß irgendeinem der vorstehenden Ansprüche, in welcher der Oberteil der Rohren ein zwischen zwei Rohrelemente angebrachtes elektrisches Isolationsmittel (12) enthält.
  6. Vorrichtung gemäß Anspruch 5, in welcher wenigstens eins (18) der Kontaktmittel zwischen der besagten zweiten Einheit und den Rohren zwischen dem besagten Isolationsmittel (12) und den besagten Abdichtungsmitteln (9) angeordnet ist.
  7. Vorrichtung gemäß irgendeinem der vorstehenden Ansprüche, in welcher die besagten Datenerfassungsmittel wenigstens einen Druckfühler und einen Temperaturfühler enthalten.
  8. Vorrichtung gemäß irgendeinem der vorstehenden Ansprüche, in welcher die besagten Betätigungsmittel (3) der zweiten Einheit (2) Mittel (15) zum Kontakt mit den Rohren, die mehrere Meter von der zweiten Einheit (2) entfernt sind, enthalten.
  9. Vorrichtung gemäß irgendeinem der vorstehenden Ansprüche, in welcher das Bohrloch (5) mittels einer Metallverrohrung (16) verzimmert ist, und in welcher das sich zwischen den besagten Einheiten (1, 2) befindende Rohrteil mittels Zentriermittel (13, 14) der besagten Verrohrung gegenüber elektrisch isoliert ist.
  10. Vorrichtung gemäß Anspruch 9, in welcher die besagten Rohre (4) wenigstens zwei beiderseits des besagten zentrierten Rohrteils angeordnete Mittel (6, 10, 11) zum elektrischen Kontakt mit der Metallverrohrung enthalten.
  11. Vorrichtung gemäß Anspruch 10, in welcher eins der Mittel zum elektrischen Kontakt mit der Metallverrohrung aus den besagten Ringraumdichtungsmittel (6) besteht.
  12. Verfahren zur Datenübertragung zwischen dem Grund eines Bohrloches (5) und dem Erdboden mittels einer Datenübertragungsvorrichtung, wobei die besagte Vorrichtung eine Reihe von Rohren (4) enthält, die durch Mittel (9) zum Abdichten des Innenraumes der besagten Rohre in ein Unterteil und ein Oberteil getrennt sind, sowie Ringraumdichtungsmittel (6) zwischen den besagten Rohren und dem besagten Bohrloch, Datenerfassungsmittel, dadurch gekennzeichnet, daß die besagten Daten mittels eines elektromagnetischen Stroms von dem Unterteil zum Oberteil durch eine erste unter den besagten Abdichtungsmitteln (9) angeordnete Einheit (1) und eine zweite im Innenraum des Oberteils angeordnete Einheit (2) übertragen werden, und in daß die besagten Daten mittels einer elektrischen oder optischen Verbindungsleitung, die die besagte zweite Einheit mit dem Erdboden verbindet, an den Erdboden weitergeleitet werden.
  13. Verfahren gemäß Anspruch 12, in welchem die Datenerfassung von dem Erdboden aus mittels der besagten Leitung (3) und der zweiten und ersten Einheiten (1, 2) ferngesteuert wird.
  14. Verfahren gemäß irgendeinem der Ansprüche 12 oder 13, in welchem die besagte zweite Einheit über den Abdichtungsmitteln durch ein « Logging »-Typ Koaxkabel betätigt wird.
  15. Verfahren gemäß irgendeinem der Ansprüche 12 bis 14, in welchem eine bidirektionale Verbindung zwischen den besagten zwei Einheiten durch Injektion eines elektrischen Sinusstroms von programmierbarer Stärke und Frequenz hergestellt wird.
EP97401341A 1996-07-01 1997-06-13 Vorrichtung und Verfahren zur Übertragung von Nachrichten mittels elektromagnetischer Wellen Expired - Lifetime EP0816632B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9608256A FR2750450B1 (fr) 1996-07-01 1996-07-01 Dispositif et methode de transmission d'informations par onde electromagnetique
FR9608256 1996-07-01

Publications (2)

Publication Number Publication Date
EP0816632A1 EP0816632A1 (de) 1998-01-07
EP0816632B1 true EP0816632B1 (de) 2003-09-03

Family

ID=9493657

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97401341A Expired - Lifetime EP0816632B1 (de) 1996-07-01 1997-06-13 Vorrichtung und Verfahren zur Übertragung von Nachrichten mittels elektromagnetischer Wellen

Country Status (6)

Country Link
US (1) US5945923A (de)
EP (1) EP0816632B1 (de)
AU (1) AU726088B2 (de)
CA (1) CA2209423C (de)
FR (1) FR2750450B1 (de)
NO (1) NO317444B1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7249636B2 (en) 2004-12-09 2007-07-31 Schlumberger Technology Corporation System and method for communicating along a wellbore

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6710600B1 (en) 1994-08-01 2004-03-23 Baker Hughes Incorporated Drillpipe structures to accommodate downhole testing
CA2272044C (en) * 1998-05-18 2005-10-25 Denis S. Kopecki Drillpipe structures to accommodate downhole testing
FR2785017B1 (fr) 1998-10-23 2000-12-22 Geoservices Methode et systeme de transmission d'informations par onde electromagnetique
US6684952B2 (en) 1998-11-19 2004-02-03 Schlumberger Technology Corp. Inductively coupled method and apparatus of communicating with wellbore equipment
US7407006B2 (en) * 1999-01-04 2008-08-05 Weatherford/Lamb, Inc. System for logging formations surrounding a wellbore
US7513305B2 (en) * 1999-01-04 2009-04-07 Weatherford/Lamb, Inc. Apparatus and methods for operating a tool in a wellbore
US6736210B2 (en) 2001-02-06 2004-05-18 Weatherford/Lamb, Inc. Apparatus and methods for placing downhole tools in a wellbore
US6798338B1 (en) 1999-02-08 2004-09-28 Baker Hughes Incorporated RF communication with downhole equipment
US7071837B2 (en) 1999-07-07 2006-07-04 Expro North Sea Limited Data transmission in pipeline systems
US6343649B1 (en) * 1999-09-07 2002-02-05 Halliburton Energy Services, Inc. Methods and associated apparatus for downhole data retrieval, monitoring and tool actuation
US6989764B2 (en) * 2000-03-28 2006-01-24 Schlumberger Technology Corporation Apparatus and method for downhole well equipment and process management, identification, and actuation
US7385523B2 (en) * 2000-03-28 2008-06-10 Schlumberger Technology Corporation Apparatus and method for downhole well equipment and process management, identification, and operation
US6516663B2 (en) 2001-02-06 2003-02-11 Weatherford/Lamb, Inc. Downhole electromagnetic logging into place tool
GB0124451D0 (en) * 2001-10-11 2001-12-05 Flight Refueling Ltd Magnetic signalling in pipelines
AU2002347006A1 (en) * 2001-10-12 2003-06-10 Shell Internationale Research Maatschappij B.V. B.V. Method and device for transferring data between an object moving in a well tubular and a remote station
US6776240B2 (en) 2002-07-30 2004-08-17 Schlumberger Technology Corporation Downhole valve
US6915848B2 (en) 2002-07-30 2005-07-12 Schlumberger Technology Corporation Universal downhole tool control apparatus and methods
US7163065B2 (en) * 2002-12-06 2007-01-16 Shell Oil Company Combined telemetry system and method
US7145473B2 (en) * 2003-08-27 2006-12-05 Precision Drilling Technology Services Group Inc. Electromagnetic borehole telemetry system incorporating a conductive borehole tubular
US7170423B2 (en) * 2003-08-27 2007-01-30 Weatherford Canada Partnership Electromagnetic MWD telemetry system incorporating a current sensing transformer
US7080699B2 (en) * 2004-01-29 2006-07-25 Schlumberger Technology Corporation Wellbore communication system
GB2462757B (en) * 2005-01-31 2010-07-14 Baker Hughes Inc Telemetry system with an insulating connector
US7518528B2 (en) * 2005-02-28 2009-04-14 Scientific Drilling International, Inc. Electric field communication for short range data transmission in a borehole
US7735555B2 (en) * 2006-03-30 2010-06-15 Schlumberger Technology Corporation Completion system having a sand control assembly, an inductive coupler, and a sensor proximate to the sand control assembly
US7793718B2 (en) 2006-03-30 2010-09-14 Schlumberger Technology Corporation Communicating electrical energy with an electrical device in a well
US8056619B2 (en) 2006-03-30 2011-11-15 Schlumberger Technology Corporation Aligning inductive couplers in a well
US7712524B2 (en) * 2006-03-30 2010-05-11 Schlumberger Technology Corporation Measuring a characteristic of a well proximate a region to be gravel packed
CA2544457C (en) 2006-04-21 2009-07-07 Mostar Directional Technologies Inc. System and method for downhole telemetry
US8839850B2 (en) * 2009-10-07 2014-09-23 Schlumberger Technology Corporation Active integrated completion installation system and method
US20110192596A1 (en) * 2010-02-07 2011-08-11 Schlumberger Technology Corporation Through tubing intelligent completion system and method with connection
RU2475642C1 (ru) * 2011-08-09 2013-02-20 Открытое акционерное общество "Научно-производственная фирма "Геофизика" (ОАО НПФ "Геофизика") Способ и оборудование для проведения гидродинамических исследований пластов на трубах
US9249559B2 (en) 2011-10-04 2016-02-02 Schlumberger Technology Corporation Providing equipment in lateral branches of a well
US9644476B2 (en) 2012-01-23 2017-05-09 Schlumberger Technology Corporation Structures having cavities containing coupler portions
US9175560B2 (en) 2012-01-26 2015-11-03 Schlumberger Technology Corporation Providing coupler portions along a structure
US9938823B2 (en) 2012-02-15 2018-04-10 Schlumberger Technology Corporation Communicating power and data to a component in a well
US10036234B2 (en) 2012-06-08 2018-07-31 Schlumberger Technology Corporation Lateral wellbore completion apparatus and method
GB2506123C (en) 2012-09-19 2024-02-21 Expro North Sea Ltd Downhole communication
EP2941532A4 (de) 2013-01-04 2017-04-19 Carbo Ceramics Inc. Elektrisch leitfähiges stützmittel und verfahren zur erkennung, ortung und charakterisierung eines elektrisch leitfähigen stützmittels
US11008505B2 (en) 2013-01-04 2021-05-18 Carbo Ceramics Inc. Electrically conductive proppant
US9434875B1 (en) 2014-12-16 2016-09-06 Carbo Ceramics Inc. Electrically-conductive proppant and methods for making and using same
US9551210B2 (en) 2014-08-15 2017-01-24 Carbo Ceramics Inc. Systems and methods for removal of electromagnetic dispersion and attenuation for imaging of proppant in an induced fracture

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3967201A (en) * 1974-01-25 1976-06-29 Develco, Inc. Wireless subterranean signaling method
US4093936A (en) * 1976-12-27 1978-06-06 Kerr-Mcgee Corporation Logging method and apparatus
US4781053A (en) * 1986-03-05 1988-11-01 Stewart Charles L Indirect extrusion process and machinery therefor
FR2635819B1 (fr) * 1988-09-01 1993-09-17 Geoservices Systeme de raccordement electriquement isolant d'elements tubulaires metalliques pouvant notamment servir de structure d'antenne situee a grande profondeur
GB9021253D0 (en) * 1990-09-29 1990-11-14 Metrol Tech Ltd Method of and apparatus for the transmission of data via a sonic signal
FR2681461B1 (fr) * 1991-09-12 1993-11-19 Geoservices Procede et agencement pour la transmission d'informations, de parametres et de donnees a un organe electro-magnetique de reception ou de commande associe a une canalisation souterraine de grande longueur.
FR2697119B1 (fr) * 1992-10-16 1995-01-20 Schlumberger Services Petrol Dispositif émetteur à double raccord isolant, destiné à l'emploi dans un forage.
US5512889A (en) * 1994-05-24 1996-04-30 Atlantic Richfield Company Downhole instruments for well operations

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7249636B2 (en) 2004-12-09 2007-07-31 Schlumberger Technology Corporation System and method for communicating along a wellbore

Also Published As

Publication number Publication date
NO973006D0 (no) 1997-06-27
FR2750450B1 (fr) 1998-08-07
CA2209423A1 (fr) 1998-01-01
CA2209423C (fr) 2006-11-14
US5945923A (en) 1999-08-31
FR2750450A1 (fr) 1998-01-02
NO973006L (no) 1998-01-02
AU2834897A (en) 1998-01-15
AU726088B2 (en) 2000-11-02
EP0816632A1 (de) 1998-01-07
NO317444B1 (no) 2004-11-01

Similar Documents

Publication Publication Date Title
EP0816632B1 (de) Vorrichtung und Verfahren zur Übertragung von Nachrichten mittels elektromagnetischer Wellen
CA2090294C (fr) Methode et dispositif pour etablir une connexion electrique intermittente avec un outil a poste fixe dans un puits
EP0780702B1 (de) Verfahren und Vorrichtung zur Gewinnung von Signalen während des Bohrens
EP0122839B1 (de) Verfahren und Vorrichtung zum Messen und/oder Ausführen von Arbeiten in einem Bohrloch
CA2078467C (fr) Dispositif perfectionne de surveillance d'un gisement pour puits de production
FR2681461A1 (fr) Procede et agencement pour la transmission d'informations, de parametres et de donnees a un organe electro-magnetique de reception ou de commande associe a une canalisation souterraine de grande longueur.
FR2910925A1 (fr) Systeme et procede de telemetrie dans les puits de forage
CA2286435C (fr) Methode et systeme de transmission d'informations par onde electromagnetique
US7554458B2 (en) Downhole communication
FR2654521A1 (fr) Source electromagnetique de puits a demeure.
FR2861421A1 (fr) Systeme et procede de telemetrie de fond
EP0546892B1 (de) Verfahren und Einrichtung zur elektrischen Verbindung von Geräten wie Bohrlochsonden
FR2808836A1 (fr) Procede et dispositif de mesure de parametres physiques dans un puits d'exploitation d'un gisement ou d'une reserve souterraine de stockage de fluide
FR2954397A1 (fr) Dispositif d'intervention dans un puits d'exploitation de fluide menage dans le sous-sol, et ensemble d'intervention associe.
EP0296207B1 (de) Verfahren und vorrichtung zum ausführen von messungen und/oder eingriffen in einem unter hydraulischem druck stehenden bohrloch
EP1225301A1 (de) Hohles Bohrgestänge zur Informationsübertragung
EP0295291B1 (de) System zum verschieben eines instrumentenbehälters, sowie messverfahren und/oder eingriffsverfahren in einem bohrloch
EP1473256B1 (de) Verfahren und Vorrichtung zur Datenübertragung zwischen Übertage und einem untertägigen Salzhohlraum
FR2777594A1 (fr) Installation de transmission d'informations dans un puits de forage
FR2813958A1 (fr) Dispositif destine a mesurer un parametre electrique au travers d'un cuvelage electriquement conducteur
FR3047040A1 (de)
FR3040068A1 (fr) Systeme et procede toroidal pour communiquer dans un environnement de fond de puits
EP0863412B1 (de) Röhrensystem für elektrische Messungen
EP0052145A1 (de) Verfahren und anordnung zum überwachen eines bohrloches während des bohrens
EP1227216A1 (de) Bohrgestänge zur Informationsübertragung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): FR GB IT

17P Request for examination filed

Effective date: 19980707

AKX Designation fees paid

Free format text: FR GB IT

RBV Designated contracting states (corrected)

Designated state(s): FR GB IT

17Q First examination report despatched

Effective date: 20020312

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031105

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040604

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20090115 AND 20090121

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160608

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160516

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160621

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20170612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170612