EP0816632B1 - Dispositif et méthode de transmission d'informations par onde électromagnétique - Google Patents

Dispositif et méthode de transmission d'informations par onde électromagnétique Download PDF

Info

Publication number
EP0816632B1
EP0816632B1 EP97401341A EP97401341A EP0816632B1 EP 0816632 B1 EP0816632 B1 EP 0816632B1 EP 97401341 A EP97401341 A EP 97401341A EP 97401341 A EP97401341 A EP 97401341A EP 0816632 B1 EP0816632 B1 EP 0816632B1
Authority
EP
European Patent Office
Prior art keywords
tubes
unit
well
contact
intended
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97401341A
Other languages
German (de)
English (en)
Other versions
EP0816632A1 (fr
Inventor
Louis Soulier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Geoservices SA
Original Assignee
Geoservices SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Geoservices SA filed Critical Geoservices SA
Publication of EP0816632A1 publication Critical patent/EP0816632A1/fr
Application granted granted Critical
Publication of EP0816632B1 publication Critical patent/EP0816632B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/26Storing data down-hole, e.g. in a memory or on a record carrier
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/13Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency

Definitions

  • the present invention is in the field of well production tests drilled in a geological formation, usually for the purpose of qualitatively and quantitatively the effluents contained in the geological formation crossed by the drilling.
  • This type of test called “DST” for "Drill Stem Test” is generally performed in course of drilling an exploration well. We will not, however, depart from the framework of the present invention, if these tests are carried out in production wells, at the start or in during the production phase.
  • the present invention relates to a device for transmitting, in particular in real time, information on both sides of a test valve placed in a packing of tubes, commonly called test packing, the packing being introduced into a well drilled in the ground, according to conventional procedures.
  • Some systems use a hydraulic channel located in the wall of the train test, which connects the pressurized volume located under the test valve up to pressure measurement gauges located above the valve. Measures these gauges are then transmitted to the surface via an electric cable connected to a fitting with special electronic means.
  • the connection is made by coupling by means of a mutual induction transformer or by a loop of current.
  • the first systems have the main disadvantage of requiring a train test, and more specifically a test valve including the integration of a passage hydraulic.
  • This type of implementation is very complex and very expensive to manufacture and maintenance.
  • the connection, electrical or mutual induction, of the electric cable connecting to the surface the measurement means located above of the test valve is very sensitive to the nature of the fluid located inside the tube production. In particular, transmission is very difficult when the fluids are conductors.
  • the transmission distance is practically limited to a length of tubes, about ten meters. Therefore the connector attached to the lower end of the electrical cable must be positioned approximately ten meters above the test valve. In the event that the well produces a effluent containing sand, this sediments after the flow corresponding to closing the test valve, thus forming a plug that can reach several tens of meters high, which can prevent the proper functioning of the connector, its anchoring or undocking.
  • the present invention relates to an information transmission device between the bottom of a well and the ground surface, said device comprising a set of tubes separated into a lower part and an upper part by sealing means of the interior space of said tubes, annular sealing means between said tubes and said well.
  • said lower part comprises a first set comprising means of acquiring information and means of transmitting and reception of electromagnetic signals
  • a second set of transmission and reception of electromagnetic signals is placed in the interior space of the party upper tubes by maneuvering means comprising at least one line of electrical or optical communication going up to the surface and said second set comprises means of electrical contact with said tubes.
  • the first and second assemblies may include means for injecting a low frequency electric current along the tubes.
  • the first set may include a toroidal transformer substantially concentric with the axis of the tubes.
  • the second part of the transformer can be a single turn constituted by the tubes looping through the casing or the ground.
  • the operating means may consist of at least one length of cable with coaxial conductors and metallic outer armor.
  • the upper part of the tubes may include an electrical insulation means placed between two tube elements.
  • at least one of the means of contact between the second set and the tubes is located between the insulation means and the means shutter.
  • the information acquisition means may include at least one sensor and a temperature sensor.
  • the operating means of the second set may include means of contact with the tubes on which the electromagnetic current flows, said contacts advantageously being spaced several meters apart.
  • the well can be cased by metal tubing, and the portion of tubes included between said assemblies can be partially electrically isolated from said casing by centering means.
  • the tubes may include at least two means of electrical contact with the metal casing, the contacts being located on either side of said portion of tubes centered.
  • One of the means of contact with the metal casing can be constituted by said annular sealing means.
  • the information acquisition means can be remotely controlled from the surface through the line channel and electromagnetic transmission between said two sets.
  • the invention also relates to a method of transmitting information between the bottom of a well and the soil surface, said device comprising a set of tubes separated into a lower part and an upper part by means for closing off the interior space of said tubes, annular sealing means between said tubes and said well, means for acquiring information.
  • a electromagnetic current carrying said information from the lower part to the upper by a first assembly placed under said closure means and a second set placed in the interior space of the upper part, and said information is transmitted to the surface by an electrical or optical communication line connecting said second set on the ground surface.
  • Information acquisition can be remotely controlled from the surface by the channel of said line and of the second and first sets.
  • Said second assembly can be maneuvered above the shutter means by by means of a coaxial cable of the "logging" type.
  • the device which is the subject of the present invention comprises a first communication set 1 equipped with transmitter / receiver means and various means measurement, including pressure and temperature sensors.
  • the device includes also a second communication set 2 called shuttle, and equipped with additional transmitter / receiver means of the first set 1 and means of bidirectional digital telemetry with the surface via a cable 3 (type logging) comprising electrical conductors or optical fibers.
  • Cable 3 is operated in tubes 4 using a surface installation known to technicians concerned, i.e. a winch and a control, recording and processing of signals passing through the communication lines integrated into the cable 3.
  • the tubes 4 are lowered into a well 5 drilled through a geological layer whose effluents that may be contained in the pores of the layer.
  • a so-called test lining is assembled. comprising the assemblies 1 and 2, a sealing means of the “packer” type 6 for performing an annular seal around the tubes, a strainer 7 placed below the packer and intended to allow access of the effluent to the interior space of the tubes 4, a sliding joint 8 and / or a threshing slide ("jar") to allow installation and facilitate removal of the packer, a test valve 9 which can be opened or closed several times in order to open or to close the communication between the geological layer and the interior space of the tubes 4 in communication with the surface.
  • Other conventional equipment, not shown here, can complete the test train: circulation fitting, safety seal, etc.
  • the well 5 is cased by a tube in steel 16, usually cemented in the drilled hole.
  • the link between the producing layer and the hole is made either by perforations through the casing tube, or by a borehole 17 extending to the beyond the shoe of column 16.
  • the test lining includes preferably contacts 10 and 11, for example in the form of blade centralizers metallic, packer or natural contacts provided by a set of tubes offset in a well.
  • the contact points 10 and 11 to be the most spaced possible along the lining, on either side of the valve 9 and at least separated more than one tube segment, i.e. at least 10 meters.
  • assembly 1 is of the insulating junction type and not of the transformer type, there will be a electrical interruption substantially to the right of the transmission / reception dipole of the assembly 2 and of assembly 1, according to the very principle of the transmission of the insulating junction type.
  • Sets 1 and 2 communicate with each other by means of currents electromagnetic guided by the casing 16 and / or the test train.
  • PSK phase jump
  • the sets 1 and 2 being located most often inside a casing 16, it is very advantageous to constitute the widest possible injection dipole in order to create behind casing as large a propagation signal as possible.
  • Such a dipole is described in the document US-A-5394141 cited here for reference.
  • the operation of this transmission device is always possible. But in this case, the transmission distance between set 1 and assembly 2 and / or the information rate can be reduced in order to reduce the energy of the noise according to well-known principles for improving the signal-to-noise ratio.
  • Standard tube protectors can be used in rubber or any other insulating ring 13 and 14 mounted on a tube element and inserted in the test train at adequate distances. Note that whatever the nature of the fluid in the annular test lining / well, including brines, difference in conductivity between the fluid and the packing tubes constitutes a dipole apparent more than 10 meters, which is generally sufficient for this transmission.
  • each set 1 and 2 of this device used to inject, or receive the carrier frequency propagating along the test train may be realized using one of the well known techniques, namely either an insulating junction such as described in document US-A-5163714, either an extended dipole, or else a transformer whose toroidal magnetic circuit surrounds the assembly 1.
  • the second transmitter / receiver assembly 2 called shuttle, includes a link insulator 21 and a lower electrical contact means 18 with the inside of the tube 4, said means that can be achieved, either by dogs anchored in a corresponding groove machined in a screw connection on the tubes 4 or by extractable pads remotely controlled from the surface via the electrical connection used for data transfer measured.
  • the second pole, or upper pole, of the receive / transmit dipole is constituted by the metal reinforcement of the coaxial cable 3 (for example, of the logging type).
  • This cable being sufficiently centered in the tubes up to a height where there is a point of contact 15, it can only be in contact with the wall of the tubes at a sufficient distance large allowing to realize a long transmitter / receiver dipole.
  • the contact 11 is located below the point of contact 15, or in the vicinity.
  • FIG. 2 represents the configuration where the well 20 is not cased by a steel casing.
  • the test lining comprises at least one strainer 7, one packer 6, one test valve 9 assembled to tubes 4.
  • the first assembly 1 includes means for measures, electronic and electromagnetic means to ensure communication by electromagnetic waves with shuttle 2.
  • Shuttle 2 descended into space inside the tubes, above the test valve 9, by means of a cable 3 comprising at least one electrical or optical communication line.
  • Set 2 or shuttle comprises electrical contact means 18, preferably in the form of fingers remotely controlled or wipers.
  • the shuttle has an insulating connection 21 so as to constitute a first lower pole thanks to contact 18 and a second pole with the cable frame 3.
  • the pressure and temperature measurement is ensured by three standard 30 gauges, say by memory, powered by three independent energy sources.
  • the measurements are stored in non-volatile memory with a programmed sampling frequency on the surface by an operator.
  • Each gauge measures, as desired, the internal pressure in the channel 31 via conduit 32 or the pressure in the ring finger, that is to say outside of the assembly 1.
  • the gauges 30 are connected to an electronic cartridge 33 by via an electrical connection 34.
  • the electronic cartridge 33 collects the data measured by one of the three gauges and injects a signal in the preferential form a representative low frequency phase modulated electromagnetic current (PSK) of this data to the torus 35.
  • PSK phase modulated electromagnetic current
  • a cover 36 integral with the assembly 1 is electrically insulated at least on one of its ends 37 while protecting the torus 35 and the electronic cartridge 33.
  • the operating command signal emitted from the surface, also makes it possible to choose the gauge which will be read by the electronic cartridge.
  • each gauge 30 can also be read on the surface at the end of the test.
  • the second set 2 or shuttle ( Figure 1 and Figure 2) is connected to the surface by a coaxial cable 3.
  • the cable provides power to the electronic compartment included in the shuttle and the bidirectional dialogue between the shuttle and the surface.
  • the electronic compartment mainly consists of: a electromagnetic transmitter / receiver and a two-way electrical transmitter allowing dialogue with the surface via the cable conductors.
  • the shuttle's electromagnetic transmitter generates a low frequency signal modulated in phase between the armouring of the cable and the contact means 18, these two points being electrically isolated by insulating junction 21.
  • the shuttle generates this signal on reception of an order signal from the surface via the coaxial cable.
  • the signal generated by the shuttle is received and then decoded by set 1 to allow it to modify its operating mode.
  • the shuttle can inject or receive an electromagnetic current using means comprising a transformer.
  • the shuttle's electromagnetic receiver receives, then decodes, the low signal frequency emitted by the assembly 1. This signal is measured between the armouring of the cable 3 and the contact 18. It is generally representative of the data measured by the gauges of the set 1.
  • the contact means 18 can, in addition to ensuring electrical contact between the shuttle and the test train, ensure mechanical anchoring of the shuttle in the test train. This anchoring may be necessary if, as in the case of using an insulation fitting 12 in the test set, a specific position of the shuttle is required, or if the flow of the effluent risks creating untimely movements, or vibrations which can be troublesome for the proper functioning of the transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geophysics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Electromagnetism (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

La présente invention se situe dans le domaine des tests de production de puits forés dans une formation géologique, généralement dans le but d'évaluer qualitativement et quantitativement les effluents contenus dans la formation géologique traversée par le forage. Ce type de test, appelé "DST" pour "Drill Stem Test" est opéré généralement en cours de forage d'un puits d'exploration. On ne sortira cependant pas du cadre de la présente invention, si ces tests sont effectués dans des puits de production, au début ou en cours de la phase de production.
La présente invention concerne un dispositif pour transmettre, notamment en temps réel, des informations de part et d'autre d'une vanne de test placée dans une garniture de tubes, communément appelée garniture de test, la garniture étant introduite dans un puits foré dans le sol, selon les procédures conventionnelles.
Il existe différents systèmes pour connaítre en temps réel et depuis la surface, les pressions, températures, débits, etc. en un point d'un puits situé sous une vanne de test alors que cette vanne peut être ouverte ou fermée selon la phase opérationnelle de ce test: en débit (flowing) ou en remontée de pression (build up).
Certains systèmes utilisent un canal hydraulique situé dans la paroi du train de test, lequel met en communication le volume sous pression situé sous la vanne de test jusqu'à des jauges de mesure de la pression situées au-dessus de la vanne. Les mesures effectuées par ces jauges sont ensuite transmises vers la surface via un câble électrique connecté à un raccord comportant des moyens électroniques spéciaux. La connexion se fait par couplage au moyen d'un transformateur à mutuelle induction ou par une boucle de courant.
D'autres systèmes utilisent une transmission acoustique dans le corps du train de test, par exemple selon le document WO 92/06278.
Les premiers systèmes présentent le principal inconvénient de nécessiter un train de test, et plus précisément une vanne de test comportant l'intégration d'un passage hydraulique. Ce type de réalisation est très complexe et très coûteux en fabrication et en maintenance. Par ailleurs dans ces systèmes, la connexion, électrique ou à mutuelle induction, du câble électrique reliant à la surface les moyens de mesures situés au-dessus de la vanne de test, s'avère très sensible à la nature du fluide situé à l'intérieur du tube de production. En particulier la transmission est très difficile lorsque les fluides sont conducteurs.
Le système illustré par le document WO 92/06278, nécessite également un raccordement de type électrique entre le récepteur situé au-dessus de la vanne et le câble électrique. Que cette liaison soit réalisée par mutuelle induction ou par un connecteur électrique dans une ambiance liquide ("wet connector"), il en résulte les mêmes inconvénients que pour les autres systèmes connus.
De plus, dans ces solutions la distance de transmission est limitée pratiquement à une longueur de tubes, soit une dizaine de mètres. Par conséquent le connecteur fixé à l'extrémité inférieure du câble électrique devra être obligatoirement positionné à environ une dizaine de mètres au dessus de la vanne de test. Dans le cas où le puits produit un effluent contenant du sable, celui-ci sédimente après la fermeture du débit correspondant à la fermeture de la vanne de test, formant ainsi un bouchon pouvant atteindre plusieurs dizaines de mètres de hauteur, ce qui peut empêcher le bon fonctionnement du connecteur, son ancrage ou son désancrage.
Ainsi la présente invention concerne un dispositif de transmission d'information entre le fond d'un puits et la surface du sol, ledit dispositif comportant un ensemble de tubes séparés en une partie inférieure et une partie supérieure par des moyens d'obturation de l'espace intérieur desdits tubes, des moyens d'étanchéité annulaire entre lesdits tubes et ledit puits. Dans le dispositif, ladite partie inférieure comporte un premier ensemble comportant des moyens d'acquisition d'informations et des moyens de transmission et de réception de signaux électromagnétiques, un second ensemble de transmission et de réception de signaux électromagnétiques est placé dans l'espace intérieur de la partie supérieure des tubes par des moyens de manoeuvre comportant au moins une ligne de communication électrique ou optique remontant jusqu'à la surface et ledit second ensemble comporte des moyens de contact électrique avec lesdits tubes.
Les premier et second ensembles peuvent comporter des moyens d'injection d'un courant électrique basse fréquence le long des tubes.
Le premier ensemble peut comporter un transformateur de forme torique sensiblement concentrique à l'axe des tubes. La seconde partie du transformateur peut être une spire unique constituée par les tubes se rebouclant par le casing ou par le terrain.
Les moyens de manoeuvre peuvent être constitués par au moins une longueur de câble à conducteurs coaxiaux et à armure extérieure métallique.
La partie supérieure des tubes peut comporter un moyen d'isolation électrique placé entre deux éléments de tubes. Dans ce cas, au moins un des moyens de contact entre le second ensemble et les tubes est situé entre le moyen d'isolation et les moyens d'obturation.
Les moyens d'acquisition d'informations peuvent comporter au moins un capteur de pression et un capteur de température.
Les moyens de manoeuvre du second ensemble peuvent comporter des moyens de contact avec les tubes sur lesquels circule le courant électromagnétique, lesdits contacts étant avantageusement espacés de plusieurs mètres.
Le puits peut être cuvelé par un tubage métallique, et la portion de tubes comprise entre lesdits ensembles peut être partiellement isolée électriquement dudit tubage par des moyens de centrage.
Les tubes peuvent comporter au moins deux moyens de contact électrique avec le tubage métallique, les contacts étant situés de part et d'autre de ladite portion de tubes centrés.
L'un des moyens de contact avec le tubage métallique peut être constitué par lesdits moyens d'étanchéité annulaire.
Les moyens d'acquisition d'information peuvent être télécommandés à partir de la surface par le canal de la ligne et de la transmission électromagnétique entre lesdits deux ensembles.
L'invention concerne également une méthode de transmission d'informations entre le fond d'un puits et la surface du sol, ledit dispositif comportant un ensemble de tubes séparés en une partie inférieure et une partie supérieure par des moyens d'obturation de l'espace intérieur desdits tubes, des moyens d'étanchéité annulaire entre lesdits tubes et ledit puits, des moyens d'acquisition d'informations. Dans la méthode, on transmet un courant électromagnétique porteur desdites informations de la partie inférieure à la partie supérieure par un premier ensemble placé sous lesdits moyens d'obturation et un second ensemble placé dans l'espace intérieur de la partie supérieure, et lesdites informations sont transmises à la surface par une ligne de communication électrique ou optique reliant ledit second ensemble à la surface du sol.
L'acquisition des informations peut être télécommandée à partir de la surface par le canal de ladite ligne et des second et premier ensembles.
On peut manoeuvrer ledit second ensemble au dessus des moyens d'obturation par le moyen d'un câble coaxial du type "logging".
On peut communiquer de façon bi-directionnelle entre lesdits deux ensembles par l'injection d'un courant électrique sinusoïdal d'intensité et de fréquence programmables, la fréquence étant de préférence comprise entre 1 et 200 Hz.
La présente invention sera mieux comprise et ses avantages apparaítront plus clairement à la lecture des exemples qui suivent, nullement limitatifs, et illustrés par les figures ci-annexées, parmi lesquelles:
  • La figure 1 illustre un schéma de principe du dispositif selon l'invention.
  • La figure 2 illustre une autre mise en oeuvre du dispositif.
  • La figure 3 est un schéma d'un ensemble du dispositif.
  • La figure 4 montre le principe de l'émetteur/récepteur du type transformateur.
Sur la figure 1, le dispositif objet de la présente invention comporte un premier ensemble 1 de communication équipé de moyens émetteur/récepteur et de divers moyens de mesure, notamment des capteurs de pression et de température. Le dispositif comporte également un deuxième ensemble de communication 2 appelé navette, et équipé de moyens émetteur/récepteur complémentaires du premier ensemble 1 et de moyens de télémétrie numérique bidirectionnelle avec la surface par le canal d'un câble 3 (de type logging) comportant des conducteurs électriques ou fibres optiques. Le câble 3 est manoeuvré dans les tubes 4 à l'aide d'une installation de surface connue des techniciens concernés, c'est à dire un treuil et une cabine de commande, d'enregistrement et de traitement des signaux transitant par les lignes de communication intégrées au câble 3.
Les tubes 4 sont descendus dans un puits 5 foré à travers une couche géologique dont on souhaite faire produire les effluents qui peuvent être contenus dans les pores de la couche. Pour cela, à l'extrémité des tubes 4 est assemblée une garniture dite de test comportant les ensembles 1 et 2, un moyen d'étanchéité du type "packer" 6 pour effectuer une étanchéité annulaire autour des tubes, une crépine 7 placée en dessous du packer et destinée à laisser l'accès de l'effluent vers l'espace intérieur des tubes 4, un joint coulissant 8 et/ou une coulisse de battage ("jar") pour permettre la mise en place et faciliter le retrait du packer, une vanne de test 9 pouvant être ouverte ou fermée plusieurs fois afin d'ouvrir ou de fermer la communication entre la couche géologique et l'espace intérieur des tubes 4 en communication avec la surface. D'autres équipements conventionnels, non représentés ici, peuvent compléter le train de test: raccord de circulation, joint de sécurité, etc.
Dans la situation représentée sur la figure 1, le puits 5 est cuvelé par un tube en acier 16, généralement cimenté dans le trou foré. La liaison couche productrice/trou se fait soit par des perforations à travers le tube de cuvelage, soit par un forage 17 s'étendant au delà du sabot de la colonne 16. Dans cette configuration, la garniture de test comporte de préférence des contacts 10 et 11, par exemple sous la forme de centreurs à lames métalliques, du packer ou des contacts naturels procurés par un ensemble de tubes excentrés dans un puits. On s'arrange pour que les points de contact 10 et 11 soient le plus espacés possible le long de la garniture, de part et d'autre de la vanne 9 et au moins séparés de plus d'un segment de tube, c'est-à-dire au moins 10 mètres.
Dans le présent exemple, à savoir la transmission durant un DST ou toute autre configuration équivalente, d'un coté à l'autre d'une vanne de test, il est préférable de prendre un certain nombre de précautions afin que les deux liaisons du premier ensemble 1, constituant un émetteur/récepteur de type transformateur, avec les contacts 10 et 11 constituant les pôles, ne soient pas électriquement interrompues. On s'assure, par exemple, qu'aucun équipement de type joint coulissant ("slip joint") ou coulisse ("jar") ne soit intercalé entre les deux points de contact 10 et 11. S'il ne peut en être autrement, on vérifie et si besoin, on effectue la continuité électrique à l'aide d'un dispositif approprié intégré à l'équipement en cause: "slip joint" ou "jar". De plus, ces précautions permettent d'utiliser le "packer" 6 comme pôle inférieur dans la mesure où il possède pratiquement toujours des chiens d'ancrage assurant un contact électrique sur la colonne 16. Dans le cas où l'ensemble 1 est du type jonction isolante et non pas de type transformateur, il y aura une interruption électrique sensiblement au droit du dipôle d'émission/réception de l'ensemble 2 et de l'ensemble 1, selon le principe même de la transmission du type jonction isolante.
Les ensembles 1 et 2 communiquent entre eux au moyen de courants électromagnétiques guidées par le casing 16 et/ou le train de test. On utilise en général, des fréquences comprises entre quelques Hertz et quelques centaines de Hertz. Ces ondes sont modulées par saut de phase (PSK en anglais), afin de transporter l'information. Les ensembles 1 et 2 étant situés le plus souvent à l'intérieur d'un casing 16, il est très avantageux de constituer un dipôle d'injection le plus étendu possible afin de créer derrière le casing un signal de propagation le plus grand possible. Un tel dipôle est décrit dans le document US-A-5394141 cité ici comme référence. Dans le cas où il n'est pas possible de constituer une grand dipôle, le fonctionnement du présent dispositif de transmission est toujours possible. Mais dans ce cas, la distance de transmission entre l'ensemble 1 et l'ensemble 2 et/ou le débit d'informations peuvent être réduits afin de diminuer l'énergie du bruit selon les principes bien connus d'amélioration du rapport signal à bruit.
Dans le cas de constitution d'un grand dipôle, il est avantageux d'éviter le contact entre le train de test et le casing 16. On peut utiliser des protecteurs de tubes standards en caoutchouc ou tout autre bague isolante 13 et 14 montés sur un élément de tube et intercalés dans le train de test à des distances adéquates. On notera que quelque soit la nature du fluide dans l'annulaire garniture de test/puits, y compris des saumures, la différence de conductivité entre le fluide et les tubes de la garniture constitue un dipôle apparent de plus de 10 mètres, ce qui est suffisant en général pour la présente transmission.
L'émetteur/récepteur de chaque ensemble 1 et 2 du présent dispositif servant à injecter, ou à recevoir la fréquence porteuse se propageant le long du train de test, peut être réalisé en utilisant une des techniques bien connues, à savoir soit une jonction isolante telle que décrite dans le document US-A-5163714, soit un dipôle étendu, ou bien un transformateur dont le circuit magnétique torique entoure l'ensemble 1. L'enroulement primaire comportant un nombre de spires adapté à l'alimentation électrique, tandis que le secondaire comporte une seule spire constituée par le train de test se refermant sur le cuvelage via les contacts 10 et 11.
Le second ensemble émetteur/récepteur 2 appelé navette, comporte une liaison isolante 21 et un moyen de contact électrique inférieur 18 avec l'intérieur du tube 4, ledit moyen pouvant être réalisé, soit par des chiens ancrés dans une gorge correspondante usinée dans un raccord vissé sur les tubes 4 ou bien par des patins extractibles télécommandés depuis la surface via la liaison électrique servant au transfert des données mesurées.
Le deuxième pôle, ou pole supérieur, du dipôle de réception/émission est constitué par l'armature métallique du câble coaxial 3 (par exemple, du type logging). Ce câble étant suffisamment centré dans les tubes jusqu'à une hauteur où il y a un point de contact 15, il ne pourra être en contact avec la paroi des tubes qu'à une distance assez grande permettant ainsi de réaliser un dipôle émetteur/récepteur de grande longueur. De préférence, le contact 11 est situé en dessous du point de contact 15, ou dans le voisinage. Cependant, dans le cas où ce grand dipôle ne pourrait pas être réalisé, on obtiendrait des résultats équivalents en utilisant un raccord comportant une jonction isolante 12 située au-dessus des moyens de contact 18 et au dessous du contact 15 de l'armature du câble coaxial avec le tubage. L'utilisation d'un raccord comportant une jonction isolante 12 impose donc à la navette une position relativement à la jonction, puisque le contact 18 doit se trouver sous le raccord isolant 12 et le contact 15 au dessus du raccord 12. En effet, dans ce cas, on devra décider de la position de la jonction isolante avant la constitution en surface de la garniture de test devant être descendue dans le puits. Il sera toutefois possible de l'installer à plusieurs dizaines de mètres au-dessus de la vanne de test.
La figure 2 représente la configuration où le puits 20 n'est pas cuvelé par un tubage en acier. La garniture de test comporte au moins une crépine 7, un packer 6, une vanne de test 9 assemblés à des tubes 4. Le premier ensemble 1 comporte des moyens de mesures, des moyens électroniques et électromagnétiques pour assurer la communication par ondes électromagnétiques avec la navette 2. La navette 2 est descendue dans l'espace intérieur des tubes, au dessus de la vanne de test 9, par le moyen d'un câble 3 comportant au moins une ligne de communication électrique ou optique. L'ensemble 2 ou navette comporte des moyens de contact électrique 18, de préférence sous forme de doigts télécommandés ou de frotteurs. La navette comporte une liaison isolante 21 de façon à constituer un premier pôle inférieur grâce au contact 18 et un deuxième pôle avec l'armature du câble 3. Pour éviter que le contact de l'armature du câble avec les tubes 4 soit trop proche du pôle inférieur, on peut si nécessaire entourer le câble d'éléments isolant 22 ou de centrage sur une hauteur suffisante. Il est clair que cette configuration n'impose pas de position précise de la navette par rapport à la garniture de test, à moins qu'un raccord isolant semblable à celui 12 décrit sur la figure 1 soit utilisé pour les besoins d'une transmission encore plus performante.
La figure 3 illustre en coupe une réalisation de l'ensemble 1, celui-ci ayant au moins trois fonctions :
  • la mesure au moins de la pression et de la température sous la vanne de test 9,
  • la transmission de ces données vers le second ensemble 2 situé au-dessus de la vanne de test,
  • la réception et l'interprétation d'un signal émis par la navette 2.
La mesure de pression et de température est assurée par trois jauges 30 standards, dites à mémoire, alimentées par trois sources d'énergie indépendantes. Les mesures sont stockées dans une mémoire non volatile avec une fréquence d'échantillonnage programmée en surface par un opérateur. Chaque jauge mesure au choix, la pression intérieure dans le canal 31 via le conduit 32 ou bien la pression dans l'annulaire, c'est-à-dire à l'extérieur de l'ensemble 1. Les jauges 30 sont connectées à une cartouche électronique 33 par l'intermédiaire d'une connexion électrique 34. La cartouche électronique 33 récupère les données mesurées par l'une des trois jauges et injecte un signal sous la forme préférentielle d'un courant électromagnétique de basse fréquence modulée en phase (PSK) représentatif de ces données vers le tore 35. La figure 4 représente le principe d'une réalisation et de fonctionnement d'un transformateur torique dont le circuit primaire 40 est relié à l'émetteur/récepteur 33 tandis que le circuit secondaire possède une spire unique 41 constituée par l'arbre intérieur 42 de l'ensemble 1. L'arbre 42 est lié mécaniquement et électriquement à la garniture de DST et permet de véhiculer le courant électrique jusqu'à l'ensemble 2, assurant ainsi la communication bi-directionnelle entre les ensembles 1 et 2. Un capot 36 solidaire de l'ensemble 1 est isolé électriquement au moins sur l'une de ses extrémités 37 tout en protégeant le tore 35 et la cartouche électronique 33.
Dans le mode de transmission d'un signal venant de la surface vers l'ensemble 1, via la navette 2, un signal basse fréquence modulé en phase est émis par la navette. Il est reçu par le tore 35 et traité par la cartouche électronique 33. Ce signal permet, par exemple, de modifier le mode de fonctionnement de l'ensemble 1. Les deux principaux modes de fonctionnement peuvent être:
  • un mode dit "Temps Réel" par lequel les données fournies par une ou plusieurs jauges sont transmises en temps réel à la navette, puis à la surface par l'intermédiaire du câble,
  • un mode dit "Play-Back" par lequel il y a émission de type multiplexée des données en temps réel et des données mesurées précédemment. Ce mode permet de connaítre l'ensemble des données mesurées depuis la mise sous tension des jauges jusqu'à l'instant présent. Il permet en particulier d'avoir accès, alors que le test est en cours, aux données correspondantes à la phase dite de débit ("flowing") alors que l'ensemble 2 est généralement descendu pendant la phase de fermeture de la vanne ("build-up") qui se déroule après la phase de débit du puits.
Le signal de commande de fonctionnement, émis de la surface, permet aussi de choisir la jauge qui sera lue par la cartouche électronique.
Il est à noter que les données sont également stockées dans chaque jauge 30 et peuvent également être lues en surface à la fin du test.
Le second ensemble 2 ou navette (figure 1 et figure 2) est reliée à la surface par un câble coaxial 3. Le câble permet l'alimentation électrique du compartiment électronique inclus dans la navette et le dialogue bidirectionnel entre la navette et la surface.
Le compartiment électronique se compose principalement: d'un émetteur/récepteur électromagnétique et d'un transmetteur électrique bidirectionnel permettant le dialogue avec la surface via les conducteurs du câble.
L'émetteur électromagnétique de la navette génère un signal basse fréquence modulé en phase entre l'armature du câble et les moyens de contact 18, ces deux points étant isolés électriquement par la jonction isolante 21. La navette génère ce signal sur réception d'un signal d'ordre provenant de la surface via le câble coaxial. Le signal généré par la navette est reçu puis décodé par l'ensemble 1 pour lui permettre de modifier son mode de fonctionnement. D'une manière équivalente, la navette peut injecter ou recevoir un courant électromagnétique en utilisant des moyens comportant un transformateur.
Le récepteur électromagnétique de la navette reçoit, puis décode, le signal basse fréquence émis par l'ensemble 1. Ce signal est mesuré entre l'armature du câble 3 et le contact 18. Il est généralement représentatif des données mesurées par les jauges de l'ensemble 1.
Lorsque les données sont décodées, elles sont transmises vers la surface par l'intermédiaire du câble.
Les moyens de contact 18 peuvent, en plus d'assurer un contact électrique entre la navette et le train de test, assurer un ancrage mécanique de la navette dans le train de test. Cet ancrage peut être nécessaire si, comme dans le cas d'utilisation d'un raccord d'isolation 12 dans la garniture de test, il faut une position déterminée de la navette, ou si le débit de l'effluent risque de créer des déplacements intempestifs, ou des vibrations qui peuvent être gênant pour le bon fonctionnement de la transmission.

Claims (15)

  1. Dispositif de transmission d'information entre le fond d'un puits (5) et la surface du sol, ledit dispositif comportant un ensemble de tubes (4) séparés en une partie inférieure et une partie supérieure par des moyens d'obturation (9) de l'espace intérieur desdits tubes, des moyens d'étanchéité annulaire (6) entre lesdits tubes et ledit puits, ladite partie inférieure comporte un premier ensemble (1) comportant des moyens d'acquisition d'informations et des moyens de transmission et de réception de signaux électromagnétiques, caractérisé en ce qu' un second ensemble (2) de transmission et de réception de signaux électromagnétiques est placé dans l'espace intérieur de la partie supérieure des tubes par des moyens de manoeuvre (3) comportant au moins une ligne de communication électrique ou optique remontant jusqu'à la surface et en ce que ledit second ensemble comporte des moyens de contact (18, 15) électrique avec lesdits tubes.
  2. Dispositif selon la revendication 1, dans lequel les premier et second ensembles (1, 2) comportent des moyens d'injection d'un courant électrique basse fréquence le long des tubes (4).
  3. Dispositif selon la revendication 2, dans lequel ledit premier ensemble (1) comporte un transformateur de forme torique (35) sensiblement concentrique à l'axe desdits tubes (4).
  4. Dispositif selon l'une des revendications précédentes, dans lequel lesdits moyens de manoeuvre (4) sont constitués par au moins une longueur de câble à conducteurs coaxiaux et à armure extérieure métallique.
  5. Dispositif selon l'une des revendications précédentes, dans lequel la partie supérieure des tubes comporte un moyen d'isolation électrique (12) placé entre deux éléments de tubes.
  6. Dispositif selon la revendication 5, dans lequel au moins un (18) des moyens de contact entre ledit second ensemble et les tubes est situé entre ledit moyen d'isolation (12) et lesdits moyens d'obturation (9).
  7. Dispositif selon l'une des revendications précédentes, dans lequel lesdits moyens d'acquisition d'informations comportent au moins un capteur de pression et un capteur de température.
  8. Dispositif selon l'une des revendications précédentes, dans lequel lesdits moyens de manoeuvre (3) du second ensemble (2) comportent des moyens de contact (15) avec les tubes situés à plusieurs mètres du second ensemble (2).
  9. Dispositif selon l'une des revendications précédentes, dans lequel le puits (5) est cuvelé par un tubage métallique (16), et dans lequel la portion de tubes comprise entre lesdits ensembles (1, 2) est sensiblement isolée électriquement dudit tubage par des moyens de centrage (13, 14).
  10. Dispositif selon la revendication 9, dans lequel lesdits tubes (4) comportent au moins deux moyens de contact électrique (6, 10, 11) avec le tubage métallique situés de part et d'autre de ladite portion de tubes centrés.
  11. Dispositif selon la revendication 10, dans lequel l'un des moyens de contact avec le tubage métallique est constitué par lesdits moyens d'étanchéité annulaire (6).
  12. Méthode de transmission d'informations entre le fond d'un puits (5) et la surface du sol par moyen d'un dispositif de transmission, ledit dispositif comportant un ensemble de tubes (4) séparés en une partie inférieure et une partie supérieure par des moyens d'obturation (9) de l'espace intérieur desdits tubes, des moyens d'étanchéité annulaire (6) entre lesdits tubes et ledit puits, des moyens d'acquisition d'informations, caractérisée en ce que l'on transmet par un courant électromagnétique lesdites informations de la partie inférieure à la partie supérieure par un premier ensemble (1) placé sous lesdits moyens d'obturation (9) et un second ensemble (2) placé dans l'espace intérieur de la partie supérieure, et en ce que lesdites informations sont transmise à la surface par une ligne de communication électrique ou optique reliant ledit second ensemble à la surface du sol.
  13. Méthode selon la revendication 12, dans laquelle l'acquisition des informations est télécommandée à partir de la surface par le canal de ladite ligne (3) et des second et premier ensembles (1, 2).
  14. Méthode selon l'une des revendications 12 ou 13, dans laquelle on manoeuvre ledit second ensemble au dessus des moyens d'obturation par le moyen d'un câble coaxial du type "logging".
  15. Méthode selon l'une des revendications 12 à 14, dans laquelle on communique de façon bi-directionnelle entre lesdits deux ensembles par l'injection d'un courant électrique sinusoïdal d'intensité et de fréquence programmables.
EP97401341A 1996-07-01 1997-06-13 Dispositif et méthode de transmission d'informations par onde électromagnétique Expired - Lifetime EP0816632B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9608256 1996-07-01
FR9608256A FR2750450B1 (fr) 1996-07-01 1996-07-01 Dispositif et methode de transmission d'informations par onde electromagnetique

Publications (2)

Publication Number Publication Date
EP0816632A1 EP0816632A1 (fr) 1998-01-07
EP0816632B1 true EP0816632B1 (fr) 2003-09-03

Family

ID=9493657

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97401341A Expired - Lifetime EP0816632B1 (fr) 1996-07-01 1997-06-13 Dispositif et méthode de transmission d'informations par onde électromagnétique

Country Status (6)

Country Link
US (1) US5945923A (fr)
EP (1) EP0816632B1 (fr)
AU (1) AU726088B2 (fr)
CA (1) CA2209423C (fr)
FR (1) FR2750450B1 (fr)
NO (1) NO317444B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7249636B2 (en) 2004-12-09 2007-07-31 Schlumberger Technology Corporation System and method for communicating along a wellbore

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6710600B1 (en) 1994-08-01 2004-03-23 Baker Hughes Incorporated Drillpipe structures to accommodate downhole testing
CA2272044C (fr) * 1998-05-18 2005-10-25 Denis S. Kopecki Structures de tiges de forage adaptees aux essais de production en puits
FR2785017B1 (fr) * 1998-10-23 2000-12-22 Geoservices Methode et systeme de transmission d'informations par onde electromagnetique
US6684952B2 (en) 1998-11-19 2004-02-03 Schlumberger Technology Corp. Inductively coupled method and apparatus of communicating with wellbore equipment
US7407006B2 (en) * 1999-01-04 2008-08-05 Weatherford/Lamb, Inc. System for logging formations surrounding a wellbore
US6736210B2 (en) 2001-02-06 2004-05-18 Weatherford/Lamb, Inc. Apparatus and methods for placing downhole tools in a wellbore
US7513305B2 (en) * 1999-01-04 2009-04-07 Weatherford/Lamb, Inc. Apparatus and methods for operating a tool in a wellbore
US6798338B1 (en) * 1999-02-08 2004-09-28 Baker Hughes Incorporated RF communication with downhole equipment
US7071837B2 (en) 1999-07-07 2006-07-04 Expro North Sea Limited Data transmission in pipeline systems
US6343649B1 (en) * 1999-09-07 2002-02-05 Halliburton Energy Services, Inc. Methods and associated apparatus for downhole data retrieval, monitoring and tool actuation
US7385523B2 (en) * 2000-03-28 2008-06-10 Schlumberger Technology Corporation Apparatus and method for downhole well equipment and process management, identification, and operation
US6989764B2 (en) * 2000-03-28 2006-01-24 Schlumberger Technology Corporation Apparatus and method for downhole well equipment and process management, identification, and actuation
US6516663B2 (en) 2001-02-06 2003-02-11 Weatherford/Lamb, Inc. Downhole electromagnetic logging into place tool
GB0124451D0 (en) * 2001-10-11 2001-12-05 Flight Refueling Ltd Magnetic signalling in pipelines
WO2003044320A1 (fr) * 2001-10-12 2003-05-30 Shell Internationale Research Maatschappij B.V. B.V. Procede et dispositif permettant de transferer des donnees entre un objet se deplaçant dans un tubage de puits et une station distante
US6776240B2 (en) 2002-07-30 2004-08-17 Schlumberger Technology Corporation Downhole valve
US6915848B2 (en) 2002-07-30 2005-07-12 Schlumberger Technology Corporation Universal downhole tool control apparatus and methods
US7163065B2 (en) * 2002-12-06 2007-01-16 Shell Oil Company Combined telemetry system and method
US7170423B2 (en) * 2003-08-27 2007-01-30 Weatherford Canada Partnership Electromagnetic MWD telemetry system incorporating a current sensing transformer
US7145473B2 (en) * 2003-08-27 2006-12-05 Precision Drilling Technology Services Group Inc. Electromagnetic borehole telemetry system incorporating a conductive borehole tubular
US7080699B2 (en) * 2004-01-29 2006-07-25 Schlumberger Technology Corporation Wellbore communication system
WO2006083764A1 (fr) * 2005-01-31 2006-08-10 Baker Hughes Incorporated Systeme de telemetrie avec connecteur isolant
US7518528B2 (en) * 2005-02-28 2009-04-14 Scientific Drilling International, Inc. Electric field communication for short range data transmission in a borehole
US8056619B2 (en) 2006-03-30 2011-11-15 Schlumberger Technology Corporation Aligning inductive couplers in a well
US7793718B2 (en) 2006-03-30 2010-09-14 Schlumberger Technology Corporation Communicating electrical energy with an electrical device in a well
US7735555B2 (en) * 2006-03-30 2010-06-15 Schlumberger Technology Corporation Completion system having a sand control assembly, an inductive coupler, and a sensor proximate to the sand control assembly
US7712524B2 (en) * 2006-03-30 2010-05-11 Schlumberger Technology Corporation Measuring a characteristic of a well proximate a region to be gravel packed
CA2544457C (fr) 2006-04-21 2009-07-07 Mostar Directional Technologies Inc. Systeme et methode de telemesure de fond de trou
US8839850B2 (en) * 2009-10-07 2014-09-23 Schlumberger Technology Corporation Active integrated completion installation system and method
US20110192596A1 (en) * 2010-02-07 2011-08-11 Schlumberger Technology Corporation Through tubing intelligent completion system and method with connection
RU2475642C1 (ru) * 2011-08-09 2013-02-20 Открытое акционерное общество "Научно-производственная фирма "Геофизика" (ОАО НПФ "Геофизика") Способ и оборудование для проведения гидродинамических исследований пластов на трубах
US9249559B2 (en) 2011-10-04 2016-02-02 Schlumberger Technology Corporation Providing equipment in lateral branches of a well
US9644476B2 (en) 2012-01-23 2017-05-09 Schlumberger Technology Corporation Structures having cavities containing coupler portions
US9175560B2 (en) 2012-01-26 2015-11-03 Schlumberger Technology Corporation Providing coupler portions along a structure
US9938823B2 (en) 2012-02-15 2018-04-10 Schlumberger Technology Corporation Communicating power and data to a component in a well
US10036234B2 (en) 2012-06-08 2018-07-31 Schlumberger Technology Corporation Lateral wellbore completion apparatus and method
GB2506123C (en) 2012-09-19 2024-02-21 Expro North Sea Ltd Downhole communication
AU2014204024B2 (en) 2013-01-04 2017-10-12 Carbo Ceramics Inc. Electrically conductive proppant and methods for detecting, locating and characterizing the electrically conductive proppant
US9434875B1 (en) 2014-12-16 2016-09-06 Carbo Ceramics Inc. Electrically-conductive proppant and methods for making and using same
US11008505B2 (en) 2013-01-04 2021-05-18 Carbo Ceramics Inc. Electrically conductive proppant
US9551210B2 (en) 2014-08-15 2017-01-24 Carbo Ceramics Inc. Systems and methods for removal of electromagnetic dispersion and attenuation for imaging of proppant in an induced fracture

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3967201A (en) * 1974-01-25 1976-06-29 Develco, Inc. Wireless subterranean signaling method
US4093936A (en) * 1976-12-27 1978-06-06 Kerr-Mcgee Corporation Logging method and apparatus
US4781053A (en) * 1986-03-05 1988-11-01 Stewart Charles L Indirect extrusion process and machinery therefor
FR2635819B1 (fr) * 1988-09-01 1993-09-17 Geoservices Systeme de raccordement electriquement isolant d'elements tubulaires metalliques pouvant notamment servir de structure d'antenne situee a grande profondeur
GB9021253D0 (en) * 1990-09-29 1990-11-14 Metrol Tech Ltd Method of and apparatus for the transmission of data via a sonic signal
FR2681461B1 (fr) * 1991-09-12 1993-11-19 Geoservices Procede et agencement pour la transmission d'informations, de parametres et de donnees a un organe electro-magnetique de reception ou de commande associe a une canalisation souterraine de grande longueur.
FR2697119B1 (fr) * 1992-10-16 1995-01-20 Schlumberger Services Petrol Dispositif émetteur à double raccord isolant, destiné à l'emploi dans un forage.
US5512889A (en) * 1994-05-24 1996-04-30 Atlantic Richfield Company Downhole instruments for well operations

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7249636B2 (en) 2004-12-09 2007-07-31 Schlumberger Technology Corporation System and method for communicating along a wellbore

Also Published As

Publication number Publication date
CA2209423A1 (fr) 1998-01-01
NO317444B1 (no) 2004-11-01
EP0816632A1 (fr) 1998-01-07
NO973006L (no) 1998-01-02
FR2750450A1 (fr) 1998-01-02
US5945923A (en) 1999-08-31
CA2209423C (fr) 2006-11-14
FR2750450B1 (fr) 1998-08-07
AU2834897A (en) 1998-01-15
NO973006D0 (no) 1997-06-27
AU726088B2 (en) 2000-11-02

Similar Documents

Publication Publication Date Title
EP0816632B1 (fr) Dispositif et méthode de transmission d'informations par onde électromagnétique
CA2090294C (fr) Methode et dispositif pour etablir une connexion electrique intermittente avec un outil a poste fixe dans un puits
EP0780702B1 (fr) Méthode et dispositif pour l'acquisition de signaux en cours de forage
EP0122839B1 (fr) Méthode et dispositif permettant d'effectuer des mesures et/ou interventions dans un puits
CA2078467C (fr) Dispositif perfectionne de surveillance d'un gisement pour puits de production
FR2681461A1 (fr) Procede et agencement pour la transmission d'informations, de parametres et de donnees a un organe electro-magnetique de reception ou de commande associe a une canalisation souterraine de grande longueur.
FR2910925A1 (fr) Systeme et procede de telemetrie dans les puits de forage
CA2286435C (fr) Methode et systeme de transmission d'informations par onde electromagnetique
US7554458B2 (en) Downhole communication
FR2654521A1 (fr) Source electromagnetique de puits a demeure.
FR2861421A1 (fr) Systeme et procede de telemetrie de fond
FR2501777A1 (fr) Methode et dispositif pour effectuer, a l'aide d'outils specialises, des operations telles que des mesures, dans des portions de puits fortement inclinees sur la verticale, ou horizontales
EP0546892B1 (fr) Procédé et dispositif pour l'interconnexion électrique d'appareils tels que de sondes de puits
FR2808836A1 (fr) Procede et dispositif de mesure de parametres physiques dans un puits d'exploitation d'un gisement ou d'une reserve souterraine de stockage de fluide
FR2954397A1 (fr) Dispositif d'intervention dans un puits d'exploitation de fluide menage dans le sous-sol, et ensemble d'intervention associe.
EP0296207B1 (fr) Methode et dispositif pour effectuer des mesures et/ou interventions dans un puits soumis a compression hydraulique
EP1225301A1 (fr) Tige creuse de forage pour la transmission d'informations
EP0295291B1 (fr) Systeme de deplacement d'un ensemble d'instruments et methode de mesures ou/et d'interventions dans un puits
EP1473256B1 (fr) Procédé et dispositif de transmission d'informations entre une cavité saline et la surface du sol
FR3040068A1 (fr) Systeme et procede toroidal pour communiquer dans un environnement de fond de puits
FR2777594A1 (fr) Installation de transmission d'informations dans un puits de forage
FR2813958A1 (fr) Dispositif destine a mesurer un parametre electrique au travers d'un cuvelage electriquement conducteur
FR3047040A1 (fr)
EP0863412B1 (fr) Système de tubes pour mesures électriques
EP0457644B1 (fr) Système de réception d'ondes acoustiques pour puits permettant un découplage mécanique des capteurs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): FR GB IT

17P Request for examination filed

Effective date: 19980707

AKX Designation fees paid

Free format text: FR GB IT

RBV Designated contracting states (corrected)

Designated state(s): FR GB IT

17Q First examination report despatched

Effective date: 20020312

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031105

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040604

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20090115 AND 20090121

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160608

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160516

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160621

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20170612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170612