EP0811155B1 - Process for determining the surface state of highways in particular, and device for carrying out this process - Google Patents

Process for determining the surface state of highways in particular, and device for carrying out this process Download PDF

Info

Publication number
EP0811155B1
EP0811155B1 EP96904716A EP96904716A EP0811155B1 EP 0811155 B1 EP0811155 B1 EP 0811155B1 EP 96904716 A EP96904716 A EP 96904716A EP 96904716 A EP96904716 A EP 96904716A EP 0811155 B1 EP0811155 B1 EP 0811155B1
Authority
EP
European Patent Office
Prior art keywords
wavelength range
radiation
wavelength
measured
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96904716A
Other languages
German (de)
French (fr)
Other versions
EP0811155A1 (en
Inventor
Thomas Huth-Fehre
Karl Cammann
Thomas Kantimm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut fuer Chemo und Biosensorik Muenster eV ICB
Original Assignee
Institut fuer Chemo und Biosensorik Muenster eV ICB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut fuer Chemo und Biosensorik Muenster eV ICB filed Critical Institut fuer Chemo und Biosensorik Muenster eV ICB
Publication of EP0811155A1 publication Critical patent/EP0811155A1/en
Application granted granted Critical
Publication of EP0811155B1 publication Critical patent/EP0811155B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B19/00Alarms responsive to two or more different undesired or abnormal conditions, e.g. burglary and fire, abnormal temperature and abnormal rate of flow
    • G08B19/02Alarm responsive to formation or anticipated formation of ice
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0116Measuring and analyzing of parameters relative to traffic conditions based on the source of data from roadside infrastructure, e.g. beacons
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/04Detecting movement of traffic to be counted or controlled using optical or ultrasonic detectors

Definitions

  • the invention relates to a method for Determining the surface condition, in particular of traffic routes, according to the preamble of the main claim and on a device for performing of the procedure.
  • DE 40 08 280 describes a method for non-contact Determination of the road surface condition regarding dryness, wetness or icing known in which the surface to be examined with a broadband light source and that reflected light selectively in two wavelength ranges is measured simultaneously.
  • the measuring wavelengths lie in a wavelength range in which the reflection behavior a spectral dependence shows from the surface state, namely in the wavelength range from 2700 nm to 3200 nm, of which Signals at two wavelengths in this wavelength range the quotient is formed which is the surface state characterized.
  • the determined one Signal quotient becomes one of the states dry, wet or icy assigned.
  • the known method has the disadvantage that only the direct surface is considered and not the state just below the surface. As a consequence, that freezing over or under freezing is not recognized can be because at the wavelengths from 2700 nm to 3200 nm the penetration depth of the electromagnetic Radiation in the surface is extremely low. Especially is also stated in the publication, that regardless of the layer thickness, the detection of the Surface condition should be provided.
  • the invention has for its object a method to determine the surface condition in particular of traffic routes with regard to drought, Wetness or icing and a corresponding device to create that cost-effectively to implement are and a quick and accurate determination of the Surface condition also in deeper layers of the Allow surface.
  • the liquid does not have to be exclusively water, but it is also another solidified protic Can act liquid or solution, for example also by a freezing point Salt water solution.
  • the degree of crystallization of the water or the liquid can be from the shift the absorption bands of at least two spectral sections determine where spectral ranges be picked out, where the difference of the Reflection spectrum between liquid and solid Physical state emerges particularly clearly and where the depth of penetration is sufficiently large namely in the order of magnitude usually Traffic or standing layers of water or ice.
  • the one in the invention based on the desired Penetration depth influence of the subsurface, for example the road surface and a spread of the Material, for example the ice of the surface layer, is reflected by measuring the Radiation detected in two further wavelength ranges, that of an absorption of the molecules of the protic Liquid or solution regardless of that Degree of crystallization, can be influenced very little. The influence is then compensated for in the measurement evaluation.
  • Fig. 1 are different reflection spectra for a wavelength range from approximately 850 nm to 1100 nm shown, with the upper spectrum for drying Asphalt, the medium spectrum for asphalt with water and the lower spectrum applies to asphalt with ice.
  • the spectra show that certain Spectral values with the degree of crystallization to change. By measuring these spectral values statements about the degree of crystallization can thus be made make a road surface. For example, the absorption band of water among others at approx. 840 nm, 970 nm, 1170 nm and correspondingly for ice at 890 to 920 nm, 1020 to 1060 nm, 1260 to 1290 nm and so on.
  • reflection measurements are carried out at two wavelengths which are invariant to icing or crystallization in order to determine the background or background, and reflection measurements are also carried out at two wavelengths which / Carry ice information.
  • Fig. 1 the wavelengths for determining the background with ⁇ A and ⁇ D and the wavelengths with water / ice information with ⁇ B and ⁇ c , respectively.
  • S '( ⁇ C. ) / P G S '( ⁇ C. ) / P G .
  • the sum of S "( ⁇ B ) and s" ( ⁇ c ) is a measure of the total amount of moisture present, that is to say for the total water molecules present.
  • the difference between the two values (S “( ⁇ B ) - s" ( ⁇ c ) and the quotient of the two values (S “( ⁇ B ) / S" ( ⁇ c ) are both a measure of the proportion of the material that has already been frozen of the total amount of moisture or water molecules.
  • FIG. 2 An advantageous embodiment of a measuring arrangement for carrying out the method according to the invention is shown schematically in FIG. 2.
  • the electromagnetic radiation from a light or radiation source 1 for example a diffuse white light source with an infrared component sufficient for the measurement, is then applied to the surface 3 to be checked via a condenser lens 2.
  • the radiation emerging from the light guide is simultaneously directed via a further condenser 6 to four receivers 7, the radiation being divided via three semi-transparent mirrors 8, each with 50% reflection and 50% transmission, and projected onto the receivers 7 via converging lenses 9.
  • wavelength-selective filters 10, 11, 12, 13 are arranged in front of the converging lenses 9, which pass the wavelengths ⁇ A to ⁇ D of, for example, 920, 980, 1030 and 1080 nm.
  • the receivers 7 are equipped with an evaluation unit 14 connected by evaluating according to the above specified ratings is carried out.
  • the exit the evaluation unit which is designed as a microcomputer can be with a display unit and / or a warning device connected.
  • the recipients 7 can be designed as discrete diodes can also be fast-responding, highly sensitive to light Arrays, such as diode arrays, CCD arrays or the like can be used. Important at the measurement is that the entire cross section of the from of the surface 3 to be viewed reflected Light beam mapped onto each receiver regardless of location is a location-independent evaluation can be made.
  • the semipermeable Mirror 8 and the wavelength selective filter a dispersion element that acts as a diffraction grating or Prism is formed, is provided on which the Radiation is split wavelength-selectively, the receivers, for example via light guides, locally assigned to the wavelengths on the diffraction grating are.
  • the evaluation unit 14 evaluates more depending on the or less present crystalline state of the Surface 3, i.e. here of the solid / liquid water, the reflected spectrum characteristic of this out.
  • the evaluation can be according to the above Procedures are carried out step by step.
  • the evaluation unit 14, however, the evaluation can be made on appropriate neural networks Algorithms, along with decision logic, which is based on fuzzy logic, that is, building on the theory of fuzzy sets, so that the possibility of evaluation at high Accuracy also for very blurred spectra images results. Based on the evaluation, too different thicknesses of water over ice or Slush can be recognized.
  • intensity modulation of the light source 1 via a chopper wheel or electronic power control can be made.
  • the measuring arrangement according to the invention is on a vehicle preferably arranged in the immediate vicinity of the track.
  • the device according to the invention can also be used to provide information about the micro-roughness of the road surface, since the ratio of the values m determined above (slope of the spectral curve of the background) and s G (“average brightness”) is a measure of the wavelength dependence of the scattering capacity of the road surface. The largest part of this wavelength dependency has the grain size of the scattering particles (Mie scattering). m / S G thus characterizes the micro-roughness of the road surface, which is essential for assessing tire grip on the road. This applies not only to dry topping, but also to snow, for example, since the grain size also varies here depending on the type of snow.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PCT No. PCT/DE96/00347 Sec. 371 Date Oct. 22, 1997 Sec. 102(e) Date Oct. 22, 1997 PCT Filed Feb. 23, 1996 PCT Pub. No. WO96/26430 PCT Pub. Date Aug. 29, 1996There are proposed a method and a device for ascertaining the surface condition, particularly of traffic routes, as regards dryness, wetness or icing, in which the surface is irradiated by a radiation source with an infrared component, and the reflected radiation is measured simultaneously in different wavelength ranges characterizing water and ice. In this case at least four wavelength ranges are selected, permitting sufficient depth or penetration of the radiation into the surface. A first and a second wavelength range are so selected that they are influenced to a very small degree by absorption of the water molecules, and a third and fourth wavelength ranges are so selected that they are characteristic for water and ice. The influence of the background on signals measured in the third and fourth wavelength ranges is compensated for by means of the information in the signals measured in the first and second wavelength ranges. In dependence on the measured signals, therefore, a prediction can be made regarding the surface condition.

Description

Die Erfindung bezieht sich auf ein Verfahren zum Feststellen des Oberflächenzustandes, insbesondere von Verkehrswegen, nach dem Oberbegriff des Hauptanspruchs sowie auf eine Vorrichtung zur Durchführung des Verfahrens.The invention relates to a method for Determining the surface condition, in particular of traffic routes, according to the preamble of the main claim and on a device for performing of the procedure.

Aus der DE 40 08 280 ist ein Verfahren zur berührungslosen Ermittlung des Fahrbahnoberflächenzustandes hinsichtlich Trockenheit, Nässe oder Vereisung bekannt, bei dem die zu untersuchende Oberfläche mit einer breitbandigen Lichtquelle beleuchtet und das reflektierte Licht selektiv in zwei Wellenlängenbereichen gleichzeitig gemessen wird. Die Meßwellenlängen liegen dabei in einem Wellenlängenbereich, in dem das Reflexionsverhalten eine spektrale Abhängigkeit vom Oberflächenzustand zeigt, nämlich im Wellenlängenbereich von 2700 nm bis 3200 nm, wobei von den Signalen bei zwei Wellenlängen dieses Wellenlängenbereichs der Quotient gebildet wird, der den Oberflächenzustand charakterisiert. Der jeweils ermittelte Signalquotient wird einem der Zustände trocken, naß oder vereist zugeordnet.DE 40 08 280 describes a method for non-contact Determination of the road surface condition regarding dryness, wetness or icing known in which the surface to be examined with a broadband light source and that reflected light selectively in two wavelength ranges is measured simultaneously. The measuring wavelengths lie in a wavelength range in which the reflection behavior a spectral dependence shows from the surface state, namely in the wavelength range from 2700 nm to 3200 nm, of which Signals at two wavelengths in this wavelength range the quotient is formed which is the surface state characterized. The determined one Signal quotient becomes one of the states dry, wet or icy assigned.

Das bekannte Verfahren hat den Nachteil, daß nur die direkte Oberfläche betrachtet wird und nicht der Zustand direkt unter der Oberfläche. Dies hat zur Folge, daß über- oder unterfrierende Nässe nicht erkannt werden kann, da bei den Wellenlängen von 2700 nm bis 3200 nm die Eindringtiefe der elektromagnetischen Strahlung in die Oberfläche äußerst gering ist. Insbesondere wird in der Druckschrift auch ausgeführt, daß unabhängig von der Schichtdicke der Nachweis des Oberflächenzustandes erbracht werden soll.The known method has the disadvantage that only the direct surface is considered and not the state just below the surface. As a consequence, that freezing over or under freezing is not recognized can be because at the wavelengths from 2700 nm to 3200 nm the penetration depth of the electromagnetic Radiation in the surface is extremely low. Especially is also stated in the publication, that regardless of the layer thickness, the detection of the Surface condition should be provided.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Feststellen des Oberflächenzustandes insbesondere von Verkehrswegen hinsichtlich Trockenheit, Nässe oder Vereisung und eine entsprechende Vorrichtung zu schaffen, die kostengünstig zu realisieren sind und eine schnelle und genaue Bestimmung des Oberflächenzustandes auch in tieferen Schichten der Oberfläche gestatten.The invention has for its object a method to determine the surface condition in particular of traffic routes with regard to drought, Wetness or icing and a corresponding device to create that cost-effectively to implement are and a quick and accurate determination of the Surface condition also in deeper layers of the Allow surface.

Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Hauptanspruchs in Verbindung mit den Merkmalen des Oberbegriffs gelöst. Vorteilhafte Weiterbildungen und Ausgestaltungen dieser Aufgabenlösung ergeben sich für das Verfahren wie auch die zur Durchführung des Verfahrens erforderliche Vorrichtung aus den Unteransprüchen. This object is achieved by the characterizing Features of the main claim related solved with the features of the generic term. Beneficial Developments and refinements of this task solution arise for the procedure as well the one required to carry out the procedure Device from the subclaims.

Mit dem vorliegenden erfindungsgemäßen Verfahren ist es erstmals möglich, eine praktisch momentane Erkennung von Eis- und Reifbildung an festen Flächen, wie Straßenbelägen, mittels spektralanalytischer Messung auch bei Berücksichtigung der Schichtdicke der Oberfläche festzustellen, und zwar in Abhängigkeit von dem jeweiligen Kristallisationsgrad, wobei die Flüssigkeit nicht ausschließlich Wasser sein muß, sondern es sich auch um eine andere erstarrungsfähige protische Flüssigkeit oder Lösung handeln kann, also beispielsweise auch um eine gefrierpunkterniedrigte Salzwasserlösung. Der Kristallisationsgrad des Wassers bzw. der Flüssigkeit läßt sich aus der Verschiebung der Absorptionsbanden von mindestens zwei Spektralabschnitten ermitteln, wobei Spektralbereiche herausgegriffen werden, bei denen der Unterschied des Reflexionsspektrums zwischen flüssigem und festem Aggregatzustand besonders deutlich hervortritt und bei denen die Eindringtiefe ausreichend groß ist, nämlich in der Größenordnung der üblicherweise auf Verkehrswegen stehenden Wasser- oder Eisschichten. Der bei dem erfindungsgemäßen aufgrund der gewünschten Eindringtiefe bedingte Einfluß des Untergrundes, zum Beispiel der Fahrbahndecke und einer Streuung des Materials, zum Beispiel des Eises der Oberflächenschicht, wird durch die Messung der reflektierten Strahlung in zwei weiteren Wellenlängenbereichen erfaßt, die von einer Absorption der Moleküle der protischen Flüssigkeit oder Lösung, unabhängig von dem Kristallisationsgrad, sehr wenig beeinflußt werden. Der Einfluß wird dann bei der Meßauswertung kompensiert.With the present inventive method it is possible for the first time, a practically instantaneous detection of ice and frost formation on solid surfaces, such as Road surfaces, using spectral analysis measurement even when considering the layer thickness of the surface to be determined, depending on the respective degree of crystallization, the liquid does not have to be exclusively water, but it is also another solidified protic Can act liquid or solution, for example also by a freezing point Salt water solution. The degree of crystallization of the water or the liquid can be from the shift the absorption bands of at least two spectral sections determine where spectral ranges be picked out, where the difference of the Reflection spectrum between liquid and solid Physical state emerges particularly clearly and where the depth of penetration is sufficiently large namely in the order of magnitude usually Traffic or standing layers of water or ice. The one in the invention based on the desired Penetration depth influence of the subsurface, for example the road surface and a spread of the Material, for example the ice of the surface layer, is reflected by measuring the Radiation detected in two further wavelength ranges, that of an absorption of the molecules of the protic Liquid or solution regardless of that Degree of crystallization, can be influenced very little. The influence is then compensated for in the measurement evaluation.

Vorteilhaft ist es, die spektralanalytischen Messungen sowohl vor als hinter einer Radlauffläche eines Fahrzeuges vorzunehmen und die Auswertungen dann zueinander in Relation zu setzen, womit zusätzliche Aussagen, zum Beispiel zwischen Schneematsch und mit einem Wasserfilm bedeckten Eisschichten, vorgenommen werden können.It is advantageous to carry out the spectral analysis measurements both in front of and behind a wheel tread Vehicle and the evaluations then to each other in relation to what additional Statements, for example between slush and with layers of ice covered with a film of water can be.

Durch die in den Unteransprüchen angegebenen Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen möglich.By the measures specified in the subclaims are advantageous further developments and improvements possible.

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird in der nachfolgenden Beschreibung näher erläutert. Es zeigen:

Fig. 1
Reflexionsspektren für trocknen Asphalt, Asphalt mit Wasser und Asphalt mit Eis und
Fig. 2
eine schematische Darstellung der erfindungsgemäßen Vorrichtung.
An embodiment of the invention is shown in the drawing and is explained in more detail in the following description. Show it:
Fig. 1
Reflection spectra for dry asphalt, asphalt with water and asphalt with ice and
Fig. 2
a schematic representation of the device according to the invention.

In Fig. 1 sind verschiedene Reflexionsspektren für einen Wellenlängenbereich von etwa 850 nm bis 1100 nm dargestellt, wobei das obere Spektrum für trocknen Asphalt, das mittlere Spektrum für Asphalt mit Wasser und das untere Spektrum für Asphalt mit Eis gilt. Aus den Spektren ist zu erkennen, daß sich in bestimmten Wellenlängenbereichen die Spektralwerte mit dem Kristallisationsgrad ändern. Durch Messen dieser Spektralwerte lassen sich somit Aussagen über den Kristallisationsgrad einer Fahrbahnoberfläche machen. Beispielsweise liegen die Absorptionsbande von Wasser unter anderem bei ca. 840 nm, 970 nm, 1170 nm und entsprechend für Eis bei 890 bis 920 nm, 1020 bis 1060 nm, 1260 bis 1290 nm und so weiter. In Fig. 1 are different reflection spectra for a wavelength range from approximately 850 nm to 1100 nm shown, with the upper spectrum for drying Asphalt, the medium spectrum for asphalt with water and the lower spectrum applies to asphalt with ice. Out The spectra show that certain Spectral values with the degree of crystallization to change. By measuring these spectral values statements about the degree of crystallization can thus be made make a road surface. For example, the absorption band of water among others at approx. 840 nm, 970 nm, 1170 nm and correspondingly for ice at 890 to 920 nm, 1020 to 1060 nm, 1260 to 1290 nm and so on.

Bei diesen verschiedenen Wellenlängen kann eine auf eine Wasser-/Eisschicht gerichtete Strahlung unterschiedlich dicke Schichten durchdringen, ehe sie absorbiert wird, das heißt, die Eindringtiefe der elektromagnetischen Strahlung in die Schichten ändert sich mit der Wellenlänge. Als Beispiel werden für einige Wellenlängen bei Wasser und Eis die Eindringtiefen angegeben, wobei hier als Eindringtiefe die Tiefe bezeichnet wird, bei der das aufgestrahlte Licht bzw. die Strahlung auf 1/e abgefallen ist:

Wasser:
980 nm - 2,17 cm; 1200 nm - 0,7 cm; 1450 nm - 0,035 cm; 1920 nm - 0,007 cm; und bei 3000 nm nur wenige µm.
Eis:
1030 nm - 3,102 cm; 1240 nm - 0,72 cm; 1490 nm - 0,022 cm; 1980 nm - 0,0097 cm; und bei 3000 nm gleichfalls nur wenige µm.
At these different wavelengths, radiation directed onto a water / ice layer can penetrate layers of different thicknesses before it is absorbed, that is to say the depth of penetration of the electromagnetic radiation into the layers changes with the wavelength. As an example, the penetration depths are given for some wavelengths in water and ice, whereby here the penetration depth is the depth at which the radiated light or the radiation has dropped to 1 / e:
Water:
980 nm - 2.17 cm; 1200 nm - 0.7 cm; 1450 nm - 0.035 cm; 1920 nm - 0.007 cm; and at 3000 nm only a few µm.
Ice cream:
1030 nm - 3.102 cm; 1240 nm - 0.72 cm; 1490 nm - 0.022 cm; 1980 nm - 0.0097 cm; and also only a few µm at 3000 nm.

Aus diesen Werten ist zu erkennen, daß im hohen Wellenlängenbereich beispielsweise von 3000 nm nur ein extrem dünner Oberflächenfilm erfaßt werden kann, so daß unterfrorene Nässe nicht bestimmt werden kann. Damit eine übliche auf Straßenbelägen vorhandene Wasserschicht bzw. Eisschicht über ihre ganze Dicke erfaßt werden kann, muß bei niedrigen Wellenlängen zum Beispiel bis zu 1300 nm gemessen werden. Wenn jedoch die Wellenlängenbereiche mit genügender, das heißt mit mindestens mehreren Millimetern Eindringtiefe, gewählt werden, werden bei der Messung von spektralen Reflexionsgraden die spektralen Eigenschaften des Straßenbelags miterfaßt. Als Beispiel ist in Fig. 1 der spektrale Reflexionsgrad von Asphalt angegeben, wobei die spektralen Eigenschaften grundsätzlich abhängig von der Korngröße sind. Für unterschiedliche Fahrbahnoberflächen verändern sich auch die Spektren des Reflexionsvermögens, wobei jedoch Messungen verschiedener Fahrbahnoberflächen gezeigt haben, daß die Reflektivität bzw. die Reflexionsgrade in dem interessierenden Wellenlängenbereich in den meisten relevanten Fällen linear approximiert werden können.From these values it can be seen that in the high wavelength range for example of 3000 nm only one extremely thin surface film can be detected, so that frozen cold cannot be determined. This is a common water layer on road surfaces or ice layer over its entire thickness can be must at low wavelengths Example up to 1300 nm can be measured. But when the wavelength ranges with sufficient, that is with a penetration depth of at least several millimeters, are chosen when measuring spectral Reflectance the spectral properties of the Road surface covered. As an example in Fig. 1 the spectral reflectance of asphalt is given, the spectral properties are fundamentally dependent are of the grain size. For different Road surfaces also change the spectra of reflectivity, but measurements of different Road surfaces have shown that the Reflectivity or the degrees of reflection in the wavelength range of interest in most relevant cases can be approximated linearly.

Da die spektralen Eigenschaften des Untergrundes bei den Reflexionsmessungen von nassen bzw. vereisten Oberflächen miterfaßt werden, müssen sie kompensiert werden. Um diese Kompensation durchzuführen, werden bei dem erfindungsgemäßen Verfahren Reflexionsmessungen bei zwei Wellenlängen vorgenommen, die invariant gegenüber einer Vereisung bzw. einer Kristallisation sind, um den Unter- bzw. Hintergrund zu bestimmen, und weiterhin werden Reflexionsmessungen bei zwei Wellenlängen vorgenommen, die die Wasser-/Eis-Information tragen. In Fig. 1 sind die Wellenlängen zur Bestimmung des Hintergrundes mit λA und λD und die Wellenlängen mit Wasser-/Eis-Information mit λB und λc, bezeichnet.Since the spectral properties of the subsurface are included in the reflection measurements from wet or icy surfaces, they must be compensated for. In order to carry out this compensation, in the method according to the invention, reflection measurements are carried out at two wavelengths which are invariant to icing or crystallization in order to determine the background or background, and reflection measurements are also carried out at two wavelengths which / Carry ice information. In Fig. 1, the wavelengths for determining the background with λ A and λ D and the wavelengths with water / ice information with λ B and λ c , respectively.

Im folgenden wird auf die Auswertung einer Reflexionsmessung bei den vier Wellenlängenbereichen eingegangen. Um den Einfluß des Untergrundes zu erfassen, wird die Steigung der Hintergrundgeraden bestimmt, wobei die Signalspannung bei den Wellenlängen mit S(λ) bezeichnet wird: m = s(λD) - S (λA) dividiert durch λD - λA. Das Untergrund- bzw. Hintergrundsignal SH bei den Wellenlängen λB und λc bestimmt sich zu: sHB) = s(λA) + m (λB - λA) sHC) - S(λA) + m (λC - λA) . Diese Hintergrundsignale werden von den eigentlichen Signalen bei λB und λc, zu hintergrundbereinigten Signalen abgezogen: s'(λB) = S(λB) - SHB) s' (λC) = s(λC) - SHC). Das Reflexionsvermögen des Hintergrunds läßt das Gesamtniveau des rückgestreuten Lichts stark schwanken, deshalb müssen die Werte s'(λB) und s'(λc) mit der "mittleren Helligkeit" sG = s[λA] + s[λD] / 2 normiert werden: S"(λB) = S'(λB) / SG und S"(λC) = S'(λC) / SG. Die Summe aus S"(λB) und s"(λc) ist ein Maß für die insgesamt vorhandene Feuchtigkeitsmenge, das heißt für die insgesamt vorhandenen Wassermoleküle. Die Differenz der beiden Werte (S"(λB) - s"(λc) und der Quotient der beiden Werte (S"(λB) / S"(λc) sind beide ein Maß für den Anteil des bereits gefrorenen Materials an der gesamten Feuchtigkeits- bzw. Wassermolekülmenge. S"(λB) und S"(λc) sowie ihre Summe korrelieren mit der Dicke einer Wasser- oder Eisschicht, wobei die Streuung im Eis bei der Korrelation berücksichtigt werden kann. Es lassen sich somit die Dicken von Wasser- und/oder Eisschichten abschätzen, selbst wenn beide gleichzeitig vorhanden sind.The evaluation of a reflection measurement in the four wavelength ranges is discussed below. To determine the influence of the background, the slope of the background line is determined, the signal voltage at the wavelengths being denoted by S (λ): m = s (λ D ) - S (λ A ) divided by λ D - λ A . The background or background signal S H at the wavelengths λ B and λ c is determined as follows: s H B ) = s (λ A ) + m (λ B - λ A ) s H C. ) - S (λ A ) + m (λ C. - λ A ). These background signals are subtracted from the actual signals at λ B and λ c to background-adjusted signals: s' (λ B ) = S (λ B ) - p H B ) s' (λ C. ) = s (λ C. ) - p H C. ). The reflectivity of the background causes the total level of backscattered light to fluctuate greatly, so the values s '(λ B ) and s' (λ c ) with the "medium brightness" s G = s [λ A ] + s [λ D ] / 2 are standardized: S "(λ B ) = S '(λ B ) / P G and S "(λ C. ) = S '(λ C. ) / P G . The sum of S "(λ B ) and s" (λ c ) is a measure of the total amount of moisture present, that is to say for the total water molecules present. The difference between the two values (S "(λ B ) - s" (λ c ) and the quotient of the two values (S "(λ B ) / S" (λ c ) are both a measure of the proportion of the material that has already been frozen of the total amount of moisture or water molecules. S "(λ B ) and S" (λ c ) and their sum correlate with the thickness of a layer of water or ice, whereby the scatter in ice can be taken into account in the correlation thus estimate the thickness of layers of water and / or ice, even if both are present at the same time.

Eine vorteilhafte Ausführungsform einer Meßanordnung zur Durchführung des erfindungsgemäßen Verfahrens ist schematisch in Fig. 2 dargestellt. Danach wird die elektromagnetische Strahlung einer Licht- oder Strahlungsquelle 1, beispielsweise einer diffusen Weißlichtquelle mit einem für die Messung ausreichenden Infrarotanteil über eine Kondensoroptik 2 auf die zu überprüfende Oberfläche 3 gegeben. Derjenige Anteil der elektromagnetischen Strahlung, der von der Oberfläche 3 reflektiert wird, wobei es sich je nach Oberflächenbeschaffenheit in aller Regel um eine diffuse Reflexion handeln wird, wird über eine Sammeloptik 4 auf die Eintrittsfläche eines Lichtleiters 5 abgebildet, der beispielsweise die Strahlung ortsgenau auf die Empfänger- und Auswerteeinheiten leitet, die beispielsweise im Innenraum eines Kraftfahrzeuges angeordnet sind. Die aus dem Lichtleiter austretende Strahlung wird über einen weiteren Kondensor 6 gleichzeitig auf vier Empfänger 7 geleitet, wobei die Strahlung über drei halbdurchlässige Spiegel 8 mit jeweils 50 % Reflexion und 50 % Transmission aufgeteilt und über Sammellinsen 9 auf die Empfänger 7 projiziert wird. Dabei sind vor den Sammellinsen 9 jeweils wellenlängenselektive Filter 10, 11, 12, 13 angeordnet, die die Wellenlängen λA bis λD von zum Beispiel 920, 980, 1030 und 1080 nm durchlassen.An advantageous embodiment of a measuring arrangement for carrying out the method according to the invention is shown schematically in FIG. 2. The electromagnetic radiation from a light or radiation source 1, for example a diffuse white light source with an infrared component sufficient for the measurement, is then applied to the surface 3 to be checked via a condenser lens 2. The portion of the electromagnetic radiation which is reflected by the surface 3, which will generally be a diffuse reflection, depending on the surface condition, is imaged on the entrance surface of a light guide 5 via a collecting optics 4, which, for example, precisely positions the radiation onto the surface Conducts receiver and evaluation units which are arranged, for example, in the interior of a motor vehicle. The radiation emerging from the light guide is simultaneously directed via a further condenser 6 to four receivers 7, the radiation being divided via three semi-transparent mirrors 8, each with 50% reflection and 50% transmission, and projected onto the receivers 7 via converging lenses 9. In this case, wavelength-selective filters 10, 11, 12, 13 are arranged in front of the converging lenses 9, which pass the wavelengths λ A to λ D of, for example, 920, 980, 1030 and 1080 nm.

Die Empfänger 7 sind mit einer Auswerteeinheit 14 verbunden, indem die Auswertung entsprechend den oben angegebenen Bewertungen durchgeführt wird. Der Ausgang der Auswerteeinheit, die als Mikrocomputer ausgebildet sein kann, ist mit einer Anzeigeeinheit und/oder einer Warneinrichtung verbunden. Die Empfänger 7 können als diskrete Dioden ausgebildet sein, es können jedoch auch schnellansprechende, hochlichtempfindliche Arrays, wie zum Beispiel Diodenarrays, CCD-Arrays oder dergleichen verwendet werden. Wichtig bei der Messung ist, daß der gesamte Querschnitt des von der zu betrachtenden Oberfläche 3 reflektierten Lichtbündels ortsunabhängig auf jeden Empfänger abgebildet wird, damit eine ortsunabhängige Auswertung vorgenommen werden kann.The receivers 7 are equipped with an evaluation unit 14 connected by evaluating according to the above specified ratings is carried out. The exit the evaluation unit, which is designed as a microcomputer can be with a display unit and / or a warning device connected. The recipients 7 can be designed as discrete diodes can also be fast-responding, highly sensitive to light Arrays, such as diode arrays, CCD arrays or the like can be used. Important at the measurement is that the entire cross section of the from of the surface 3 to be viewed reflected Light beam mapped onto each receiver regardless of location is a location-independent evaluation can be made.

Die Ausführungsform nach Fig. 2 ist nur ein Beispiel, es ist auch denkbar, daß anstelle der halbdurchlässigen Spiegel 8 und der wellenlängenselektiven Filter ein Dispersionselement, das als Beugungsgitter oder Prisma ausgebildet ist, vorgesehen wird, auf dem die Strahlung wellenlängenselektiv aufgespaltet wird, wobei die Empfänger, beispielsweise über Lichtleiter, den Wellenlängen auf dem Beugungsgitter örtlich zugeordnet sind.2 is only an example, it is also conceivable that instead of the semipermeable Mirror 8 and the wavelength selective filter a dispersion element that acts as a diffraction grating or Prism is formed, is provided on which the Radiation is split wavelength-selectively, the receivers, for example via light guides, locally assigned to the wavelengths on the diffraction grating are.

Die Auswerteeinheit 14 wertet abhängig von dem mehr oder weniger vorhandenen kristallinen Zustand der Oberfläche 3, das heißt hier des Fest/Flüssigwassers, das für diesen charakteristische reflektierte Spektrum aus. Die Auswertung kann entsprechend dem obigen Verfahren schrittweise durchgeführt werden. Die Auswerteeinheit 14 kann jedoch die Auswertung über auf neuronalen Netzwerken durchgeführten entsprechenden Algorithmen, zusammen mit einer Entscheidungslogik, die auf der Fuzzy-Logik basiert, das heißt aufbauend auf der Theorie unscharfer Mengen, vornehmen, so daß sich hier die Möglichkeit der Auswertung bei hoher Aussagegenauigkeit auch für sehr verwischte Spektrenbilder ergibt. Aufgrund der Auswertung können auch unterschiedlich dicke Wasserschichten über Eis oder Schneematsch erkannt werden.The evaluation unit 14 evaluates more depending on the or less present crystalline state of the Surface 3, i.e. here of the solid / liquid water, the reflected spectrum characteristic of this out. The evaluation can be according to the above Procedures are carried out step by step. The evaluation unit 14, however, the evaluation can be made on appropriate neural networks Algorithms, along with decision logic, which is based on fuzzy logic, that is, building on the theory of fuzzy sets, so that the possibility of evaluation at high Accuracy also for very blurred spectra images results. Based on the evaluation, too different thicknesses of water over ice or Slush can be recognized.

Zur Vermeidung von Fremdlicht und anderen Einflußgröβen kann eine Intensitätsmodulation der Lichtquelle 1 über ein Chopperrad oder eine elektronische Leistungsregelung vorgenommen werden.To avoid extraneous light and other influencing factors can intensity modulation of the light source 1 via a chopper wheel or electronic power control be made.

Die erfindungsgemäße Meßanordnung wird an einem Fahrzeug vorzugsweise in unmittelbarer Nähe der Spur angeordnet. Werden zwei derartige Meßanordnungen, und zwar einmal in Fahrtrichtung vor der Spur zum anderen in Fahrtrichtung hinter der Spur vorgesehen, so lassen sich hier durch Vergleichsmessungen auch Schlüsse ziehen, die gegebenenfalls nicht nur auf Glättegefahr hinweisen, sondern beispielsweise auch auf solche, die durch Aquaplaning entstehen können.The measuring arrangement according to the invention is on a vehicle preferably arranged in the immediate vicinity of the track. Are two such measuring arrangements, and once in the direction of travel before the lane to the other provided behind the track in the direction of travel, so leave conclusions can also be drawn from comparative measurements pull, if necessary, not only on the risk of smoothness point out, but for example also to those that can arise from aquaplaning.

Mit der erfindungsgemäßen Vorrichtung können auch Informationen über die Mikrorauhigkeit des Straßenbelags geliefert werden, da das Verhältnis der oben bestimmten Werte m (Steigung der Spektralkurve des Hintergrundes) und sG ("mittlere Helligkeit") ein Maß für die Wellenlängenabhängigkeit des Streuvermögens der Fahrbahn ist. Den größten Anteil an dieser Wellenlängenabhängigkeit hat die Korngröße der streuenden Partikel (Mie-Streuung). m/SG kennzeichnet somit die Mikrorauhigkeit des Straßenbelags, die für die Beurteilung der Reifenhaftung auf der Fahrbahn wesentlich ist. Dies gilt nicht nur bei trocknem Belag, sondern beispielsweise auch bei Schnee, da auch hier die Korngröße abhängig von der Art des Schnees variiert.The device according to the invention can also be used to provide information about the micro-roughness of the road surface, since the ratio of the values m determined above (slope of the spectral curve of the background) and s G (“average brightness”) is a measure of the wavelength dependence of the scattering capacity of the road surface. The largest part of this wavelength dependency has the grain size of the scattering particles (Mie scattering). m / S G thus characterizes the micro-roughness of the road surface, which is essential for assessing tire grip on the road. This applies not only to dry topping, but also to snow, for example, since the grain size also varies here depending on the type of snow.

Claims (10)

  1. Process for determining the surface state, in particular of highways with respect to dryness, wetness or icing, in which the surface is irradiated by a radiation source with an infrared component, and the reflected radiation is simultaneously measured in different wavelength ranges which characterise water and ice, and a statement regarding the surface state is made in dependence of the measured signals, characterised in that the reflected radiation is simultaneously and selectively measured in at least four wavelength ranges between 800 and 1,250 nm, and a first and a second wavelength range is chosen in such a manner that they are little influenced by absorption of the water molecules and independent of the state of the aggregate; and a third and fourth wavelength range is chosen in such a manner that they are characteristic for water and ice, and an influence of the base on signals measured in the third and fourth wavelength range as caused by the penetration depth is compensated by means of information given by signals measured in the first and second wavelength range.
  2. Process according to Claim 1, characterised in that the third and fourth wavelength range is selected between 900 and 1,100 nm.
  3. Process according to Claim 1 or 2, characterised in that the content of water and ice in the total moisture volume is determined from the ratio and/or the difference of the compensated signals.
  4. Process according to one of Claims 1 to 3, characterised in that the total cross-section of radiation reflected from the surface is measured for each wavelength range independently from location.
  5. Device for determining the surface state, in particular of highways with respect to dryness, wetness or icing, with a radiation source (1) with an infrared component for irradiation of the surface (3), a condenser optics (2) in the beampath ahead of the surface (3) to be tested, an optical array (4) which gathers the reflected portion of electro-magnetic radiation and a wavelength selective receiver arrangement (7 to 13) which receives the reflected radiation corresponding with a plurality of wavelength ranges, and an evaluation unit (14) for evaluation of wavelength selective signals, characterised in that the receiver arrangement (7 to 13) is provided for receiving radiation in four wavelength ranges between 800 and 1,250 nm, and a first and a second wavelength range is chosen so that they are little affected by an absorption of the water molecules, independently from the state of the aggregate; and a third and fourth wavelength range is selected so that they are characteristic of water and ice; and the evaluation unit (14) is provided for compensating an influence of the base on signals measured in the third and fourth wavelength range by means of information of signals measured in the first and second wavelength range.
  6. Device according to Claim 5, characterised in that the receiver arrangement comprises three radiation splitters (8) for splitting reflected radiation into four beampaths of identical spatial information and four wavelength selective filters (10 to 13) in front of the respective receivers (7) with a forward wavelength range between 800 and 1,250 nm.
  7. Device according to Claim 5, characterised in that the receiver arrangement comprises a spatially dispersive element in the form of at least one grid or prism which forms a wavelength selective diffraction spectrum in a wavelength range between 800 and 1,250 nm, and this dispersive element is spatially associated with receivers.
  8. Device according to one of Claims 5 to 7, characterised in that the receivers are designed as array detectors.
  9. Device according to one of Claims 5 to 8, characterised in that they are arranged on vehicles in front of and/or behind a vehicle track.
  10. Use of the device according to one of Claims 5 to 9 for the purpose of determining the roughness of a highway surface layer.
EP96904716A 1995-02-24 1996-02-23 Process for determining the surface state of highways in particular, and device for carrying out this process Expired - Lifetime EP0811155B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19506550A DE19506550A1 (en) 1995-02-24 1995-02-24 Process for the distortion-free detection of and for warning of dangers due to the formation of smoothness, and device for carrying out the process
DE19506550 1995-02-24
PCT/DE1996/000347 WO1996026430A1 (en) 1995-02-24 1996-02-23 Process for determining the surface state of highways in particular, and device for carrying out this process

Publications (2)

Publication Number Publication Date
EP0811155A1 EP0811155A1 (en) 1997-12-10
EP0811155B1 true EP0811155B1 (en) 1999-01-07

Family

ID=7754986

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96904716A Expired - Lifetime EP0811155B1 (en) 1995-02-24 1996-02-23 Process for determining the surface state of highways in particular, and device for carrying out this process

Country Status (7)

Country Link
US (1) US5962853A (en)
EP (1) EP0811155B1 (en)
JP (1) JPH11500534A (en)
AT (1) ATE175497T1 (en)
DE (2) DE19506550A1 (en)
ES (1) ES2125717T3 (en)
WO (1) WO1996026430A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103257125A (en) * 2011-12-23 2013-08-21 安东帕有限责任公司 Method and sensor for measuring carbon dioxide content of fluids
DE102013212701A1 (en) 2013-06-28 2014-12-31 Volkswagen Aktiengesellschaft Method and device for determining the condition of a road surface

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19608535A1 (en) * 1996-03-06 1997-09-11 Tobias Kippenberg Apparatus for identifying ice on road
JPH11194091A (en) * 1997-08-20 1999-07-21 Daimler Benz Ag Determining method of road surface condition and implementation apparatus thereof
DE19736138A1 (en) * 1997-08-20 1999-04-08 Daimler Chrysler Ag Method for determining the condition of a road surface
EP0898148A3 (en) * 1997-08-20 2000-04-26 DaimlerChrysler AG Method for the determination of the road surface condition
DE19747017A1 (en) * 1997-10-24 1999-04-29 Itt Mfg Enterprises Inc Method for detecting water or ice on road, for use by motor vehicles.
DE19816004A1 (en) 1998-04-09 1999-10-14 Daimler Chrysler Ag Arrangement for road condition detection
DE19927015A1 (en) * 1999-06-07 2000-12-14 Zeiss Carl Jena Gmbh Method and device for determining the thickness and growth rate of an ice sheet
US6794650B2 (en) * 2001-05-10 2004-09-21 Ensco, Inc. Method and apparatus for monitoring surface condition of a bowling lane
DE10150320A1 (en) * 2001-06-13 2002-12-19 Consens Gmbh Precipitation detection method has an array of two moisture sensors that are used with an external temperature sensor in such a way that both fluid and solid precipitation can be detected
DE10150078A1 (en) * 2001-06-14 2002-12-19 Consens Gmbh Precipitation sensor device for motor vehicle windscreen has a combination of temperature sensors, heaters and coolers that enables the reliable detection of both solid and liquid precipitation independently of surface dirt
SE524878C2 (en) * 2002-10-10 2004-10-19 Ulf Elman Device, method and system for determining the state of a road surface with wavelength modulated spectrometry
EP1890128B1 (en) * 2003-03-14 2011-11-23 Liwas APS A device for detection of road surface condition
DE10314424A1 (en) * 2003-03-28 2004-10-07 Cammann, Karl, Prof. Dr. Warning system for real-time spatially resolved detection of icing of component or part surfaces employs diffuse infrared reflection spectrometry with a modified thermographic camera or infrared planar detector array
DE10315676B4 (en) * 2003-04-07 2016-10-13 Thomas Huth-Fehre Sensor for surfaces
DE10324934A1 (en) 2003-06-03 2004-12-23 Carl Zeiss Jena Gmbh Arrangement and a method for recognizing layers that are arranged on surfaces of components and determining their properties
DE102004001046B4 (en) * 2004-01-03 2012-03-01 Thomas Huth-Fehre Sensor for traffic route surfaces
EP1635163B1 (en) * 2004-09-09 2017-05-31 Volkswagen Aktiengesellschaft Motor vehicle comprising a device for determining a surface condition of a roadway
US7532327B2 (en) * 2004-09-17 2009-05-12 Jmar Research, Inc. Systems and methods for detecting scattered light from a particle using illumination incident at an angle
JP2006242891A (en) * 2005-03-07 2006-09-14 Tokyo Univ Of Agriculture & Technology Device for measuring characteristics of soil
US7616311B2 (en) * 2005-05-02 2009-11-10 Jmar Llc Systems and methods for a multiple angle light scattering (MALS) instrument having two-dimensional detector array
WO2006130296A2 (en) * 2005-05-02 2006-12-07 Jmar Research, Inc. Systems and methods for a high capture angle, multiple angle light scattering (mals) instrument
US7324001B2 (en) * 2005-08-29 2008-01-29 United States Of America As Represented By The Secretary Of The Air Force System and method for detecting and discriminating between water and ice formation on objects
US7551279B2 (en) * 2005-09-19 2009-06-23 Jmar Technologies, Inc. Systems and methods for detecting normal levels of bacteria in water using a multiple angle light scattering (MALS) instrument
US7554661B2 (en) * 2005-09-19 2009-06-30 Jmar Technologies, Inc. Systems and methods for detection and classification of waterborne particles using a multiple angle light scattering (MALS) instrument
US7518723B2 (en) * 2005-09-19 2009-04-14 Jmar Technologies, Inc. Systems and methods for detecting radiation, biotoxin, chemical, and biological warfare agents using a multiple angle light scattering (MALS) instrument
SE529931C2 (en) * 2006-10-02 2008-01-08 Ulf Elman Filter device for use in wavelength modulation spectroscopic system, has flat optical filter that is positioned in transparent portion with through-hole so that filter is enclosed by device along main portion of its periphery
FI120521B (en) * 2008-05-14 2009-11-13 Vaisala Oyj Method and apparatus for determining water leveling risk
EP2557414B1 (en) 2009-12-21 2015-03-25 C.R.F. Società Consortile per Azioni Optical detection system for motor-vehicles having multiple functions, including detection of the condition of the road surface
JP4918732B2 (en) * 2010-03-05 2012-04-18 日本電気株式会社 Light measuring apparatus and method
DE102011015509A1 (en) * 2010-06-30 2012-01-05 Wabco Gmbh Method and device for controlling at least one driver assistance system of a vehicle and vehicle equipped therewith
EP2649422B1 (en) 2010-12-07 2023-10-18 Thomas L. Rockwell Apparatus and method for detecting the presence of water on a remote surface
US9046497B2 (en) * 2011-03-09 2015-06-02 Rolls-Royce Corporation Intelligent airfoil component grain defect inspection
WO2012122487A1 (en) 2011-03-09 2012-09-13 Rolls-Royce Corporation Protocol-based inspection system
KR101321617B1 (en) * 2013-01-28 2013-10-23 공주대학교 산학협력단 Remote road weather condition monitoring apparatus using two wavelengths
KR101307178B1 (en) * 2013-01-28 2013-09-11 공주대학교 산학협력단 Identification methods of road weather conditions in dual wavelength road weather condition monitoring apparatus
DE102013017352B4 (en) 2013-02-05 2015-09-10 Elmos Semiconductor Aktiengesellschaft Optical sensor system for an automobile for detecting road conditions
DE102013002304B3 (en) * 2013-02-05 2014-03-20 Elmos Semiconductor Ag Optical sensor system for motor vehicle for detecting road condition, has controller, whose control is effected such that signal component of transmitted signal controls error in receiver output signal
CN103434647A (en) * 2013-09-11 2013-12-11 中国民航大学 Airplane residual ice monitoring device capable of eliminating environment interference
DE102014106975A1 (en) * 2014-05-16 2015-11-19 Vorwerk & Co. Interholding Gmbh Automatically movable cleaning device
FR3059104B1 (en) 2016-11-18 2020-12-11 Electricite De France DEVICE AND METHOD FOR ESTIMATING A PARAMETER OF A POLYMERIC MATERIAL
CN110291380A (en) * 2017-02-27 2019-09-27 松下知识产权经营株式会社 Optical profile type component sensor
RS63758B1 (en) 2017-09-06 2022-12-30 Boschung Mecatronic Ag Method and device for generating a signal warning of ice on a roadway
JP7056905B2 (en) * 2017-10-27 2022-04-19 国立研究開発法人宇宙航空研究開発機構 Monitoring system, information processing method, and program
JP7320214B2 (en) * 2019-02-21 2023-08-03 国立研究開発法人宇宙航空研究開発機構 Monitoring device and monitoring method
DE102019205903A1 (en) 2019-04-25 2020-10-29 Robert Bosch Gmbh Method and device for determining a solid state of water on a road surface
DE102019206316A1 (en) 2019-05-03 2020-11-05 Robert Bosch Gmbh Optical system, in particular LiDAR system, and vehicle
DE102020203293B4 (en) 2020-03-13 2022-09-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein A device for detecting water on a surface and a method for detecting water on a surface
DE102020211101A1 (en) 2020-09-03 2022-03-03 Robert Bosch Gesellschaft mit beschränkter Haftung Optical environment sensor and vehicle
DE102021212659A1 (en) 2021-11-10 2023-05-11 Robert Bosch Gesellschaft mit beschränkter Haftung Process for processing measured values of an optical sensor arrangement
WO2023118950A1 (en) 2021-12-22 2023-06-29 Bosch Car Multimedia Portugal, S.A. Multiwavelength optical road condition sensor with single emission point

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2712199C2 (en) * 1977-03-19 1979-05-03 Peter Dipl.-Ing. Dr.-Ing. 8000 Muenchen Decker Device for warning of slippery roads
US4274091A (en) * 1978-03-09 1981-06-16 Decker Peter W Road surface ice detector and method for vehicles
CH653134A5 (en) * 1979-06-29 1985-12-13 Omron Tateisi Electronics Co Device for determining the state of roads
JPH0239726B2 (en) * 1981-12-17 1990-09-06 Tokyo Shibaura Electric Co JUKOSOSHIAREI
GB8325691D0 (en) * 1983-09-26 1983-10-26 Wiggins Teape Group Ltd Measuring water content
JPS6342429A (en) * 1986-08-08 1988-02-23 Minolta Camera Co Ltd Spectral measurement sensor
JPS63106530A (en) * 1986-10-22 1988-05-11 Hitachi Ltd Semiconductive optical detector
JPH01249181A (en) * 1988-03-31 1989-10-04 Tdk Corp Parts sorting method for automatic appearance screening machine for chip parts
DE3816416A1 (en) * 1988-05-13 1989-11-16 Bayerische Motoren Werke Ag Method and device for detecting the weather-dependent state of smoothness of a road surface
DE4008280A1 (en) * 1990-03-15 1991-09-19 Tzn Forschung & Entwicklung Indicating ice etc. on road surface - using IR detector and halogen lamp source with beam modulator and narrow bandpass filter
US5180122A (en) * 1991-05-10 1993-01-19 Fmc Corporation Apparatus for deicing
DE4205629A1 (en) * 1992-02-25 1993-08-26 Tzn Forschung & Entwicklung METHOD FOR CONTACTLESS MEASURING OF THE DEALING LEVEL AND DEVICE FOR IMPLEMENTING THE METHOD

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103257125A (en) * 2011-12-23 2013-08-21 安东帕有限责任公司 Method and sensor for measuring carbon dioxide content of fluids
CN103257125B (en) * 2011-12-23 2017-03-01 安东帕有限责任公司 For measuring the method for CO2 content and the sensor of fluid
DE102013212701A1 (en) 2013-06-28 2014-12-31 Volkswagen Aktiengesellschaft Method and device for determining the condition of a road surface

Also Published As

Publication number Publication date
WO1996026430A1 (en) 1996-08-29
DE19506550A1 (en) 1996-08-29
JPH11500534A (en) 1999-01-12
DE59601108D1 (en) 1999-02-18
EP0811155A1 (en) 1997-12-10
ATE175497T1 (en) 1999-01-15
ES2125717T3 (en) 1999-03-01
US5962853A (en) 1999-10-05

Similar Documents

Publication Publication Date Title
EP0811155B1 (en) Process for determining the surface state of highways in particular, and device for carrying out this process
DE4008280A1 (en) Indicating ice etc. on road surface - using IR detector and halogen lamp source with beam modulator and narrow bandpass filter
DE3712314A1 (en) TRAFFIC MONITORING DEVICE
EP2284525B1 (en) Contact-less freezing temperature determination
EP0898147A2 (en) Method for the determination of the road surface condition and device for carrying out the method
DE102010025719A1 (en) Device and method for emitting a dangerous ground signal under a vehicle
DE102010050634A1 (en) A control system for a vehicle control system and method for determining tire conditions of vehicle tires
WO2011007015A1 (en) Laser-based method for the friction coefficient classification of motor vehicles
DE102013021797A1 (en) Method for issuing a warning on a dangerous roadway condition and device
DE4300896C1 (en) Road surface characteristics evaluation system - uses reflection of IR beam directed onto road surface at Brewster angle.
DE102007013830B4 (en) Method and device for determining the amount of H2O present on a road surface
DE102011015527A1 (en) Sensor for non-contact determination of the road condition and its use
EP1592984B1 (en) Method for determining types of precipitation in the atmosphere
WO2020216591A1 (en) Method and device for determining a solid state form of water on a roadway surface
DE10314424A1 (en) Warning system for real-time spatially resolved detection of icing of component or part surfaces employs diffuse infrared reflection spectrometry with a modified thermographic camera or infrared planar detector array
DE3816416A1 (en) Method and device for detecting the weather-dependent state of smoothness of a road surface
DE102010025705A1 (en) Method for warning other road users of dangerous lane surface, involves emitting light on lane surface, where wavelength is detected from light reflected at lane surface
EP0898148A2 (en) Method for the determination of the road surface condition
EP0558927A1 (en) Method of non-contact measurement of the content of ice-thawing salt and device for carrying out said method
WO2004106853A1 (en) Assembly and method for identifying coatings lying on the surface of components and for determining their characteristics
DE102019206316A1 (en) Optical system, in particular LiDAR system, and vehicle
DE3829008A1 (en) Method for the measurement of the salt content of water layers on traffic surfaces and device for carrying out the method
DE19608535A1 (en) Apparatus for identifying ice on road
WO1997039918A1 (en) Process and device for determining skidding conditions on roadways and the like
DE4326170A1 (en) Optronic visual range indicator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB IT LI

17P Request for examination filed

Effective date: 19970821

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19980304

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI

REF Corresponds to:

Ref document number: 175497

Country of ref document: AT

Date of ref document: 19990115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990108

REF Corresponds to:

Ref document number: 59601108

Country of ref document: DE

Date of ref document: 19990218

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2125717

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040115

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040128

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040129

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20040225

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20040427

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050223

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050223

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050223

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20051031

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050224

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110228

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R231

Ref document number: 59601108

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20120306