JP2006242891A - Device for measuring characteristics of soil - Google Patents

Device for measuring characteristics of soil Download PDF

Info

Publication number
JP2006242891A
JP2006242891A JP2005062369A JP2005062369A JP2006242891A JP 2006242891 A JP2006242891 A JP 2006242891A JP 2005062369 A JP2005062369 A JP 2005062369A JP 2005062369 A JP2005062369 A JP 2005062369A JP 2006242891 A JP2006242891 A JP 2006242891A
Authority
JP
Japan
Prior art keywords
light
soil
reflected light
intensity
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005062369A
Other languages
Japanese (ja)
Inventor
Sakae Shibusawa
栄 澁澤
Shinichi Hirako
進一 平子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Shibuya Corp
Original Assignee
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Shibuya Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Agriculture and Technology NUC, Tokyo University of Agriculture, Shibuya Machinery Co Ltd filed Critical Tokyo University of Agriculture and Technology NUC
Priority to JP2005062369A priority Critical patent/JP2006242891A/en
Publication of JP2006242891A publication Critical patent/JP2006242891A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for measuring the characteristics of soil, capable of collecting a lot of data from one measurement point at a high speed, while eliminating the influence of disturbance light. <P>SOLUTION: Inspection light emitted from an illuminating section 10a toward the soil is reflected by the soil and received by a light-receiving section 20a. Reflection light received by the light-receiving section is separated into many reflected light beams by a separating means 22, and the values of prescribed wavelength intensity of respective refected light beams are detected by detectors 27, 29 and 31. Furthermore, an intermittent means 12 is employed, which intermits the irradiation of the inspection light. Each detector has a signal processing means 41, which removes the intensity of the disturbance light received by the light-receiving section, when the irradiation of the inspection light is intermitted, from the intensity of the reflected light, received by the light-receiving section when the irradiation of the inspection light is carried out. Since many true intensity values of the reflected light, from which the influences of the disturbance light are eliminated, can be collected at one measurement point, many accurate data sets can be collected from a large number of measurement points, respectively, while making a chisel section in the soil advance at a high speed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、土壌の特性を測定する土壌特性測定装置に関し、より詳しくは、チゼル部を土中で進行させることにより土壌の特性を測定するようにした土壌特性測定装置に関する。   The present invention relates to a soil property measuring apparatus that measures soil properties, and more particularly, to a soil property measuring device that measures soil properties by advancing a chisel portion in the soil.

従来、土壌特性測定装置として、チゼル部に設けられて土壌に検査光を照射する照射部と、上記チゼル部に設けられて土壌からの反射光を受光する受光部と、この受光部で受光した反射光を複数に分岐する分岐手段と、この分岐手段によって分岐された各反射光における所定波長毎の強度を検出する検出器とを備え、上記チゼル部を土壌中で進行させながら土壌の特性を測定するようにしたものが知られている(特許文献1、特許文献2)。
上記チゼル部は一般に走行フレームに設けられており、この走行フレームをトラクタによって牽引することにより、チゼル部を土壌中で進行させることができるようになっている。
Conventionally, as a soil property measuring device, an irradiation unit that is provided in a chisel portion and irradiates soil with inspection light, a light receiving portion that is provided in the chisel portion and receives reflected light from the soil, and the light receiving portion receives light. A branching means for branching the reflected light into a plurality of light sources and a detector for detecting the intensity of each reflected light branched by the branching means for each predetermined wavelength, and the characteristics of the soil are improved while the chisel portion is advanced in the soil. What was measured is known (patent document 1, patent document 2).
The chisel portion is generally provided in a traveling frame, and the chisel portion can be advanced in the soil by pulling the traveling frame with a tractor.

また従来、外乱光の影響を排除するために、上記検査光の照射を断続させる断続手段を設けた土壌特性測定装置も知られている(特許文献3)。
この土壌特性測定装置においては、検査光の照射が中断された際に受光部で受光された光の強度を、つまり外乱光の強度を計測しておき、上記検査光が土壌に照射された際に受光部で受光された反射光の強度から、上記外乱光の強度を除くようにしている。
特開2003−139765号公報 特許第3451535号公報 特許第3451536号公報
Conventionally, a soil property measuring apparatus provided with an intermittent means for intermittently irradiating the inspection light in order to eliminate the influence of disturbance light is also known (Patent Document 3).
In this soil property measuring apparatus, when the irradiation of the inspection light is interrupted, the intensity of the light received by the light receiving unit, that is, the intensity of the disturbance light is measured, and when the inspection light is irradiated to the soil The intensity of the disturbance light is removed from the intensity of the reflected light received by the light receiving unit.
JP 2003-139765 A Japanese Patent No. 3451535 Japanese Patent No. 3451536

近年、土壌特性のより詳細なデータが求められるようになってきており、1箇所の計測点におけるデータが9種類以上要求されることも普通となってきた。
しかしながら、従来の装置においては1箇所の計測点において、同時に多数のデータを高速で、しかもチゼル部の進行に伴って変化する外乱光の影響を排除しながら採取することはできなかった。
本発明はこのような欠点に鑑み、1箇所の計測点において、多数のデータを高速で、しかも外乱光の影響を排除しながら採取することができる土壌特性測定装置を提供するものである。
In recent years, more detailed data on soil characteristics has been demanded, and it has become common to require nine or more types of data at one measurement point.
However, in the conventional apparatus, it was not possible to collect a large number of data at a single measurement point at a high speed while eliminating the influence of ambient light that changes with the progress of the chisel portion.
In view of such drawbacks, the present invention provides a soil property measuring apparatus capable of collecting a large number of data at one measurement point at high speed while eliminating the influence of disturbance light.

すなわち請求項1の発明は、チゼル部に設けられて土壌に検査光を照射する照射部と、上記チゼル部に設けられて土壌からの反射光を受光する受光部と、この受光部で受光した反射光を複数に分岐する分岐手段と、この分岐手段によって分岐された各反射光における所定波長毎の強度を検出する検出器とを備え、上記チゼル部を土壌中で進行させながら土壌の特性を測定する土壌特性測定装置において、
上記検査光の照射を断続させる断続手段を設けるとともに、上記分岐手段によって分岐された反射光毎にそれぞれ上記検出器を設け、かつ各検出器のそれぞれに、上記検査光が照射された際に受光部で受光された反射光の強度から、検査光の照射が中断された際に受光部で受光された外乱光の強度を除く信号処理手段を設けたことを特徴とするものである。
That is, the invention of claim 1 is provided with an irradiation unit that is provided in the chisel portion and irradiates the soil with inspection light, a light receiving portion that is provided in the chisel portion and receives reflected light from the soil, and the light receiving portion receives light. A branching means for branching the reflected light into a plurality of light sources and a detector for detecting the intensity of each reflected light branched by the branching means for each predetermined wavelength, and the characteristics of the soil are improved while the chisel portion is advanced in the soil. In the soil property measuring device to measure,
In addition to providing intermittent means for intermittently irradiating the inspection light, the detector is provided for each reflected light branched by the branch means, and the detector receives light when the inspection light is irradiated to each detector. The signal processing means is provided for removing the intensity of disturbance light received by the light receiving unit when the irradiation of the inspection light is interrupted from the intensity of the reflected light received by the unit.

請求項1の発明によれば、照射部から検査光が土壌に照射されると、その土壌からの反射光は受光部で受光されるようになる。そして受光部で受光された反射光は、分岐手段により複数に分岐されて、それぞれの検出器に入射されるようになる。したがって、必要な数だけ反射光を分岐させることにより、1箇所の計測点において多数のデータを採取することができる。
また、上記検査光の照射を断続させる断続手段を設けるとともに、各検出器のそれぞれに、上記検査光が照射された際に受光部で受光された反射光の強度から、検査光の照射が中断された際に受光部で受光された外乱光の強度を除く信号処理手段を設けているので、各信号処理手段により外乱光の影響を排除することができる。そしてこの信号処理手段はそれぞれの検出器に設けているので、複数に分岐された各反射光を並行して同時に処理することができ、したがって多数のデータを採取する場合であっても、全体として高速に処理することができる。
その結果、チゼル部を土壌中で高速度で進行させながら、多数の計測点でそれぞれ精度の良い多数のデータを採取することが可能となる。
According to the invention of claim 1, when the inspection light is irradiated onto the soil from the irradiation unit, the reflected light from the soil is received by the light receiving unit. Then, the reflected light received by the light receiving unit is branched into a plurality of parts by the branching means and enters each detector. Therefore, a large number of data can be collected at one measurement point by branching the reflected light by the required number.
In addition, an intermittent means for interrupting the irradiation of the inspection light is provided, and the irradiation of the inspection light is interrupted by the intensity of the reflected light received by the light receiving unit when each of the detectors is irradiated with the inspection light. Since the signal processing means for removing the intensity of the disturbance light received by the light receiving unit at the time is provided, the influence of the disturbance light can be eliminated by each signal processing means. And since this signal processing means is provided in each detector, each reflected light branched into a plurality can be processed at the same time, so even when collecting a large number of data, as a whole It can be processed at high speed.
As a result, it is possible to collect a large number of highly accurate data at a large number of measurement points while the chisel portion is advanced in the soil at a high speed.

以下図示実施例について本発明を説明すると、図1において、土壌特性測定装置のチゼル部1はビーム2を介して走行フレームFに連結してあり、この走行フレームFをトラクタTなどの作業用車両によって牽引することにより、チゼル部1を土壌中で進行させることができるようにしてある。
図2に示すように、上記チゼル部1の先端部分が土中貫入部1aとなっており、このチゼル部1の先端と後端1bとの中間部分の底部に均平板3を設けている。そして上記トラクタTの前進に伴って土中貫入部1aで土中に穴を開けるとともに、均平板3でその穴の下面を均して土壌観測面4を作成することができるようにしてある。
上記均平板3よりも後方でチゼル部1の内部上方位置には、土壌の特性を測定する計測部5を設けてあり、この計測部5と土壌観測面4との間に観測空間6を形成するようにしている。
The present invention will be described below with reference to the illustrated embodiment. In FIG. 1, a chisel portion 1 of a soil property measuring apparatus is connected to a traveling frame F via a beam 2, and this traveling frame F is used as a working vehicle such as a tractor T. The chisel part 1 can be made to advance in the soil by being pulled by.
As shown in FIG. 2, the tip portion of the chisel portion 1 is a soil penetration portion 1a, and a flat plate 3 is provided at the bottom of the intermediate portion between the tip end and the rear end 1b of the chisel portion 1. Along with advancement of the tractor T, a hole is made in the soil by the soil penetration portion 1a, and the soil observation surface 4 can be created by leveling the lower surface of the hole with the leveling plate 3.
A measuring unit 5 for measuring the characteristics of the soil is provided behind the leveling plate 3 and inside the chisel portion 1, and an observation space 6 is formed between the measuring unit 5 and the soil observation surface 4. Like to do.

上記計測部5には照明用光ファイバ10の一端部となる照射部10aを設けてあり、この照明用光ファイバ10の他端部は上記ビーム2の内部を介して地上に引出し、上述した走行フレームFに設けた光源11に、回転式光チョッパなどの断続手段12を介して向き合わせている。
上記断続手段12は、回転板13と、この回転板13に形成した窓14と、回転板13を回転駆動するモータ15とを備えており、上記回転板13を照明用光ファイバ10の他端部と光源11との間に介在させている。
したがって光源11を点灯させた状態でモータ15により回転板13を回転させれば、光源11からの検査光は、回転板13の窓14を通過して照明用光ファイバ10の照射部10aから土壌に照射されるようになり、または回転板13によって遮断されて土壌に照射されることがない。
なお、断続手段12の他の例として、光源11自体を点滅させるようにしても良い。
The measuring unit 5 is provided with an irradiating unit 10a serving as one end of the illumination optical fiber 10, and the other end of the illumination optical fiber 10 is drawn to the ground via the inside of the beam 2 and travels as described above. The light source 11 provided in the frame F is opposed to the light source 11 through intermittent means 12 such as a rotary light chopper.
The intermittent means 12 includes a rotating plate 13, a window 14 formed in the rotating plate 13, and a motor 15 that rotationally drives the rotating plate 13, and the rotating plate 13 is connected to the other end of the optical fiber 10 for illumination. Between the light source 11 and the light source 11.
Therefore, if the rotating plate 13 is rotated by the motor 15 while the light source 11 is turned on, the inspection light from the light source 11 passes through the window 14 of the rotating plate 13 and passes through the irradiation unit 10a of the optical fiber 10 for illumination. Or is blocked by the rotating plate 13 and does not irradiate the soil.
As another example of the intermittent means 12, the light source 11 itself may be blinked.

上記計測部5には分岐集光ファイバ20の一端部となる受光部20aを設けてあり、上記照射部10aから土壌に照射された検査光を該土壌で反射させて、その反射光を上記受光部20aによって受光させることができるようにしてある。
上記分岐集光ファイバ20の他端部は上記ビーム2の内部を介して地上に引出し、上記走行フレームFに設けた検出装置21に接続してある。
上記分岐集光ファイバ20は、上記受光部20aで受光した反射光を複数に分岐する分岐手段22の一部を構成しており、図示実施例では反射光を3つに分岐させることができるようにしてある。
また上記分岐手段22は、上記分岐集光ファイバ20の他に、3つに分岐された各分岐集光ファイバからの反射光を更にそれぞれ3つに分岐するために、それぞれ2つのダイクロイックミラー23、24を備えている。ダイクロイックミラー23、24の代わりにビームスプリッタを用いても良い。
The measuring unit 5 is provided with a light receiving unit 20a that is one end of the branch condensing fiber 20, and the inspection light applied to the soil from the irradiation unit 10a is reflected by the soil, and the reflected light is received by the light receiving unit 20a. The unit 20a can receive light.
The other end of the branch concentrating fiber 20 is drawn to the ground via the inside of the beam 2 and connected to a detection device 21 provided on the traveling frame F.
The branching and collecting fiber 20 constitutes a part of the branching means 22 that branches the reflected light received by the light receiving unit 20a into a plurality of parts. In the illustrated embodiment, the reflected light can be branched into three. It is.
Further, the branching means 22 has two dichroic mirrors 23 in order to branch the reflected light from each of the branched optical fibers branched into three in addition to the branched optical fibers 20, respectively. 24. A beam splitter may be used instead of the dichroic mirrors 23 and 24.

1つの分岐集光ファイバ20から出射された反射光は、コリメートレンズ25を透過して平行な光束とされた後、順次ダイクロイックミラー23、24を透過するようになっており、各ダイクロイックミラー23、24を透過する際にそれぞれ2つに分岐されるようになっている。
2つのダイクロイックミラー23、24を透過した反射光は、干渉フィルタ26を透過して検出器27によって検出されるようになっている。
他方、最初のダイクロイックミラー23によって反射された反射光は干渉フィルタ28を透過して検出器29によって検出され、またダイクロイックミラー23を透過して次のダイクロイックミラー24によって反射された反射光は干渉フィルタ30を透過して検出器31によって検出されるようになっている。
上記各干渉フィルタ26、28、30はそれぞれ特定の波長を透過させるように設定してあり、したがって各検出器27、29、31によってそれぞれ特定の波長を有する反射光の強度を検出することができるようになっている。
残りの2つの分岐集光ファイバ20から出射された反射光も、上述したのと同様にしてそれぞれ3つに分岐され、したがって本実施例では、合計で9種類の波長を有する反射光について各強度を検出することができるようにしてある。
なお、必要に応じて反射光を10以上に分岐させることができることは勿論である。また図示しないが、上記計測部5には照射部10aや受光部20aの他に、土壌観測面4と照射部10a及び受光部20aとの間隔を検出する土壌変位センサや、CCDカラーカメラ、或いは温度計などが設けられている。
The reflected light emitted from one branching and collecting fiber 20 is transmitted through the collimating lens 25 to be a parallel light beam, and then sequentially transmitted through the dichroic mirrors 23 and 24. Each dichroic mirror 23, Each of them is branched into two when passing through 24.
The reflected light that has passed through the two dichroic mirrors 23 and 24 passes through the interference filter 26 and is detected by the detector 27.
On the other hand, the reflected light reflected by the first dichroic mirror 23 is transmitted through the interference filter 28 and detected by the detector 29, and the reflected light transmitted through the dichroic mirror 23 and reflected by the next dichroic mirror 24 is reflected by the interference filter. 30, and is detected by the detector 31.
Each of the interference filters 26, 28, and 30 is set so as to transmit a specific wavelength. Therefore, the detectors 27, 29, and 31 can detect the intensity of reflected light having a specific wavelength. It is like that.
The reflected light emitted from the remaining two branched condensing fibers 20 is also branched into three in the same manner as described above. Therefore, in this embodiment, each intensity of the reflected light having a total of nine wavelengths is different. Can be detected.
Of course, the reflected light can be branched into 10 or more as required. Although not shown, the measuring unit 5 includes a soil displacement sensor for detecting the distance between the soil observation surface 4 and the irradiation unit 10a and the light receiving unit 20a in addition to the irradiation unit 10a and the light receiving unit 20a, a CCD color camera, A thermometer is provided.

さらに、上記断続手段12を構成するモータ15にはエンコーダ40を取付けてあり、このエンコーダ40からの信号を各検出器27、29、31にそれぞれ設けた合計9個の信号処理手段41にそれぞれ入力させている。
各信号処理手段41は、エンコーダ40からの信号により回転板13の回転角度位置を、したがって光源11からの検査光が窓14を通過したか、或いは回転板13によって遮断されたかを検出することができるようになっている。
そして各信号処理手段41は、光源11からの検査光が回転板13によって遮断された際には、各検出器27、29、31によって検出された光の強度を外乱光の強度として記憶するようになっている。
他方、光源11からの検査光が窓14を通過して土壌に照射された際には、各検出器27、29、31によって検出された反射光の強度から、上記外乱光の強度を除いて、外乱光の影響を排除した真の反射光の強度を得ることができるようにしてある。そして、各信号処理手段41によって得られた真の反射光の強度は、採取場所などのデータと共に、図示しない記憶装置に記憶されるようになっている。上記採取場所のデータは、例えば走行フレームに設けたGPS(図1参照)によって得ることができる。
Further, an encoder 40 is attached to the motor 15 constituting the intermittent means 12, and signals from the encoder 40 are input to a total of nine signal processing means 41 provided in the detectors 27, 29 and 31, respectively. I am letting.
Each signal processing means 41 can detect the rotation angle position of the rotating plate 13 based on the signal from the encoder 40, and therefore whether the inspection light from the light source 11 has passed through the window 14 or is blocked by the rotating plate 13. It can be done.
Each signal processing means 41 stores the intensity of the light detected by each detector 27, 29, 31 as the intensity of disturbance light when the inspection light from the light source 11 is blocked by the rotating plate 13. It has become.
On the other hand, when the inspection light from the light source 11 passes through the window 14 and is applied to the soil, the intensity of the disturbance light is excluded from the intensity of the reflected light detected by the detectors 27, 29, and 31. In addition, it is possible to obtain the intensity of the true reflected light excluding the influence of disturbance light. And the intensity | strength of the true reflected light obtained by each signal processing means 41 is memorize | stored in the memory | storage device which is not shown with data, such as a collection place. The data of the sampling location can be obtained by, for example, a GPS (see FIG. 1) provided on the traveling frame.

上記土壌特性測定装置で採取されるデータとして、MC(水分)、SOM(土壌有機物)、TC(全炭素)、TN(全窒素)、二酸化炭素量、pH、CEC(陽イオン交換係数)等が挙げられる。
そして受光した反射光より、各波長の吸光度(どれだけ土壌に吸収されたかの度合)が検出される。このとき、波長と吸光度の関係において、予め物質毎の吸光度のレベルを検証してあり、特徴づけられる波長の吸光度から含まれる物質量を推定することができる。
また、複数の波長から物質量が推定されることが行なわれている。例えば、1230nm、1450nm、1650nmという波長はMC(水分)を推定するのに用いられ、MC(%)=10.97*Abs(1320nm)+194.54*Abs(1450nm)−234.74*Abs(1650nm)−11.70という式から水分が推定される。上記Abs(1320nm)は、波長1320nmの吸光度を示している。
これらの波長は、各干渉フィルタ26、28、30を適宜なものに選定することにより、例えば紫外光から中赤外光の範囲で任意の波長を検出することができる。
Data collected by the soil property measuring device includes MC (water), SOM (soil organic matter), TC (total carbon), TN (total nitrogen), carbon dioxide content, pH, CEC (cation exchange coefficient), etc. Can be mentioned.
Then, the absorbance of each wavelength (how much is absorbed by the soil) is detected from the received reflected light. At this time, in the relationship between the wavelength and the absorbance, the absorbance level for each substance is verified in advance, and the amount of the substance contained can be estimated from the absorbance at the characterized wavelength.
In addition, the substance amount is estimated from a plurality of wavelengths. For example, wavelengths of 1230 nm, 1450 nm, and 1650 nm are used to estimate MC (water), and MC (%) = 10.97 * Abs (1320 nm) + 194.54 * Abs (1450 nm) −234.74 * Abs ( 1650 nm) -11.70, the water content is estimated. Abs (1320 nm) indicates absorbance at a wavelength of 1320 nm.
By selecting appropriate interference filters 26, 28, and 30 for these wavelengths, arbitrary wavelengths can be detected in the range of, for example, ultraviolet light to mid-infrared light.

このように、1箇所の計測点において多数のデータを採取することが必要となってきているが、本実施例では1箇所の計測点において採取された反射光を9つに分岐して各検出器27、29、31に入力させているので、各検出器27、29、31によるデータの採取を迅速に行なうことができる。
しかも、各検出器27、29、31のそれぞれに信号処理手段41を設けているので、各信号処理手段41によって外乱光の影響を排除した真の反射光の強度をそれぞれ迅速に検出することができる。したがって、チゼル部1を土壌中で高速度で進行させながら、多数の計測点でそれぞれ精度の良い多数のデータを採取することが可能となる。
As described above, it is necessary to collect a large number of data at one measurement point. In the present embodiment, the reflected light collected at one measurement point is branched into nine detections. Since the data is input to the detectors 27, 29, and 31, data can be quickly collected by the detectors 27, 29, and 31.
In addition, since each of the detectors 27, 29, and 31 is provided with the signal processing means 41, each signal processing means 41 can quickly detect the intensity of the true reflected light from which the influence of disturbance light is eliminated. it can. Therefore, it is possible to collect a large number of highly accurate data at a large number of measurement points while the chisel portion 1 is advanced at high speed in the soil.

図3は本発明の第2実施例を示したもので、本実施例では第1実施例における各ダイクロイックミラー23、24を省略し、その代わりに分岐集光ファイバ50のみによって反射光を複数に、例えば9つに分岐するようにしたものである。
したがって本実施例では分岐集光ファイバ50が分岐手段22を構成することになり、分岐集光ファイバ50の一端部となる受光部50aで受光した反射光は、分岐集光ファイバ50で9つに分岐されて、それぞれコリメートレンズ25を透過し、かつ干渉フィルタ26によって選択された特定の波長がそれぞれの検出器27に入力されるようになる。
その他の構成は第1実施例と同様に構成してあり、同一部分若しくは相当部分には第1実施例と同一の符号を付して示してある。
本実施例でも第1実施例と同等の作用効果を得ることができ、特に本実施例ではダイクロイックミラーを使わないので光学系が簡単になり、調整不要で、機械振動に強いという利点がある。
FIG. 3 shows a second embodiment of the present invention. In this embodiment, the dichroic mirrors 23 and 24 in the first embodiment are omitted, and instead, a plurality of reflected lights are formed only by the branching and collecting fiber 50. For example, it is made to branch into nine.
Therefore, in this embodiment, the branching and collecting fiber 50 constitutes the branching means 22, and the reflected light received by the light receiving unit 50 a that is one end of the branching and collecting fiber 50 is divided into nine by the branching and collecting fiber 50. A specific wavelength selected by the interference filter 26 which is branched and transmitted through the collimator lens 25 is input to each detector 27.
Other configurations are the same as those of the first embodiment, and the same or corresponding portions are denoted by the same reference numerals as those of the first embodiment.
In this embodiment, the same effect as that of the first embodiment can be obtained. In particular, since the dichroic mirror is not used in this embodiment, the optical system is simplified, adjustment is unnecessary, and there is an advantage that it is strong against mechanical vibration.

図4は本発明の第3実施例を示したもので、本実施例では1本の集光ファイバ60を用い、その一端部となる受光部60aで受光した反射光を、凹面状の回折格子61に照射するようにしたものである。
上記回折格子61に向けてアレイ状の多数の検出器27を配置してあり、各検出器27のそれぞれに信号処理手段41を設けている。
上記回折格子61に照射された反射光は、この回折格子61によって短い波長から長い波長に連続的に分岐されて、アレイ状に配置された多数の検出器における一端部側の検出器27から他端部側の検出器27へ入力されるようになる。したがって本実施例では、回折格子61が受光部60aで受光した反射光を複数に分岐する分岐手段22を構成している。
そして各検出器27は上述の実施例と同様に信号処理手段41をそれぞれ備えているので、本実施例でも上記実施例と同等の作用効果を得ることができる。
FIG. 4 shows a third embodiment of the present invention. In this embodiment, a single condensing fiber 60 is used, and the reflected light received by the light receiving portion 60a as one end portion thereof is a concave diffraction grating. 61 is irradiated.
An array of many detectors 27 are arranged toward the diffraction grating 61, and a signal processing means 41 is provided for each detector 27.
The reflected light applied to the diffraction grating 61 is continuously branched from a short wavelength to a long wavelength by the diffraction grating 61, and the other ones from the detectors 27 on one end side in a number of detectors arranged in an array. The signal is input to the detector 27 on the end side. Therefore, in this embodiment, the diffraction grating 61 constitutes the branching means 22 that branches the reflected light received by the light receiving unit 60a into a plurality of parts.
And each detector 27 is provided with the signal processing means 41 similarly to the above-mentioned Example, Therefore The effect similar to the said Example can be obtained also in a present Example.

図5は上述した第3実施例の変形例を示したもので、本実施例では各検出器27のそれぞれに集光ファイバ62を設け、各集光ファイバ62の受光部62aをそれぞれ回折格子61に向けて、かつ所要の位置に位置決めして固定してある。
本実施例においては、上記回折格子61で照射された反射光は、各集光ファイバ62の受光部62aで受光されてそれぞれの検出器27へ入力されるようになる。この際、上記各集光ファイバ62の受光部62aを所要の位置に位置決めしてあるので、上記回折格子61によって短い波長から長い波長に連続的に分岐された波長のうち、必要とする波長を選択して各受光部62aで受光することができるようになる。
そして本実施例においても、各検出器27は上述の実施例と同様に信号処理手段41をそれぞれ備えているので、上記実施例と同等の作用効果を得ることができる。
FIG. 5 shows a modification of the above-described third embodiment. In this embodiment, a condensing fiber 62 is provided for each detector 27, and a light receiving portion 62a of each condensing fiber 62 is a diffraction grating 61. It is positioned and fixed at a required position.
In the present embodiment, the reflected light irradiated by the diffraction grating 61 is received by the light receiving portion 62 a of each condensing fiber 62 and is input to each detector 27. At this time, since the light receiving portion 62a of each condensing fiber 62 is positioned at a required position, the required wavelength among the wavelengths continuously branched from the short wavelength to the long wavelength by the diffraction grating 61 is determined. The light can be selected and received by each light receiving portion 62a.
Also in the present embodiment, each detector 27 is provided with the signal processing means 41 as in the above-described embodiment, so that the same effect as the above embodiment can be obtained.

なお、上記実施例ではいずれも光ファイバを用いているが、ライトパイプやレンズやミラーによるリレー光学系を用いても良いことは勿論である。   In all of the above embodiments, an optical fiber is used, but it is needless to say that a relay optical system using a light pipe, a lens or a mirror may be used.

本発明に係る土壌特性測定装置の全体を示す側面図。The side view which shows the whole soil characteristic measuring apparatus which concerns on this invention. 本発明の第1実施例を示す概略構成図。1 is a schematic configuration diagram showing a first embodiment of the present invention. 本発明の第2実施例を示す概略構成図。The schematic block diagram which shows 2nd Example of this invention. 本発明の第3実施例を示す要部の概略構成図。The schematic block diagram of the principal part which shows 3rd Example of this invention. 本発明の第4実施例を示す要部の概略構成図。The schematic block diagram of the principal part which shows 4th Example of this invention.

符号の説明Explanation of symbols

1 チゼル部 4 土壌観測面
10 照明用光ファイバ 10a照射部
12 断続手段 22 分岐手段
20、50 分岐集光ファイバ 61 回折格子
20a、50a、60a 受光部 41 信号処理手段
23、24 ダイクロイックミラー 27、29、31 検出器
DESCRIPTION OF SYMBOLS 1 Chisel part 4 Soil observation surface 10 Illumination optical fiber 10a Irradiation part 12 Intermittent means 22 Branch means 20, 50 Branch condensing fiber 61 Diffraction grating 20a, 50a, 60a Light receiving part 41 Signal processing means 23, 24 Dichroic mirrors 27, 29 31 detector

Claims (4)

チゼル部に設けられて土壌に検査光を照射する照射部と、上記チゼル部に設けられて土壌からの反射光を受光する受光部と、この受光部で受光した反射光を複数に分岐する分岐手段と、この分岐手段によって分岐された各反射光における所定波長毎の強度を検出する検出器とを備え、上記チゼル部を土壌中で進行させながら土壌の特性を測定する土壌特性測定装置において、
上記検査光の照射を断続させる断続手段を設けるとともに、上記分岐手段によって分岐された反射光毎にそれぞれ上記検出器を設け、かつ各検出器のそれぞれに、上記検査光が照射された際に受光部で受光された反射光の強度から、検査光の照射が中断された際に受光部で受光された外乱光の強度を除く信号処理手段を設けたことを特徴とする土壌特性測定装置。
An irradiation unit that is provided in the chisel part and irradiates the soil with inspection light, a light receiving part that is provided in the chisel part and receives reflected light from the soil, and a branch that branches the reflected light received by the light receiving part into a plurality of parts And a soil property measuring apparatus that measures the properties of the soil while proceeding in the chisel portion in the soil, and a detector that detects the intensity of each reflected wavelength branched by the branching device.
In addition to providing intermittent means for intermittently irradiating the inspection light, the detector is provided for each reflected light branched by the branch means, and the detector receives light when the inspection light is irradiated to each detector. A soil property measuring apparatus comprising a signal processing means for removing the intensity of disturbance light received by the light receiving unit when the irradiation of the inspection light is interrupted from the intensity of the reflected light received by the unit.
上記分岐手段は、受光部で受光した反射光を複数に分岐する分岐集光ファイバを備えることを特徴とする請求項1に記載の土壌特性測定装置。   The soil property measuring apparatus according to claim 1, wherein the branching unit includes a branching and collecting fiber that branches the reflected light received by the light receiving unit into a plurality of branches. 上記分岐手段は、受光部で受光した反射光を複数に分岐する分岐集光ファイバと、各分岐集光ファイバからの反射光をそれぞれ複数に分岐するダイクロイックミラー又はビームスプリッタとを備えることを特徴とする請求項1に記載の土壌特性測定装置。   The branching unit includes a branching and collecting fiber that branches the reflected light received by the light receiving unit into a plurality of parts, and a dichroic mirror or a beam splitter that branches the reflected light from each branching and collecting fiber into a plurality of parts. The soil property measuring apparatus according to claim 1. 上記分岐手段は、各検出器のそれぞれに反射光を入射させる回折格子を備えることを特徴とする請求項1に記載の土壌特性測定装置。   The soil property measuring apparatus according to claim 1, wherein the branching unit includes a diffraction grating that causes reflected light to enter each detector.
JP2005062369A 2005-03-07 2005-03-07 Device for measuring characteristics of soil Pending JP2006242891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005062369A JP2006242891A (en) 2005-03-07 2005-03-07 Device for measuring characteristics of soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005062369A JP2006242891A (en) 2005-03-07 2005-03-07 Device for measuring characteristics of soil

Publications (1)

Publication Number Publication Date
JP2006242891A true JP2006242891A (en) 2006-09-14

Family

ID=37049444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005062369A Pending JP2006242891A (en) 2005-03-07 2005-03-07 Device for measuring characteristics of soil

Country Status (1)

Country Link
JP (1) JP2006242891A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270975A (en) * 2008-05-08 2009-11-19 Si Seiko Co Ltd Soil characteristic measuring device
JP2020134347A (en) * 2019-02-21 2020-08-31 国立研究開発法人宇宙航空研究開発機構 Monitoring device and method for monitoring

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0247539A (en) * 1988-08-09 1990-02-16 Minolta Camera Co Ltd Measuring apparatus of reflection information
JPH11500534A (en) * 1995-02-24 1999-01-12 インスティテュート ファー ヒェモ ウント ビオゼンゾリック ミュンスター エー.ファー. Method for checking the condition of a road surface, in particular a road surface of a traffic road, and an apparatus for implementing the method
JPH1183627A (en) * 1997-09-02 1999-03-26 Omron Corp Device for measuring optical characteristic of soil
JP2001318053A (en) * 2000-05-10 2001-11-16 Shizuoka Prefecture Quality evaluation device of plant body and breeding selection method and quality evaluation method
JP2003139765A (en) * 2001-07-06 2003-05-14 Sakae Shibusawa Device for observing characteristic of soil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0247539A (en) * 1988-08-09 1990-02-16 Minolta Camera Co Ltd Measuring apparatus of reflection information
JPH11500534A (en) * 1995-02-24 1999-01-12 インスティテュート ファー ヒェモ ウント ビオゼンゾリック ミュンスター エー.ファー. Method for checking the condition of a road surface, in particular a road surface of a traffic road, and an apparatus for implementing the method
JPH1183627A (en) * 1997-09-02 1999-03-26 Omron Corp Device for measuring optical characteristic of soil
JP2001318053A (en) * 2000-05-10 2001-11-16 Shizuoka Prefecture Quality evaluation device of plant body and breeding selection method and quality evaluation method
JP2003139765A (en) * 2001-07-06 2003-05-14 Sakae Shibusawa Device for observing characteristic of soil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270975A (en) * 2008-05-08 2009-11-19 Si Seiko Co Ltd Soil characteristic measuring device
JP2020134347A (en) * 2019-02-21 2020-08-31 国立研究開発法人宇宙航空研究開発機構 Monitoring device and method for monitoring
JP7320214B2 (en) 2019-02-21 2023-08-03 国立研究開発法人宇宙航空研究開発機構 Monitoring device and monitoring method

Similar Documents

Publication Publication Date Title
JP6436266B2 (en) Water quality analyzer
US7663748B2 (en) Autofocus mechanism for spectroscopic system
CA2841131C (en) Spectroscopic analysis of oil sands ore face for real time ore blend management
WO2007100615A3 (en) High-sensitivity surface detection system and method
JP2007278768A (en) Microscope device
US20130039811A1 (en) Apparatus for the determination of a concentration of a component to be measured in a gas
WO2014007625A1 (en) Method and device for detecting fluorescence radiation
JPH0120371B2 (en)
JP2006242891A (en) Device for measuring characteristics of soil
WO2006093566A3 (en) Tunable laser-based process monitoring apparatus
JP5298684B2 (en) Foreign object detection device and detection method
JP6364305B2 (en) Hydrogen gas concentration measuring apparatus and method
JP3451536B2 (en) Soil optical property measurement device
CA2300095A1 (en) Method and apparatus for measuring properties of paper
SE539843C2 (en) Method and apparatus for determining a concentration of a substance in a liquid medium
CN111965663A (en) Optical system, in particular lidar system, and vehicle
TWI749145B (en) Optical spectrum measuring apparatus and optical spectrum measuring method
WO2015122237A1 (en) Spectroscopic analysis device and spectroscopic analysis method
JP3462573B2 (en) Method and apparatus for measuring component concentration etc. of liquid sample
JP2009300386A (en) Survey instrument
JP7141057B2 (en) Concentration measuring device and concentration measuring method
JP5019025B2 (en) Soil inspection analysis method
JP4621893B2 (en) Object investigation method and investigation apparatus
JP7158004B2 (en) Gas concentration measuring device and continuous gas concentration measuring method
KR101849606B1 (en) Spatially-resolved spectral imaging apparatus based on single-shot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071113

A977 Report on retrieval

Effective date: 20100202

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100608