EP0811038A1 - Composition comprenant un fluoroelastomere et un polyamide thermoplastique et film obtenu - Google Patents

Composition comprenant un fluoroelastomere et un polyamide thermoplastique et film obtenu

Info

Publication number
EP0811038A1
EP0811038A1 EP96943166A EP96943166A EP0811038A1 EP 0811038 A1 EP0811038 A1 EP 0811038A1 EP 96943166 A EP96943166 A EP 96943166A EP 96943166 A EP96943166 A EP 96943166A EP 0811038 A1 EP0811038 A1 EP 0811038A1
Authority
EP
European Patent Office
Prior art keywords
blocks
polyamide
fluoroelastomer
extruder
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96943166A
Other languages
German (de)
English (en)
Inventor
Régis Jacquemet
Jean-Jacques Labaig
Joachim Merziger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Elf Atochem SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elf Atochem SA filed Critical Elf Atochem SA
Publication of EP0811038A1 publication Critical patent/EP0811038A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31725Of polyamide

Definitions

  • the subject of the present invention is a composition comprising a fluoroelastomer and a thermoplastic polyamide. Intended to improve the processing of plastics.
  • Another subject of the invention relates to a composition based on hydrocarbon polymers comprising a fluoroelastomer and a thermoplastic polyamide.
  • the present invention further relates to a homogeneous thermoplastic film having improved optical and mechanical properties and comprising modifying agents such as a fluoroelastomer and a thermoplastic polyamide. It is generally accepted that during the extrusion of a plastic material, flow irregularities appear at the outlet of the die when a critical shear rate is exceeded. Below, the extrudates are smooth so that * above the critical rate is observed for surface defects.
  • melt fracture defects come in several forms.
  • the films obtained by extrusion blow-molding lose their transparency and their gloss.
  • homogeneity defects with smooth areas in a rough surface appear. These defects significantly reduce the optical and mechanical properties of the film. The same phenomena can be observed on extruded rods. When the surface of the rods loses their shine and becomes dull and rough, it is often compared to an "orange peel".
  • composition which improves the transformation of plastics, during their processing by extrusion, without however having the drawbacks set out above.
  • This composition comprising a fluoroelastomer and a thermoplastic polyamide, forms the subject of the present invention
  • the present invention not only makes it possible to move the “melt fractures” towards high shear rates but also to obtain homogeneous films with a reduced duration of setting in operation of the extruder.
  • the present invention therefore provides a composition of modifying agents for improving the transformation of plastics, characterized in that it comprises
  • Thermoplastic polyamides are polymers with polyamide blocks and polyether blocks
  • Polymers with polyamide blocks and polyether blocks result from the copolycondensation of polyamide blocks with reactive ends with polyether blocks with reactive ends, such as, inter alia •
  • polyamide sequences with dicarboxylic chain ends originate, for example, from the condensation of alpha-omega aminocarboxylic acids of lactams or of dicarboxylic acids and diamines in the presence of a chain-limiting dicarboxylic acid.
  • the polyamide blocks are advantageously made of polyamide- 12_or in polyamide- 6
  • the number-average molar mass Mn of the polyamide blocks is between 300 and 15,000 and preferably between 600 and 5,000
  • the mass Mn of the polyether blocks is between 100 and 6,000 and preferably between 200 and 3,000
  • Polymers with polyamide blocks and polyether blocks can also comprise randomly distributed units. These polymers can be prepared by the simultaneous reaction of the polyether and of the precursors of the polyamide blocks.
  • polyetherdiol, a lactam (or an alpha-omega amino acid) and a chain-limiting diacid can be reacted in the presence of a little water.
  • a polymer is obtained which essentially has polyether blocks, polyamide blocks of very variable length, but also the different reactants which reacted randomly which are distributed statistically along the polymer chain
  • polymers containing polyamide blocks and polyether blocks whether they originate from the copolycondensation of polyamide and polyether blocks prepared beforehand or from a reaction in one step, exhibit, for example, shore D hardnesses which may be between 20 and 75 and advantageously between 30 and 70 and an intrinsic viscosity between 0.8 and 2.5 measured in metacresol at 250 ° C for an initial concentration of 0.8 g / 100 ml
  • polyether blocks are derived from polyethylene glycol, polyoxypropylene glycol or polyoxytetramethylene glycol, they are either used as such and copolycondensed with polyamide blocks having carboxylic ends, or they are aminated to be transformed into polyether diamines and condensed with polyamide blocks to carboxylic ends They can also be mixed with polyamide precursors and a chain limiter to make polymers with polyamide blocks and polyether blocks having randomly distributed units Polymers with polyamide and polyether blocks are described in US Patents 4,331,786, US 4,115,475, US 4,195,015, US 4,839,441, US 4,864,014, US 4,230,838 and US 4,332,920.
  • the polyether may for example be a polyethylene glycol (PEG), a polypropylene glycol (PPG) or a polytetra methylene glycol (PTMG).
  • PEG polyethylene glycol
  • PPG polypropylene glycol
  • PTMG polytetra methylene glycol
  • the latter is also called polytetrahydrofuran (PTHF).
  • polyether blocks are in the polymer chain with polyamide blocks and polyether blocks in the form of diols or diamines, they are called for simplification PEG blocks or PPG blocks or even PTMG blocks. It would not be departing from the scope of the invention if the polyether blocks contained different units such as units derived from ethylene glycol, propylene glycol or even tetramethylene glycol.
  • the polymer with polyamide blocks and polyether blocks comprises a single type of polyamide block and a single type of polyether blocks.
  • polymers with PA-12 blocks and PEG blocks are used, polymers with PA-12 blocks and PTMG blocks and polymers with PA-6 blocks and blocks.
  • the polymer with polyamide blocks and polyether blocks is such that the polyamide which is in the form of blocks and that which is optionally distributed statistically in the chain, represents 50% by weight or more of the polymer with polyamide blocks and polyether blocks.
  • the amount of polyamide and the amount of polyether are in the ratio (polyamide / polyether) 2/3 to 3/1 and preferably close to 1/1.
  • polymer containing polyamide blocks and polyether blocks having hydrophilic properties is particularly preferred, that is to say that having PEG blocks or whose polyether blocks have a majority of units derived from ethylene oxide.
  • films of the invention are antistatic.
  • the fluoroelastomers can be in the form of powder or granules. They are generally homopolymers or copolymers of fluorinated olefins whose fluorine / carbon ratio is greater than or equal to 0.5. A fluorine / carbon atom ratio close to 1 is particularly preferred.
  • polyvinylidene fluoride or polyvinyl fluoride.
  • the advantageously chosen copolymers are derived from vinylidene fluoride and one or more fluorinated olefins.
  • fluoroelastomers are copolymers of vinylidene fluoride and propylene hexafluoride.
  • the copolymers containing more than 50 mol% of vinylidene fluoride are used
  • the masterbatch advantageously consists of a plastic material of the same type as that which it is desired to modify, and the fluoroelastomer and the polyamide are incorporated therein.
  • plastic material of the same type means materials comprising essentially the same monomers in similar proportions. The polymers whose viscosity is close to that of the plastic material to be extruded are particularly preferred.
  • masterbatches can also contain fillers, in particular antioxidants (in the following, unless indicated otherwise, the% are by weight).
  • the dilution of the modifying agent compositions is such that the content of fluoroelastomer in these masterbatches is generally greater than
  • thermoplastic polyamide 0.1% and preferably between 0.3% and 5% by weight and the content of thermoplastic polyamide is generally greater than 0.1% and preferably
  • These masterbatches can be used to pre-treat the output die of the extruders or mix them with the plastics to be transformed before or during the processing.
  • compositions comprising a fluoroelastomer, a thermoplastic polyamide and the plastic to be extruded. They can also contain anti-blocking agents, for example silica, pigments such as titanium dioxide and stearates.
  • plastic material polymers comprising olefin units such as for example ethylene, propylene, butene-1 units, etc.
  • olefin units such as for example ethylene, propylene, butene-1 units, etc.
  • Mixtures of two or more of these polyolefins can be used.
  • LDPE low density copolymers
  • LLDPE better still linear low density copolymers
  • the amount of fluoroelastomer present in the final composition can be greater than 10 ppm and preferably between 100 ppm and 1000 ppm.
  • thermoplastic polyamide present in the final composition can vary within wide limits. It is generally between 10 ppm and 5% and preferably between 100 ppm and 1%.
  • the final compositions according to our invention can be transformed by any known means, for example injection, extrusion, extrusion blow molding of hollow bodies and extrusion blow molding of sheath
  • Another object of the invention relates to a thermoplastic film obtained by extrusion blow molding of the final compositons described above.
  • This homogeneous film Having improved optical and mechanical properties is characterized in that it comprises a fluoroelastomer and a thermoplastic polyamide. besides the advantage of being antistatic
  • the film according to the invention can be obtained for a period of warm-up of the extruder of less than 2 hours, preferably for a period of less than or equal to one hour.
  • KYNAR 2821 copolymer comprising 88% by weight of vinylidene difluoride and 12% by weight of propylene hexafluoride
  • the masterbatches are obtained either by mechanical mixing of the various modifying agents, additives and polymers, or by mixing in a BUSS PR 46/70 1 1 mixer. In this case the temperature profile is 170 ° C - 195 ° C - 200 ° C and the die temperature is equal to 210 ° C.
  • the masterbatches are then diluted in LDPE LL0209AA by simple mechanical mixing with the optional addition of additives to give the final compositions
  • the modifiers in the final compositions were evaluated using two types of extruder a)
  • the HAAKE U HAAKE RHEOLEX extruder has a screw diameter equal to 30 mm and an active screw length equal to 25 times its diameter.
  • the compression ratio of the extruder is equal to 3.
  • the diameter of the die is 3 mm and its length is equal to 3 times its diameter
  • the angle at the inlet of the die is 180 °.
  • the KAUFMAN extruder transforms the final compositions by extrusion blow molding of sheath.
  • the characteristics of the extruder and of its die are given in table 1.
  • the different zones of the extruder screw are presented in table 2.
  • the temperature profile of the different zones recorded in table 3, is constant for all attempts.
  • the optical and mechanical properties of the film obtained by sheath extrusion-blowing are then evaluated using the LUMAQUITAINE test and the DART TEST respectively.
  • the LUMAQUITAINE test consists in forming, through a system of lenses, the image of the fixed slit of a collimator, illuminated by a light source This image is received on a window of transparent sinusoidal or "test pattern" associated with a photometer recorder A film test piece having a circular useful part of 20 mm in diameter is placed in a sample holder which can be rotated, located on the optical axis of the system between the collimator and the target, in a parallel beam of light
  • the contrast factor making it possible to determine, for each number of waves, the attenuation due to the film is given by the following formula
  • the DART TEST is a method consisting in determining the energy necessary for the impact rupture of a plastic film, under the effect of a punch of mass less than or equal to 300g falling in free fall from a height 66 cm The mass of the projectile is determined for which 50% of the test pieces
  • the mass of the projectile is defined as the mass of the punch increased by the additional masses and the mass of the clamping collar of these masses
  • the mass of the projectile is varied so as to obtain both broken test pieces and intact test pieces in the same group of 10 test pieces and with at least 3 different rupture rates between 0% and
  • ⁇ W is the increase in mass used successively from one test to another (in grams)
  • S is the sum of the percentages of ruptures for each mass of projectile (this sum includes the percentages corresponding to all the masses of projectile used from the mass corresponding to no rupture up to the mass W
  • the antistatic properties of the film are evaluated by a method based on the ability of a surface to run off static charges. This method consists first of all in charging the film surface for a few seconds via a high voltage After cutting from the high-voltage source, note the half-discharge time, which is the time necessary to go from the maximum potential V max reached to half this value V max / 2 An antistatic material will more easily discharge the charges and therefore the half-discharge time will be shorter b) Conduct of the tests (i) Stabilization of the extruder with LDPE LL0209AA,
  • a film width 500 mm
  • a film thickness 50 ⁇ m
  • a final composition is used containing only the plastic material (PEbdl LL0209AA) to be transformed.
  • This final composition is transformed into a rod using the HAAKE RHEOLEX extruder.
  • the parameters and samples were taken one hour after starting the extrusion at a screw rotation speed of 20 revolutions / min and at a die temperature equal to 215 ° C.
  • a film is obtained by the extrusion blow molding of sheath using the KAUFMAN extruder.
  • the appearance of the rods and film thus obtained is shown in Table 4.
  • IRGANOX B 900 (antioxidant agent) 0.1% in the plastic material (PEbdl LL0209 AA) to be transformed.
  • the final composition thus obtained contains:
  • Example 3 A final composition is prepared in the same way as in Example 2 except that I add 2% of MMF15C from SCHULMANN containing about 15% of natural silica.
  • a final composition is prepared in an identical manner to Example 3 except that 2% of MMF15C is replaced by 4% of MM CMPF 59080 of SYNTHECOLOR containing 2% of anti-slip agent ERUCAMIDE
  • the final composition contains
  • Example 2 The final composition of Example 2 is taken up again and its behavior as a function of time is studied during the extrusion blow molding process on the KAUFMAN extruder. The parameters noted and the appearance of the film obtained are shown in Table 5.
  • Examples 6 to 8 were carried out on the KAUFMAN extruder.
  • MM 29790 PG antioxidant (SANTONOX)
  • a final composition is prepared from a masterbatch containing LDPE LL0209 AA (granules) 97.7% KYNAR 2821 2.0%
  • PE polyethylene
  • Example 7 The procedure is identical to Example 6 except that the masterbatch used additionally contains 4% of PEBAX M. The final composition contains
  • PE polyethylene
  • Example 7 The procedure is identical to that in Example 7 except that the masterbatch contains 8% of PEBAX M instead of 4%.
  • the final composition contains PEbdl LL0209 AA 97.794%
  • PE polyethylene
  • the optical and mechanical properties of the film obtained, as a function of the operating time of the extruder, are shown in Tables 6 and 7 respectively.
  • the PE polyethylene comes from the masterbatches MM F 15C and MM
  • Tables 8 and 9 show that the film obtained by extrusion blow molding of a final composition comprising a fluoroelastomer and a thermoplastic polyamide is more homogeneous than a film obtained by transformation of a final composition comprising a fluoroelastomer alone.
  • the antistatic character of the film obtained from the compositions of Examples 6 and 8 was evaluated according to the method described above.
  • the half-discharge time of the film from Example 6 is 169 seconds
  • a composition of LDPE comprising 400 ppm of KYNAR and 1600 ppm of PEBAX results in a film whose half-time charge reduced to 18 seconds

Abstract

La présente invention concerne une composition d'agents modifiants, un mélange maître et une composition finale comprenant un fluoroélastomère et un polyamide thermoplastique, ainsi que le film obtenu à partir de la composition finale.

Description

COMPOSITION COMPRENANT UN FLUOROELASTOMERE ET UN POLYAMIDE THERMOPLASTIQUE ET FILM OBTENU
Description
La présente invention a pour objet une composition comprenant un fluoroelastomère et un polyamide thermoplastique.destinée à améliorer la mise en oeuvre des matières plastiques. Un autre objet de l'invention concerne une composition à base de polymères hydrocarbonés comprenant un fluoroelastomère et un polyamide thermoplastique. La présente invention a de plus, pour objet un film thermoplastique homogène ayant des propriétés optiques et mécaniques améliorées et comprenant des agents modifiants tels qu' un fluoroelastomère et un polyamide thermoplastique. II est généralement admis que lors de l'extrusion d 'une matière plastique, des irrégularités de l'écoulement apparaissent à la sortie de la filière lorsqu'on dépasse un taux de cisaillement critique. En dessous, les extrudés sont lisses alors qu* au dessus de ce taux critique on observe des défauts de surface. Ces défauts qu'on appelle , "melt fracture" se présentent sous plusieurs formes . A taux de cisaillement légèrement supérieur au taux critique, les films obtenus par extrusion-soufflage perdent leur transparence et leur brillance. Pour des taux nettement supérieurs, ce qui correspondent à une productivité plus élevée, des défauts d'homogénéité avec des zones lisses dans une surface rugueuse apparaissent. Ces défauts diminuent de manière significative les propriétés optiques et mécaniques du film. Les mêmes phénomènes peuvent être observés sur des joncs extrudés. Lorsque la surface des joncs perd leur brillance et devient terne et rugueuse, elle est souvent comparée à une "peau d' orange".
Parmi les diverses solutions proposées pour remédier à cet inconvénient, I' emploi d' agents modifiants présente industriellement un plus grand intérêt. Ainsi dans le brevet US 3334157, l'incorporation du polytetrafluoroethylene améliore les propriétés optiques du film de polyéthylène. Selon les brevets US 4855360 et US 5015693 un fluoroelastomère en combinaison avec un polyoxyalkylène sont utilisés pour améliorer la transformation des polymères hydrocarbonés. Les organophosphates ou organophosphites en combinaison avec un fluoroelastomère ont été décrits dans les brevets US 4983677 et US 4863983 pour améliorer également , la transformation des polymères hydrocarbonés
Cependant les additifs tels que les agents anti-blocants, les charges, pigments, colorants et stéarates, indispensables pour la transformation des matières plastiques interagissent avec ces fluoroélastomères et réduisent de façon significative leur efficacité Pour tenter de pallier cet inconvénient, un procédé consistant d 'abord à traiter la filière d'extrudeuse par des agents modifiants et ensuite à transformer les matières plastiques a été décrit dans le brevet WO 9105007. L' agent modifiant utilisé, contient un copolymère fluoré fonctionnalisé comprenant des motifs de tetrafluoroethylène et un groupement fonctionnel contenant un monomère fluoré Ce procédé présente I' inconvénient d' être en deux étapes.
Il a maintenant été trouvé une composition qui améliore la transformation des matières plastiques, lors de leur mise en oeuvre par extrusion, sans pour autant présenter les inconvénients énoncés précédemment Cette composition comprenant un fluoroelastomère et un polyamide thermoplastique, forme I' objet de la présente invention
La présente invention permet non seulement de déplacer les "melt fracture" vers des taux de cisaillement élevés mais aussi d' obtenir des films homogènes avec une durée réduite de mise en régime de l'extrudeuse
La présente invention fournit donc, une composition d' agents modifiants pour améliorer la transformation des matières plastiques, caractérisée en ce qu' elle comprend
(a) un fluoroelastomère et (b) un polyamide thermoplastique
Les polyamides thermoplastiques sont des polymères à blocs polyamides et blocs polyéthers
Les polymères à blocs polyamides et blocs polyéthers résultent de la copolycondensation de séquences polyamides à extrémités réactives avec des séquences polyéthers à extrémités réactives, telles que, entre autres
1 ) Séquences polyamides à bouts de chaîne diamines avec des séquences polyoxyalkylénés à bouts de chaînes dicarboxyliques. 2) Séquences polyamides à bouts de chaînes dicarboxyliques avec des séquences polyoxyalkylénés à bouts de chaînes diamines obtenues par cyanoéthylation et hydrogénation de séquences polyoxyalkylène alpha-oméga dihydroxylées aliphatique appelées polyétherdiols. 3) Séquences polyamides à bouts de chaînes dicarboxyliques avec des polyétherdiols, les produits obtenus étant, dans ce cas particulier, des polyétheresteramides
Les séquences polyamides a bouts de chaînes dicarboxyliques proviennent, par exemple, de la condensation d'acides alpha-oméga aminocarboxyliques de lactames ou de diacides carboxyliques et diamines en présence d'un diacide carboxylique limiteur de chaîne Avantageusement, les blocs polyamides sont en polyamide- 12_ou en polyamide- 6
La masse molaire en nombre Mn des séquences polyamides est comprise entre 300 et 15 000 et de préférence entre 600 et 5 000 La masse Mn des séquences polyéther est comprise entre 100 et 6 000 et de préférence entre 200 et 3 000
Les polymères à blocs polyamides et blocs polyéthers peuvent aussi comprendre des motifs répartis de façon aléatoire Ces polymères peuvent être préparés par la réaction simultanée du polyéther et des précurseurs des blocs polyamides
Par exemple, on peut faire réagir du polyétherdiol, un lactame (ou un alpha-oméga amino acide) et un diacide limiteur de chaîne en présence d'un peu d'eau On obtient un polymère ayant essentiellement des blocs polyéthers, des blocs polyamides de longueur très variable, mais aussi les différents réactifs ayant réagi de façon aléatoire qui sont répartis de façon statistique le long de la chaîne polymère
Ces polymères à blocs polyamides et blocs polyéthers qu'ils proviennent de la copolycondensation de séquences polyamides et polyéthers préparées auparavant ou d'une réaction en une étape présentent, par exemple, des duretés shore D pouvant être comprises entre 20 et 75 et avantageusement entre 30 et 70 et une viscosité intrinsèque entre 0,8 et 2,5 mesurée dans le métacrésol à 250° C pour une concentration initiale de 0,8 g/100 ml
Que les blocs polyéthers dérivent du polyéthylène glycol, du polyoxypropylene glycol ou du polyoxytetramethylene glycol, ils sont soit utilisés tels quels et copolycondensés avec des blocs polyamides à extrémités carboxyliques, soit ils sont aminés pour être transformés en polyéther diamines et condensés avec des blocs polyamides à extrémités carboxyliques Ils peuvent être aussi mélangés avec des précurseurs de polyamide et un limiteur de chaîne pour faire les polymères à blocs polyamides et blocs polyéthers ayant des motifs répartis de façon statistique Des polymères à blocs polyamides et polyéthers sont décrits dans les brevets US 4 331 786, US 4 1 15 475, US 4 195 015, US 4 839 441 , US 4 864 014, US 4 230 838 et US 4 332 920.
Le polyéther peut être par exemple un polyéthylène glycol (PEG), un polypropylène glycol (PPG) ou un polytétra méthylène glycol (PTMG). Ce dernier est aussi appelé polytétrahydrofurane (PTHF).
Que les blocs polyéther soient dans la chaîne du polymère à blocs polyamides et blocs polyéther sous forme de diols ou de diamines, on les appelle par simplification blocs PEG ou blocs PPG ou encore blocs PTMG. On ne sortirait pas du cadre de l'invention si les blocs polyéther contenaient des motifs différents tels que des motifs dérivés de l'éthylène glycol, du propylene glycol ou encore du tétraméthylène glycol.
De préférence, le polymère à blocs polyamides et blocs polyéther comprend un seul type de bloc polyamide et un seul type de blocs polyéther. On utilise avantageusement des polymères à blocs PA-12 et blocs PEG, des polymères à blocs PA-12 et blocs PTMG et des polymères à blocs PA- 6 et blocs
PEG.
Avantageusement, le polymère à blocs polyamides et blocs polyéthers est tel que le polyamide qui est sous forme de blocs et celle qui est éventuellement répartie de façon statistique dans la chaîne, représente 50 % en poids ou plus du polymère à blocs polyamide et blocs polyéther. Avantageusement, la quantité de polyamide et la quantité de polyéther sont dans le rapport (polyamide/polyéther) 2/3 à 3/1 et de préférence voisin de 1/1.
Le polymère à blocs polyamides et blocs polyéthers ayant des propriétés hydrophiles est particulièrement préféré, c'est-à-dire celui ayant des blocs PEG ou dont les blocs polyéther ont une majorité de motifs dérivés de l'oxyde d'éthylene.
Ainsi les films de l'invention sont antistatiques.
Les fluoroélastomères peuvent être sous forme de poudre ou de granules. Ils sont généralement des homopolymères ou copolymères d'olefines fluorées dont le rapport fluor/carbone est supérieur ou égal à 0,5. Un rapport d'atome fluor/carbone voisin de 1 est particulièrement préféré.
Parmi les homopolymères , on peut citer le polyfluorure de vinylidène ou le polyfluorure de vinyle. Les copolymères avantageusement choisis sont dérivés du fluorure de vinylidène et un ou plusieurs oléfines fluorées.
Les fluoroélastomères particulièrement préférés sont des copolymères de fluorure de vinylidène et d'hexafluorure de propylene. Avantageusement les copolymères contenant plus de 50 % en mole de fluorure de vinylidène sont utilisés
Selon l'invention on peut soit utiliser les compositions d' agents modifiants telles quelles soit les diluer dans un polymère ou un mélange de polymères pour former des mélanges maîtres. Le mélange maître est constitué avantageusement d'une matière plastique du même type que celle qu'on veut modifier et on y incorpore le fluoroelastomère et le polyamide. On entend par matière plastique du même type des matières comprenant essentiellement les mêmes monomères dans des proportions voisines Les polymères dont la viscosité est voisine de celle de la matière plastique à extruder sont particulièrement préférés.
Ces mélanges maîtres peuvent contenir en outre des charges, notamment des anti-oxydants (dans la suite sauf indication contraire les % sont en poids).
La dilution des compositions d'agents modifiants est telle que la teneur en fluoroelastomère dans ces mélanges maîtres est généralement supérieure à
0,1 % et de préférence comprise entre 0,3 % et 5 % en poids et la teneur en polyamide thermoplastique est généralement supérieure à 0,1 % et de préférence
0,3 à 20 %.
On peut utiliser ces mélanges maîtres pour traiter préalablement la filière de sortie des extrudeuses ou les mélanger avec les matières plastiques à transformer avant ou pendant la transformation Avantageusement on dilue le mélange maître dans la matière plastique avant transformation pour former une compostion finale.
Les compositions finales comprenant un fluoroelastomère , un polyamide thermoplastique et la matière plastique à extruder forment un autre objet de l'invention. Elles peuvent en outre contenir des agents anti-blocants, par exemple la silice, les pigments tels que le dioxyde de titane et des stéarates
Par matière plastique, on entend des polymères comprenant des motifs oléfines tels que par exemple des motifs ethylène, propylene, butène-1 , etc... A titre d'exemple, on peut citer :
- le polyéthylène, le polypropylène, les copolymères de l'éthylène avec des alphaoléfines. Ces produits pouvant être greffés par des anhydrides d'acides carboxyliques insaturés tels que l'anhydride maléique ou des époxydes insaturés tels que le méthacrylate de glycidyle. - les copolymères de l'éthylène avec au moins un produit choisi parmi (i) les acides carboxyliques insaturés, leurs sels, leurs esters, (ii) les esters vinyliques d'acides carboxyliques saturés, (iii) les acides dicarboxyliques insaturés, leurs sels, leurs esters, leurs hemiesters, leurs anhydrides (iv) les époxydes insaturés
Ces copolymères de l'éthylène pouvant être greffés par des anhydrides d'acides dicarboxyliques insaturés ou des époxydes insaturés - les copolymères blocs styrène / éthylène-butène / styrène (SEBS) éventuellement maléisés
On peut utiliser des mélanges de deux ou plusieurs de ces polyoléfines.
On utilise avantageusement
- le polyéthylène, - les copolymères de l'éthylène et d'une alpha-oléfine et de préférence les copolymères de basse densité ( LDPE ) et mieux encore les copolymères basses densités linéaires ( LLDPE ),
- les copolymères de l'éthylène / d'un (méth)acrylate d'alkyle,
- les copolymères de l'éthylène / d'un (méth)acrylate d'alkyle / de l'anhydride maléique, l'anhydride maléique étant greffé ou copolyméπsé,
- les copolymères de l'éthylène / d'un (méth)acrylate d'alkyle / du méthacrylate de glycidyle, le méthacrylate de glycidyle étant greffé ou copolymérisé,
- le polypropylène La quantité de fluoroelastomère présente dans la composition finale peut être supérieure à 10 ppm et de préférence comprise entre 100 ppm et 1000 ppm.
La quantité de polyamide thermoplastique présente dans la composition finale peut varier dans des larges limites Elle est généralement comprise entre 10 ppm et 5 % et de préférence comprise entre 100 ppm et 1 % Les compositions finales selon notre invention peuvent être transformées par tout moyen connu , par exemple injection, extrusion, extrusion-soufflage de corps creux et extrusion-soufflage de gaîne
Un autre objet de l 'invention concerne un film thermoplastique obtenu par extrusion-soufflage des compositons finales décrites précédemment Ce film homogène .ayant des propriétés optiques et mécaniques améliorées est caractérisé en ce qu'il comprend un fluoroelastomère et un polyamide thermoplastique Ce film présente en outre l'avantage d'être antistatique
Le film selon l'invention peut être obtenu pour une durée de mise en régime de I' extrudeuse inférieure à 2 heures, de préférence pour une durée inférieure ou égale à une heure
Les exemples suivants illustrent l' invention sans la limiter La matière plastique utilisée est le PEbdl LL0209 AA de BP polyéthylène basse densité linéaire qui est un copolymère comprenant des motifs de butène et majoritairement des motifs d'éthylene avec un Ml ( Melt Index ) à 2, 16 Kg et 190 °C = 0,9 et une Densité = 0,92
KYNAR 2821 =copolymère comprenant 88 % en poids de difluorure de vinylidène et 12 % en poids d' hexafluorure de propylene
PEBAX M . polyamide thermoplastique constitué de blocs de PA-12 de Mn = 1 500 et de blocs PEG de Mn = 1 500 et de dureté shore D 40. Les mélanges maîtres sont obtenus soit par mélange mécanique des différents agents modifiants , additifs et polymères soit par mélange dans un malaxeur BUSS PR 46/70 1 1 D. Dans ce cas le profil de température est de 170 °C - 195 °C - 200 °C et la température de filière est égale à 210° C .
Les mélanges maîtres sont ensuite dilués dans du PEbdl LL0209AA par simple mélange mécanique avec ajout éventuel d'additifs pour donner les compositions finales
L' évaluation des agents modifiants dans les compositions finales a été faite à I' aide de deux types d' extrudeuses a ) Le HAAKE U extrudeuse HAAKE RHEOLEX a un diamètre de la vis égale à 30 mm et une longueur active de vis égale à 25 fois son diamètre. Le taux de compression de I' extrudeuse est égale à 3. Le diamètre de la filière est de 3 mm et sa longueur est égale à 3 fois son diamètre L' angle à I' entrée de la filière est de 180°. Le profil de température de I' extrudeuse
190°C - 200° C - 210° C - 220° C - 225° C est constant pour tous les essais De même pour la température de la filière qui est égale à 215°C.
b) L'extrudeuse KAUFMAN
L' extrudeuse KAUFMAN transforme les compositions finales par extrusion soufflage de gaîne. Les caractéristiques de I' extrudeuse et de sa filière sont données dans le tableau 1. Les différentes zones de la vis de r extrudeuse sont présentées dans le tableau 2. Le profil de température des différentes zones consigné dans le tableau 3, est constant pour tous les essais.
Tableau 1 - Caractéristiques de la ligne KAUFMAN
Tableau 2 - Zones de la vis KAUFMAN
Tableau 3 - Profil de température de ligne KAUFMAN
On évalue ensuite les propriétés optiques et mécaniques du film obtenu par extrusion-soufflage gaîne en utilisant respectivement le test LUMAQUITAINE et le DART TEST. Le test LUMAQUITAINE consiste a former, a travers un système de lentilles, l'image de la fente fixe d'un collimateur, éclairé par une source lumineuse Cette image est reçue sur une fenêtre de transparence sinusoïdale ou "mire" mobile associée a un photomètre enregistreur Une éprouvette du film ayant une partie utile circulaire de 20 mm de diamètre est placée dans un porte échantillon pouvant être en rotation, situé sur l'axe optique du système entre le collimateur et la mire, dans un faisceau de lumière parallèle
La courbe de variation de l'intensité de la lumière transmise modulée par le déplacement de la mire est enregistrée
Si M en millimères est la distance séparant la ligne de base des maxima et m en millimètres la distance séparant la ligne de base des minima de la courbe sinusoïdale correspondante, le facteur de contraste permettant de déterminer, pour chaque nombre d'ondes, l'atténuation due au film est donnée par la formule suivante
C o/0 = M - m X 1 0Q M + m
Le DART TEST est une méthode consistant à déterminer l'énergie nécessaire à la rupture par choc d'un film en matière plastique, sous l'effet d'un poinçon de masse inférieure ou égale à 300g tombant en chute libre d'une hauteur de 66 cm On détermine la masse du projectile pour laquelle 50 % des eprouvettes
(10 au minimum) d'un même échantillon testées sont rompues dans les conditions décrites au paragraphe précédent
La masse du projectile est définie comme étant la masse du poinçon augmentée des masses additionnelles et de la masse du collier de blocage de ces masses
On fait varier la masse du projectile de façon à obtenir à la fois des eprouvettes rompues et des eprouvettes intactes dans un même groupe de 10 eprouvettes et avec au moins 3 taux de ruptures différents se situant entre 0 % et
100 % La masse de rupture au choc Wf du film est exprimée en grammes suivant la formule ci-après
Wf = W| - ΔW [ S/100 - 0,5] OU
W| est la masse de projectile la plus basse utilisée (en grammes) pour laquelle toutes les eprouvettes sont rompues
ΔW est l'augmentation de masse utilisée successivement d'un essai à l'autre ( en grammes)
S est la somme des pourcentages de ruptures pour chaque masse de projectile (cette somme comprend les pourcentages correspondants à toutes les masses de projectile utilisées depuis la masse correspondant à aucune rupture jusqu'à la masse W| incluse )
Les propriétés antistatiques du film sont évaluées par une méthode basée l'aptitude d'une surface à écouler les charges statiques Cette méthode consiste d'abord à charger pendant quelques secondes, la surface du film par l'intermédiaire d'une haute tension Après coupure de la source de haute tension on note le temps de demi-décharge, qui est le temps nécessaire pour passer du potentiel maximum Vmax atteint à la moitié de cette valeur Vmax/2 Un matériau antistatique écoulera plus facilement les charges et par conséquent le temps de demi-décharge sera plus court b ) Déroulement des essais (i) Mise en régime de I' extrudeuse avec du PEbdl LL0209AA ,
(n) Démarrage de I* extrusion avec les compositions finales (m) Prise de paramètres d' extrusion et d' échantillon -a ) Extrudeuse HAAKE RHEOLEX pression et température à I' entrée de la filière la valeur du couple, du débit et du gonflement pour des vitesses de rotation différentes ( 20 à 80 tours / mn ) -b ) Extrudeuse KAUFMAN pression avant et après les filtres (bar) température de la filière (°C) intensité (A) vitesse de refroidissement (%) et vitesse de tirage (m / mn) au début de I' essai et après chaque heure
(iv) Purge de I' extrudeuse HAAKE RHEOLEX à I' aide de PEbdl LL0209 AA Démontage et nettoyage de la filière dans un bain d'acétone
- Purge de I' extrudeuse KAUFMAN à I' aide de POLYBATCH KC30 de SCHULMAN ( mélange maître à base de polyéthylène comprenant 50 % en poids d' additifs et une densité = 1 ,38 ) avec Ml à 2,16 Kg et 190 °C = 1 ,3 - Purge du fourreau et de la filière KAUFMAN à I' aide du polystyrène cristal LACQRENE 1260 avec un Ml à 5 Kg et 200 °C = 4 et une densité = 1 ,05
(v) L' extrudeuse est prête pour un nouvel essai
Pour tous les essais effectués sur I' extrudeuse KAUFMAN , la vitesse de rotation de la vis est de 35 tours / mn, une vitesse de tirage = 8,5 m/mn et I' extrudeuse est réglée pour donner :
Une largeur de film = 500 mm Une épaisseur de film = 50 μm
Exemple 1
On utilise une composition finale ne contenant que de la matière plastique (PEbdl LL0209AA) à transformer.
On transforme cette composition finale en jonc en utilisant I' extrudeuse HAAKE RHEOLEX . Les paramètres et échantillons ( tableau 4 )ont été relevés une heure après le démarrage de l'extrusion à une vitesse de rotation de la vis de 20 tours / mn et à une température de filière égale à 215° C
On obtient un film par l'extrusion-soufflage de gaîne à I' aide de I' extrudeuse KAUFMAN. L' aspect des jonc et film ainsi obtenus, est reporté dans le tableau 4.
Exemple 2
On dilue à un taux de 2 % un mélange maître de composition suivante : PEbdl LL0209 AA en poudre = 97,9 % KYNAR 2821 = 2,0 %
IRGANOX B 900 ( agent antioxydant ) = 0,1 % dans la matière plastique (PEbdl LL0209 AA) à transformer . La composition finale ainsi obtenue, contient :
PEbdl LL0209 AA en poudre = 99,958 % KYNAR 2821 = 0,04 %
IRGANOX B 900 ( agent antioxydant ) = 0,002 % On transforme cette composition finale de manière identique à l'exemple 1.
Exemple 3 On prépare une composition finale de manière identique qu' à l'exemple 2 sauf que I' on rajoute 2 % de MMF15C de SCHULMANN contenant environ 15 % de silice naturelle.
La composition finale contient : PEbdl LL0209 AA en poudre = 99,658 %
KYNAR 2821 = 0,04 %
IRGANOX B 900 ( agent antioxydant ) = 0,002 % Silice = 0,3 % On transforme la composition finale de manière identique à l'exemple 2
Exemple 4
On prépare une composition finale de manière identique à l'exemple 3 sauf que l'on remplace 2 % de MMF15C par 4 % de MM CMPF 59080 de SYNTHECOLOR contenant 2 % d'agent antiglissant ERUCAMIDE La compostiton finale contient
PEbdl LL0209 AA en poudre = 95,958
KYNAR 2821 = 0,04 %
IRGANOX B 900 ( agent antioxydant ) = 0,002 % MM CMPF 59080 = 4 % On transforme la composition finale de manière identique à l'exemple 2
w
Ut
Tableau 4
n
H
O KJ o tn o
Exemple 5
On reprend la composition finale de l'exemple 2 et on étudie son comportement en fonction du temps lors de l'extrusion-soufflage gaîne sur l'extrudeuse KAUFMAN. Les paramètres relevés et l'aspect du film obtenu sont reportés dans le tableau 5.
Exemple 6
Les exemples 6 à 8 ont été effectués sur I' extrudeuse KAUFMAN. MM 29790 PG = anti - oxydant ( SANTONOX )
On prépare une composition finale à partir d'un mélange maître contenant PEbdl LL0209 AA (granulés) 97,7 % KYNAR 2821 2,0 %
MM 29790 PG 0,3 % qui est dilué à un taux de 2 % dans la matière plastique ( PEbdl LL0209
AA) à transformer et à laquelle on a rajouté 2 % de MMF15C de SCHULMANN La composition finale ainsi obtenue contient
PEbdl LL0209 AA 97,954 %
Silice 0,3 % KYNAR 2821 0,04 %
MM 29790 PG 0,006 %
PE(polyéthylène) 1 ,7 %
Exemple 7 On opère de manière identique à l'exemple 6 sauf que le mélange maître utilisé contient en plus 4 % de PEBAX M. La composition finale contient
PEbdl LL0209 AA 97,874%
Silice 0,3 % PEBAX M 0,08 %
KYNAR 2821 0,04 %
MM 29790 PG 0,006 %
PE(polyéthylène) 1 ,7 %
Exemple 8
On opère de manière identique qu'à l'exemple 7 sauf que le mélange maître contient 8 % de PEBAX M au lieu de 4 %. La composition finale contient PEbdl LL0209 AA 97,794 %
Silice 0,3 %
PEBAX M 0,16 %
KYNAR 2821 0,04 %
MM 29790 PG 0,006 %
PE(polyéthylène) 1 ,7 %
Les propriétés optiques et mécaniques du film obtenu, en fonction de la durée de mise en régime de l'extrudeuse, sont représentées respectivement dans les tableaux 6 et 7. Le PE(polyéthylène) provient des mélanges maîtres MM F 15C et MM
29790 PG.
Tableau 6
Masse de rupture à 50 % (g)
Durée de mise en régime de Exemple 6 Exemple 7 Exemple 8 l'extrudeuse
(heures)
0 174 174 174
1 174 188 191
2 183 187 192
3 190 193 193
Tableau 7
En relevant les paramètres pour obtenir le facteur de contraste en différents points (25) du film obtenu par extrusion-soufflage gaîne des compositions finales des exemples 6 à 8, nous pouvons déduire l'homogénéité du
Ainsi, les tableaux 8 et 9 montrent que le film obtenu par extrusion- soufflage gaîne d'une composition finale comprenant un fluoroelastomère et un polyamide thermoplastique est plus homogène qu'un film obtenu par transformation d'une composition finale comprenant un fluoroelastomère seul
Tableau 8 Homogénéité du film après une heure de mise en régime de l'extrudeuse
Tableau 9 Homogénéité du film après deux heures de mise en régime de l'extrudeuse
Par ailleurs le caractère antistatique du film obtenu à partir des compositions des exemples 6 et 8 a été évalué suivant la méthode décrite ci- dessus. Ainsi le temps de demi-décharge du film issu de l'exemple 6 est de 169 secondes alors qu'une composition de PEbdl comprenant 400 ppm de KYNAR et 1600 ppm de PEBAX ( exemple 8 ) conduit à un film dont le temps de demi- charge est réduit à 18 secondes

Claims

REVENDICATIONS
1. Composition d'agents modifiants pour améliorer la transformation des matières plastiques caractérisée en ce qu'elle comprend :
a un fluoroelastomère b un polyamide thermoplastique
2. Composition selon la revendication 1 dans laquelle a est un copolymère contenant plus de 50 % en mole de fluorure de vinylidène et b est un polymère à blocs polyamides et blocs polyéther.
3. Composition selon l'une quelconque des revendications précédentes dans laquelle a et b sont dilués dans une matière plastique la teneur de a étant entre 0,3 et 5 %, la teneur de b étant entre 0,3 et 20 %, ces pourcentages étant en poids de l'ensemble matière plastique et a et b.
4. Composition selon l'une quelconque des revendications précédentes dans laquelle la matière plastique à transformer est un polyéthylène homo ou copolymère.
5. Film de matière plastique contenant les modifiants de l'une quelconque des revendications précédentes.
6. Film selon la revendication 5 obtenu par coextrusion soufflage.
EP96943166A 1995-12-22 1996-12-20 Composition comprenant un fluoroelastomere et un polyamide thermoplastique et film obtenu Withdrawn EP0811038A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9515352 1995-12-22
FR9515352 1995-12-22
PCT/FR1996/002050 WO1997023570A1 (fr) 1995-12-22 1996-12-20 Composition comprenant un fluoroelastomere et un polyamide thermoplastique et film obtenu

Publications (1)

Publication Number Publication Date
EP0811038A1 true EP0811038A1 (fr) 1997-12-10

Family

ID=9485853

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96943166A Withdrawn EP0811038A1 (fr) 1995-12-22 1996-12-20 Composition comprenant un fluoroelastomere et un polyamide thermoplastique et film obtenu

Country Status (8)

Country Link
US (1) US5986005A (fr)
EP (1) EP0811038A1 (fr)
JP (1) JPH11501083A (fr)
KR (1) KR100312055B1 (fr)
CN (1) CN1102616C (fr)
AU (1) AU1198597A (fr)
CA (1) CA2211806A1 (fr)
WO (1) WO1997023570A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7353756B2 (en) * 2002-04-10 2008-04-08 Accutec Usa Lead free reduced ricochet limited penetration projectile
WO2023017327A1 (fr) 2021-08-12 2023-02-16 Nova Chemicals (International) S.A. Auxiliaires de traitement de polymère à base de copolymères séquencés
WO2023238032A1 (fr) 2022-06-10 2023-12-14 Nova Chemicals (International) S.A. Auxiliaires de traitement de polymères exempts de fluor
WO2023241955A1 (fr) 2022-06-15 2023-12-21 Nova Chemicals (International) S.A. Auxiliaires de traitement des polymères à base de copolymères séquencés
WO2024079553A1 (fr) 2022-10-11 2024-04-18 Nova Chemicals (International) S.A. Sel métallique en tant qu'auxiliaire de traitement de polymère

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3334157A (en) * 1963-12-03 1967-08-01 Union Carbide Canada Ltd Polyethylene blends containing trace amounts of polytetrafluoroethylene
LU64603A1 (fr) * 1972-01-18 1973-08-03
FR2273021B1 (fr) * 1974-05-31 1977-03-11 Ato Chimie
FR2318185A1 (fr) * 1975-07-17 1977-02-11 Ato Chimie Procede de preparation de copolyesteramides comme produits a mouler
US4195015A (en) * 1976-07-30 1980-03-25 Ato Chimie Heat and aging stable copolyetheresteramides and method of manufacturing same
US4230836A (en) * 1979-04-26 1980-10-28 Mobil Oil Corporation Chemically cross-linked poly(p-methylstyrene)
FR2466478B2 (fr) * 1979-10-02 1986-03-14 Ato Chimie Procede de preparation de copolyetheresteramides aliphatiques elastomeres
FR2611727B1 (fr) * 1987-02-26 1989-06-16 Atochem Polyesteramides et polyetheresteramides - leur procede de fabrication
FR2611726B1 (fr) * 1987-02-26 1989-06-16 Atochem Polyesteramides et polyetherthioether-ester-amides - leur procede de fabrication
US4863983A (en) * 1988-04-15 1989-09-05 Minnesota Mining And Manufacturing Company Extrudable thermoplastic hydrocarbon polymer composition
US4983677A (en) * 1988-04-15 1991-01-08 Minnesota Mining And Manufacturing Company Extrudable thermoplastic hydrocarbon polymer composition
US5015693A (en) * 1988-04-15 1991-05-14 Minnesota Mining And Manufacturing Company Extrudable thermoplastic hydrocarbon polymer composition
US4855360A (en) * 1988-04-15 1989-08-08 Minnesota Mining And Manufacturing Company Extrudable thermoplastic hydrocarbon polymer composition
WO1991005007A1 (fr) * 1989-10-06 1991-04-18 E.I. Du Pont De Nemours And Company Procede d'extrusion pour polymeres difficiles a mouler par fusion
CA2029979A1 (fr) * 1989-11-16 1991-05-17 Kenneth D. Goebel Composition a base de polymeres
US5304422A (en) * 1990-09-19 1994-04-19 Bando Chemical Industries, Ltd. Low friction polyamide, polyethylene, P.T.F.E. resin
US5459188A (en) * 1991-04-11 1995-10-17 Peach State Labs, Inc. Soil resistant fibers
DE69333572T2 (de) * 1992-12-10 2005-07-14 Daikin Industries, Ltd. Thermoplastische Harzzusammensetzung enthaltend Fluorharz und Polyamid
US5891538A (en) * 1993-10-29 1999-04-06 Baikin Industries, Ltd. Thermoplastic resin composition and laminate comprising the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9723570A1 *

Also Published As

Publication number Publication date
CN1102616C (zh) 2003-03-05
JPH11501083A (ja) 1999-01-26
KR19980702401A (ko) 1998-07-15
WO1997023570A1 (fr) 1997-07-03
CA2211806A1 (fr) 1997-07-03
CN1182449A (zh) 1998-05-20
KR100312055B1 (ko) 2002-05-09
US5986005A (en) 1999-11-16
AU1198597A (en) 1997-07-17

Similar Documents

Publication Publication Date Title
US4657982A (en) Blends of polyethylene and polybutenes
CA2511872C (fr) Melange maitre a base de polymere fluore et son utilisation pour l'extrusion des polyolefines
FR2466482A1 (fr) Materiau polymerique thermoplastique et procede pour sa preparation
FR2969160A1 (fr) Copolymere polyamide-polyolefine
EP0800552A1 (fr) Melange de polyolefine et d'alliage de polyamide et son procede de fabrication
CA2224504A1 (fr) Melanges de polymere a blocs polyamides et de copolymeres a motifs vinylaromatiques et motifs anhydride
EP0842225B1 (fr) Thermoplastiques a flexibilite et transparence amelioree
EP0418129B1 (fr) Alliages à base d'un copolymère éthylène alcool vinylique à propriété barrière aux gaz, thermoformable et/ou résistant à la flexion répétée
EP0742809A1 (fr) Films a base de polyamide et de polymeres a blocs polyamides et blocs polyethers
EP0506515B1 (fr) Film de rélachement en alliage polyamide/polyoléfine pour la fabrication d'un produit de compoundage de moulage de feuilles, produit de compoundage de feuilles prépare avec ce film
CA1286819C (fr) Compositions thermoplastiques a base de polyetheramides et de copolymeres styrene-diene, ainsi que leur procede de fabrication
EP0811038A1 (fr) Composition comprenant un fluoroelastomere et un polyamide thermoplastique et film obtenu
CA2305930C (fr) Compositions de resines thermoplastiques comprenant une phase dispersee rigide
EP3649197A1 (fr) Composition transparente rigide et ductile a base de polyamide et son utilisation
EP0719828B1 (fr) Compositions à base de polymère du propylène et de copolymère éthylène-acétate de vinyle, procédé pour leur mise en oeuvre, feuilles obtenues à partir de ces compositions
EP0307684A1 (fr) Compositions polyoléfiniques de propriétés rhéologiques modifiées et leur utilisation
FR2936248A1 (fr) Procede pour augmenter la compatibilite de polymeres
EP0163783B1 (fr) Mélanges de polyéthylène et de polybutènes
FR2892421A1 (fr) Melange maitre a base de polymere fluore pour l'extrusion des resines thermoplastiques chargees
EP1208149A1 (fr) Compositions de polyesters aliphatiques thermoplastiques, procede pour leur preparation et utilisation de celles-ci
CA2020290A1 (fr) Elastomere thermoplastique cryo-extensible, son procede de preparation
FR2740381A1 (fr) Procede de fabrication d'objet par extrusion d'un broyat de film multicouches

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970728

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FI FR GB IT NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ATOFINA

17Q First examination report despatched

Effective date: 20021023

RTI1 Title (correction)

Free format text: COMPOSITION INCLUDING A FLUOROELASTOMER, A POLYMER WITH POLYAMIDE AND POLYETHER BLOCKS AND A PLASTIC MATERIAL, EXTRUSION

RTI1 Title (correction)

Free format text: COMPOSITION INCLUDING A FLUOROELASTOMER, A POLYMER WITH POLYAMIDE AND POLYETHER BLOCKS AND A PLASTIC MATERIAL, EXTRUSION

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20031216