EP0805333B1 - Method for creating a decoy target - Google Patents

Method for creating a decoy target Download PDF

Info

Publication number
EP0805333B1
EP0805333B1 EP97105393A EP97105393A EP0805333B1 EP 0805333 B1 EP0805333 B1 EP 0805333B1 EP 97105393 A EP97105393 A EP 97105393A EP 97105393 A EP97105393 A EP 97105393A EP 0805333 B1 EP0805333 B1 EP 0805333B1
Authority
EP
European Patent Office
Prior art keywords
projectile
ignition
decoy
active substance
blow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97105393A
Other languages
German (de)
French (fr)
Other versions
EP0805333A3 (en
EP0805333A2 (en
Inventor
Heinz Bannasch
Fritz Greindl
Martin Fegg
Johannes Grundler
Günther Lenniger
Rudolf Salzeder
Helmut Pröschkowitz
Martin Wegscheider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Buck Neue Technologien GmbH
Original Assignee
Buck Neue Technologien GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7793179&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0805333(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Buck Neue Technologien GmbH filed Critical Buck Neue Technologien GmbH
Priority to EP00108677A priority Critical patent/EP1026473B1/en
Publication of EP0805333A2 publication Critical patent/EP0805333A2/en
Publication of EP0805333A3 publication Critical patent/EP0805333A3/en
Application granted granted Critical
Publication of EP0805333B1 publication Critical patent/EP0805333B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H11/00Defence installations; Defence devices
    • F41H11/02Anti-aircraft or anti-guided missile or anti-torpedo defence installations or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H9/00Equipment for attack or defence by spreading flame, gas or smoke or leurres; Chemical warfare equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/36Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information
    • F42B12/56Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information for dispensing discrete solid bodies
    • F42B12/70Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information for dispensing discrete solid bodies for dispensing radar chaff or infrared material

Definitions

  • the present invention relates to a method for providing a dummy target for Protection of land, air or water vehicles or the like from missiles, the one in the infrared (IR) or radar (RF) range or one in both wavelength ranges have simultaneous or serial target search head, according to the preamble of claim 1.
  • IR infrared
  • RF radar
  • a threat from modern, autonomously operating missiles will increase significantly, because even missiles with the most modern homing systems by the collapse of the former Great power of the Soviet Union and in particular through generous export regulations Asian countries are widespread.
  • the targeting systems of such missiles work mainly in the radar range (RF) and in the infrared range (IR). Both the radar backscatter behavior and the radiation of specific infrared radiation from targets, such as. Ships, planes, tanks etc., used for target finding and target tracking.
  • RF radar range
  • IR infrared range
  • targets such as. Ships, planes, tanks etc.
  • Multispectral IR homing heads work with two detectors in the short- and long-wave infrared range are sensitive, to differentiate wrong targets.
  • So-called dual mode homing heads work in the radar and infrared range. Missiles with such seekers are in the Approach and search phases are radar-controlled and switch to an IR seeker head in the tracking phase around or switch him to it.
  • a target criterion of dual mode homing heads is the co-location of the RF backscatter and the IR radiation center of gravity. By the Possible target coordinate comparison can be wrong targets (e.g. clutter, like decoys old Species) can be better sorted out.
  • a generic method is, for example, from “Le ancestral franco-britannique Sibyl”, Revue International De Defense, Cointrin-Genève, Volume 15, No. 10, 1982, pages 1405 to 1408, (basis for the preamble of claim 1) "Cartouche-leurre Gemini”, Revue International De Defense, Cointrin-Genève, Volume 10, No. 3, 1997, page 500, "Wallop élargit sa Jur de materials de boat opposition", Revue International De Defense, Cointrin-Genève, Volume 15, No. 12, 1982, page 1741 to 1744, and US-A-3,841,219.
  • the invention is based on the object of further developing the generic method in such a way that that IR and / or RF guided missiles are safe from an actual one Aim, that is, an object to be protected, directed away and directed towards an apparent target become.
  • the invention is based on the surprising finding that when used simultaneously an IR and an RF active mass, which simultaneously and at the same place (co-location) Be brought into effect, thereby providing an effective dummy target, the dual-mode seekers, but also only in one wavelength range (IR or RF range) Working seekers distracted from an object to be protected that the projectile is set in rotation, on the one hand to stabilize the projectile in the trajectory and to the other home reaching the destination by the centrifugal force an effective Ensure turbulence and disassembly of the active masses.
  • the active masses with a projectile sleeve surrounding them is shot through a special embodiment of the method according to the invention, in which the active substances together with the Activation and distribution device ejected from the projectile sleeve and only subsequently activated and distributed, also a good 3-dimensional distribution in the air reached.
  • Fig. 1 shows the phases II to IV schematically.
  • the ignition and the Phase I shoot goes as it is of technology.
  • the decoy shows a spin-stabilized flight phase in order to define a defined phase To reach the inflow of the RF and IR active mass.
  • the Angular momentum remains largely until the active masses are distributed received and is transferred to the active mass, which in turn an improved distribution of the active mass results.
  • the active substances including an activation and in-flight distribution mechanism ejected the projectile sleeve of the camouflage body to a subsequent one Distribution of the active masses without achieving insulation, which has the advantage that the distribution of Active masses do not exert excessive pressure on the active masses.
  • phase IV there will be an effective distribution of active substances through rotation and air flow as well as a central one Blow out achieved.
  • Fig. 2 shows a longitudinal section through a decoy, the according to the particular embodiment of the inventive method works.
  • the secondary part 1 consists of magnetic Material, preferably iron.
  • the windings of the secondary coil 2 consist of copper wire treated with insulating varnish. The number of windings preferably corresponds to that a primary coil, but with a transformation is possible in principle.
  • a preferably flanged bottom cover 3 serves as the lower fuse closure of the decoy.
  • the bottom cover 3 is preferably made of metal.
  • a version made of glass or carbon fiber reinforced plastic is also possible.
  • the outer launching body forms a housing sleeve 4, which is preferably made of pure aluminum an aluminum content of more than 99%.
  • the housing sleeve 4 remains in the magazine.
  • a bottom ring 5 represents a distance to a pressure chamber 6 ago.
  • the pressure chamber 6 takes that Propellant gas, which when a propellant charge 8 burns off Ejection of the decoy floor is created. Furthermore the pressure chamber 6 is necessary to complete a To form pressure chamber for the ignition of a rotary engine.
  • the Propellant charge 8 is ignited by means of a squib 7 and exists preferably from a powder driving set, preferably Black powder or black powder-like propellants such as nitrocellulose powder.
  • Rotational charges 9 preferably consist of pressed powder fuel with additional binder for mechanical Stabilization, e.g. Black powder with plastic binder, or from a commercial solid rocket propellant. Density, shape, surface and depth of the rotating charges 9 determine the erosion parameters such as the erosion duration and pulse / time unit. The specific impulse is through the choice of Propellant set.
  • the rotational charges 9 are preferred tablet-shaped and preferably in Combustion chambers (see reference number 10) pressed. This Pressing the rotary charges 9 is mainly used for Stabilization of the erosion behavior, since that of the metal and Areas of the rotary charges not facing the combustion chamber 9 don't burn. There is also the possibility that Controlling erosion behavior by passivating the surfaces.
  • the amount of the rotary charge 9 is dependent of the erosion behavior and the desired pulse-time behavior. For this embodiment, there was a burn-up time of about 1.5 seconds.
  • the reference number 10 denotes Rotation nozzles including those already mentioned above Combustion chamber.
  • the rotary nozzles consist of one Nozzle neck and a nozzle cone, both of which are preferably made be milled or drilled in a full aluminum casting.
  • the nozzle cone preferably has an incline of approximately 10 ° to 20 ° from the nozzle axis.
  • the nozzle neck length is preferred smaller than the nozzle cone length.
  • the combustion chamber is preferably cylindrical.
  • the combustion chambers are connected by an annular channel to equalize pressure to achieve, which causes a uniform burn.
  • the nozzle axis is inclined radially to the projectile. Preferably the nozzle axis should be more than 30 ° to the radius of the projectile be inclined, since otherwise the impulse to generate little contributes to the rotation. Angles greater than 80 ° to the radius cause excessive turbulence at the transition from the combustion chamber to the Nozzle neck and thus a weakening of the thrust.
  • An ignition retarder 11 is used to determine the route to Ejection of an IR active mass 19 and an RF active mass 21.
  • the Ignition delay 11 is pyrotechnic and has one Burning time of 2 seconds. Such ignition retarders are commercially available.
  • Connecting part 12 connects the rotary motor to a spreading part 14 for the active masses 19 and 21.
  • the connecting part 12 includes the ignition retarder 11 and an ejection propellant 13 for ejecting the spreading part 14.
  • the connecting part 12 is preferably made of metal.
  • the ejection propellant 13 comprises a powder driving set, preferably black powder or black powder-like propellants such as nitrocellulose.
  • the Discharge part 14 serves as a sabot for the ejection propellant 13 and is designed such that it as a holder for an ignition retarder 15 and for a blow-out pipe 16.
  • the application part 14 is preferably made of a cast aluminum or milled part.
  • the ignition delay 15 includes a pyrotechnic delay piece, which is an ignition / disassembly kit 18 ignites when the application part 14 the projectile sleeve has left.
  • the ignition delay 15 has a burning time of about 0.1 seconds.
  • the blow-out pipe 16 serves as a sensor for the ignition / disassembly kit 18 and for controlling the blow-out speed.
  • the blowing speed depends on the Length of the blow pipe 16 and the ratio of the total cross section from blow-out openings 17 to the amount of ignition / dismantling kit 18. In general it can be said that the higher the amount of ignition / dismantling kit 18 and the smaller the The total cross section of the blow-out openings 17 is the larger the blowing speed is.
  • the ratio is preferably chosen so that a blow-out time of 0.1 seconds is reached.
  • the blow-out pipe 16 must be manufactured in this way be that if possible no plastic deformation during of the blowing process occurs.
  • the exhaust pipe 16 was made of steel.
  • the exhaust openings 17 must be attached so that a uniform Distribution of the RF and IR active masses 19 and 21 reached becomes. This is preferably achieved in such a way that one Blow-out opening 17 meets a position of the RF active mass 21.
  • the ignition / disassembly set 18 comprises a pyrotechnic set, a comparable amount of gas as a burn-up product delivers. Magnesium barium nitrate is preferred for this purpose or aluminum perchlorate.
  • the amount of kindling / disassembly kit 18 depends on the blow-out pipe 16.
  • the IR active mass 19 contains the from German patent DE-PS 43 27 976 known IR active mass with MWIR flares. Are basically however, all IR active materials can be used, which are characterized by an ignition charge activate. In the embodiment disc-shaped MWIR flares with 1/3 division used.
  • a cutting disc 20 protects the RF active mass 21 from the burning MWIR flares of the IR active mass 19.
  • the cutting disc 20 can be made of metal or preferably fire-resistant foil be made. The design of the RF active mass 21 is more detailed shown in Fig. 3.
  • RF active mass 21 Radar dowels rolled up with dipoles for heat protection reasons made of aluminum or silver coated glass fiber threads used with a thickness in the range of about 10 to 100 microns.
  • the dipole length is 17.9 mm. But they are also dipole lengths Possible and planned from approx. 1 mm to approx. 25 mm.
  • the number the wraps of the individual dipole packages (chaff packages) variable from 1 upwards. Preferably for the packages 1.5 windings used.
  • the output of the active masses before Activation and distribution as well as the appropriate "packaging" the dipole serves to avoid clumping and merging and a dipole to dipole distance of about 7 to 10 ⁇ and thus to generate a high radar backscatter cross section.
  • the packaging must always be flexible enough, the dipoles and release them without external influence before the heat from the ignition and blow-out charge protect.
  • the packaging of the dipoles is based on the distribution principle coordinated, i.e. the packaged dipoles are like this arranged that they open immediately when blowing out.
  • Capton® is preferred to prevent the dipoles from slipping into each other or Milinex® used.
  • intermediate foils 32 can aluminum foils of various thicknesses can also be used.
  • a thin aluminum shell 33, but also a paper or Cardboard sleeve can be that the RF active mass 21 after Ejection from the projectile sleeve is not immediately distributed, but instead remains together until the ignition / splitter charge 18 burns. This ensures that the total energy of the Charge can act on the RF active mass 21.
  • a lid 23 serves to complete a projectile sleeve 22 and fixed from above the blow-out pipe 16.
  • the cover 23 can be made of heavy metals, such as. Cast iron or brass, to be manufactured Center of gravity of the decoy as far forward as possible move. This allows stabilization in addition to rotation of the flight.
  • the lid 23 is through sealed a sealing ring 24 to the projectile sleeve 22, the preferably made of aluminum with a purity of over 99% is drawn.
  • 25 represents a closure piece of the blow-out pipe 16 represents and ensures that the relatively dangerous fragmentation charge introduced as the last step in the decoy can be.
  • FIG. 4 is another embodiment of a decoy shown that according to a particular embodiment of the method works. 4 are the same reference numerals as used in Fig. 2. In the following, i.w. only on the differences to be entered into the decoy according to FIG. 2. An essential difference is that the projectile no projectile sleeve (identified by reference number 22 in FIG. 2) having. The IR active mass 19 and RF active mass 21 is not sufficient before it is activated and distributed a projectile sleeve are ejected and are thus the ejection propellant (marked with reference number 13 in FIG. 2) for the application part 14 and the ignition retarder (with Reference number 15 in Fig. 2) is no longer necessary and therefore not available.
  • the projectile no projectile sleeve identified by reference number 22 in FIG. 2 having.
  • the IR active mass 19 and RF active mass 21 is not sufficient before it is activated and distributed a projectile sleeve are ejected and are thus the ejection propellant (marked with reference
  • the application part 14 also serves no longer for ejecting the active masses 19, 21 from a projectile sleeve.
  • the RF active mass 21 is from a paper or Cardboard sleeve 33a instead of an aluminum sleeve (reference number 33 in Fig. 3) surrounded.
  • This paper or cardboard sleeve 33a is sufficient together with the central exhaust pipe 16, the RF active mass 21 despite the inflow of air in the flight phase before to hold the actual activation and distribution together.
  • On Securing element 15, ensures front pipe safety.
  • the Rotational charge (reference numeral 9 in Fig. 2) and rotary nozzle (Reference number 10 in Fig. 2) by a rotary motor 9a replaced.
  • the decoy shown in Fig. 4 has the missing bullet sleeve has the advantage that it is in proportion to make a decoy with bullet sleeve easier and is much cheaper.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

Die vorliegende Erfindung betrifft ein Verfahren zum Bereitstellen eines Scheinziels zum Schutz von Land-, Luft- oder Wasserfahrzeugen oder dergleichen vor Flugkörpern, die einen im Infrarot (IR)- oder Radar (RF)-Bereich oder einen in beiden Wellenlängenbereichen gleichzeitig oder seriell operierenden Zielsuchkopf aufweisen, nach dem Oberbegriff von Anspruch 1.The present invention relates to a method for providing a dummy target for Protection of land, air or water vehicles or the like from missiles, the one in the infrared (IR) or radar (RF) range or one in both wavelength ranges have simultaneous or serial target search head, according to the preamble of claim 1.

Eine Bedrohung durch moderne, autonom operierende Flugkörper wird deutlich zunehmen, da selbst Flugkörper mit modernsten Zielsuchsystemen durch den Zusammenbruch der ehemaligen Großmacht Sowjetunion sowie durch großzügige Exportbestimmungen insbesondere asiatischer Staaten große Verbreitung finden. Die Zielsuchsysteme derartiger Flugkörper arbeiten hauptsächlich im Radarbereich (RF) und im Infrarotbereich (IR). Dabei werden sowohl das Radarrückstreuverhalten sowie die Abstrahlung spezifischer Infrarotstrahlung von Zielen, wie z.B. Schiffen, Flugzeugen, Panzern etc., zur Zielfindung und Zielverfolgung genutzt. Bei modernsten Flugkörpern geht die Entwicklung eindeutig in Richtung multispektraler Zielsuchsysteme, die gleichzeitig oder auch seriell im Radar- und Infrarotbereich arbeiten, um eine verbesserte Falsehzielunterseheidung durchführen zu können. Multispektrale IR-Zielsuchköpfe arbeiten mit zwei Detektoren, die im kurz- und langwelligen Infrarotbereich empfindlich sind, zur Falschzielunterscheidung. Sogenannte Dual Mode-Zielsuchköpfe arbeiten im Radar- und Infrarotbereich. Flugkörper mit derartigen Zielsuchköpfen werden in der Anflug- und Suchphase radargesteuert und schalten in der Verfolgungsphase auf einen IR-Suchkopf um oder schalten ihn dazu. Ein Zielkriterium von Dual Mode-Zielsuchköpfen ist die Co-Location der RF-Rückstreuung und des IR-Strahlungsschwerpunktes. Durch den möglichen Zielkoordinatenvergleich können Falschziele (z.B. Clutter, wie Täuschkörper alter Art) besser ausgesondert werden. Die Co-Location von RF- und IR-Wirksamkeit ist demnach eine zwingende Voraussetzung für einen Dual Mode-Täuschkörper, um moderne Dual Mode-Zielsuchköpfe wirksam täuschen zu können, d.h. von einem zu schützenden Objekt auf ein Scheinziel zu lenken. Dabei ist lediglich die kleinstmögliche Auflösungszelle des Zielsuchkopfes (RF und IR) für die Co-Location relevant.A threat from modern, autonomously operating missiles will increase significantly, because even missiles with the most modern homing systems by the collapse of the former Great power of the Soviet Union and in particular through generous export regulations Asian countries are widespread. The targeting systems of such missiles work mainly in the radar range (RF) and in the infrared range (IR). Both the radar backscatter behavior and the radiation of specific infrared radiation from targets, such as. Ships, planes, tanks etc., used for target finding and target tracking. At most modern missiles, the development clearly goes in the direction of multispectral homing systems, that work simultaneously or in series in the radar and infrared range in order to to be able to carry out an improved misdiagnosis. Multispectral IR homing heads work with two detectors in the short- and long-wave infrared range are sensitive, to differentiate wrong targets. So-called dual mode homing heads work in the radar and infrared range. Missiles with such seekers are in the Approach and search phases are radar-controlled and switch to an IR seeker head in the tracking phase around or switch him to it. A target criterion of dual mode homing heads is the co-location of the RF backscatter and the IR radiation center of gravity. By the Possible target coordinate comparison can be wrong targets (e.g. clutter, like decoys old Species) can be better sorted out. The co-location of RF and IR effectiveness is accordingly a mandatory requirement for a dual mode decoy to use modern dual mode homing heads being able to effectively deceive, i.e. from an object to be protected to a To steer the apparent target. It is only the smallest possible resolution cell of the target seeker (RF and IR) relevant for the co-location.

Ein gattungsgemäßes Verfahren ist, beispielsweise, aus "Le système franco-britannique Sibyl", Revue International De Defense, Cointrin-Genève, Band 15, Nr. 10, 1982, Seiten 1405 bis 1408, (Basis für den Oberbegriff der Anspruchs 1) "Cartouche-leurre Gemini", Revue International De Defense, Cointrin-Genève, Band 10, Nr. 3, 1997, Seite 500, "Wallop élargit sa gamme de materials de guerre électronique", Revue International De Defense, Cointrin-Genève, Band 15, Nr.12, 1982, Seite 1741 bis 1744, und US-A-3,841,219 bekannt.A generic method is, for example, from "Le système franco-britannique Sibyl", Revue International De Defense, Cointrin-Genève, Volume 15, No. 10, 1982, pages 1405 to 1408, (basis for the preamble of claim 1) "Cartouche-leurre Gemini", Revue International De Defense, Cointrin-Genève, Volume 10, No. 3, 1997, page 500, "Wallop élargit sa gamme de materials de guerre électronique", Revue International De Defense, Cointrin-Genève, Volume 15, No. 12, 1982, page 1741 to 1744, and US-A-3,841,219.

Der Erfindung liegt die Aufgabe zugrunde, daß gattungsgemäße Verfahren dahingehend weiterzuentwickeln, daß IR- und/oder RF-gelenkte Flugkörper sicher von einem eigentlichen Ziel, daß heißt einem zu schützenden Objekt, weggelenkt und auf ein Scheinziel hingelenkt werden.The invention is based on the object of further developing the generic method in such a way that that IR and / or RF guided missiles are safe from an actual one Aim, that is, an object to be protected, directed away and directed towards an apparent target become.

Diese Aufgabe wird erfindungsgemäß durch ein Verfahren nach Anspruch 1 gelöst.This object is achieved by a method according to claim 1.

Die Unteransprüche 2 bis 14 beschreiben bevorzugte Ausführungsformen gemäß der Erfindung.Subclaims 2 to 14 describe preferred embodiments according to the invention.

Der Erfindung liegt die überraschende Erkenntnis zugrunde, daß bei gleichzeitiger Verwendung einer IR- und einer RF-Wirkmasse, die simultan und am selben Ort (Co-Location) zur Wirkling gebracht werden, dadurch ein wirksames Scheinziel bereitgestellt wird, das Dual-Mode-Zielsuchköpfe, aber auch lediglich in einem Wellenlängenbereich (IR- bzw. RF-Bereicht) arbeitende Zielsuchköpfe von einem zu schützenden Objekt abgelenkt, daß das Geschoß in Rotation versetzt wird, um zum einen das Geschoß in der Flugbahn zu stabilisieren und zum anderen Heim Erreichen des Zielortes durch die Zentrifugalkraft eine wirksame Verwirbelung und Zerlegung der Wirkmassen zu gewährleisten. Sofern die Wirkmassen mit einer sie umgebenden Geschoßhülse abgeschossen werden, wird durch eine besondere Ausführungsform des erfindungsgemäßen Verfahrens, bei der die Wirkmassen zusammen mit der Aktivierungs- und Verteilungseinrichtung aus der Geschoßhülse ausgestoßen und erst nachfolgend aktiviert und verteilt werden, ebenfalls eine gute 3-dimensional Verteilung in der Luft erreicht.The invention is based on the surprising finding that when used simultaneously an IR and an RF active mass, which simultaneously and at the same place (co-location) Be brought into effect, thereby providing an effective dummy target, the dual-mode seekers, but also only in one wavelength range (IR or RF range) Working seekers distracted from an object to be protected that the projectile is set in rotation, on the one hand to stabilize the projectile in the trajectory and to the other home reaching the destination by the centrifugal force an effective Ensure turbulence and disassembly of the active masses. If the active masses with a projectile sleeve surrounding them is shot through a special embodiment of the method according to the invention, in which the active substances together with the Activation and distribution device ejected from the projectile sleeve and only subsequently activated and distributed, also a good 3-dimensional distribution in the air reached.

Weitere Merkmale und Vorteile der Erfindung ergeben sich anhand der beigefügten Ansprüche und der nachfolgenden Beschreibung, in der der grundsätzliche Verfahrensablauf sowie zwei Ausführungsbeispiele für nach dem erfindungsgemäßen Verfahren arbeitende Täuschkörper anhand der beigefügten Zeichnungen erläutert sind. Dabei zeigt:

Fig. 1
eine Prinzipskizze zu einer Ausführungsform des erfindungsgemäßen Verfahrens;
Fig. 2
eine Schnittansicht einer Ausführungsform eines nach dem erfindungsgemäßen Verfahren arbeitenden Täuschkörpers;
Fig. 3
eine schematische Ansicht einer RF-Wirkmasse des Täuschkörpers von Fig. 2; und
Fig. 4
eine Schnittansicht einer weiteren Ausführungsform eines gemäß der vorliegenden Erfindung arbeitenden Täuschkörpers.
Further features and advantages of the invention will become apparent from the appended claims and the following description, in which the basic process sequence and two exemplary embodiments for decoys working according to the method according to the invention are explained with the aid of the accompanying drawings. It shows:
Fig. 1
a schematic diagram of an embodiment of the method according to the invention;
Fig. 2
a sectional view of an embodiment of a decoy working according to the inventive method;
Fig. 3
a schematic view of an RF active mass of the decoy of Fig. 2; and
Fig. 4
a sectional view of another embodiment of a decoy operating according to the present invention.

Fig. 1 dient zur Veranschaulichung des prinzipiellen Verfahrensablaufes gemäß einer besonderen Ausführungsform der Erfindung. Das erfindungsgemäße Verfahren läßt sich am besten an dem zeitlichen Verlauf von dem Abschuß eines nach dem erfindungsgemäßen Verfahren arbeitenden Täuschkörpers bis zur Verteilung der Wirkmassen darstellen. Der zeitliche Verlauf läßt sich grob in vier Phasen einteilen:

Phase I
Abschuß eines Täuschkörpers
Phase II
drallstabilisierte Flugphase des Täuschkörpers
Phase III
Ausstoß der IR- und RF-Wirkmasse und
Phase IV
Aktivierung und Verteilung der Wirkmassen
Fig. 1 serves to illustrate the basic process flow according to a particular embodiment of the invention. The method according to the invention can best be represented by the time course from the firing of a decoy working according to the method according to the invention to the distribution of the active masses. The course over time can be roughly divided into four phases:
Phase I
Firing a decoy
Phase II
spin-stabilized flight phase of the decoy
Phase III
Ejection of the IR and RF active mass and
Phase IV
Activation and distribution of the active masses

Fig. 1 gibt die Phasen II bis IV schematisch wieder. Die Zündung und der Abschuß gemäß Phase I geht entsprechend dem Stand der Technik vonstatten. In der Phase II weist der Täuschkörper eine drallstabilisierte Flugphase auf, um hierdurch eine definierte Anströmung der RF- und IR-Wirkmasse zu erreichen. Der Drehimpuls bleibt bis zur Verteilung der Wirkmassen weitgehend erhalten und wird auf die Wirkmassen übertragen, was wiederum eine verbesserte Verteilung der Wirkmassen zur Folge hat. In der Phase III werden die Wirkmassen einschließlich eines Aktivierungs- und Verteilungsmechanismus während des Fluges aus der Geschoßhülse des Tarnkörpers ausgestoßen, um eine nachfolgende Verteilung der Wirkmassen ohne Verdämmung zu erzielen, womit der Vorteil verbunden ist, daß bei der Verteilung der Wirkmassen kein überhöhter Druck auf die Wirkmassen einwirkt. Dies führt dazu, daß die Verteilung der IR-Wirkmasse, aber insbesondere die Verteilung der RF-Wirkmasse nachhaltig verbessert wird. In der Phase IV wird eine effektive Wirkmassenverteilung durch Rotation und Luftanströmung sowie ein zentrales Ausblasen erzielt.Fig. 1 shows the phases II to IV schematically. The ignition and the Phase I shoot goes as it is of technology. In phase II the decoy shows a spin-stabilized flight phase in order to define a defined phase To reach the inflow of the RF and IR active mass. The Angular momentum remains largely until the active masses are distributed received and is transferred to the active mass, which in turn an improved distribution of the active mass results. In phase III, the active substances including an activation and in-flight distribution mechanism ejected the projectile sleeve of the camouflage body to a subsequent one Distribution of the active masses without achieving insulation, which has the advantage that the distribution of Active masses do not exert excessive pressure on the active masses. This causes the distribution of the IR active mass, however in particular, the distribution of the RF active mass is sustainably improved becomes. In phase IV there will be an effective distribution of active substances through rotation and air flow as well as a central one Blow out achieved.

Fig. 2 zeigt einen Längsschnitt durch einen Täuschkörper, der gemäß der in Fig. 1 skizzierten besonderen Ausführungsform des erfindungsgemäßen Verfahrens arbeitet. Mit 1 ist ein kompletter Sekundärteil zur induktiven Zündenergieaufnahme von einem Primärteil gekennzeichnet. Der Sekundärteil 1 besteht aus magnetischem Material, vorzugsweise Eisen. In einer Sekundärspule 2 wird die Zündenergie induziert. Die Wicklungen der Sekundärspule 2 bestehen aus mit Isolierlack behandeltem Kupferdraht. Die Anzahl der Wicklungen entspricht vorzugsweise derjenigen einer Primärspule, wobei aber eine Transformation prinzipiell möglich ist. Ein vorzugsweise aufgebördelter Bodendeckel 3 dient als unterer Sicherungsabschluß des Täuschkörpers. Der Bodendeckel 3 besteht vorzugsweise aus Metall. Eine Ausführung aus glas- oder kohlefaserverstärktem Kunststoff ist aber auch möglich. Den äußeren Abschußkörper bildet eine Gehäusehülse 4, die vorzugsweise aus Reinaluminium mit einem Aluminiumanteil von mehr als 99% besteht. Die Gehäusehülse 4 verbleibt im Magazin. Ein Bodenring 5 stellt eine Distanz zu einer Druckkammer 6 her. Die Druckkammer 6 nimmt das Treibgas auf, das bei einem Abbrand einer Treibladung 8 zum Ausstoßen des Täuschkörpergeschosses entsteht. Darüber hinaus ist die Druckkammer 6 notwendig, um einen abgeschlossenen Druckraum zur Anzündung eines Rotationsmotors zu bilden. Die Treibladung 8 wird mittels einer Zündpille 7 gezündet und besteht vorzugsweise aus einem Pulvertreibsatz, vorzugsweise Schwarzpulver oder schwarzpulverähnliche Treibsätze wie Nitrocellulosepulver. Rotationsladungen 9 bestehen vorzugsweise aus verpreßtem Pulvertreibstoff mit zusätzlichem Binder zur mechanischen Stabilisierung, wie z.B. Schwarzpulver mit Kunststoffbinder, oder aus einem handelsüblichen Feststoffraketentreibsatz. Dichte, Form, Oberfläche und Tiefe der Rotationsladungen 9 bestimmen die Abbrandparameter wie Abbranddauer und Impuls/Zeiteinheit. Der spezifische Impuls ist durch die Wahl des Treibsatzes festgelegt. Die Rotationsladungen 9 sind vorzugsweise tablettenförmig ausgebildet und vorzugsweise in Brennkammern (vergleiche Bezugszeichen 10) eingepreßt. Dieses Einpressen der Rotationsladungen 9 dient hauptsächlich zur Stabilisierung des Abbrandverhaltens, da die dem Metall und nicht der Brennkammer zugewandten Flächen der Rotationsladungen 9 nicht brennen. Zusätzlich besteht die Möglichkeit, das Abbrandverhalten durch eine Passivierung der Flächen zu steuern. Eine weitere Möglichkeit zur Steuerung des Abbrandverhaltens besteht in dem bekannten Verfahren der Formgebung, wie z.B. Sternbrenner. Die Menge der Rotationsladung 9 ist abhängig vom Abbrandverhalten und dem gewünschten Impuls-Zeit-Verhalten. Für dieses Ausführungsbeispiel wurde eine Abbrandzeit von ca. 1,5 Sekunden realisiert. Das Bezugszeichen 10 kennzeichnet Rotationsdüsen einschließlich der bereits oben erwähnten Brennkammer. Die Rotationsdüsen bestehen aus einem Düsenhals und einem Düsenkonus, die beide vorzugsweise aus einem vollen Aluminiumgußteil gefräßt bzw. gebohrt werden. Der Düsenkonus weist vorzugsweise eine Steigung von ca. 10° bis 20° von der Düsenachse aus auf. Die Düsenhalslänge ist vorzugsweise kleiner als die Düsenkonuslänge. Die Brennkammer ist vorzugsweise zylinderförmig ausgebildet. Die Brennkammern sind durch einen ringförmigen Kanal verbunden, um einen Druckausgleich zu erreichen, der einen gleichmäßigen Abbrand bewirkt. Die Düsenachse ist radial zum Geschoß geneigt. Vorzugsweise sollte die Düsenachse um mehr als 30° zum Radius des Geschosses geneigt sein, da ansonsten der Impuls nur wenig zur Erzeugung der Rotation beiträgt. Winkel größer als 80° zum Radius bewirken zu große Turbulenzen am Übergang der Brennkammer zum Düsenhals und somit eine Abschwächung des Schubes. Ein Anzündverzögerer 11 dient zur Festlegung der Flugstrecke bis zum Ausstoß einer IR-Wirkmasse 19 und einer RF-Wirkmasse 21. Der Anzündverzögerer 11 ist pyrotechnisch ausgeführt und hat eine Durchbranddauer von 2 Sekunden. Derartige Anzündverzögerer sind im Handel erhältlich. Denkbar ist aber auch die Verwendung eines frei programmierbaren elektronischen Anzündverzögerers zur variablen Festlegung der Flugdauer. Ein Verbindungsteil 12 verbindet den Rotationsmotor mit einem Ausbringteil 14 für die Wirkmassen 19 und 21. Das Verbindungsteil 12 enthält den Anzündverzögerer 11 und eine Ausstoßtreibladung 13 zum Ausstoß des Ausbringteiles 14. Das Verbindungsteil 12 ist vorzugsweise aus Metall gefertigt. Die Ausstoßtreibladung 13 umfaßt einen Pulvertreibsatz, vorzugsweise Schwarzpulver oder schwarzpulverähnliche Treibsätze wie Nitrocellulose. Das Ausbringteil 14 dient als Treibspiegel für die Ausstoßtreibladung 13 und ist derart ausgeführt, daß es als Halterung für einen Anzündverzögerer 15 und für ein Ausblasrohr 16 dient. Das Ausbringteil 14 ist vorzugsweise aus einem Aluminiumguß- oder Frästeil gefertigt. Der Anzündverzögerer 15 umfaßt ein pyrotechnisches Verzögerungsstück, das einen Anzünd-/Zerlegersatz 18 zündet, wenn das Ausbringteil 14 die Geschoßhülse verlassen hat. Der Anzündverzögerer 15 hat eine Brenndauer von ca. 0,1 Sekunden. Das Ausblasrohr 16 dient als Aufnehmer für den Anzünd-/Zerlegersatz 18 und zur Steuerung der Ausblasgeschwindigkeit. Die Ausblasgeschwindigkeit ist abhängig von der Länge des Ausblasrohres 16 und von dem Verhältnis des Gesamtquerschnittes von Ausblasöffnungen 17 zur Menge des Anzünd/Zerlegersatzes 18. Allgemein läßt sich sagen, daß, je höher die Menge des Anzünd-/Zerlegersatzes 18 und je kleiner der Gesamtquerschnitt der Ausblasöffnungen 17 ist, um so größer die Ausblasgeschwindigkeit ist. In dem Ausführungsbeispiel ist das Verhältnis vorzugsweise so gewählt, daß eine Ausblaszeit von 0,1 Sekunden erreicht wird. Das Ausblasrohr 16 muß so gefertigt werden, daß möglichst keine plastische Verformung während des Ausblasvorgangs eintritt. Bei dem Ausführungsbeispiel wurde das Ausblaßrohr 16 aus Stahl gefertigt. Die Ausblasöffnungen 17 müssen derart angebracht werden, daß eine gleichmäßige Verteilung der RF- und IR-Wirkmassen 19 und 21 erreicht wird. Dies wird vorzugsweise derart erreicht, daß jeweils eine Ausblasöffnung 17 auf eine Lage der RF-Wirkmasse 21 trifft. Der Anzünd-/Zerlegersatz 18 umfaßt einen pyrotechnischen Satz, der als Abbrandprodukt eine vergleichbar große Menge an Gas liefert. Vorzugsweise werden hierzu Magnesium-Bariumnitrat oder Aliminium-Perchlorat verwendet. Die Menge des Anzünd/Zerlegersatzes 18 ist abhängig vom Ausblasrohr 16. Die IR-Wirkmasse 19 enthält die aus dem deutschen Patent DE-PS 43 27 976 bekannte IR-Wirkmasse mit MWIR-Flares. Grundsätzlich sind jedoch alle IR-Wirkmassen verwendbar, die sich durch eine Anzündladung aktivieren lassen. Bei dem Ausführungsbeispiel werden scheibenförmige MWIR-Flares mit 1/3-Teilung verwendet. Eine Trennscheibe 20 schützt die RF-Wirkmasse 21 vor den brennenden MWIR-Flares der IR-Wirkmasse 19. Die Trennscheibe 20 kann aus Metall oder vorzugsweise aus feuerresistenter Folie gefertigt sein. Die Ausführung der RF-Wirkmasse 21 ist ausführlicher in Fig. 3 dargestellt. Als RF-Wirkmasse 21 werden aus Hitzeschutzgründen zusammengerollte Radar-Düppel mit Dipolen aus Aluminium- oder Silber-beschichteten Glasfaserfäden mit einer Dicke im Bereich von etwa 10 bis 100 µm verwendet. Die Dipollänge beträgt 17,9 mm. Es sind aber auch Dipollängen ab ca. 1 mm bis ca. 25 mm möglich und vorgesehen. Die Anzahl der Umwicklungen der einzelnen Dipol-Pakete (Chaff-Pakete) ist variabel von 1 aufwärts. Vorzugsweise werden für die Pakete 1,5 Wicklungen verwendet. Der Ausstoß der Wirkmassen vor der Aktivierung und Verteilung sowie die geeignete "Verpackung" der Dipole dient dazu, ein Verklumpen und Verschmelzen zu vermeiden und einen Abstand von Dipol zu Dipol von etwa 7 bis 10 λ und somit einen hohen Radarrückstreuquerschnitt zu erzeugen. Die Verpackung muß grundsätzlich flexibel genug sein, die Dipole ohne äußere Einwirkung selbständig freizugeben und sie vor der Hitzeeinwirkung durch die Anzünd- und Ausblasladung zu schützen. Zudem ist die Verpackung der Dipole auf das Verteilungsprinzip abgestimmt, d.h. die verpackten Dipole sind so angeordnet, daß sie sich beim Ausblasen unmittelbar öffnen. Als Material für die Wicklungen und die durch die ganze RF-Wirkmasse durchgehenden Schutzfolien 31 und Schutzfolien 32 gegen das Ineinanderrutschen der Dipole wird vorzugsweise Capton® oder Milinex® verwendet. Als Zwischenfolien 32 können auch Aluminiumfolien verschiedener Stärke verwendet werden. Eine dünne Aluminiumhülle 33, die aber auch eine Papier- oder Papphülle sein kann, daß sich die RF-Wirkmasse 21 nach dem Ausstoß aus der Geschoßhülse nicht sofort verteilt, sondern solange zusammenbleibt, bis die Anzünd-/Zerlegerladung 18 abbrennt. Dadurch wird gewährleistet, daß die Gesamtenergie der Ladung auf die RF-Wirkmasse 21 einwirken kann. Ein Deckel 23 dient zum Abschluß einer Geschoßhülse 22 und fixiert von oben das Ausblasrohr 16. Der Deckel 23 kann aus schweren Metallen, wie z.B. Gußeisen oder Messing, gefertigt werden, um den Schwerpunkt des Täuschkörpers möglichst weit nach vorne zu verschieben. Dadurch kann zusätzlich zur Rotation eine Stabilisierung des Fluges erreicht werden. Der Deckel 23 wird durch einen Dichtring 24 zu der Geschoßhülse 22 abgedichtet, die vorzugsweise aus Aluminium mit einem Reinheitsgrad von über 99% gezogen ist. 25 stellt ein Verschlußstück des Ausblasrohres 16 dar und gewährleistet, daß die relativ gefährliche Zerlegerladung als letzter Arbeitsgang in den Täuschkörper eingeführt werden kann.Fig. 2 shows a longitudinal section through a decoy, the according to the particular embodiment of the inventive method works. With 1 is a complete Secondary part for inductive ignition energy absorption by one Primary part marked. The secondary part 1 consists of magnetic Material, preferably iron. In a secondary coil 2 the ignition energy is induced. The windings of the secondary coil 2 consist of copper wire treated with insulating varnish. The number of windings preferably corresponds to that a primary coil, but with a transformation is possible in principle. A preferably flanged bottom cover 3 serves as the lower fuse closure of the decoy. The bottom cover 3 is preferably made of metal. A version made of glass or carbon fiber reinforced plastic is also possible. The outer launching body forms a housing sleeve 4, which is preferably made of pure aluminum an aluminum content of more than 99%. The housing sleeve 4 remains in the magazine. A bottom ring 5 represents a distance to a pressure chamber 6 ago. The pressure chamber 6 takes that Propellant gas, which when a propellant charge 8 burns off Ejection of the decoy floor is created. Furthermore the pressure chamber 6 is necessary to complete a To form pressure chamber for the ignition of a rotary engine. The Propellant charge 8 is ignited by means of a squib 7 and exists preferably from a powder driving set, preferably Black powder or black powder-like propellants such as nitrocellulose powder. Rotational charges 9 preferably consist of pressed powder fuel with additional binder for mechanical Stabilization, e.g. Black powder with plastic binder, or from a commercial solid rocket propellant. Density, shape, surface and depth of the rotating charges 9 determine the erosion parameters such as the erosion duration and pulse / time unit. The specific impulse is through the choice of Propellant set. The rotational charges 9 are preferred tablet-shaped and preferably in Combustion chambers (see reference number 10) pressed. This Pressing the rotary charges 9 is mainly used for Stabilization of the erosion behavior, since that of the metal and Areas of the rotary charges not facing the combustion chamber 9 don't burn. There is also the possibility that Controlling erosion behavior by passivating the surfaces. Another way to control the burning behavior consists in the known method of shaping, such as e.g. Star burner. The amount of the rotary charge 9 is dependent of the erosion behavior and the desired pulse-time behavior. For this embodiment, there was a burn-up time of about 1.5 seconds. The reference number 10 denotes Rotation nozzles including those already mentioned above Combustion chamber. The rotary nozzles consist of one Nozzle neck and a nozzle cone, both of which are preferably made be milled or drilled in a full aluminum casting. The The nozzle cone preferably has an incline of approximately 10 ° to 20 ° from the nozzle axis. The nozzle neck length is preferred smaller than the nozzle cone length. The combustion chamber is preferably cylindrical. The combustion chambers are connected by an annular channel to equalize pressure to achieve, which causes a uniform burn. The nozzle axis is inclined radially to the projectile. Preferably the nozzle axis should be more than 30 ° to the radius of the projectile be inclined, since otherwise the impulse to generate little contributes to the rotation. Angles greater than 80 ° to the radius cause excessive turbulence at the transition from the combustion chamber to the Nozzle neck and thus a weakening of the thrust. An ignition retarder 11 is used to determine the route to Ejection of an IR active mass 19 and an RF active mass 21. The Ignition delay 11 is pyrotechnic and has one Burning time of 2 seconds. Such ignition retarders are commercially available. The use is also conceivable a freely programmable electronic ignition delay for variable determination of the flight duration. On Connecting part 12 connects the rotary motor to a spreading part 14 for the active masses 19 and 21. The connecting part 12 includes the ignition retarder 11 and an ejection propellant 13 for ejecting the spreading part 14. The connecting part 12 is preferably made of metal. The ejection propellant 13 comprises a powder driving set, preferably black powder or black powder-like propellants such as nitrocellulose. The Discharge part 14 serves as a sabot for the ejection propellant 13 and is designed such that it as a holder for an ignition retarder 15 and for a blow-out pipe 16. The application part 14 is preferably made of a cast aluminum or milled part. The ignition delay 15 includes a pyrotechnic delay piece, which is an ignition / disassembly kit 18 ignites when the application part 14 the projectile sleeve has left. The ignition delay 15 has a burning time of about 0.1 seconds. The blow-out pipe 16 serves as a sensor for the ignition / disassembly kit 18 and for controlling the blow-out speed. The blowing speed depends on the Length of the blow pipe 16 and the ratio of the total cross section from blow-out openings 17 to the amount of ignition / dismantling kit 18. In general it can be said that the higher the amount of ignition / dismantling kit 18 and the smaller the The total cross section of the blow-out openings 17 is the larger the blowing speed is. In the embodiment is the ratio is preferably chosen so that a blow-out time of 0.1 seconds is reached. The blow-out pipe 16 must be manufactured in this way be that if possible no plastic deformation during of the blowing process occurs. In the embodiment the exhaust pipe 16 was made of steel. The exhaust openings 17 must be attached so that a uniform Distribution of the RF and IR active masses 19 and 21 reached becomes. This is preferably achieved in such a way that one Blow-out opening 17 meets a position of the RF active mass 21. The ignition / disassembly set 18 comprises a pyrotechnic set, a comparable amount of gas as a burn-up product delivers. Magnesium barium nitrate is preferred for this purpose or aluminum perchlorate. The amount of kindling / disassembly kit 18 depends on the blow-out pipe 16. The IR active mass 19 contains the from German patent DE-PS 43 27 976 known IR active mass with MWIR flares. Are basically however, all IR active materials can be used, which are characterized by an ignition charge activate. In the embodiment disc-shaped MWIR flares with 1/3 division used. A cutting disc 20 protects the RF active mass 21 from the burning MWIR flares of the IR active mass 19. The cutting disc 20 can be made of metal or preferably fire-resistant foil be made. The design of the RF active mass 21 is more detailed shown in Fig. 3. As RF active mass 21 Radar dowels rolled up with dipoles for heat protection reasons made of aluminum or silver coated glass fiber threads used with a thickness in the range of about 10 to 100 microns. The dipole length is 17.9 mm. But they are also dipole lengths Possible and planned from approx. 1 mm to approx. 25 mm. The number the wraps of the individual dipole packages (chaff packages) variable from 1 upwards. Preferably for the packages 1.5 windings used. The output of the active masses before Activation and distribution as well as the appropriate "packaging" the dipole serves to avoid clumping and merging and a dipole to dipole distance of about 7 to 10 λ and thus to generate a high radar backscatter cross section. The packaging must always be flexible enough, the dipoles and release them without external influence before the heat from the ignition and blow-out charge protect. In addition, the packaging of the dipoles is based on the distribution principle coordinated, i.e. the packaged dipoles are like this arranged that they open immediately when blowing out. As material for the windings and through the entire RF active mass continuous protective films 31 and protective films 32 Capton® is preferred to prevent the dipoles from slipping into each other or Milinex® used. As intermediate foils 32 can aluminum foils of various thicknesses can also be used. A thin aluminum shell 33, but also a paper or Cardboard sleeve can be that the RF active mass 21 after Ejection from the projectile sleeve is not immediately distributed, but instead remains together until the ignition / splitter charge 18 burns. This ensures that the total energy of the Charge can act on the RF active mass 21. A lid 23 serves to complete a projectile sleeve 22 and fixed from above the blow-out pipe 16. The cover 23 can be made of heavy metals, such as. Cast iron or brass, to be manufactured Center of gravity of the decoy as far forward as possible move. This allows stabilization in addition to rotation of the flight. The lid 23 is through sealed a sealing ring 24 to the projectile sleeve 22, the preferably made of aluminum with a purity of over 99% is drawn. 25 represents a closure piece of the blow-out pipe 16 represents and ensures that the relatively dangerous fragmentation charge introduced as the last step in the decoy can be.

In Fig. 4 ist eine weitere Ausführungsform eines Täuschkörpers gezeigt, der gemäß einer besonderen Ausführungsform des Verfahrens funktioniert. In Fig. 4 sind dieselben Bezugszeichen wie in Fig. 2 benutzt. Im folgenden soll i.w. nur auf die Unterschiede zu dem Täuschkörper gemäß Fig. 2 eingegangen werden. Ein wesentlicher Unterschied besteht darin, daß das Geschoß keine Geschoßhülse (in Fig. 2 mit Bezugszeichen 22 gekennzeichnet) aufweist. Somit müssen die IR-Wirkmasse 19 und RF-Wirkmasse 21 vor ihrer Aktivierung und Verteilung nicht aus einer Geschoßhülse ausgestoßen werden und sind somit die Ausstoßtreibladung (mit Bezugszeichen 13 in Fig. 2 gekennzeichnet) für das Ausbringteil 14 sowie der Anzündverzögerer (mit Bezugszeichen 15 in Fig. 2 gekennzeichnet) nicht mehr notwendig und daher nicht vorhanden. Das Ausbringteil 14 dient auch nicht mehr zum Ausstoßen der Wirkmassen 19, 21 aus einer Geschoßhülse. Die RF-Wirkmasse 21 ist von einer Papier- bzw. Papphülle 33a anstelle einer Aluminiumhülle (Bezugszeichen 33 in Fig. 3) umgeben. Diese Papier- bzw. Papphülle 33a reicht zusammen mit dem zentralen Ausblasrohr 16 aus, die RF-Wirkmasse 21 trotz der Luftanströmung in der Flugphase vor der eigentlichen Aktivierung und Verteilung zusammenzuhalten. Ein Sicherungselement 15, sorgt für Vorrohrsicherheit. Ferner sind die Rotationsladung (Bezugszeichen 9 in Fig. 2) und Rotationsdüse (Bezugszeichen 10 in Fig. 2) durch einen Rotationsmotor 9a ersetzt. Der in Fig. 4 gezeigte Täuschkörper weist aufgrund der fehlenden Geschoßhülse den Vorteil auf, daß er im Verhältnis zu einem Täuschkörper mit Geschoßhülse einfacher herzustellen und wesentlich billiger ist. 4 is another embodiment of a decoy shown that according to a particular embodiment of the method works. 4 are the same reference numerals as used in Fig. 2. In the following, i.w. only on the differences to be entered into the decoy according to FIG. 2. An essential difference is that the projectile no projectile sleeve (identified by reference number 22 in FIG. 2) having. The IR active mass 19 and RF active mass 21 is not sufficient before it is activated and distributed a projectile sleeve are ejected and are thus the ejection propellant (marked with reference number 13 in FIG. 2) for the application part 14 and the ignition retarder (with Reference number 15 in Fig. 2) is no longer necessary and therefore not available. The application part 14 also serves no longer for ejecting the active masses 19, 21 from a projectile sleeve. The RF active mass 21 is from a paper or Cardboard sleeve 33a instead of an aluminum sleeve (reference number 33 in Fig. 3) surrounded. This paper or cardboard sleeve 33a is sufficient together with the central exhaust pipe 16, the RF active mass 21 despite the inflow of air in the flight phase before to hold the actual activation and distribution together. On Securing element 15, ensures front pipe safety. Furthermore, the Rotational charge (reference numeral 9 in Fig. 2) and rotary nozzle (Reference number 10 in Fig. 2) by a rotary motor 9a replaced. The decoy shown in Fig. 4 has the missing bullet sleeve has the advantage that it is in proportion to make a decoy with bullet sleeve easier and is much cheaper.

BezugszeichenlisteReference list

11
Sekundärteil zur induktiven ZündenergieaufnahmeSecondary part for inductive ignition energy consumption
22nd
SekundärspuleSecondary coil
33rd
BodendeckelBottom cover
44th
GehäusehülseHousing sleeve
55
BodenringBottom ring
66
DruckkammerPressure chamber
77
ZündpilleSquib
88th
TreibladungPropellant charge
99
RotationsladungRotational charge
9a9a
RotationsmotorRotary motor
1010th
RotationsdüseRotary nozzle
1111
AnzündverzögererIgnition retarders
1212th
VerbindungsteilConnecting part
1313
AusstoßtreibladungEjection propellant
1414
Ausbringteil für WirkmassenSpreading part for active masses
1515
AnzündverzögererIgnition retarders
1616
AusblasrohrExhaust pipe
1717th
AusblasöffnungDischarge opening
1818th
Anzünd-/ZerlegersatzIgnition / disassembly kit
1919th
IR-WirkmasseIR active mass
2020th
TrennscheibeCutting disc
2121
RF-WirkmasseRF active mass
2222
GeschoßhülseProjectile sleeve
2323
Deckelcover
2424th
DichtringSealing ring
2525th
VerschlußstückClosure piece
3030th
Dipoldipole
3131
SchutzfolieProtective film
3232
SchutzfolieProtective film
3333
AluminiumhülleAluminum cover
33a33a
PapierhüllePaper sleeve
3434
SicherungselementSecuring element

Claims (14)

  1. A method of preparing a decoy target for protection of land, air or water vehicles or the like from missiles comprising a target search head operating simultaneously or serially in the infrared (IR) or radar (RF) range or in both wavelength ranges, wherein a substance transmitting radiation in the IR range (IR active substance) and a substance reflecting RF radiation (RF active substance) are brought into operation in the correct position as a decoy target, wherein the IR active substance and the RF active substance are brought into operation simultaneously and at the same place, characterised in that
    after ignition and launching from a projectile cup, the active substances are positioned by a spin-stabilised decoy member projectile set in rotation and
    the IR active substance is then activated and distributed and the RF active substance is swirled and distributed by an activating and distributing device in the form of an ignition and blow-out unit disposed centrally in the decoy member projectile and around which the active substances are disposed one behind the other in the longitudinal direction of the decoy member projectile.
  2. A method according to claim 1, characterised in that ignition and blow-out are effected by a pyrotechnic charge which is ignited by an ignition retarder which is ignited by combustion of a propellant charge for the decoy member projectile.
  3. A method according to claim 2, characterised in that the pyrotechnic charge for the ignition and blow-out unit is burnt inside a tube disposed centrally in the projectile and with defined blow-out openings.
  4. A method according to any of the preceding claims, characterised by use of an RF active substance, the surface of which is surrounded by a paper, cardboard or plastic sheet casing.
  5. A method according to any of the preceding claims, characterised in that, in a spin-stabilised flight phase with defined oncoming flow against the active substances, the active substances including the activating and distributing device are simultaneously ejected from a projectile casing by means of a production part.
  6. A method according to claim 5, characterised in that the production part is ejected by a propellant charge ignited by the ignition retarder, which is preferably pyrotechnic.
  7. A method according to any of the preceding claims, characterised in that the ignition member projectile is set in rotation by a pyrotechnic rotation rotor.
  8. A method according to any of claims 1 to 7, characterised in that the ignition member projectile is set in rotation by suitably designed pulling means in the projectile cup.
  9. A method according to any of claims 1 to 7, characterised in that the decoy member projectile is set in rotation by suitably designed spoiler surfaces on the decoy member projectile.
  10. A method according to any of the preceding claims, characterised in that the RF active substance comprises rolled-together radar dipoles (chaff) of aluminium-coated or silver-coated glass fibre threads having a thickness in the range from about 10 to 100 µm.
  11. A method according to any of the preceding claims, characterised by use of dipole packets so disposed that they open immediately on blow-out.
  12. A method according to any of the preceding claims, characterised by use of dipole packets protected by at least one heat shield from the blow-out heat.
  13. A method according to claim 12, characterised in that the or each heat shell is at least one elastic foil or sheet which extends through the entire RF active substance.
  14. A method according to any of the preceding claims, characterised by use of dipole packets which are protected from slipping into one another by at least one heat-resistant foil or sheet between respective packets.
EP97105393A 1996-05-03 1997-04-01 Method for creating a decoy target Expired - Lifetime EP0805333B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP00108677A EP1026473B1 (en) 1996-05-03 1997-04-01 Method for creating a decoy target

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19617701A DE19617701C2 (en) 1996-05-03 1996-05-03 Method of providing a dummy target
DE19617701 1996-05-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP00108677A Division EP1026473B1 (en) 1996-05-03 1997-04-01 Method for creating a decoy target

Publications (3)

Publication Number Publication Date
EP0805333A2 EP0805333A2 (en) 1997-11-05
EP0805333A3 EP0805333A3 (en) 1998-01-14
EP0805333B1 true EP0805333B1 (en) 2000-11-08

Family

ID=7793179

Family Applications (2)

Application Number Title Priority Date Filing Date
EP97105393A Expired - Lifetime EP0805333B1 (en) 1996-05-03 1997-04-01 Method for creating a decoy target
EP00108677A Expired - Lifetime EP1026473B1 (en) 1996-05-03 1997-04-01 Method for creating a decoy target

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP00108677A Expired - Lifetime EP1026473B1 (en) 1996-05-03 1997-04-01 Method for creating a decoy target

Country Status (7)

Country Link
US (1) US5835051A (en)
EP (2) EP0805333B1 (en)
JP (1) JP3181240B2 (en)
DE (3) DE19617701C2 (en)
DK (2) DK0805333T3 (en)
SG (1) SG55308A1 (en)
TW (1) TW355204B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019206485A2 (en) 2018-04-27 2019-10-31 Rheinmetall Waffe Munition Gmbh Method and device for protecting a vehicle against a threat

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19943396B3 (en) 1999-09-10 2018-03-08 Rheinmetall Waffe Munition Gmbh Method for protecting moving objects by means of a deployable decoy and decoys
FR2798927B1 (en) * 1999-09-24 2001-12-14 Poudres & Explosifs Ste Nale BI-MODE ACTIVE LURE LOAD AND AMMUNITION CONTAINING SUCH LOADS
DE19951767C2 (en) 1999-10-27 2002-06-27 Buck Neue Technologien Gmbh Dual mode decoy
DE10117007A1 (en) * 2001-04-04 2002-10-17 Buck Neue Technologien Gmbh Method and device for protecting mobile military equipment
FR2840978B1 (en) * 2002-06-12 2004-09-03 Giat Ind Sa MASKING AMMUNITION
FR2840977B1 (en) 2002-06-12 2004-09-03 Giat Ind Sa DEVICE AND MUNITION FOR PROTECTING A VEHICLE OR A FIXED PLATFORM AGAINST A THREAT
US20050150371A1 (en) * 2003-01-29 2005-07-14 Rickard John T. System and method for the defense of aircraft against missile attack
DE10346001B4 (en) 2003-10-02 2006-01-26 Buck Neue Technologien Gmbh Device for protecting ships from end-phase guided missiles
DE102005020159B4 (en) * 2005-04-29 2007-10-04 Rheinmetall Waffe Munition Gmbh Camouflage and deception ammunition for the protection of objects against missiles
DE102005035251A1 (en) 2005-07-25 2007-02-01 Rheinmetall Waffe Munition Gmbh Method and device for deception of infrared, radar and dual mode guided missile
RU2403531C2 (en) * 2005-10-24 2010-11-10 Анатолий Яковлевич Скударнов Shell for laying of low-temperature false thermal target
DE102006004912A1 (en) 2006-01-20 2007-07-26 Rheinmetall Waffe Munition Gmbh System for protection, especially of large flying platforms against infrared or radar guided missiles or other threats, has user unit with system operating elements
DE102006017107A1 (en) * 2006-04-10 2007-10-11 Oerlikon Contraves Ag Protective device for a stationary and/or mobile radar to protect from anti-radiation missile attack comprises a decoy body or emitter formed as passive bodies radiated by a radar and reflecting the beams from the body
DE102008019752A1 (en) 2008-04-18 2009-10-22 Rheinmetall Waffe Munition Gmbh Active body for a submunition with active agents
DE102008036408A1 (en) * 2008-08-06 2010-02-11 Diehl Bgt Defence Gmbh & Co. Kg Hybrid decoy
DE102009030869A1 (en) * 2009-06-26 2011-02-10 Rheinmetall Waffe Munition Gmbh submunitions
DE102009043483A1 (en) 2009-09-30 2011-03-31 Rheinmetall Waffe Munition Gmbh Magazine-integrated ammunition
DE102010026641A1 (en) 2010-07-09 2012-01-12 Diehl Bgt Defence Gmbh & Co. Kg A smoke
EP2612101B1 (en) 2010-08-31 2017-01-11 Rheinmetall Waffe Munition GmbH Device and method for producing an effective fog wall or fog cloud
DE102010036026A1 (en) 2010-08-31 2012-03-01 Rheinmetall Waffe Munition Gmbh Smoke screen effectiveness determining device for protecting e.g. military platform, has measuring sensor system connected with data processing unit, and data processing algorithms provided for analysis of effectiveness of smoke screen
DE102011120454A1 (en) * 2011-12-07 2013-06-13 Diehl Bgt Defence Gmbh & Co. Kg Active mass for a substantially spectrally radiating infrared light target during combustion with room effect
DE102011120929A1 (en) 2011-12-14 2013-06-20 Rheinmetall Waffe Munition Gmbh Protection system, in particular for ships, against radar-directed threats
DE102012010378A1 (en) 2012-05-29 2013-12-05 Rheinmetall Waffe Munition Gmbh Ammunition with active agents
DE102012010377A1 (en) 2012-05-29 2013-12-05 Rheinmetall Waffe Munition Gmbh Ammunition with active agents
RU2542688C1 (en) * 2013-07-01 2015-02-20 Денис Борисович Дубинин Grenade launching plant
US20150323296A1 (en) * 2013-10-01 2015-11-12 Omnitek Partners Llc Countermeasure Flares
DE102015002737B4 (en) 2015-03-05 2023-05-25 Rheinmetall Waffe Munition Gmbh Method and device for providing a decoy to protect a vehicle and/or object from radar-guided seekers
DE102015110061A1 (en) * 2015-06-23 2016-12-29 Rheinmetall Waffe Munition Gmbh FOG EXPLOSIVE GRENADE
SE541612C2 (en) * 2016-09-15 2019-11-12 Bae Systems Bofors Ab Modifiable divisible projectile and method for modifying a projectile
RU175624U1 (en) * 2016-09-19 2017-12-12 Федеральное Государственное Казенное Военное Образовательное Учреждение Высшего Образования Военный Учебно-Научный Центр Сухопутных Войск "Общевойсковая Академия Вооруженных Сил Российской Федерации" A set of ammunition cartridges for controlled sudden sharp contrast crucifixion or aerosol formation in the area of the masked object
RU2651319C1 (en) * 2017-01-27 2018-04-19 Федеральное государственное казенное военное образовательное учреждение высшего образования "ВОЕННАЯ АКАДЕМИЯ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОГО ОБЕСПЕЧЕНИЯ имени генерала армии А.В. Хрулева" Method for armored vehicles protection and device for its implementation
CN108310765B (en) * 2017-12-14 2021-07-27 腾讯科技(深圳)有限公司 Image display method and device, storage medium and electronic device
US11255643B2 (en) * 2018-02-05 2022-02-22 Advanced Material Engineering Pte Ltd System for countering an unmanned aerial vehicle (UAV)
CN108830023B (en) * 2018-07-26 2022-07-15 北京理工大学 Method for predicting ignition process of gun-launched missile booster engine
RU191978U1 (en) * 2019-05-23 2019-08-29 Федеральное государственное бюджетное учреждение "Центральный научно-исследовательский испытательный институт инженерных войск" Министерства обороны Российской Федерации HEAT GOAL SIMULATOR
DE102019117801A1 (en) * 2019-07-02 2021-01-07 Rheinmetall Waffe Munition Gmbh Decoy, system and method for protecting an object

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3841219A (en) 1964-08-12 1974-10-15 Gen Dynamics Corp Decoy rounds for counter measures system
GB1598423A (en) * 1967-11-03 1981-09-23 Gen Dynamics Corp Decoy round
US4183302A (en) * 1967-11-06 1980-01-15 General Dynamics Pomona Division Sequential burst system
GB1434034A (en) * 1972-07-11 1976-04-28 Bender Ltd F Method and equipment for forming a single cloud of radar reflecting chaff within the atmosphere
FR2343990A1 (en) * 1976-03-09 1977-10-07 Lacroix E Launcher and disperser for radar-jamming electromagnetic filaments - holds filament packets together for delayed radial dispersion
DE2638920A1 (en) * 1976-08-28 1978-03-02 Dynamit Nobel Ag Spreader for radiation reflecting or emitting material - has central tube with holes, connected to compressed gas which disperses material
FR2383419A1 (en) * 1977-03-07 1978-10-06 Lacroix E LURE LAUNCHER CASE FOR WEAPON GUIDANCE SYSTEMS ACCEPTANCE
DE2811016C1 (en) * 1978-03-14 1986-07-17 Buck Chemisch-Technische Werke Gmbh & Co, 8230 Bad Reichenhall Throwing body
US4860657A (en) * 1978-05-05 1989-08-29 Buck Chemisch-Technische Werke Gmbh & Co. Projectile
EP0029078A1 (en) * 1979-11-13 1981-05-27 Societe E. Lacroix - Tous Artifices Pistol-fired cartridge for disseminating electromagnetic chaff
FR2474699B1 (en) * 1980-01-30 1985-11-15 Ruggieri Ets SIGNALING DEVICE WITH ELECTROMAGNETIC DIPOLES
JPS57172199A (en) * 1980-12-23 1982-10-22 Warotsupu Ind Ltd Rocket for material for disturbing radar searching
GB2091855B (en) * 1980-12-23 1985-12-18 Wallop Ind Ltd Chaff rocket
DE3048595A1 (en) * 1980-12-23 1982-07-22 Dynamit Nobel Ag, 5210 Troisdorf Warhead for screening or radar deception - has internal bursting tube, surrounded by smoke sections with outer strip packing
FR2521716B1 (en) * 1982-02-17 1987-01-02 Lacroix E Tous Artifices MULTI-LOAD ELECTROMAGNETIC LURE LAUNCHER CARTRIDGE
DE3327043A1 (en) * 1983-07-27 1985-02-07 Technisch-Mathematische Studiengesellschaft mbH, 5300 Bonn Device for scattering electromagnetic decoy material, particularly from a rocket
DE3403936A1 (en) * 1984-02-04 1985-08-08 Diehl GmbH & Co, 8500 Nürnberg SPIRAL BULLET
DE3835887C2 (en) * 1988-10-21 1997-10-02 Rheinmetall Ind Ag Cartridge for creating false targets
DE4327976C1 (en) * 1993-08-19 1995-01-05 Buck Chem Tech Werke Flare charge for producing decoys

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019206485A2 (en) 2018-04-27 2019-10-31 Rheinmetall Waffe Munition Gmbh Method and device for protecting a vehicle against a threat

Also Published As

Publication number Publication date
EP0805333A3 (en) 1998-01-14
DE19617701C2 (en) 2000-01-13
JPH112499A (en) 1999-01-06
DE19617701A1 (en) 1997-11-20
DK199900457U1 (en) 1999-12-30
JP3181240B2 (en) 2001-07-03
DE59702585D1 (en) 2000-12-14
SG55308A1 (en) 1998-12-21
DK0805333T3 (en) 2001-02-05
TW355204B (en) 1999-04-01
EP0805333A2 (en) 1997-11-05
EP1026473A1 (en) 2000-08-09
DE59707940D1 (en) 2002-09-12
EP1026473B1 (en) 2002-08-07
US5835051A (en) 1998-11-10

Similar Documents

Publication Publication Date Title
EP0805333B1 (en) Method for creating a decoy target
DE19951767C2 (en) Dual mode decoy
EP0164732B1 (en) Apparatus for generating decoy clouds, in particular those emitting ir radiation
EP1516153B1 (en) Projectile or warhead
DE19655109C2 (en) Mortar ammunition
US4970960A (en) Anti-material projectile
DE2809497A1 (en) LOCKING CONTAINER FOR THE DUEPPELUNG OF STEERING ARMS
EP1794537B1 (en) Active charge
DE3048617A1 (en) COMBAT HEAD WITH SECONDARY BODIES AS A PAYLOAD
DE10065816B4 (en) Ammunition for generating a fog
DE19524726A1 (en) Directional warhead with explosives casing
CH664009A5 (en) ARMORING BULLET.
EP0298494B1 (en) Active sub-munition part, and flechette warhead and flechettes therefor
EP0955517A1 (en) Ammunition with multiple warheads
EP1286129B1 (en) Incendiary munition for a flight stabilised penetrating projectile
EP1514072B1 (en) Smoke projectile
DE977946C (en) Process for generating a secondary effect in connection with the known effect of a shaped charge
DE3421692C2 (en) Method and projectile for creating an IR decoy
DE2638920A1 (en) Spreader for radiation reflecting or emitting material - has central tube with holes, connected to compressed gas which disperses material
DE102019007104B3 (en) Fragmentation warhead for a missile
DE3920016C2 (en)
DE10152023B4 (en) Shock insensitive smoke projectiles
EP2405231B1 (en) Smoke projectile
WO2020164869A1 (en) Method for combating aerial targets by means of guided missiles
DE4108633C2 (en) Use of the active part of a search fuse submunition as a practice ammunition with reduced range

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE DK ES FR GB GR IT NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE DK ES FR GB GR IT NL SE

17P Request for examination filed

Effective date: 19980709

17Q First examination report despatched

Effective date: 19990325

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GBC Gb: translation of claims filed (gb section 78(7)/1977)
17Q First examination report despatched

Effective date: 19990325

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BUCK NEUE TECHNOLOGIEN GMBH

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK ES FR GB GR IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20001108

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20001108

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20001108

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20001108

REF Corresponds to:

Ref document number: 59702585

Country of ref document: DE

Date of ref document: 20001214

ET Fr: translation filed
REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010209

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

26N No opposition filed
PLAA Information modified related to event that no opposition was filed

Free format text: ORIGINAL CODE: 0009299DELT

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: PAINS WESSEX LIMITED

Effective date: 20010808

D26N No opposition filed (deleted)
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20040616

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59702585

Country of ref document: DE

Representative=s name: THUL PATENTANWALTSGESELLSCHAFT MBH, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59702585

Country of ref document: DE

Owner name: RHEINMETALL WAFFE MUNITION GMBH, DE

Free format text: FORMER OWNER: BUCK NEUE TECHNOLOGIEN GMBH, 83458 SCHNEIZLREUTH, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160421

Year of fee payment: 20

Ref country code: GB

Payment date: 20160421

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20160420

Year of fee payment: 20

Ref country code: DK

Payment date: 20160420

Year of fee payment: 20

Ref country code: FR

Payment date: 20160421

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59702585

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

Effective date: 20170401

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20170331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170331