EP0801369B1 - Optischer Signalgeber für Verkehrssignalanlagen - Google Patents

Optischer Signalgeber für Verkehrssignalanlagen Download PDF

Info

Publication number
EP0801369B1
EP0801369B1 EP19970101305 EP97101305A EP0801369B1 EP 0801369 B1 EP0801369 B1 EP 0801369B1 EP 19970101305 EP19970101305 EP 19970101305 EP 97101305 A EP97101305 A EP 97101305A EP 0801369 B1 EP0801369 B1 EP 0801369B1
Authority
EP
European Patent Office
Prior art keywords
reflector
signal module
light
module according
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19970101305
Other languages
English (en)
French (fr)
Other versions
EP0801369A1 (de
Inventor
Christian Liéter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Signalbau Huber GmbH
Original Assignee
HUBER SIGNALBAU AG
Signalbau Huber AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19627940A external-priority patent/DE19627940A1/de
Application filed by HUBER SIGNALBAU AG, Signalbau Huber AG filed Critical HUBER SIGNALBAU AG
Publication of EP0801369A1 publication Critical patent/EP0801369A1/de
Application granted granted Critical
Publication of EP0801369B1 publication Critical patent/EP0801369B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/095Traffic lights
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2111/00Use or application of lighting devices or systems for signalling, marking or indicating, not provided for in codes F21W2102/00 – F21W2107/00
    • F21W2111/02Use or application of lighting devices or systems for signalling, marking or indicating, not provided for in codes F21W2102/00 – F21W2107/00 for roads, paths or the like

Definitions

  • the invention relates to an optical signal generator for Traffic signal systems, according to the preamble of claim 1.
  • Such an optical signal generator is by GB-PS 1 140 417 known.
  • This optical signal transmitter has one Reflector, multiple light sources and a translucent Cover plate on.
  • Such optical signal transmitters must a prescribed illuminance distribution or Generate light distribution so that the emitted by them Beam of light is visible from given directions.
  • Traffic signal systems such as traffic lights, must be that emitted by the optical signal transmitter Beams of light, especially from diagonally below and from the side Directions to be visible.
  • the reflector is usually in Formed a paraboloid of revolution, so that by light emitted by the light source as one parallel light beam is reflected.
  • the cover plate must have optical elements through which the Reflector reflected light bundle is deflected in such a way that the prescribed illuminance distribution produces becomes.
  • the respective operating conditions demand different illuminance distributions that in corresponding standards are defined.
  • the different Illuminance distributions are different Cover plates generated.
  • the cover plate often different symbols such as Represent directional arrows, which causes a large number different versions for the cover plate results.
  • U.S. Patent 4,962,450 describes an optical signal transmitter, which is a fall of the low sun even in light does not appear illuminated.
  • the optical signal transmitter according to the invention with the features according to claim 1 has the advantage that already the light beam reflected by the reflector essentially the respectively prescribed illuminance distribution generated and thus the cover plate can be simple can and the manufacture of the signal generator is simplified. It is also possible to use the large number of different To reduce design variants of cover plates, since yes already essentially through that reflected by the reflector Light generates the respective illuminance distribution becomes.
  • FIG. 1 shows an optical one Signal generator in a vertical longitudinal section
  • Figure 2 a Reflector of the signal generator according to a first Embodiment in a front view
  • Figure 3 a arranged in front of the signal transmitter, the screen light bundle reflected by the reflector is illuminated
  • Figure 4 shows the measuring screen when illuminated by the Beam of light emerging
  • FIG. 5 the reflector according to a second embodiment in one Front view
  • Figure 6 shows the reflector in a vertical Longitudinal section along line VI-VI in Figure 5
  • Figure 7 den Reflector according to a third embodiment in one Front view
  • Figure 8 shows the reflector according to the third Embodiment in a modified version in a front view.
  • FIGS. 1, 2 and 5 to 8 Signal generator An optical one shown in FIGS. 1, 2 and 5 to 8 Signal generator is for use in traffic signal systems, such as traffic lights.
  • the Signal generator has a reflector 10, in which at least a light source 12 is used, for example a Light bulb can be.
  • the reflector 10 can be made of metal or Plastic.
  • the optical axis of the reflector 10 is designated 11.
  • the signal generator also has one in the beam path of that reflected by the reflector 10 Translucent cover plate 14 arranged in a light beam on the light exit opening of the signal generator closes and in the required signal color of the Signal generator can be colored.
  • the cover plate 14 can consist of glass or plastic.
  • the reflector 10 of the signal generator according to a first embodiment shown.
  • the reflector 10 has a concave curved reflection surface, in which in Figure 2 shows several lines 16 of the same height.
  • the contour lines 16 run in planes perpendicular to the optical axis 11 of the reflector 10.
  • Figure 3 is a with Distance in front of the signal generator approximately coaxial to its optical Axis 11 arranged measuring screen 20 shown by the light beam reflected by the reflector 10 illuminates becomes.
  • the central plane of the measuring screen 20 is labeled HH and the vertical of which contains the optical axis 11
  • the middle level is labeled VV.
  • the measuring screen 20 will by the light beam reflected by the reflector 10 in one illuminated with 22 designated area.
  • area 22 In area 22 are several lines 24 of the same illuminance, so-called Isocandela and Isolux lines entered.
  • the focus area 22 is below the horizontal median plane HH of the measuring screen 20 arranged and the area is at least approximately symmetrical on both sides of the vertical Middle plane VV arranged.
  • the area 22 is up by a line 26 approximately in the form of an inverted U limited, at least approximately in the vertical Middle plane VV has its highest point and with increasing distance from the vertical median plane VV runs below.
  • the area 22 is down through one Line 28 bounded, which is at least approximately straight or also runs in the shape of an inverted U.
  • the Area 22 widens down to its lower boundary line 28.
  • the maximum illuminance in area 22 is near the intersection HV of the horizontal Middle plane HH and the vertical middle plane VV or something available below the point HV.
  • the isocandelal lines 24 run at least approximately like lines 26.28.
  • the reflective surface of the reflector 10 can be as in FIG FIG. 3, of which the reflector 10 reflected light bundle to be generated predetermined Illuminance distribution can be calculated step by step. This is based on the optical Laws of reflection for small areas of the reflector 10 the shape is determined and gradually successive sections determined so that results in a continuous reflection surface. To the The distance of the apex 13 arranged on the optical axis 11 of the reflector 10 from the luminous element of the light source 12 be specified.
  • the Reflector shape gradually calculated by for each Area of the reflector 10 from the direction of this from reflective light via geometric reflection laws, Impact angle ⁇ of the emitted by the light source 12 Light rays with respect to the normal N on the concerned Reflector area equal to the angle of reflection ⁇ , the orientation of the Normal N determined for the relevant reflector area becomes.
  • the orientation of the normal N becomes vertical to this arranged tangential plane T on the relevant one Reflector area and thus its orientation determined.
  • the Sequence of the so determined one after the other Reflector areas gives a continuous Reflective surface.
  • the reflector 10 can in its optical Longitudinal sections containing axis 11 intersection curves have approximately parabolas. In cuts
  • the reflector 10 can be perpendicular to its optical axis 11 Have intersection curves that are approximately ellipses, the large semi-axes of which are arranged approximately horizontally are.
  • the measuring screen 20 will illuminated in an area 32, the focus of which is below the horizontal center plane is HH and about symmetrical on both sides of the vertical median plane vv is arranged.
  • the area 32 is approximately trapezoidal trained and widened downwards. In the area 32 several isocandelal lines 34 are entered.
  • An exemplary embodiment of the signal generator is its reflector 10 trained as above. To make it even more uniform Luminance on the light field of the signal generator too can reach on the reflection surface of the reflector 10 elements causing a scattering of the reflected light be provided.
  • the grooves 40 can for example as concave depressions in the Reflection surface of the reflector 10 may be formed. Alternatively, the grooves 40 can also be used as convex elevations be formed in the reflection surface.
  • the scores 40 can be ring-shaped at least approximately coaxial to the optical Axis 11 may be arranged extending.
  • the grooves 40 Through the grooves 40 is a scattering of the reflected on the reflection surface Light causes a uniform luminance the light field of the signal generator can be reached.
  • the width of the grooves 40 can be over the entire Reflecting surface to be constant or variable.
  • the grooves 40 are formed such that the caused by this scattering of the reflected light starting from the apex region 13 of the reflector 10 increasing distance from this to the light exit direction pointing front edge of the reflector 10 decreases. In this way it can be achieved that both a sufficient Illuminance near the optical axis 11 is present as well as a uniform luminance on the luminous field of the signal generator around the optical axis 11.
  • the reflector 10 of the signal generator is in one Front view according to a third embodiment shown, the reflector 10 in principle as in is formed first embodiment, the Reflection surface, however, a plurality of facets 50 are superimposed.
  • the individual facets 50 can be essentially flat or convex or concave be curved. Due to the facets 50 one Scattering of the light reflected on the reflection surface causes, making the luminance of the Illuminated field of the signal generator can be reached.
  • the Facets 50 can, for example, as shown in FIG. 7 be arranged in a matrix and approximately rectangular be trained. Those arranged in rows one above the other Facets 50 can each be in the ones below Rows of facets 50 may be staggered.
  • the effect of the facets 50 can be such that the through this caused scattering of the reflected light starting from from the apex region 13 of the reflector 10 with increasing Distance from this to the one pointing in the direction of light exit Front edge of the reflector 10 decreases.
  • FIG. 8 shows a modification compared to FIG. 7 Execution of the reflector 10 shown, the Arrangement of the facets 52 is changed. There are several facets 52 offset from each other in radial Arranged with respect to the optical axis 11. In the adjacent radial rows of facets 52 are each offset from one another. The Facets 52 are each segment of a circle educated. The facets 52 can form the figure as above 7 indicated with regard to their training and impact be executed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Optical Communication System (AREA)

Description

Stand der Technik
Die Erfindung geht aus von einem optischen Signalgeber für Verkehrssignalanlagen, nach der Gattung des Anspruchs 1.
Ein solcher optischer Signalgeber ist durch die GB-PS 1 140 417 bekannt. Dieser optische Signalgeber weist einen Reflektor, mehrere Lichtquellen und eine lichtdurchlässige Abdeckscheibe auf. Derartige optische Signalgeber müssen eine vorgeschriebene Beleuchtungsstärkeverteilung bzw. Lichtverteilung erzeugen, damit das von diesen ausgesandte Lichtbündel aus vorgegebenen Richtungen sichtbar ist. Bei Verkehrssignalanlagen, wie beispielsweise Verkehrsampeln, muß das von dem optischen Signalgeber ausgesandte Lichtbündel vor allem von schräg unten und aus seitlichen Richtungen sichtbar sein. Üblicherweise ist der Reflektor in Form eines Rotationsparaboloids ausgebildet, so daß durch diesen von der Lichtquelle ausgesandtes Licht als ein paralleles Lichtbündel reflektiert wird. Die Abdeckscheibe muß dabei optische Elemente aufweisen, durch die das vom Reflektor reflektierte Lichtbündel derart abgelenkt wird, daß die vorgeschriebene Beleuchtungsstärkeverteilung erzeugt wird. Dabei verlangen die jeweiligen Einsatzbedingungen unterschiedliche Beleuchtungsstärkeverteilungen, die in entsprechenden Normen festgelegt sind. Die unterschiedlichen Beleuchtungsstärkeverteilungen werden durch unterschiedliche Abdeckscheiben erzeugt. Zusätzlich muß die Abdeckscheibe oftmals verschiedene Sinnbilder wie beispielsweise Richtungspfeile darstellen, wodurch sich eine große Anzahl verschiedener Ausführungsvarianten für die Abdeckscheibe ergibt. Die US-PS 4,962,450 beschreibt einen optischen signalgeber, der auch bei Licht ein Fall der tief stehen den Sonne nicht beleuchtet erscheint.
Vorteile der Erfindung
Der erfindungsgemäße optische Signalgeber mit den Merkmalen gemäß Anspruch 1 hat demgegenüber den Vorteil, daß bereits das vom Reflektor reflektierte Lichtbündel im wesentlichen die jeweils vorgeschriebene Beleuchtungsstärkeverteilung erzeugt und somit die Abdeckscheibe einfach ausgebildet sein kann und die Herstellung des Signalgebers vereinfacht ist. Außerdem ist es möglich, die große Anzahl der verschiedenen Ausführungsvarianten von Abdeckscheiben zu verringern, da ja bereits im wesentlichen durch das vom Reflektor reflektierte Licht die jeweilige Beleuchtungsstärkeverteilung erzeugt wird.
In den abhängigen Ansprüchen sind vorteilhafte Ausgestaltungen und Weiterbildungen des erfindungsgemäßen Signalgebers angegeben. Durch die Weiterbildung gemäß Anspruch 4 ist eine gleichmäßige Leuchtdichte auf dem Leuchtfeld des Signalgebers ermöglicht.
Zeichnung
Drei Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 einen optischen Signalgeber in einem vertikalen Längsschnitt, Figur 2 einen Reflektor des Signalgebers gemäß einem ersten Ausführungsbeispiel in einer Vorderansicht, Figur 3 einen vor dem Signalgeber angeordneten Meßschirm, der durch das vom Reflektor reflektierte Lichtbündel beleuchtet wird, Figur 4 den Meßschirm bei der Beleuchtung durch das aus dem Signalgeber austretende Lichtbündel, Figur 5 den Reflektor gemäß einem zweiten Ausführungsbeispiel in einer Vorderansicht, Figur 6 den Reflektor in einem vertikalen Längsschnitt entlang Linie VI-VI in Figur 5, Figur 7 den Reflektor gemäß einem dritten Ausführungsbeispiel in einer Vorderansicht und Figur 8 den Reflektor gemäß dem dritten Ausführungsbeispiel in einer modifizierten Ausführung in einer Vorderansicht.
Beschreibung der Ausführungsbeispiele
Ein in den Figuren 1,2 und 5 bis 8 dargestellter optischer Signalgeber ist zur Verwendung bei Verkehrssignalanlagen, wie beispielsweise Verkehrsampeln, vorgesehen. Der Signalgeber weist einen Reflektor 10 auf, in den wenigstens eine Lichtquelle 12 eingesetzt ist, die beispielsweise eine Glühlampe sein kann. Der Reflektor 10 kann aus Metall oder Kunststoff bestehen. Die optische Achse des Reflektors 10 ist mit 11 bezeichnet. Der Signalgeber weist außerdem eine im Strahlengang des vom Reflektor 10 reflektierten Lichtbündels angeordnete lichtdurchlässige Abdeckscheibe 14 auf, die die Lichtaustrittsöffnung des Signalgebers verschließt und die in der erforderlichen Signalfarbe des Signalgebers eingefärbt sein kann. Es können mehrere Signalgeber an der Verkehrssignalanlage angeordnet sein, beispielsweise bei einer Verkehrsampel drei Signalgeber übereinander, wobei jeweils ein Signalgeber mit einer rot gefärbten Abdeckscheibe 14, einer mit einer gelb gefärbten Abdeckscheibe 14 und einer mit einer grün gefärbten Abdeckscheibe 14 vorgesehen ist. Die Abdeckscheibe 14 kann aus Glas oder Kunsststoff bestehen.
In Figur 2 ist der Reflektor 10 des Signalgebers gemäß einem ersten Ausführungsbeispiel dargestellt. Der Reflektor 10 weist eine konkav gekrümmte Reflexionsfläche auf, in der in Figur 2 mehrere Linien 16 gleicher Höhe eingezeichnet sind. Die Höhenlinien 16 verlaufen dabei in Ebenen senkrecht zur optischen Achse 11 des Reflektors 10. In Figur 3 ist ein mit Abstand vor dem Signalgeber etwa koaxial zu dessen optischer Achse 11 angeordneter Meßschirm 20 dargestellt, der durch das vom Reflektor 10 reflektierte Lichtbündel beleuchtet wird. Die die optische Achse 11 enthaltende horizontale Mittelebene des Meßschirms 20 ist mit HH bezeichnet und dessen die optische Achse 11 enthaltende vertikale Mittelebene ist mit VV bezeichnet. Der Meßschirm 20 wird durch das vom Reflektor 10 reflektierte Lichtbündel in einem mit 22 bezeichneten Bereich beleuchtet. Im Bereich 22 sind mehrere Linien 24 gleicher Beleuchtungsstärke, sogenannte Isocandela- bzw. Isoluxlinien eingetragen. Der Schwerpunkt des Bereichs 22 ist unterhalb der horizontalen Mittelebene HH des Meßschirms 20 angeordnet und der Bereich ist zumindest annähernd symmetrisch beiderseits der vertikalen Mittelebene VV angeordnet. Der Bereich 22 ist nach oben durch eine Linie 26 etwa in Form eines umgekehrten U begrenzt, die zumindest annähernd im Bereich der vertikalen Mittelebene VV ihren höchsten Punkt aufweist und mit zunehmendem Abstand von der vertikalen Mittelebene VV nach unten verläuft. Der Bereich 22 ist nach unten durch eine Linie 28 begrenzt, die zumindest annähernd gerade oder ebenfalls etwa in Form eines umgekehrten U verläuft. Der Bereich 22 verbreitert sich nach unten hin bis zu seiner unteren Begrenzungslinie 28. Die maximale Beleuchtungsstärke im Bereich 22 ist nahe dem Schnittpunkt HV der horizontalen Mittelebene HH und der vertikalen Mittelebene VV oder etwas unterhalb des Punkts HV vorhanden. Innerhalb des Bereichs 22 verlaufen die Isocandelalinien 24 zumindest annähernd wie die Linien 26,28.
Die Reflexionsfläche des Reflektors 10 kann aus der wie in Figur 3 dargestellten, von dem vom Reflektor 10 reflektierten Lichtbündel zu erzeugenden vorgegebenen Beleuchtungsstärkeverteilung schrittweise berechnet werden. Hierbei wird unter Zugrundelegung der optischen Reflexionsgesetze für kleine Teilbereiche des Reflektors 10 die Form bestimmt und schrittweise werden aufeinanderfolgende Teilbereiche bestimmt, so daß sich insgesamt eine kontinuierliche Reflexionsfläche ergibt. Zum Beginn der Berechnung der Reflektorform kann der Abstand des auf der optischen Achse 11 angeordneten Scheitelpunkts 13 des Reflektors 10 vom Leuchtkörper der Lichtquelle 12 vorgegeben werden. Ausgehend vom Scheitelpunkt 13 wird die Reflektorform schrittweise berechnet, indem für jeden Bereich des Reflektors 10 aus der Richtung des von diesem zu reflektierenden Lichts über geometrische Reflexionsgesetzte, Auftreffwinkel α der von der Lichtquelle 12 ausgesandten Lichtstrahlen bezüglich der Normalen N auf den betreffenden Reflektorbereich gleich Ausfallwinkel β, die Ausrichtung der Normalen N für den betreffenden Reflektorbereich bestimmt wird. Aus der Ausrichtung der Normalen N wird die senkrecht zu dieser angeordnete Tangentialebene T an den betreffenden Reflektorbereich und damit dessen Ausrichtung bestimmt. Die Aneinanderreihung der so nacheinander bestimmten Reflektorbereiche ergibt eine kontinuierliche Reflexionsfläche. Der Reflektor 10 kann in dessen optische Achse 11 enthaltenden Längsschnitten Schnittkurven aufweisen, die näherungsweise Parabeln sind. In Schnitten senkrecht zu dessen optischer Achse 11 kann der Reflektor 10 Schnittkurven aufweisen, die näherungsweise Ellipsen sind, wobei deren große Halbachsen etwa horizontal angeordnet sind.
Man kann auf die vorstehend beschriebene Weise einen Reflektor 10 erhalten, der mit dem durch diesen reflektierten Licht die vorgegebene Beleuchtungsstärkeverteilung erzeugt, jedoch ist die Leuchtdichte auf dem Leuchtfeld des Signalgebers, das heißt auf dessen beleuchteter Abdeckscheibe 14, unter Umständen nicht ausreichend gleichmäßig. Um eine gleichmäßige Leuchtdichte zu erreichen wird die Abdeckscheibe 14 mit optischen Elementen versehen, die eine Streuung des vom Reflektor 10 reflektierten Lichtbündels beim Durchtritt bewirken. Durch die optischen Elemente der Abdeckscheibe 14 kann außerdem das vom Reflektor 10 reflektierte Lichtbündel beim Durchtritt in bestimmte Richtungen abgelenkt werden, wenn dies zur Erzeugung einer gleichmäßigen Leuchtdichte auf dem Leuchtfeld des Signalgebers erforderlich ist. In Figur 4 ist der Meßschirm 20 bei der Beleuchtung durch das aus dem Signalgeber nach Durchtritt durch die Abdeckscheibe 14 austretende Lichtbündel dargestellt. Der Meßschirm 20 wird in einem Bereich 32 beleuchtet, dessen Schwerpunkt unterhalb der horizontalen Mittelebene HH liegt und der etwa symmetrisch beiderseits der vertikalen Mittelebene vv angeordnet ist. Der Bereich 32 ist etwa trapezförmig ausgebildet und verbreitert sich nach unten hin. Im Bereich 32 sind mehrere Isocandelalinien 34 eingetragen.
Bei einem in den Figuren 5 und 6 dargestellten zweiten Ausführungbeispiel des Signalgebers ist dessen Reflektor 10 wie vorstehend ausgebildet. Um eine noch gleichmäßigere Leuchtdichte auf dem Leuchtfeld des Signalgebers zu erreichen, können auf der Reflexionsfläche des Reflektors 10 eine Streuung des reflektierten Lichts bewirkende Elemente vorgesehen werden. Beim zweiten Ausführungsbeispiel sind eine Streuung bewirkenden Elemente in Form einer Vielzahl von Riefen 40 ausgebildet, die der Reflexionsfläche des Reflektors 10 überlagert sind. Die Riefen 40 können beispielsweise als konkave Vertiefungen in der Reflexionsfläche des Reflektors 10 ausgebildet sein. Alternativ können die Riefen 40 auch als konvexe Erhebungen in der Reflexionsfläche ausgebildet sein. Die Riefen 40 können ringförmig zumindest annähernd koaxial zur optischen Achse 11 verlaufend angeordnet sein. Durch die Riefen 40 wird eine Streuung des an der Reflexionsfläche reflektierten Lichts bewirkt, wodurch eine gleichmäßige Leuchtdichte auf dem Leuchtfeld des Signalgebers erreicht werden kann. Die Breite der Riefen 40 kann dabei über die gesamte Reflexionsfläche konstant sein oder veränderlich sein. Vorzugsweise sind die Riefen 40 derart ausgebildet, daß die durch diese bewirkte Streuung des reflektierten Lichts ausgehend vom Scheitelbereich 13 des Reflektors 10 mit zunehmendem Abstand von diesem zum in Lichtaustrittsrichtung weisenden Vorderrand des Reflektors 10 hin abnimmt. Hierdurch kann erreicht werden, daß sowohl eine ausreichende Beleuchtungsstärke nahe der optischen Achse 11 vorhanden ist als auch eine gleichmäßige Leuchtdichte auf dem Leuchtfeld des Signalgebers um die optische Achse 11 herum.
In Figur 7 ist der Reflektor 10 des Signalgebers in einer Vorderansicht gemäß einem dritten Ausführungsbeispiel dargestellt, wobei der Reflektor 10 prinzipiell wie beim ersten Ausführungsbeispiel ausgebildet ist, dessen Reflexionsfläche jedoch eine Vielzahl von Facetten 50 überlagert sind. Die einzelnen Facetten 50 können dabei im wesentlichen eben ausgebildet sein oder konvex oder konkav gekrümmt ausgebildet sein. Durch die Facetten 50 wird eine Streuung des an der Reflexionsfläche reflektierten Lichts bewirkt, wodurch eine Vergleichmäßigung der Leuchtdichte des Leuchtfelds des Signalgebers erreicht werden kann. Die Facetten 50 können beispielsweise wie in Figur 7 dargestellt matrixartig angeordnet sein und etwa rechteckförmig ausgebildet sein. Die in Reihen übereinander angeordneten Facetten 50 können dabei jeweils zu den in darunterliegenden Reihen angeordneten Facetten 50 versetzt angeordnet sein. Die Wirkung der Facetten 50 kann derart sein, daß die durch diese bewirkte Streuung des reflektierten Lichts ausgehend vom Scheitelbereich 13 des Reflektors 10 mit zunehmendem Abstand von diesem zum in Lichtaustrittsrichtung weisenden Vorderrand des Reflektors 10 hin abnimmt.
In Figur 8 ist eine gegenüber Figur 7 modifizierte Ausführung des Reflektors 10 dargestellt, wobei die Anordnung der Facetten 52 verändert ist. Es sind dabei jeweils mehrere Facetten 52 zueinander versetzt in radialer Richtung bezüglich der optischen Achse 11 angeordnet. Die in aneinandergrenzenden radialen Reihen angeordneten Facetten 52 sind dabei jeweils zueinander versetzt angeordnet. Die Facetten 52 sind dabei jeweils kreissegmentförmig ausgebildet. Die Facetten 52 können wie vorstehend zur Figur 7 angegeben hinsichtlich ihrer Ausbildung und Wirkung ausgeführt sein.

Claims (10)

  1. Optischer Signalgeber für Verkehrssignalanlagen, mit einem Reflektor (10), wenigstens einer Lichtquelle (12) und einer im Strahlengang des vom Reflektor (10) reflektierten Lichtbündels angeordneten lichtdurchlässigen Abdeckscheibe (14), dadurch gekennzeichnet, daß der Reflektor (10) derart ausgebildet ist, daß durch diesen von der wenigstens einen Lichtquelle (12) ausgesandtes Licht als ein Lichtbündel reflektiert wird, das ohne die Abdeckscheibe (14) einen vor dem Signalgeber etwa koaxial zu dessen optischer Achse (11) angeordneten Meßschirm (20) in einem Bereich (22) beleuchtet, dessen Schwerpunkt unterhalb einer die optische Achse (11) enthaltenden Horizontalebene (HH) liegt, der sich nach unten hin verbreitert und der sich zumindest annähernd symmetrisch beiderseits einer die optische Achse (11) enthaltenden Vertikalebene (VV) erstreckt.
  2. Signalgeber nach Anspruch 1, dadurch gekennzeichnet, daß sich der Bereich (22) bis zu einer unteren Begrenzungslinie (28) verbreitert.
  3. Signalgeber nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der durch das vom Reflektor (10) reflektierte Lichtbündel auf dem Meßschirm (20) beleuchtete Bereich (22) nach oben durch eine Linie (26) zumindest annähernd in Form eines umgekehrten U begrenzt ist.
  4. Signalgeber nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Reflexionsfläche des Reflektors (10) eine Vielzahl von eine Streuung des reflektierten Lichts bewirkenden Elementen (40;50;52) überlagert ist.
  5. Signalgeber nach Anspruch 4, dadurch gekennzeichnet, daß die lichtstreuenden Elemente als zueinander versetzte Riefen (40) ausgebildet sind.
  6. Signalgeber nach Anspruch 5, dadurch gekennzeichnet, daß die Riefen (40) zumindest annähernd koaxial ringförmig um die optische Achse (11) des Reflektors (10) verlaufen.
  7. Signalgeber nach Anspruch 4, dadurch gekennzeichnet, daß die lichtstreuenden Elemente als Facetten (50,52) ausgebildet sind.
  8. Signalgeber nach Anspruch 7, dadurch gekennzeichnet, daß die Facetten (50) matrixartig am Reflektor (10) angeordnet sind.
  9. Signalgeber nach Anspruch 7, dadurch gekennzeichnet, daß jeweils mehrere Facetten (52) in radialer Richtung bezüglich der optischen Achse (11) des Reflektors (10) zueinander versetzt angeordnet sind.
  10. Signalgeber nach Anspruch 7, dadurch gekennzeichnet, daß die Facetten (52) kreissegmentförmig ausgebildet sind.
EP19970101305 1996-04-12 1997-01-29 Optischer Signalgeber für Verkehrssignalanlagen Expired - Lifetime EP0801369B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19614402 1996-04-12
DE19614402 1996-04-12
DE19627940A DE19627940A1 (de) 1996-04-12 1996-07-11 Optischer Signalgeber für Verkehrssignalanlagen
DE19627940 1996-07-11

Publications (2)

Publication Number Publication Date
EP0801369A1 EP0801369A1 (de) 1997-10-15
EP0801369B1 true EP0801369B1 (de) 2001-07-25

Family

ID=26024664

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19970101305 Expired - Lifetime EP0801369B1 (de) 1996-04-12 1997-01-29 Optischer Signalgeber für Verkehrssignalanlagen

Country Status (2)

Country Link
EP (1) EP0801369B1 (de)
CN (1) CN1168517A (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6729746B2 (en) 2000-03-14 2004-05-04 Toyoda Gosei Co., Ltd. Light source device
ITFI20120022A1 (it) * 2012-02-10 2013-08-11 Iguzzini Illuminazione Riflettore per apparecchi di illuminazione ad illuminazione omogenea.
CN107676733A (zh) * 2017-11-03 2018-02-09 华定谟 远光灯

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1738426A (en) * 1928-03-10 1929-12-03 Sunshine Inc Light reflector
US3379869A (en) 1966-03-23 1968-04-23 Corning Glass Works Variable intensity lamp
NL179089C (nl) * 1975-04-18 1986-07-01 Philips Nv Reflektor met langwerpige lichtbron.
US4021659A (en) * 1975-10-30 1977-05-03 General Electric Company Projector lamp reflector
GB2013323B (en) * 1978-01-28 1982-05-06 Plessey Co Ltd Illumination apparatus
EP0299091A4 (en) * 1987-01-19 1990-12-12 N Proizv Avtoelekt Avtotrakt Light-signalling device

Also Published As

Publication number Publication date
CN1168517A (zh) 1997-12-24
EP0801369A1 (de) 1997-10-15

Similar Documents

Publication Publication Date Title
DE4215584C2 (de) Beleuchtungseinrichtung mit einem Reflektor und mit optisch wirksamen Elementen
DE102008005488B4 (de) Scheinwerfer für Fahrzeuge
DE3602262C2 (de) Refraktorelement für einen Kraftfahrzeugscheinwerfer für Abblendlicht oder Nebellicht
DE4305585C2 (de) Signalleuchte für Kraftfahrzeuge
DE19704467A1 (de) Scheinwerfer für Fahrzeuge
DE102011089481A1 (de) Kraftfahrzeugbeleuchtungseinrichtung mit einer langen und flachen leuchtenden Fläche
EP1077344A2 (de) Leuchte
DE102017115899A1 (de) Kraftfahrzeugleuchte und Kraftfahrzeugscheinwerfer mit einer solchen Leuchte
EP0040853B1 (de) Signalleuchte
EP0801369B1 (de) Optischer Signalgeber für Verkehrssignalanlagen
DE19737550A1 (de) Signalleuchte mit verbesserter Lampenabdeckung für Kraftfahrzeuge
DE19627940A1 (de) Optischer Signalgeber für Verkehrssignalanlagen
WO2019224185A1 (de) Vorfeldlichtmodul für einen scheinwerfer
EP0404990B1 (de) Kraftfahrzeugleuchte
DE3137685A1 (de) Leuchtdiode fuer signalleuchten.
DE602004002016T2 (de) Kfz-Scheinwerfer, der erhöht angeordnete Verkehrszeichen beleuchten kann
DE102007025122B4 (de) Fahrzeugleuchte
DE3005883A1 (de) Fahrzeug-signalleuchte
EP2715218B1 (de) Reflektor für eine strassenlampe
EP1411294B1 (de) Reflektor mit strukturierter Oberfläche, sowie Leuchte und Sekundärbeleuchtungssystem mit einem solchen Reflektor
DE19814478A1 (de) Scheinwerfer für Fahrzeuge
DE102010049436B4 (de) Beleuchtungseinrichtung für ein Kraftfahrzeug
EP1463651B1 (de) Fahrzeugleuchte mit kreuzförmiger lichtverteilung
DE2810670A1 (de) Fahrzeugscheinwerfer
DE102018115229A1 (de) Licht-Zwischenscheibe für eine Kraftfahrzeugleuchte

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19980415

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIGNALBAU HUBER AG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20001219

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010726

REF Corresponds to:

Ref document number: 59704100

Country of ref document: DE

Date of ref document: 20010830

ITF It: translation for a ep patent filed

Owner name: RACHELI & C. S.R.L.

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIGNALBAU HUBER GMBH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

ET Fr: translation filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060119

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060131

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060227

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070129

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060123

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070129