EP0799385B1 - Vorrichtung zur begrenzung des volumenstroms eines unter druck stehenden fluides - Google Patents
Vorrichtung zur begrenzung des volumenstroms eines unter druck stehenden fluides Download PDFInfo
- Publication number
- EP0799385B1 EP0799385B1 EP95942032A EP95942032A EP0799385B1 EP 0799385 B1 EP0799385 B1 EP 0799385B1 EP 95942032 A EP95942032 A EP 95942032A EP 95942032 A EP95942032 A EP 95942032A EP 0799385 B1 EP0799385 B1 EP 0799385B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- swirl
- cross
- flow
- flow channel
- main axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012530 fluid Substances 0.000 title claims description 35
- 238000001816 cooling Methods 0.000 claims description 6
- 230000006378 damage Effects 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 238000009835 boiling Methods 0.000 description 5
- 230000003068 static effect Effects 0.000 description 4
- 238000011084 recovery Methods 0.000 description 3
- 238000009420 retrofitting Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15D—FLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
- F15D1/00—Influencing flow of fluids
- F15D1/0015—Whirl chambers, e.g. vortex valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15C—FLUID-CIRCUIT ELEMENTS PREDOMINANTLY USED FOR COMPUTING OR CONTROL PURPOSES
- F15C1/00—Circuit elements having no moving parts
- F15C1/16—Vortex devices, i.e. devices in which use is made of the pressure drop associated with vortex motion in a fluid
Definitions
- the invention relates to a device arranged in a nuclear power plant for limiting the Volume flow according to claim 1.
- Document FR-A-2 356 029 shows a limiting device with a Swirl generating element and one perpendicular to Main axis extending inflow component.
- the object of the invention is therefore a passive device to limit the volume flow in one of one to specify a pressurized fluid flowable system in a nuclear power plant, which can also be added to the system as part of a retrofit and when a leak occurs in the system, in particular the break of a line, the outflowing volume flow if possible keeps low.
- the object is achieved by a device according to claim 1.
- an inflow component perpendicular to the main axis occurs in the event of a leak or break in the flow channel a flow of the pressurized fluid in the direction the main axis.
- the fluid also gets a tangential one Velocity component in a plane perpendicular to the main axis. Because of this tangential speed component, which gets bigger towards the main axis and one Pressure drop leading to the main axis, the volume flow limited or reduced in the direction of the main axis. This limitation or reduction of the volume flow through Swirl generation also occurs, for example, when there is an outflow of Water through the drain opening in a bathtub.
- the main axis forms an area of low pressure, in particular Vacuum, in the steam under saturation pressure or low-density steam or gas flows, causing the Volume and mass flow of the fluid can be reduced.
- the inflow component preferably has an inflow opening which is spaced from the major axis.
- an inflow opening which is spaced from the major axis.
- swirl generation element fixed twist scoops that are vertical in one plane are arranged to the main axis. These swirl blades are preferably arranged on a circle and steer the initially flow directed radially onto the main axis into a flow tangential to the circle.
- the swirl generation element can alternatively in the inflow component have at least one inlet channel that is tangential a circle with a center on the main axis or an axis parallel to it runs.
- the swirl generating element is preferably in a container arranged of the system at which the flow channel ends. This will result in a break or leak in the Flow channel an outflow of fluid from the container through the swirl generating element into the flow channel.
- the inflow opening can be essential in the container further from the main axis, which is preferably with the axis of the flow channel coincides, be spaced apart as one Wall of the flow channel. The distance of the inflow opening and possibly a swirl blade from the axis preferably larger than the diameter of the flow channel.
- the device preferably has a cross-sectional constriction element to narrow the cross section of the flow channel.
- the cross-sectional constriction element is fluid connected to the swirl generating element, so that a flow of the fluid in the direction of flow at a First leak the swirl generating element and then the cross-sectional constricting element flows through. Since the volume or Mass flow one from a container through a flow channel escaping fluid through the cross section of the flow channel is determined and also with a smaller cross section becomes smaller, the cross-sectional constriction element ensures an additional reduction in volume flow a leak or break in the flow channel.
- the cross-sectional constriction element is preferably designed so that it is in the mouth of the flow channel in the container can be inserted.
- swirl generation element and cross-sectional constriction element is preferably a diffuser, in particular a Radial diffuser arranged, which is an enlargement of the Flow cross-section of the device from the cross-sectional constriction element to the swirl generating element.
- the flow cross section of the swirl generating element is preferably larger than the cross section of the flow channel, so that during normal operation of the system, in particular a cooling system of a nuclear power plant, the additional Flow pressure losses from cross-sectional constriction element and swirl generation element by the additional Pressure recovery in the diffuser is at least compensated, i.e. the normal volume flow through the device is not is changed.
- the device is particularly advantageous to design the device as a construction Unit with swirl generating element, diffuser and cross-sectional constriction element to manufacture, because this makes it easy Retrofitted a flow channel in a system can be.
- the cross-sectional constriction element flows into it has a swirl destruction element.
- This causes the swirl generating element Swirl generated again largely during normal operation destroyed, so that almost no pressure loss occurs.
- the Swirl destruction element preferably has corresponding fixed and curved blades.
- a swirl destruction element downstream of the flow channel be provided, which is rotationally symmetrical to the main axis or an axis parallel to it and at least one tangential Outlet channel, for example with a circular one Cross section. This also means that during one normal operation of the system a destruction of that by the Swirl generating element ensures swirl generated.
- the system is preferably a cooling system a nuclear power plant holding a reactor pressure vessel has, in which the pipeline opens.
- the pipeline In the event of a break the pipeline is limited and reduced volume and mass flow of the Fluids.
- the device can in the course retrofitting from inside the reactor pressure vessel in the pipeline to be inserted.
- An arrangement of the swirl generating element, of the diffuser and the cross-sectional constriction element is done so that during normal operation of the cooling system, at most little additional Flow pressure losses occur.
- FIG. 1 shows in a longitudinal section a section of a container 6, a reactor pressure vessel 6a, a system through which a pressurized fluid, in particular water or water vapor, flows.
- the detail representation shows the line end 9 of a flow channel 2, a pipeline 2a, which opens into the line end 9 into the reactor pressure vessel 6a.
- the pipeline 2a is, for example, a condensate-carrying pipeline 2a with a diameter of 200 mm for the emergency condenser of a boiling water nuclear reactor plant.
- the fluid flows from the pipeline 2a into the reactor pressure vessel 6a.
- the device 1 has a swirl generating element 4 with swirl blades 10, which are arranged on a circle 11 in a plane perpendicular to a main axis 3a of the device 1.
- the wire-generating element 4 forms a circular disk-shaped inflow component 14 which extends essentially perpendicular to the main axis 3a.
- the radius of the circle 11 is more than twice as large as the radius of the circular pipeline 2a.
- a cross-sectional constriction element 5 in the form of a Venturi tube connects to the diffuser 7.
- the smallest inner diameter of the cross-sectional constriction element 5 is approximately 62.5% of the inner diameter of the pipeline 2a.
- the device 1 with the swirl generating element 4, the diffuser 7 and the cross-sectional constricting element 5 forms a structural unit which is introduced into the pipeline 2a from the inside of the reactor pressure vessel 6a, so that the swirl generating element 4 remains in the reactor pressure vessel 6a and the cross-sectional constriction element 5 projects into the line end 9. Due to the arrangement of the swirl vanes 10 shown in FIG.
- the device 1 causes no or only insignificant additional flow resistances.
- the height of the swirl generating element 4 of about 30 mm and the radius of the circle 11 of about 600 mm are chosen so that the outflow cross-sectional area of the device 1 is significantly larger than the inflow area given by the cross-sectional area of the pipeline 2a.
- the additional pressure recovery of the diffuser compensates for the additional pressure losses generated by the other elements.
- the volume flow of the fluid is not impaired during normal operation of the boiling water nuclear reactor system.
- the narrowing of the cross section of the pipeline 2a by the cross-sectional constriction element 5 is approximately 39%. If additional flow pressure losses are permissible, this narrowest cross-section can be reduced even further, for example to 27% of the cross-sectional area of the pipeline 2a, if the additional pressure loss coefficient ⁇ is also 1 or 19% of the cross-sectional area of the pipeline 2a if ⁇ is also 3.
- the inflow opening 15 and the swirl blades 10 are from an axis 3 of the flow channel 2 as far away as possible appropriate. It is more than twice the radius of the Pipeline 2a from the main axis 3a, which with the axis 3 of the Flow channel coincides, spaced.
- the outflowing Volume flow or mass flow is thus determined by the Swirl generating element 4 generated swirl in addition to that Reduction due to the narrowing of the cross-section continues to be significant decreased.
- FIG 3 shows a further embodiment of a device 1 shown.
- the device 1 has a swirl generation element 4 with fixed swirl blades 10.
- a diffuser 7 To the swirl generation element 4 closes as shown in FIG 1 a diffuser 7 and a cross-sectional constriction element 5.
- the cross-sectional constriction element 5 points around the axis 3 of FIG Pipeline 2a around a displacement body 13, between the and the inner wall of the pipeline 2a swirl vanes 12 are arranged, which form a swirl destruction element 8 belong.
- the device 1 is analogous to 1 into the line end 9 a pipeline 2a opening into the reactor pressure vessel 6a inserted. In this case, however, the pipeline is 2a a pipeline into which during normal operation the nuclear reactor plant from the reactor pressure vessel 6a pressurized fluid flows.
- the swirl generation element 4 is dimensioned so that in normal operation no limitation of the volume flow in the cross-sectional constriction the pipe 2a takes place. By in the direction of flow downstream during normal operation Swirl destruction element 8, the swirl generated is largely destroyed again and the static pressure regained.
- the Device 4 shows an alternative embodiment of the device 1, which extends along a main axis 3a.
- the Device 1 has a swirl generating element 4, which an inflow component 14 perpendicular to the main axis 3a with an inflow opening spaced apart from the main axis 3a 15 owns.
- the swirl generating element 4 is with a Cross-sectional constriction element 5 in a the reactor pressure vessel 6a of a nuclear power plant penetrating flow channel 2 introduced.
- On the swirl generating element 4 opposite end of the flow channel 2 is a to Main axis 3a rotationally symmetrical swirl destruction element 8 arranged, which is spaced from the main axis 3a has a tangentially arranged outlet channel 16.
- the device 1 is suitable preferably in newly constructed industrial plants, especially a nuclear reactor plant, or for retrofitting, in which the cable routing in the system can be changed. It is characterized by a special low flow pressure loss because both the Generation as well as the destruction of the twist without any special Swirl blades is reached.
- the inflow component 14 is essentially rotationally symmetrical to the main axis 3a and has one or more inlet channels Cross-section, which are arranged tangentially.
- the structure of the swirl destruction element 8 corresponds approximately the spiral casing of a centrifugal Pump.
- the inflow component 14 experiences a normal one Operation of the system, i.e.
- the invention is characterized by a device which also retrofitted into a flow channel one under Pressurized fluid leading system is insertable.
- a device which also retrofitted into a flow channel one under Pressurized fluid leading system is insertable.
- the device has one Swirl generation element, and possibly also a diffuser and a cross-sectional constriction element. These components the device are designed so that during a normal Operation of the system, in particular a cooling system Nuclear reactor plant, an unfavorable influence on the flow of the fluid is avoided.
- a limitation of the volume flow in the event of a leak the cross-section is narrowed by creating a swirl in a plane perpendicular to the Flow direction of the fluid in the flow channel.
- the device as a structural unit manufactured and also in the course of retrofitting can be introduced.
- the Device As a passive element, the Device on high reliability, so that opposite active devices the risk of failure as well as the The need for a periodic inspection is significantly reduced is.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- Theoretical Computer Science (AREA)
- Structure Of Emergency Protection For Nuclear Reactors (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4445701 | 1994-12-21 | ||
DE4445701 | 1994-12-21 | ||
PCT/DE1995/001834 WO1996019674A1 (de) | 1994-12-21 | 1995-12-21 | Vorrichtung zur begrenzung des volumenstroms eines unter druck stehenden fluides |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0799385A1 EP0799385A1 (de) | 1997-10-08 |
EP0799385B1 true EP0799385B1 (de) | 1998-05-20 |
Family
ID=6536530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95942032A Expired - Lifetime EP0799385B1 (de) | 1994-12-21 | 1995-12-21 | Vorrichtung zur begrenzung des volumenstroms eines unter druck stehenden fluides |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0799385B1 (sv) |
DE (1) | DE59502286D1 (sv) |
FI (1) | FI112274B (sv) |
WO (1) | WO1996019674A1 (sv) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3219048A (en) * | 1963-05-22 | 1965-11-23 | Palmisano Rosso Richard | Vortex flow control valve |
GB1571287A (en) * | 1976-06-22 | 1980-07-09 | Atomic Energy Authority Uk | Vortex diodes |
FR2556482B1 (fr) * | 1983-12-09 | 1986-11-21 | Novatome | Procede et dispositif de regulation du debit d'un courant de fluide dont la pression d'alimentation est variable |
DE3520032A1 (de) * | 1985-06-04 | 1986-12-04 | Istvàn Oberwil Majoros | Vorrichtung zum umwandeln einer fluidstroemung |
US5080137A (en) * | 1990-12-07 | 1992-01-14 | Adams Thomas R | Vortex flow regulators for storm sewer catch basins |
-
1995
- 1995-12-21 DE DE59502286T patent/DE59502286D1/de not_active Expired - Lifetime
- 1995-12-21 WO PCT/DE1995/001834 patent/WO1996019674A1/de active IP Right Grant
- 1995-12-21 EP EP95942032A patent/EP0799385B1/de not_active Expired - Lifetime
-
1997
- 1997-06-17 FI FI972577A patent/FI112274B/sv not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
FI112274B (sv) | 2003-11-14 |
FI972577A (sv) | 1997-06-17 |
DE59502286D1 (de) | 1998-06-25 |
FI972577A0 (sv) | 1997-06-17 |
WO1996019674A1 (de) | 1996-06-27 |
EP0799385A1 (de) | 1997-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2246264C3 (de) | Vorrichtung zur Verhinderung des Rückflusses parallel in einem Kreislauf geschalteter Kreiselpumpen | |
DE1550496B1 (de) | Ventil fuer grosse Druckgefaelle | |
DE69210921T2 (de) | Durchfluss-Regelsystem | |
DE3803010A1 (de) | Turbine eines abgasturboladers | |
DE2046254A1 (sv) | ||
EP1649173A1 (de) | Strömungskanal für flüssigkeiten | |
DE102004042295A1 (de) | Rotor für ein Triebwerk | |
DE3002578C2 (de) | Vorrichtung zum Entgasen einer Flüssigkeit | |
DE68923212T2 (de) | Integrierte Mehrzweck-Entspannungsstation zum Versorgen eines sekundären Gasnetzes. | |
EP0799385B1 (de) | Vorrichtung zur begrenzung des volumenstroms eines unter druck stehenden fluides | |
WO2004055362A1 (de) | Verfahren und vorrichtung zur reduktion von druckschwankungen im saugrohr einer wasser-turbine oder -pumpe oder -pumpturbine | |
EP3953588B1 (de) | Strahlpumpe | |
DE2805576A1 (de) | Mischvorrichtung fuer fluide von unterschiedlicher temperatur | |
DE3240453A1 (de) | Dampfturbinenkondensator mit mindestens einer in den dampfdom einmuendenden umleitdampfeinfuehrung | |
DE2428553A1 (de) | Vorrichtung zur fluessigkeitsfuehrung in gefaessfuellmaschinen | |
DE2263956C2 (de) | Vorrichtung zur Verminderung des Schalles einer mit einem Drosselgerät versehenen, von Gasen durchströmten Leitung | |
CH362093A (de) | Dampfturbine mit Bypass-Entspannungsvorrichtung | |
WO2013107534A1 (de) | Passiver rückflussbegrenzer für ein strömungsmedium | |
DE2202258A1 (de) | Hydraulische UEberwachungsvorrichtung fuer Abgase | |
DE1648173C3 (de) | VenturidurchfluOmesser | |
DE2658619A1 (de) | Verfahren zur minderung von geraeuschen bei der durchflussregelung eines stroemungsmediums sowie durchfluss-regelventil | |
DE4233592C2 (de) | Ventil, insbesondere für eine Heißdampf-Umformation | |
EP2333310A2 (de) | Diffusor für die Luftturbine eines Wellenkraftwerks | |
DE3401575A1 (de) | Kernreaktor | |
DE2334576A1 (de) | Verfahren und einrichtung zum vermindern des laerms stroemender medien in ventilen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19970701 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE LI SE |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
17Q | First examination report despatched |
Effective date: 19971106 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE LI SE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SIEMENS SCHWEIZ AG Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 59502286 Country of ref document: DE Date of ref document: 19980625 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: SIEMENS AKTIENGESELLSCHAFT TRANSFER- FRAMATOME ANP |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: AREVA NP GMBH Free format text: FRAMATOME ANP GMBH#FREYESLEBENSTRASSE 1#91058 ERLANGEN (DE) -TRANSFER TO- AREVA NP GMBH#PAUL-GOSSEN-STRASSE 100#91052 ERLANGEN (DE) Ref country code: CH Ref legal event code: NV Representative=s name: PATENTANWALT DR. MICHAEL FISCHER |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59502286 Country of ref document: DE Representative=s name: TERGAU & WALKENHORST PATENTANWAELTE - RECHTSAN, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59502286 Country of ref document: DE Representative=s name: TERGAU & WALKENHORST PATENTANWAELTE PARTGMBB, DE Effective date: 20130618 Ref country code: DE Ref legal event code: R082 Ref document number: 59502286 Country of ref document: DE Representative=s name: TERGAU & WALKENHORST PATENTANWAELTE - RECHTSAN, DE Effective date: 20130618 Ref country code: DE Ref legal event code: R081 Ref document number: 59502286 Country of ref document: DE Owner name: AREVA GMBH, DE Free format text: FORMER OWNER: AREVA NP GMBH, 91052 ERLANGEN, DE Effective date: 20130618 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20131223 Year of fee payment: 19 Ref country code: CH Payment date: 20131218 Year of fee payment: 19 Ref country code: SE Payment date: 20131217 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59502286 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141222 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141231 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150701 |