EP0799363A1 - Systeme de forage orientable a moteur de fond de puits - Google Patents
Systeme de forage orientable a moteur de fond de puitsInfo
- Publication number
- EP0799363A1 EP0799363A1 EP95943229A EP95943229A EP0799363A1 EP 0799363 A1 EP0799363 A1 EP 0799363A1 EP 95943229 A EP95943229 A EP 95943229A EP 95943229 A EP95943229 A EP 95943229A EP 0799363 A1 EP0799363 A1 EP 0799363A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- borehole
- drilling
- drill string
- motor
- motor housing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005553 drilling Methods 0.000 title claims abstract description 71
- 238000000034 method Methods 0.000 claims abstract description 19
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 12
- 230000001939 inductive effect Effects 0.000 claims abstract description 8
- 239000012530 fluid Substances 0.000 description 10
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B7/00—Special methods or apparatus for drilling
- E21B7/04—Directional drilling
- E21B7/06—Deflecting the direction of boreholes
- E21B7/068—Deflecting the direction of boreholes drilled by a down-hole drilling motor
Definitions
- the present invention relates to a method and a system for creating a borehole in an earth formation. More specifically the invention relates to drilling of boreholes whereby a drilling assembly is applied which allows steering of a drill bit to a desired subsurface target area.
- a typical application in which there is a need for such steering of the drill bit is, for example, in offshore drilling whereby a plurality of deviated wellbores are drilled from an offshore platform to multiple locations of a hydrocarbon containing zone in an earth formation.
- Other applications in which there is a need for steerable drilling include drilling of horizontal or highly inclined wellbores into such a hydrocarbon containing zone.
- EP-571045-A1 discloses a method of creating a borehole in an earth formation using a drilling assembly comprising a drill string extending into the borehole, a downhole motor including a housing and a drive shaft for rotating a drill bit, which drive shaft has an inclined orientation relative to a longitudinal axis of the lower part of the drill string, the motor housing being connected to the lower part of the drill string in a manner so as to allow rotation of the motor housing about said longitudinal axis, the drilling assembly further comprising control means to control rotation of the motor housing about said longitudinal axis and relative to the drill string.
- a downhole motor having a housing with an adjustable bend is applied, whereby during straight drilling the bend is adjusted so that the bend angle is zero, and during curved drilling the bend is adjusted so that the bend angle corresponds to the desired borehole curvature.
- the motor housing Prior to drilling a curved borehole section the motor housing is rotated relative to the drill string about a selected number of incremental angular steps so as to orient the motor housing in the desired azimuthal direction.
- FIG. 1 shows schematically a lower part of a drilling assembly as used in the method according to the invention.
- the drilling assembly shown in Fig. 1 extends into a borehole 1 formed in an earth formation 3.
- the assembly of which only the lower part is shown in Fig. 1, includes a drill string in the form of a tubing 5 of relatively small diameter, for example a diameter of about 50 mm.
- tubing 5 Before being lowered into the borehole 1 the tubing 5 is stored in the form of a coil on a reel (not shown) located at surface. As drilling progresses the tubing 5 is unreeled from the reel and gradually lowered into the borehole 1.
- the tubing 5 is therefore also referred to as “coiled tubing", and drilling with such coiled tubing is also referred to as “coiled tubing drilling”.
- a downhole drilling motor 6 having a housing 7 is located at the lower end of the drilling assembly, which motor 6 drives a drive shaft 8 provided with a drill bit 9 which cuts into the rock at the borehole bottom 11 during drilling.
- the downhole motor 6 forms a hydraulic motor of the Moineau type which is well-known in the art of steerable drilling.
- the drive shaft 8 and the drill bit 9 are arranged inclined relative to the motor housing 7, so that a longitudinal axis 13 of the lower end part of the coiled tubing 5 is oriented at angle 15 relative to a longitudinal axis 17 of the drive shaft 8.
- the longitudinal axes 13 and 17 have a point of intersection 19 located below the motor housing 7.
- the housing 7 of the downhole motor 6 is provided with a number of stabiliser blades 21 to stabilise and centralise the lower part of the drilling assembly in the borehole 1.
- the downhole motor 6 is connected to the coiled tubing 5 via an electric motor 23 having a housing 25 and an output shaft 27, the upper end of the housing 25 being fixedly connected to the lower end of the coiled tubing 5, and the lower end of the output shaft 27 being fixedly connected to the upper end of the housing 7 of the downhole motor 6.
- the output shaft 27 of the electric motor 23 is rotatable about its longitudinal axis, relative to the housing 25 of the electric motor 23. When the electric motor 23 is operated the output shaft 27 rotates about its longitudinal axis, relative to the housing 25.
- a bore (not shown) extends through the interior of the electric motor 23, which bore provides a fluid flow path between the interior of the coiled tubing and the fluid inlet of the downhole motor 6.
- a substantially straight borehole section is drilled as follows. Drilling fluid is pumped through the coiled tubing 5 and through the bore of the electric motor 23 to the fluid inlet of the downhole motor 6. Thereby the downhole motor 6 is operated to drive the drive shaft 8 and the drill bit 9. Simultaneously with operating the downhole motor 23, the control system at surface induces the power supply to provide electric power to the electric motor 23, so that the output shaft 27 of the electric motor 23 is rotated continuously at a controlled speed and thereby the housing of the downhole motor 6 is rotated at the same controlled speed. The drill bit 9 consequently rotates in the borehole 1 about both axes 13 and 17.
- the control system at surface induces the power supply to operate the electric motor 23 so as to rotate the output shaft 27 about a selected angle corresponding to a selected orientation of the housing 7 of the downhole motor 6 in the borehole 1, which orientation of the motor housing 7 determines the direction in which drilling of a curved borehole section proceeds.
- the orientation indicator is induced to provide an indication of the angular orientation of the output shaft 27 to an operator at surface.
- the electric motor 23 is stopped, and the downhole motor 6 is operated so as to rotate the drive shaft 8 and the drill bit 9 by pumping drilling fluid through the coiled tubing 5 and through the bore of the electric motor 23 to the fluid inlet of the downhole motor 6.
- drilling proceeds with the housing 7 of the downhole motor 6 stationary while the drill bit 9 rotates. Since the drill bit 9 is inclined relative to the longitudinal axis 13 of the lower part of the drilling assembly, the borehole 1 is deepened in the direction of inclination of the drill bit 9 so that a curved borehole section is drilled.
- the electric motor 23 is operated again so as to simultaneously rotate the motor housing 7 continuously and to operate the downhole motor 6 so as to rotate the drill bit 9.
- the drilling operator may repeat the above procedure for alternatingly drilling straight and curved borehole sections.
- the coiled tubing will twist due to reaction moments acting on the coiled tubing, the degree of twist being dependent on various factors, such as the diameter and wall-thickness of the coiled tubing, the weight-on-bit, the pressure of the fluid driving the downhole motor, or the magnitude of friction forces between the coiled tubing and the borehole-wall.
- the motor can alternatively be oriented by varying the twist angle of the coiled tubing, for example by adjusting the weight- on-bit or by adjusting the pressure of the drilling fluid which drives the downhole motor, or by a combined operation of the electric motor and a variation of the twist angle.
- control means does not include means for controlling rotation of the motor housing about said longitudinal axis and relative to the drill string, which rotation is caused by reactive torque forces exerted to the motor housing due to the reactive torque action of the rotating drill bit in the borehole.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Earth Drilling (AREA)
- Drilling And Boring (AREA)
- Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP95943229A EP0799363B1 (fr) | 1994-12-21 | 1995-12-20 | Systeme de forage orientable a moteur de fond de puits |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP94203712 | 1994-12-21 | ||
EP94203712 | 1994-12-21 | ||
EP95943229A EP0799363B1 (fr) | 1994-12-21 | 1995-12-20 | Systeme de forage orientable a moteur de fond de puits |
PCT/EP1995/005163 WO1996019635A1 (fr) | 1994-12-21 | 1995-12-20 | Systeme de forage orientable a moteur de fond de puits |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0799363A1 true EP0799363A1 (fr) | 1997-10-08 |
EP0799363B1 EP0799363B1 (fr) | 1999-05-06 |
Family
ID=8217472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95943229A Expired - Lifetime EP0799363B1 (fr) | 1994-12-21 | 1995-12-20 | Systeme de forage orientable a moteur de fond de puits |
Country Status (17)
Country | Link |
---|---|
EP (1) | EP0799363B1 (fr) |
CN (1) | CN1062634C (fr) |
AR (1) | AR004469A1 (fr) |
AU (1) | AU692040B2 (fr) |
BR (1) | BR9510493A (fr) |
CA (1) | CA2207923C (fr) |
CO (1) | CO4480786A1 (fr) |
DE (1) | DE69509557T2 (fr) |
DK (1) | DK0799363T3 (fr) |
EG (1) | EG20620A (fr) |
MY (1) | MY115387A (fr) |
NO (1) | NO310036B1 (fr) |
OA (1) | OA10429A (fr) |
RU (1) | RU2149248C1 (fr) |
SA (1) | SA95160479B1 (fr) |
TN (1) | TNSN95131A1 (fr) |
WO (1) | WO1996019635A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6635756B1 (en) | 1998-06-15 | 2003-10-21 | National Starch And Chemical Investment Holding Corporation | Starch obtainable from modified plants |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5738178A (en) * | 1995-11-17 | 1998-04-14 | Baker Hughes Incorporated | Method and apparatus for navigational drilling with a downhole motor employing independent drill string and bottomhole assembly rotary orientation and rotation |
US6047784A (en) * | 1996-02-07 | 2000-04-11 | Schlumberger Technology Corporation | Apparatus and method for directional drilling using coiled tubing |
US6446737B1 (en) | 1999-09-14 | 2002-09-10 | Deep Vision Llc | Apparatus and method for rotating a portion of a drill string |
DE19963445A1 (de) | 1999-12-28 | 2001-07-05 | Basf Ag | Verfahren zur Abtrennung von Formaldehyd aus polyolhaltigen Reaktionsgemischen unter Zusatz von Lösungsmitteln |
US6419014B1 (en) | 2000-07-20 | 2002-07-16 | Schlumberger Technology Corporation | Apparatus and method for orienting a downhole tool |
DE602004001328T2 (de) * | 2004-01-27 | 2007-05-10 | Schlumberger Technology B.V. | Unterirdisches Bohren einer Lateralbohrung |
US8899352B2 (en) | 2007-08-15 | 2014-12-02 | Schlumberger Technology Corporation | System and method for drilling |
US8720604B2 (en) | 2007-08-15 | 2014-05-13 | Schlumberger Technology Corporation | Method and system for steering a directional drilling system |
US7845430B2 (en) * | 2007-08-15 | 2010-12-07 | Schlumberger Technology Corporation | Compliantly coupled cutting system |
US8763726B2 (en) | 2007-08-15 | 2014-07-01 | Schlumberger Technology Corporation | Drill bit gauge pad control |
US8066085B2 (en) | 2007-08-15 | 2011-11-29 | Schlumberger Technology Corporation | Stochastic bit noise control |
US8757294B2 (en) | 2007-08-15 | 2014-06-24 | Schlumberger Technology Corporation | System and method for controlling a drilling system for drilling a borehole in an earth formation |
US8534380B2 (en) | 2007-08-15 | 2013-09-17 | Schlumberger Technology Corporation | System and method for directional drilling a borehole with a rotary drilling system |
GB2454880B (en) * | 2007-11-21 | 2012-02-15 | Schlumberger Holdings | Drilling system |
US8151907B2 (en) | 2008-04-18 | 2012-04-10 | Shell Oil Company | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
WO2010045097A1 (fr) | 2008-10-13 | 2010-04-22 | Shell Oil Company | Chauffage de fluide de transfert chauffé en circulation de formations d'hydrocarbure souterraines |
US8510081B2 (en) * | 2009-02-20 | 2013-08-13 | Canrig Drilling Technology Ltd. | Drilling scorecard |
US9957755B2 (en) * | 2012-12-19 | 2018-05-01 | Halliburton Energy Services, Inc. | Directional drilling using a rotating housing and a selectively offsetable drive shaft |
US9347269B2 (en) * | 2013-03-05 | 2016-05-24 | National Oilwell Varco, L.P. | Adjustable bend assembly for a downhole motor |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3423465C1 (de) * | 1984-06-26 | 1985-05-02 | Norton Christensen, Inc., Salt Lake City, Utah | Vorrichtungen zum wahlweisen Geradeaus- oder Richtungsbohren in unterirdische Gesteinsformationen |
DE3839760C1 (en) * | 1988-11-25 | 1990-01-18 | Gewerkschaft Walter Ag | Double rotary drilling apparatus for making directionally accurate bores, in particular horizontal bores |
US5022471A (en) * | 1990-01-08 | 1991-06-11 | Maurer Engineering, Inc. | Deviated wellbore drilling system and apparatus |
GB9210846D0 (en) * | 1992-05-21 | 1992-07-08 | Baroid Technology Inc | Drill bit steering |
-
1995
- 1995-12-19 TN TNTNSN95131A patent/TNSN95131A1/fr unknown
- 1995-12-19 MY MYPI95003957A patent/MY115387A/en unknown
- 1995-12-19 EG EG104595A patent/EG20620A/xx active
- 1995-12-19 AR ARP950100623A patent/AR004469A1/es unknown
- 1995-12-20 CO CO95060551A patent/CO4480786A1/es unknown
- 1995-12-20 CA CA002207923A patent/CA2207923C/fr not_active Expired - Fee Related
- 1995-12-20 EP EP95943229A patent/EP0799363B1/fr not_active Expired - Lifetime
- 1995-12-20 DE DE69509557T patent/DE69509557T2/de not_active Expired - Fee Related
- 1995-12-20 BR BR9510493A patent/BR9510493A/pt not_active IP Right Cessation
- 1995-12-20 AU AU44357/96A patent/AU692040B2/en not_active Ceased
- 1995-12-20 RU RU97112381A patent/RU2149248C1/ru not_active IP Right Cessation
- 1995-12-20 DK DK95943229T patent/DK0799363T3/da active
- 1995-12-20 CN CN95197026A patent/CN1062634C/zh not_active Expired - Fee Related
- 1995-12-20 WO PCT/EP1995/005163 patent/WO1996019635A1/fr active IP Right Grant
- 1995-12-27 SA SA95160479A patent/SA95160479B1/ar unknown
-
1997
- 1997-06-20 NO NO972878A patent/NO310036B1/no unknown
- 1997-06-20 OA OA70030A patent/OA10429A/en unknown
Non-Patent Citations (1)
Title |
---|
See references of WO9619635A1 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6635756B1 (en) | 1998-06-15 | 2003-10-21 | National Starch And Chemical Investment Holding Corporation | Starch obtainable from modified plants |
US7534931B2 (en) | 1998-06-15 | 2009-05-19 | Brunob Ii B.V. | Method for producing modified starch |
Also Published As
Publication number | Publication date |
---|---|
AU692040B2 (en) | 1998-05-28 |
NO972878L (no) | 1997-06-20 |
NO310036B1 (no) | 2001-05-07 |
CA2207923C (fr) | 2006-05-16 |
BR9510493A (pt) | 1998-01-13 |
EG20620A (en) | 1999-09-30 |
DE69509557T2 (de) | 1999-11-04 |
CO4480786A1 (es) | 1997-07-09 |
WO1996019635A1 (fr) | 1996-06-27 |
MY115387A (en) | 2003-05-31 |
CN1171142A (zh) | 1998-01-21 |
OA10429A (en) | 2002-03-21 |
RU2149248C1 (ru) | 2000-05-20 |
CA2207923A1 (fr) | 1996-06-27 |
SA95160479B1 (ar) | 2005-06-14 |
TNSN95131A1 (fr) | 1996-02-06 |
AR004469A1 (es) | 1998-12-16 |
MX9704585A (es) | 1997-10-31 |
DE69509557D1 (de) | 1999-06-10 |
AU4435796A (en) | 1996-07-10 |
NO972878D0 (no) | 1997-06-20 |
CN1062634C (zh) | 2001-02-28 |
EP0799363B1 (fr) | 1999-05-06 |
DK0799363T3 (da) | 1999-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU692040B2 (en) | Steerable drilling with downhole motor | |
US4995465A (en) | Rotary drillstring guidance by feedrate oscillation | |
US7413032B2 (en) | Self-controlled directional drilling systems and methods | |
US4492276A (en) | Down-hole drilling motor and method for directional drilling of boreholes | |
EP0103913B1 (fr) | Moteur de fond de trou, et procédé pour réaliser des forages dirigés | |
US6513606B1 (en) | Self-controlled directional drilling systems and methods | |
EP0819205B1 (fr) | Instrument de commande directionnelle de forage dirige de la surface | |
EP0571045B1 (fr) | Forage dirigé avec un moteur de fond de puits sur tubage enroulé | |
EP2195506B1 (fr) | Système de forage à ensemble de fond de puits double | |
EP1857631A1 (fr) | Système de commande directionnelle de forage | |
US20110108327A1 (en) | Directional drilling control using periodic perturbation of the drill bit | |
US9080387B2 (en) | Directional wellbore control by pilot hole guidance | |
WO1999029997A1 (fr) | Appareil permettant de percer un drain lateral a partir d'un puits de forage | |
US6581690B2 (en) | Window cutting tool for well casing | |
WO2010115777A2 (fr) | Procédé et ensemble de guidage pour forer un puits de forage dans une formation terrestre | |
US20010011591A1 (en) | Guide device | |
GB2282165A (en) | Directional drilling apparatus and method | |
MXPA97004585A (en) | Orientable drilling with motor located in the drilling fund or p | |
EP1092077B1 (fr) | Systeme de fraisage permettant de former une fenetre dans la paroi d'un tubulaire | |
Inglis | Deflection Tools and Techniques | |
TH17989B (th) | การเจาะที่เลี้ยวได้ด้วยมอเตอร์เจาะด้านล่าง | |
TH21175A (th) | การเจาะที่เลี้ยวได้ด้วยมอเตอร์เจาะด้านล่าง |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19970701 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE DK FR GB IT NL |
|
17Q | First examination report despatched |
Effective date: 19971024 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE DK FR GB IT NL |
|
REF | Corresponds to: |
Ref document number: 69509557 Country of ref document: DE Date of ref document: 19990610 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20071228 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20071214 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20081031 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20081111 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20081020 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20081124 Year of fee payment: 14 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20090701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090701 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20091220 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20100831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100104 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091220 |