EP0799323B1 - Kippbares metallurgisches aggregat bestehend aus mehreren gefässen - Google Patents

Kippbares metallurgisches aggregat bestehend aus mehreren gefässen Download PDF

Info

Publication number
EP0799323B1
EP0799323B1 EP95942719A EP95942719A EP0799323B1 EP 0799323 B1 EP0799323 B1 EP 0799323B1 EP 95942719 A EP95942719 A EP 95942719A EP 95942719 A EP95942719 A EP 95942719A EP 0799323 B1 EP0799323 B1 EP 0799323B1
Authority
EP
European Patent Office
Prior art keywords
vessel
treatment
melting vessel
melting
metallurgical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95942719A
Other languages
English (en)
French (fr)
Other versions
EP0799323A1 (de
Inventor
Gerhard Fuchs
Joachim Ehle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arcmet Technologie GmbH
Original Assignee
Arcmet Technologie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arcmet Technologie GmbH filed Critical Arcmet Technologie GmbH
Publication of EP0799323A1 publication Critical patent/EP0799323A1/de
Application granted granted Critical
Publication of EP0799323B1 publication Critical patent/EP0799323B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5252Manufacture of steel in electric furnaces in an electrically heated multi-chamber furnace, a combination of electric furnaces or an electric furnace arranged for associated working with a non electric furnace
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/04Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces of multiple-hearth type; of multiple-chamber type; Combinations of hearth-type furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/06Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces with movable working chambers or hearths, e.g. tiltable, oscillating or describing a composed movement
    • F27B3/065Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces with movable working chambers or hearths, e.g. tiltable, oscillating or describing a composed movement tiltable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/18Arrangements of devices for charging
    • F27B3/183Charging of arc furnaces vertically through the roof, e.g. in three points
    • F27B3/186Charging in a vertical chamber adjacent to the melting chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/19Arrangements of devices for discharging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/15Tapping equipment; Equipment for removing or retaining slag
    • F27D3/1509Tapping equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/08Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces heated electrically, with or without any other source of heat
    • F27B3/085Arc furnaces

Definitions

  • the invention relates to a tiltable metallurgical unit for melting metallic insert material, in particular iron-containing material, and for aftertreatment the molten metal.
  • EP-0 240 485-B1 describes a plant for the production of steel from scrap and If necessary, aggregates become known, with a shaft furnace part that a liquid sump from premelt-absorbing soil and laterally in the lower Has part of its interior opening heating devices and with a the shaft furnace part integrally connected hearth furnace part, in which the premelt can be transferred from the shaft furnace part.
  • the stove section immediately adjoins the Lower part of the shaft furnace part.
  • the Bottom is arranged lower than the bottom of the shaft furnace part.
  • the entire, made of shaft furnace part and stove part existing unit is tiltable and perpendicular to one that Center of the shaft furnace part with the horizontal connecting the center of the stove part Axis. By tilting perpendicular to this axis you can tilt required forces are kept low despite the large masses to be moved.
  • the stove section has an eccentrically arranged bottom cut for the steel and a work door in a side wall for removing the slag.
  • Both the The lower part of the shaft furnace part and that of the hearth furnace part have a floor plan circular interior, the interior of the shaft furnace part the interior of the hearth part in the floor plan and the transition from one room to the other another is narrowed.
  • A serves as the heating device for the stove part Arc unit while as a heating device for the shaft furnace part one
  • a plurality of plasma torches is used, which are located in the lower region of the shaft furnace part along the Are arranged circumferentially distributed.
  • the bottom recess of the shaft furnace part is relatively shallow and the upper edge the overflow weir has a small height compared to the bottom recess, so that at the beginning of a melting process, only a small amount of the premelt in the Bottom recess of the shaft furnace part is retained and after the sump formation Premelt flows continuously through the overflow weir into the stove section.
  • the area of the overflow weir is to prevent the melt from freezing
  • the inclination of the plasma torch is adjusted so that the premelt is directed towards the overflow weir is overheated and there is still a plasma torch between the
  • the shaft furnace part and the stove part are provided so that the premelt in the area of Overflow weir can be overheated and the continuous flow of the premelt is ensured.
  • the metallurgical treatment in the hearth section begins as soon as half the bath depth is reached.
  • the melt is Tapping temperature heated. Premelt flows continuously during this process the shaft furnace part.
  • the tapping weight in the hearth part is reached, by Tilting of the unit tapped without slag using an eccentric bottom tap opening.
  • EP-0 548 042-A2 differs from that System according to EP-0 240 485-B1 essentially in that as a heating device for a furnace vessel forming the shaft furnace, which is connected to an electric stove is, instead of the plasma torch graphite electrodes used in projecting extensions of the lower part of the shaft furnace can be inserted.
  • DE-25 04 911-A1 is a device for melting scrap, sponge iron or the like in a shaft furnace by means of a fuel-oxygen flame from below and an outlet for the melted material in the bottom of the Shaft furnace for continuous steelmaking has become known, with the Shaft furnace, a heating vessel attached to this side is integrated.
  • the shaft furnace has an outlet for molten material at the deepest point of its floor Metal, which is connected to the superheating vessel via a channel and also in a slag drain on the side wall.
  • the overheating vessel has an overflow, which is slightly below the height of the slag outlet. That in Overheating vessel overheated liquid metal continuously flows over the overflow and is via the connecting channel to the shaft furnace through the melted in it liquid metal continuously replaced.
  • the superheating vessel is arced heated. The unit cannot be tilted.
  • US-A-4 552 343 describes a tiltable arc furnace with a closed, pouring spout attached to the vessel for slag-free tapping. In the pouring spout there is no treatment or further heating of the melt.
  • Japanese laid-open patent publication JP-2-290 912 A describes a tiltable, metallurgical Unit that contains a first and a second furnace chamber by a weir are separated. Separate heating devices are assigned to the furnace chambers. In the first The feedstock is melted and the in the second furnace chamber Melt treated. So that the steel of the second chamber that is being treated not be mixed with the steel of the first chamber that is being melted can, after tapping the steel of the second chamber by tilting the vessel the steel melted in the first chamber and held back by the weir into the transferred to the second chamber for further treatment, while after the Tilting back the vessel melted new steel at the same time in the first chamber becomes.
  • the second chamber lies in the tilting direction behind the first chamber, d. H. aligned to the direction of tilt. This leads to an overall vessel, which has large dimensions in this direction. So that are for the tipping process great forces required.
  • the invention has for its object a metallurgical unit of the last to make the type described compact and in such an aggregate when tilting to keep moving masses as low as possible.
  • Melting vessel and treatment vessel should be optimally trained independently of each other with regard to their objectives and can be operated.
  • the energy consumption of the unit per ton should be produced Metal are minimized and the hot exhaust gases from the treatment vessel, and the melting vessel can be used for preheating the feed material be.
  • a melting vessel that a stove for Inclusion of a substantial part, preferably the entire amount of a furnace batch contains and a treatment vessel attached to the side of the melting vessel for receiving the molten metal from the furnace of the melting vessel and to the metallurgical Treatment of the melt combined into an aggregate that can be tilted about a tilt axis or can be passed along a roller track.
  • a treatment vessel attached to the side of the melting vessel for receiving the molten metal from the furnace of the melting vessel and to the metallurgical Treatment of the melt combined into an aggregate that can be tilted about a tilt axis or can be passed along a roller track.
  • Via a channel between the melting vessel and the treatment vessel which is arranged at a height such that the desired Amount of molten metal can be retained in the melting vessel, this is at Tilting the unit into the treatment vessel can be transferred.
  • Transferring the molten metal does not happen continuously over an overflow weir, but in batches only when the desired amount of molten metal has accumulated in the melting vessel Has.
  • the hot molten metal flows through the channel when the unit tips over to the treatment vessel in a short time, so that there is no risk of cooling down here consists.
  • the Metal melt transferred into the treatment vessel during the previous tilting process treated metallurgically, so that both processes run parallel to each other, the Melting vessel in its size and equipment with regard to the melting process can be optimized and the treatment vessel with regard to the metallurgical Treatment.
  • Heat is supplied to the two vessels by burning fossil fuels
  • Fuels, supply of oxygen-containing gases and possibly coal through soil stones or under-bath jets and can be done by electrical energy should be tuned in this way be that the melting time corresponds approximately to the treatment time, so that after the Tapping the treatment vessel through the metal melt formed in the melting vessel Tilting the unit into the treatment vessel and immediately after that parallel operation of the two vessels can be continued. Since during the Melting process, the melt formed in the melting vessel does not enter the treatment vessel overflows, but the process of transferring the melt by tilting the Is controlled aggregate, the metallurgical treatment in the treatment vessel is not disrupted by inflowing melt.
  • the treatment vessel is not aligned with the melting vessel in the tilting direction or in a perpendicular to the tilt axis of the unit arranged, but in contrast offset laterally, so that the top view Connection line between the centers of the vessels and the tilting direction of the unit encloses an acute angle.
  • This angle is preferably approximately 45 °.
  • the channel between the two vessels should be arranged so that in the Top view from the melting vessel, one in the tilt direction through the center of the melting vessel is still drawn within the inlet opening of the channel Treatment vessel is. This point of the circumference of the vessel is the deepest and when tilted thereby enables better emptying of the at a given tilt angle Melting vessel.
  • the unit is preferably not only in its starting position in the one described so far positive tilt direction in which the melt from the melting vessel into the Treatment vessel is transferable, but also in the reverse, negative tilt direction, to allow the vessels to be detached.
  • the sole of the connecting channel between The melting vessel and treatment vessel are so high that the two vessels operate in parallel can be without melt from the melting vessel into the treatment vessel overflows.
  • the sole of the connecting channel should be opposite the bottom of the melting vessel by an amount higher than that in the starting position of the aggregate Retain the melt in the furnace of the melting vessel by at least half Capacity of the treatment vessel, preferably the entire capacity of the treatment vessel allows.
  • the bottom of the vessel of the aftertreatment vessel is lower than the bottom of the melting vessel, in order to Tilt the entire melt from the melting vessel into the treatment vessel can.
  • the melting pot have a larger diameter than the treatment vessel.
  • connection channel between the two vessels as a channel open at the top in a fire-resistant material existing partition between the two vessels.
  • the hot exhaust gases from the treatment vessel and the melting vessel are useful used to preheat the feed material to be charged into the melting vessel.
  • This can be done in a particularly compact and efficient manner in that the Lid of the melting vessel is fastened in a holding structure, which is also a trained as Chargiergutvorierr shaft whose lower opening in the Interior of the melting vessel opens.
  • the over the connecting channel in particular if this is designed as a channel open at the top, from the treatment vessel into the Hot exhaust gases entering the melting vessel, and the hot exhaust gases of the melting vessel are then replaced by a scrap column that forms in the area below and in the shaft drained upwards through the shaft and preheat the cargo.
  • the shaft can also have locking members that come from a closed position for holding cargo in the interior of the shaft in a release position are movable in which they allow the passage through the shaft.
  • the cargo can be retained in the shaft and the heat utilization improve even further.
  • the metallurgical aggregate contains for melting metal feed and for post-treatment of the metal melt a melting vessel 1 and one connected to it to form a structural unit Treatment vessel 2, which is attached to the side of the melting vessel 1.
  • the two Vessels are fastened in a frame 3 which is tiltably mounted.
  • the frame has an oven cradle 5 which can be rolled on a roller track 4, and a hydraulic actuator 6 engaging on the frame, with which the unit around a horizontal tilt axis 7 from the starting position shown in Figures 2 and 4 both in a positive tilt direction 8 and in a negative tilt direction 9 is tiltable by a predetermined tilt angle.
  • the melting vessel 1 has a charging opening 10 for introduction of the feed material, which is formed in the vessel lid 11 and contains one Oven range 12 for receiving molten metal 13.
  • the oven range 12 is usually 12 made of refractory material, while the upper vessel placed on the stove 14 and the lid 11 consist of water-cooled elements.
  • Drain opening 15 for removing the molten metal and this one opposite Working opening 16 is provided for removing slag from the melting vessel 1.
  • the drain opening 15 is located with respect to the center of the vessel 17 in the positive tilt direction 8, while the working opening 16 in the negative Tilting direction 9 is such that the metal melt 13 when tilting in the positive direction 8 discharged from the oven range 12 and 9 slag by tilting in the negative direction the working opening 16 can be removed.
  • the treatment vessel 2 attached to the side of the melting vessel 1 for receiving the Molten metal 13 from the furnace 12 is lined with refractory material and forms, as the figures clearly show, a constructive unity with the Smelting vessel 1.
  • the treatment vessel is preferably sized so that that it is able to reach the maximum allowable volume of the molten metal of the melting vessel record, the cross section of the treatment vessel is significantly smaller than is that of the melting pot.
  • the treatment vessel takes on the function of a pan, has a tap hole 18 in the bottom and possibly gas purging stones or under bath nozzles for blowing in treatment gases and solids (not shown) and is covered with a water-cooled lid 19.
  • the tap opening 18 with respect to the center 20 of the treatment vessel 2 in positive tilt direction 8 is arranged in the opposite half of the treatment vessel a working opening 21 is provided, via which when the unit tilts 9 slag can be withdrawn from the treatment vessel in the negative tilt direction.
  • the treatment vessel 2 has an inlet opening 22 for the molten metal and is so attached adjacent to the melting vessel that in plan view (see FIG. 3) the connecting line 23 with respect to the center 17 of the melting vessel 1 one between the vessel centers 17 and 20 with respect to the positive tilt direction 8 includes an acute angle ⁇ , which in the case shown is approximately 45 °. This is it possible to move the vessel centers 17 and 20 closer together with respect to the tilting direction and thus to concentrate the masses to be moved.
  • the metallurgical aggregate is in the non-tilted state in its starting position, the bottom of the vessel 24 of the aftertreatment vessel 2 is called deeper than the vessel bottom 25 of the melting vessel 1, that is to say the furnace hearth 12.
  • the drain opening 15 of the melting vessel 1 is with the inlet opening 22 of the treatment vessel 2 connected by a connecting channel 26, which is designed as an upwardly open channel is.
  • the gutter is structurally formed in that the lining for the stove and the treatment vessel, the upper edges of which lie in the same plane, by a tangential section 27 is connected between the two vessels and adjacent to this tangential connecting portion 27 in the partition 28 between the two Vessels the upwardly open channel of the connecting channel 26 is formed.
  • the sole 29 of the connecting channel lies around one significant amount higher than the bottom 25 of the melting vessel 1. It should at least are so high that in the starting position of the unit shown in Figure 4 in the oven 12 of the melting vessel 1 at least half the capacity of Treatment vessel 2 can be retained.
  • the melting vessel 1 is for the supply of for melting the metallic feed required heat energy assigned a first heating device, the arc electrodes.
  • Induction coils, burners, gas purging stones, under bath nozzles, inflation and Afterburning nozzles or other known heating devices for heating and Melting the feed can include.
  • Figure 3 are representative of the first Heating device side wall burner 30 indicated and one in Figures 4 and 6 Passage opening 31 in the vessel lid 11 for the insertion of an arc electrode 40.
  • a second heating device is assigned to the treatment vessel.
  • the second heater may include the same energy sources as the first heater.
  • the heating devices known from ladle metallurgy are preferred.
  • Representative Arc electrodes 40 are shown in FIG. About floor washing stones (not shown) or nozzles 32 can gases and also pulverized solids in the melt be initiated for their treatment.
  • a lifting and swiveling device 33 for three Electrodes 40 arranged such that the electrodes are optionally in the melting vessel 1 and insertable into the treatment vessel 2 and there as the first or second heating device can be used.
  • the lifting and swiveling device 33 is, as in particular FIG. 3 can be seen attached to the tilting frame 3 of the unit, so that when tilting the The electrodes do not have to be removed from the relevant vessel.
  • the melting vessel 1 has one Charge preheater 34.
  • This is designed as a shaft and in the support structure 35 attached for the lid 11.
  • the basic structure of such Melting vessel with an integrated charge preheater is described in WO 90/10 086. Accordingly, a segment of the cover is replaced by a shaft over which the metallic insert material can be charged into the melting vessel.
  • the lower opening of the shaft is the inlet opening 10 of the melting vessel present in cover 11.
  • the charge material preheater 34 is displaceable to the side by a Cover 36 closed. Those that are passed through the charge preheater are called Furnace exhaust gases are drawn off via an upper outlet opening 38.
  • the charge material preheater has blocking members 37 in the form of fingers lying next to each other at a distance from one another in the 6 closed position shown in solid lines in a dashed line shown release position are pivotable downwards, in which they pass release through the shaft.
  • the feed material retained in the charge preheater and can be caused by the hot furnace gases are flowed through from below through the spaces between the blocking elements 37 enter the charge column and after giving off its heat through the outlet opening 38 are deducted.

Description

Die Erfindung betrifft ein kippbares metallurgisches Aggregat zum Einschmelzen von metallischem Einsatzmaterial, insbesondere von eisenhaltigem Material, und zum Nachbehandeln der Metallschmelze.
Durch die EP-0 240 485-B1 ist eine Anlage zur Herstellung von Stahl aus Schrott und gegebenenfalls Zuschlagstoffen bekannt geworden, mit einem Schachtofenteil, der einen, einen flüssigen Sumpf aus Vorschmelze aufnehmenden Boden und seitlich in den unteren Teil seines Innenraumes mündende Beheizungseinrichtungen aufweist und mit einem mit dem Schachtofenteil integral zusammenhängenden Herdofenteil, in den die Vorschmelze aus dem Schachtofenteil überführbar ist. Der Herdofenteil schließt unmittelbar an den Unterteil des Schachtofenteiles an. Zwischen dem unteren Schachtofenteil und dem Herdofenteil ist ein Überlaufwehr vorgesehen, über die sich in der Mulde des Schachtofenteils angesammelte Vorschmelze kontinuierlich in den Herdofenteil abfließt, dessen Boden tiefer als der Boden des Schachtofenteiles angeordnet ist. Das gesamte, aus Schachtofenteil und Herdofenteil bestehende Aggregat ist kippbar und zwar senkrecht zu einer das Zentrum des Schachtofenteiles mit dem Zentrum des Herdofenteiles verbindenden horizontalen Achse. Durch das Kippen senkrecht zu dieser Achse können die zum Kippen erforderlichen Kräfte trotz der großen zu bewegenden Massen gering gehalten werden. Der Herdofenteil weist einen exzentrisch angeordneten Bodenabstich für den Stahl und in einer Seitenwand eine Arbeitstür für das Abziehen der Schlacke auf. Sowohl der Unterteil des Schachtofenteiles als auch der des Herdofenteiles weisen einen im Grundriß kreisförmigen Innenraum auf, wobei der Innenraum des Schachtofenteiles den Innenraum des Herdofenteiles im Grundriß etwa tangiert und der Übergang von einem Raum in den anderen verengt ausgebildet ist. Als Beheizungsvorrichtung des Herdofenteiles dient ein Lichtbogenaggregat während als Beheizungsvorrichtung für den Schachtofenteil eine Mehrzahl von Plasmabrennern dient, die im untern Bereich des Schachtofenteils längs des Umfangs verteilt angeordnet sind.
Die Bodenvertiefung des Schachtofenteils ist relativ seicht ausgebildet und die Oberkannte des Überlaufwehres weist gegenüber der Bodenvertiefung eine geringe Höhe auf, so daß zu Beginn eines Schmelzvorgangs nur eine geringfügige Menge der Vorschmelze in der Bodenvertiefung des Schachtofenteiles zurückgehalten wird und nach der Sumpfbildung die Vorschmelze kontinuierlich über das Überlaufwehr in den Herdofenteil abfließt. Um im Bereich des Überlaufwehres ein Einfrieren der Schmelze zu verhindern, ist einerseits die Neigung der Plasmabrenner so eingestellt, daß die Vorschmelze in Richtung zum Überlaufwehr hin überhitzt wird und es ist andererseits noch ein Plasmabrenner zwischen dem Schachtofenteil und dem Herdofenteil vorgesehen, so daß die Vorschmelze im Bereich des Überlaufwehres überhitzt werden kann und der kontinuierliche Abfluß der Vorschmelze sichergestellt ist.
Die metallurgische Behandlung im Herdofenteil beginnt sobald hier die halbe Badtiefe erreicht ist. Durch zusätzliche Zufuhr von elektrischer Energie wird die Schmelze bis zur Abstichtemperatur erhitzt. Während dieses Prozesses fließt kontinuierlich Vorschmelze aus dem Schachtofenteil zu. Wenn im Herdofenteil das Abstichgewicht erreicht ist, wird durch Kippen des Aggregates über eine exzentrische Bodenabstichöffnung schlackefrei abgestochen.
Bei der bekannten Anlage ist im Bereich des Überlaufwehres zusätzliche Wärmeenergie zuzuführen um ein Einfrieren der Vorschmelze in diesem Bereich zu verhindern. Außerdem wird während der Behandlung der Vorschmelze im Herdofenteil kontinuierlich Vorschmelze zugeführt, die in ihrer Zusammensetzung und in ihrer Temperatur starken Schwankungen unterworfen ist, so daß hierdurch der Behandlungsvorgang im Herdofen beeinträchtigt wird. Das Fertigmachen der Schmelze (Desoxidieren, weitere Entschwefelung und Legieren) soll deshalb außerhalb des Herdofenteils, beispielsweise während des Abstiches in eine Pfanne erfolgen.
Die durch die EP-0 548 042-A2 bekannt gewordene Anlage unterscheidet sich von der Anlage gemäß der EP-0 240 485-B1 im wesentlichen dadurch, daß als Heizeinrichtung für ein den Schachtofen bildendes Ofengefäß, das mit einem Elektroherdofen verbunden ist, an Stelle der Plasmabrenner Graphitelektroden eingesetzt werden, die in nach außen vorspringende Erweiterungen des Schachtofenunterteils einschiebbar sind.
Durch die DE-25 04 911-A1 ist eine Vorrichtung zum Einschmelzen von Schrott, Eisenschwamm oder dergleichen in einem Schachtofen mittels einer Brennstoff-SauerstoffFlamme von unten und einem Auslauf für das aufgeschmolzene Material im Boden des Schachtofens zur kontinuierlichen Stahlerzeugung bekannt geworden, bei der mit dem Schachtofen ein seitlich zu diesem angebrachtes Erhitzungsgefäß integriert ist. Der Schachtofen weist an der tiefsten Stelle seines Bodens einen Auslauf für geschmolzenes Metall auf, der über einen Kanal mit dem Überhitzungsgefäß verbunden ist und ferner in der Seitenwand einen Schlackenablauf. Das Uberhitzungsgefäß ist mit einem Überlauf versehen, der sich geringfügig unterhalb der Höhe des Schlackenauslaufs befindet. Das im Überhitzungsgefäß überhitzte flüssige Metall fließt kontinuierlich über den Überlauf ab und wird über den Verbindungskanal zum Schachtofen durch das in diesem erschmolzene flüssige Metall kontinuierlich ersetzt. Das Uberhitzungsgefäß wird mittels Lichtbogen beheizt. Das Aggregat ist nicht kippbar.
Die US-A-4 552 343 beschreibt einen kippbaren Lichtbogenofen mit einer geschlossenen, an das Gefäß angebauten Ausgußrinne zum schlackenfreien Abstich. In der Ausgußrinne erfolgt weder eine Behandlung noch eine weitere Erhitzung der Schmelze.
Die japanische Offenlegungsschrift JP-2-290 912 A beschreibt ein kippbares, metallurgisches Aggregat, das eine erste und eine zweite Ofenkammer enthält, die durch ein Wehr getrennt sind. Den Ofenkammern sind eigene Heizeinrichtungen zugeordnet. In der ersten Ofenkammer wird das Einsatzmaterial geschmolzen und in der zweiten Ofenkammer die Schmelze behandelt. Damit der Stahl der zweiten Kammer, der gerade behandelt wird, nicht mit dem Stahl der ersten Kammer, der gerade geschmolzen wird, vermischt werden kann, wird nach dem Abstechen des Stahls der zweiten Kammer durch Kippen des Gefäßes der in der ersten Kammer geschmolzene und durch das Wehr zurückgehaltene Stahl in die zweite Kammer übergeführt, um dort weiterbehandelt zu werden, während nach dem Zurückkippen des Gefäßes gleichzeitig in der ersten Kammer neuer Stahl erschmolzen wird.
Bei dem bekannten metallurgischen Aggregat liegt die zweite Kammer in Kipprichtung hinter der ersten Kammer, d. h. fluchtend zur Kipprichtung. Dies führt zu einem Gesamtgefäß, das in dieser Richtung große Abmessungen hat. Damit sind für den Kippvorgang große Kräfte erforderlich.
Der Erfindung liegt die Aufgabe zugrunde, ein metallurgisches Aggregat der zuletzt beschriebenen Art kompakt zu gestalten und bei einem solchen Aggregat die beim Kippen zu bewegenden Massen möglichst niedrig zu halten. Schmelzgefäß und Behandlungsgefäß sollen voneinander unabhängig im Hinblick auf ihre Zielsetzung optimal ausgebildet und betrieben werden können. Es soll der Energieverbrauch des Aggregats pro Tonne hergestellten Metalls minimiert werden und es sollen die heißen Abgase des Behandlungsgefäßes, wie auch des Schmelzgefäßes zur Vorerhitzung des Einsatzmateriales ausnutzbar sein.
Die Erfindung ist durch die Merkmale des Anspruches 1 gekennzeichnet. Vorteilhafte Ausgestaltungen der Erfindung sind den übrigen Ansprüchen zu entnehmen.
Bei dem erfindungsgemäßen Aggregat sind ein Schmelzgefäß, das einen Ofenherd zur Aufnahme eines wesentlichen Teils, vorzugsweise der gesamten Menge einer Ofencharge enthält und ein seitlich am Schmelzgefäß angebrachtes Behandlungsgefäß zur Aufnahme der Metallschmelze aus dem Ofenherd des Schmelzgefäßes und zur metallurgischen Behandlung der Schmelze zu einem Aggregat verbunden, das um eine Kippachse kippbar oder längs einer Wälzbahn abwälzbar ist. Über einen Kanal zwischen dem Schmelzgefäß und dem Behandlungsgefäß, der in einer solchen Höhe angeordnet ist, daß die gewünschte Menge an Metallschmelze im Schmelzgefäß zurückgehalten werden kann, ist diese beim Kippen des Aggregats in das Behandlungsgefäß überführbar. Das Überführen der Metallschmelze geschieht also nicht kontinuierlich über ein Überlaufwehr, sondern schubweise nur dann, wenn sich im Schmelzgefäß die gewünschte Menge an Metallschmelze angesammelt hat. Die heiße Metallschmelze durchströmt beim Kippen des Aggregats den Kanal zum Behandlungsgefäß in kurzer Zeit, so daß hier nicht die Gefahr eines Abkühlens besteht. Während des Einschmelzens von festem Einsatzmaterial im Schmelzgefäß wird die beim vorherigen Kippvorgang in das Behandlungsgefäß übergeführte Metallschmelze metallurgisch behandelt, so daß beide Prozesse parallel zueinander ablaufen, wobei das Schmelzgefäß in seiner Größe und Ausstattung im Hinblick auf den Schmelzprozeß optimiert werden kann und das Behandlungsgefäß im Hinblick auf die metallurgische Behandlung. Die Wärmezufuhr zu den beiden Gefäßen, die durch Verbrennen fossiler Brennstoffe, Zufuhr von sauerstoffhaltigen Gasen und gegebenenfalls Kohle durch Bodensteine oder Unterbaddüsen und durch elektrische Energie erfolgen kann, sollte so abgestimmt sein, daß die Einschmelzeit etwa der Behandlungszeit entspricht, so daß nach dem Abstechen des Behandlungsgefäßes die im Schmelzgefäß gebildete Metallschmelze durch Kippen des Aggregats in das Behandlungsgefäß überführbar und unmittelbar danach die parallele Betriebsweise der beiden Gefäße fortgesetzt werden kann. Da während des Einschmelzprozesses die im Schmelzgefäß gebildete Schmelze nicht in das Behandlungsgefäß überläuft, sondern der Vorgang der Überführung der Schmelze durch das Kippen des Aggregats gesteuert wird, wird die metallurgische Behandlung im Behandlungsgefäß nicht durch zufließende Schmelze gestört.
Das Behandlungsgefäß ist nicht fluchtend zum Schmelzgefäß in der Kipprichtung bzw. in einer Senkrechten zur Kippachse des Aggregates angeordnet, sondern demgegenüber seitlich versetzt, so daß in der Draufsicht die Verbindungslinie zwischen den Gefäßmittelpunkten und der Kipprichtung des Aggregates einen spitzen Winkel einschließt. Vorzugsweise liegt dieser Winkel bei etwa 45°. Der Kanal zwischen den beiden Gefäßen sollte allerdings so angeordnet werden, daß in der Draufsicht vom Schmelzgefäß aus betrachtet, eine in Kipprichtung durch den Mittelpunkt des Schmelzgefäßes gezogene Linie noch innerhalb der Eintrittsöffnung des Kanals zum Behandlungsgefäß liegt. Diese Stelle des Gefäßumfangs liegt beim Kippen am tiefsten und ermöglicht dadurch bei einem vorgegebenen Kippwinkel eine bessere Entleerung des Schmelzgefäßes.
Vorzugsweise ist das Aggregat aus seiner Ausgangsposition nicht nur in die bisher beschriebene positive Kipprichtung kippbar, in der die Schmelze vom Schmelzgefäß in das Behandlungsgefäß überführbar ist, sondern auch in umgekehrter, negativer Kipprichtung, um ein Abschlacken der Gefäße zu ermöglichen. An geeigneter Stelle sind hierzu Arbeitsöffnungen bzw. Schlackenöffnungen vorzusehen.
Wie bereits erwähnt, ist es vorteilhaft, wenn die Sohle des Verbindungskanals zwischen Schmelzgefäß und Behandlungsgefäß so hoch liegt, daß die beiden Gefäße parallel betrieben werden können, ohne daß Schmelze vom Schmelzgefäß in das Behandlungsgefäß überfließt. Die Sohle des Verbindungskanals soll gegenüber dem Gefäßboden des Schmelzgefäßes um einen Betrag höher liegen, der in der Ausgangsposition des Aggregats ein Zurückhalten der Schmelze im Ofenherd des Schmelzgefäßes von wenigstens dem halben Fassungsvermögen des Behandlungsgefäßes, vorzugsweise dem ganzen Fassungsvermögen des Behandlungsgefäßes ermöglicht.
Außerdem ist es vorteilhaft, wenn in der Ausgangsposition des Aggregats der Gefäßboden des Nachbehandlungsgefäßes tiefer liegt als der Gefäßboden des Schmelzgefäßes, um beim Kippen die gesamte Schmelze vom Schmelzgefäß in das Behandlungsgefäß überführen zu können. Im Hinblick auf die bestimmungsgemäßen Arbeitsvorgänge wird das Schmelzgefäß einen größeren Durchmesser als das Behandlungsgefäß aufweisen.
Um einen guten Zugang von oben zu ermöglichen, sollte der Verbindungskanal zwischen den beiden Gefäßen als nach oben hin offene Rinne in einer aus feuerfestem Material bestehenden Trennwand zwischen den beiden Gefäßen ausgebildet sein.
Wie bereits erwähnt, können als Wärmequellen für die beiden Gefäße unterschiedliche Energieträger eingesetzt werden. Vorzugsweise wird neben anderen Energiequellen auch Lichtbogenenergie eingesetzt, wobei es vorteilhaft ist, wenn das Elektrodentragwerk auf demselben Kipprahmen angeordnet ist wie die beiden Gefäße, so daß zumindest beim Kippen in negativer Kipprichtung, das heißt beim Abschlacken, die Elektroden nicht aus den Gefäßen entfernt werden müssen. Vorzugsweise ist neben der konstruktiven Einheit aus Schmelzgefäß und Behandlungsgefäß eine Hub- und Schwenkvorrichtung für wenigstens eine Elektrode angeordnet, die wahlweise in das Schmelzgefäß und das Behandlungsgefäß einführbar ist.
Zweckmäßig werden die heißen Abgase des Behandlungsgefäßes und des Schmelzgefäßes zur Vorwärmung des in das Schmelzgefäß zu chargierenden Einsatzmaterials ausgenutzt. In besonders kompakter und effizienter Weise kann dies dadurch geschehen, daß der Deckel des Schmelzgefäßes in einer Haltekonstruktion befestigt wird, die zugleich einen als Chargiergutvorwärmer ausgebildeten Schacht trägt, dessen untere Öffnung in den Innenraum des Schmelzgefäßes mündet. Die über den Verbindungskanal, insbesondere wenn dieser als oben offene Rinne ausgebildet ist, aus dem Behandlungsgefäß in das Schmelzgefäß eintretenden heißen Abgase, und die heißen Abgase des Schmelzgefäßes werden dann durch eine Schrottsäule, die sich im Bereich unterhalb und im Schacht bildet, durch den Schacht nach oben abgeleitet und wärmen so das Chargiergut vor. In an sich bekannter Weise kann der Schacht auch Sperrorgane aufweisen, die aus einer Schließstellung zum Festhalten von Chargiergut im Innenraum des Schachtes in eine Freigabestellung bewegbar sind, in der sie den Durchtritt durch den Schacht freigeben. Bei einem solchen Schacht läßt sich das Chargiergut im Schacht zurückhalten und die Wärmeausnutzung noch weiter verbessern.
Die Erfindung wird durch ein Ausführungsbeispiel anhand von sechs Figuren, die den Gegenstand schematisch in verschiedenen Ansichten darstellen, näher erläutert. Es zeigen
Fig. 1
eine Draufsicht auf das metallurgische Aggregat gemäß dieser Erfindung,
Fig. 2
den Schnitt II-II von Figur 1
Fig. 3
den Schnitt III-III von Figur 2
Fig. 4
den Schnitt IV-IV von Figur 1
Fig. 5
den Schnitt V-V von Figur 1 und
Fig. 6
den Schnitt VI-VI von Figur 1.
Wie aus den Figuren 1, 2 und 4 zu entnehmen ist, enthält das metallurgische Aggregat zum Einschmelzen von metallischem Einsatzmaterial und zum Nachbehandeln der Metallschmelze ein Schmelzgefäß 1 und ein mit diesem zu einer konstruktiven Einheit verbundenes Behandlungsgefäß 2, das seitlich am Schmelzgefäß 1 angebracht ist. Die beiden Gefäße sind in einem Rahmen 3 befestigt, der kippbar gelagert ist. Zu diesem Zweck weist im vorliegenden Fall der Rahmen eine auf einer Wälzbahn 4 abwälzbare Ofenwiege 5 auf, sowie ein am Rahmen angreifendes hydraulisches Stellglied 6, mit dem das Aggregat um eine horizontale Kippachse 7 aus der in den Figuren 2 und 4 dargestellten Ausgangsstellung sowohl in eine positive Kipprichtung 8 wie auch in eine negative Kipprichtung 9 um einen vorgegebenen Kippwinkel kippbar ist.
Wie Figur 6 zeigt, ist das Schmelzgeäß 1 ist mit einer Chargieröffnung 10 zum Einbringen des Einsatzmaterials versehen, die im Gefäßdeckel 11 ausgebildet ist und enthält einen Ofenherd 12 zur Aufnahme von Metallschmelze 13. In üblicherweise ist der Ofenherd 12 aus feuerfestem Material gebildet, während das auf den Ofenherd aufgesetzte Obergefäß 14 und der Deckel 11 aus wassergekühlten Elementen bestehen.
Wie Figur 3 am besten erkennen läßt, sind in der Seitenwand des Ofenherdes 12 eine Abflußöffnung 15 zur Entnahme der Metallschmelze und dieser gegenüberliegend eine Arbeitsöffnung 16 zum Entfernen von Schlacke aus dem Schmelzgefäß 1 vorgesehen. In der Draufsicht gemäß Figur 3 liegt die Abflußöffnung 15 bezüglich des Gefäßmittelpunktes 17 in positiver Kipprichtung 8, während die Arbeitsöffnung 16 in negativer Kipprichtung 9 liegt, so daß beim Kippen in positiver Richtung 8 die Metallschmelze 13 aus dem Ofenherd 12 abgeführt und beim Kippen in negativer Richtung 9 Schlacke durch die Arbeitsöffnung 16 entfernt werden kann.
Das seitlich am Schmelzgefäß 1 angebrachte Behandlungsgefäß 2 zur Aufnahme der Metallschmelze 13 aus dem Ofenherd 12 ist mit feuerfestem Material ausgekleidet und bildet, wie die Figuren deutlich erkennen lassen, eine konstruktive Einheit mit dem Einschmelzgefäß 1. Das Behandlungsgefäß ist vorzugsweise in der Größe so bemessen, daß es in der Lage ist, das maximal zulässige Volumen der Metallschmelze des Schmelzgefäßes aufzunehmen, wobei der Querschnitt des Behandlungsgefäßes wesentlich kleiner als der des Schmelzgefäßes ist. Das Behandlungsgefäß übernimmt die Aufgabe einer Pfanne, besitzt im Boden eine Abstichöffnung 18 und gegebenenfalls Gasspülsteine bzw. Unterbaddüsen zum Einblasen von Behandlungsgasen und Feststoffen (nicht dargestellt) und ist mit einem wassergekühlten Deckel 19 abgedeckt. Während in der Draufsicht gemäß Figur 3 die Abstichöffnung 18 bezüglich des Mittelpunktes 20 des Behandlungsgefäßes 2 in positiver Kipprichtung 8 angeordnet ist, ist in der gegenüberliegenden Hälfte des Behandlungsgefäßes eine Arbeitsöffnung 21 vorgesehen, über die bei einem Kippen des Aggregats in negativer Kipprichtung 9 Schlacke aus dem Behandlungsgefäß abgezogen werden kann. Das Behandlungsgefäß 2 weist eine Eintrittsöffnung 22 für die Metallschmelze auf und ist derart angrenzend neben dem Schmelzgefäß angebracht, daß in der Draufsicht (siehe Figur 3) bezüglich des Mittelpunktes 17 des Schmelzgefäßes 1 die Verbindungslinie 23 zwischen den Gefäßmittelpunkten 17 und 20 gegenüber der positiven Kipprichtung 8 einen spitzen Winkel α einschließt, der im dargestellten Fall etwa 45° beträgt. Hierdurch ist es möglich, bezüglich der Kipprichtung die Gefäßmittelpunkte 17 und 20 näher zusammenzurücken und damit der zu bewegenden Massen zu konzentrieren.
Wie Figur 4 zeigt, liegt im nicht gekippten Zustand des metallurgischen Aggregates, das heißt in dessen Ausgangsposition, der Gefäßboden 24 des Nachbehandlungsgefäßes 2 tiefer als der Gefäßboden 25 des Schmelzgefäßes 1, das heißt es Ofenherdes 12. Die Abflußöffnung 15 des Schmelzgefäßes 1 ist mit der Eintrittsöffnung 22 des Behandlungsgefäßes 2 durch einen Verbindungskanal 26 verbunden, der als nach oben offene Rinne ausgebildet ist. Konstruktiv ist die Rinne dadurch gebildet, daß die Ausmauerung für den Ofenherd und des Behandlungsgefäßes, deren Oberkanten in der gleichen Ebene liegen, durch einen tangentialen Abschnitt 27 zwischen den beiden Gefäßen verbunden ist und angrenzend an diesen tangentialen Verbindungsabschnitt 27 in der Trennwand 28 zwischen den beiden Gefäßen die nach oben offene Rinne des Verbindungskanals 26 ausgebildet wird.
Die Sohle 29 des Verbindungskanals liegt, wie insbesondere Figur 4 zeigt, um einen bedeutenden Betrag höher als der Gefäßboden 25 des Schmelzgefäßes 1. Sie soll mindestens so hoch liegen, daß in der in Figur 4 dargestellten Ausgangsposition des Aggregats im Ofenherd 12 des Schmelzgefäßes 1 wenigstens das halbe Fassungsvermögen des Behandlungsgefäßes 2 zurückgehalten werden kann.
Dem Schmelzgefäß 1 ist für die Zufuhr der zum Einschmelzen des metallischen Einsatzmaterials erforderlichen Wärmeenergie eine erste Heizeinrichtung zugeordnet, die Lichtbogenelektroden. Induktionsspulen, Brenner, Gasspülsteine, Unterbaddüsen, Aufblas- und Nachverbrennungsdüsen oder andere bekannte Heizeinrichtungen zum Erhitzen und Schmelzen des Einsatzmaterials umfassen kann. In Figur 3 sind stellvertretend für die erste Heizeinrichtung Seitenwandbrenner 30 angedeutet und in den Figuren 4 und 6 eine Durchtrittsöffnung 31 im Gefäßdeckel 11 für das Einführen einer Lichtbogenelektrode 40.
Dem Behandlungsgefäß ist eine zweite Heizeinrichtung zugeordnet. Die zweite Heizeinrichtung kann die gleichen Energiequellen wie die erste Heizeinrichtung umfassen. Bevorzugt sind die aus der Pfannenmetallurgie bekannten Heizeinrichtungen. Stellvertretend sind in Figur 2 Lichtbogenelektroden 40 dargestellt. Über Bodenspülsteine (nicht dargestellt) oder Düsen 32 können Gase und auch pulveriersierte Feststoffe in die Schmelze zu deren Behandlung eingeleitet werden.
Bei dem dargestellten Ausführungsbeispiel ist neben der konstruktiven Einheit aus Schmelzgefäß 1 und Behandlungsgefäß 2 eine Hub- und Schwenkvorrichtung 33 für drei Elektroden 40 derart angeordnet, daß die Elektroden wahlweise in das Schmelzgefäß 1 und in das Behandlungsgefäß 2 einführbar und dort als erste bzw. zweite Heizeinrichtung einsetzbar sind. Die Hub- und Schwenkvorrichtung 33 ist, wie insbesondere Figur 3 erkennen läßt, auf dem Kipprahmen 3 des Aggregats befestigt, so daß beim Kippen des Aggregats die Elektroden nicht aus dem betreffenden Gefäß entfernt werden müssen.
Wie am besten aus den Figuren 1 und 6 ersichtlich ist, weist das Schmelzgefäß 1 einen Chargiergutvorwärmer 34 auf. Dieser ist als Schacht ausgebildet und in der Haltekonstruktion 35 für den Deckel 11 befestigt. Der grundsätzliche Aufbau eines solchen Schmelzgefäßes mit integriertem Chargiergutvorwärmer ist in der WO 90/10 086 beschrieben. Demgemäß ist ein Segment des Deckels durch einen Schacht ersetzt, über den das metallische Einsatzmaterial in das Schmelzgefäß chargierbar ist. Die untere Offnung des Schachtes ist gleichzeitg die in Deckel 11 vorhandene Eintrittsöffnung 10 des Schmelzgefäßes. Der Chargiergutvorwärmer 34 ist oben durch einen zur Seite verschiebbaren Deckel 36 verschlossen. Die durch den Chargiergutvorwärmer hindurchgeleiteten heißen Ofenabgase werden über eine obere Austrittsöffnung 38 abgezogen.
Bei der in Figur 6 dargestellten Ausführungsform weist der Chargiergutvorwärmer Sperrorgane 37 in Form von mit Abstand nebeneinanderliegenden Fingern auf, die von der in der Figur 6 mit ausgezogenen Linien dargestellten Schließstellung in eine gestrichelt dargestellte Freigabestellung nach unten verschwenkbar sind, in der sie den Durchtritt durch den Schacht freigeben. In der Schließstellung der Sperrorgane 37 wird das Einsatzmaterial im Chargiergutvorwärmer zurückgehalten und kann durch die heißen Ofengase durchströmt werden, die von unten durch die Zwischenräume zwischen den Sperrorganen 37 in die Chargiergutsäule eintreten und nach Abgabe ihrer Wärme über die Austrittsöffnung 38 abgezogen werden.
Im folgenden wird die Arbeitsweise des beschriebenen Aggregats erläutert.
Unter der Annahme, daß im Behandlungsgefäß 2 eine Metallschmelze (Eisenschmelze) metallurgisch behandelt worden ist, während gleichzeitig im Schmelzgefäß 1 eine Menge an Einstzmaterial (Stahlschrott) eingeschmolzen worden ist, die dem Inhalt des Behandlungsgefäßes entspricht, ferner im Chargiergutvorwärmer 34 das durch die Sperrorgane 37 zurückgehaltene Einsatzmaterial erhitzt worden ist, laufen die folgenden Verfahrensschritte ab.
  • 1. Die fertig behandelte Metallschmelze wird über die Abstichöffnung 18 abgestochen und danach die Abstichöffnung wieder verschlossen.
  • 2. Durch Kippen des Aggregats in positiver Kipprichtung 8 wird die Metallschmelze aus dem Ofenherd 12 über den Verbindungskanal 26 in das Behandlungsgefäß übergeleitet und beim oder nach dem Zurückkippen in die Ausgangslage das vorerhitzte Einsatzmaterial in das Schmelzgefäß durch Verschwenken der Sperrorgane 37 in die Freigabestellung chargiert.
  • 3. Die Sperrorgane 37 werden in ihre Schließstellung zurückgeschwenkt, und es wird kaltes Einsatzmaterial über die durch den zur Seite gefahrenen Deckel 36 freigegebene obere Offnung chargiert und die Öffnung gleich wieder verschlossen.
  • 4. Die Elektroden 40 werden in das Behandlungsgefäß 2 eingefahren und der Behandlungsprozeß eingeleitet, wobei die heißen Ofenabgase über den Verbindungskanal 26 in das Schmelzgefäß 1 strömen, hier fühlbare Wärme an das Einsatzmaterial abgeben und dann zur weiteren Wärmeausnutzung durch die Chargiergutsäule im Chargiergutvorwärmer 34 geleitet werden. Gleichzeitig mit der Wärmezufuhr durch die zweite Heizeinrichtung in das Behandlungsgefäß - ein Teil der Wärme kann mittels Einblasen von Sauerstoff durch Unterbaddüsen, Spülsteine und Lanzen zugeführt werden - erfolgt die Wärmezufuhr durch die erste Heizeinrichtung, das heißt im vorliegenden Fall durch die Brenner 30, in das Schmelzgefäß, um das Material in diesem Gefäß einzuschmelzen. Auch die hierbei entstehenden heißen Ofengase werden durch das im Chargiergutvorwärmer zurückgehaltene Einsatzmaterial hindurchgeleitet.
  • 5. Nach ausreichender Wärmezufuhr durch die Elektroden 40 in das Behandlungsgefäß 2 werden die Elektroden durch die Elektrodenhub- und -schwenkvorrichtung aus dem Behandlungsgefäß gezogen, zur Seite geschwenkt und in das Schmelzgefäß 1 eingeführt, um dort die Brennerleistung zu unterstützen und den Einschmelzprozeß zu beschleunigen.
  • 6. Am Ende des Einschmelzprozesses, wenn der Badspiegel nahezu die Sohle 29 des Verbindungskanals erreicht hat und der Behandlungsprozeß im Behandlungsgefäß nahezu abgeschlossen ist, werden die Elektroden wieder zum Behandlungsgefäß zurückgeschwenkt und das Aggregat wird zum Abschlacken in die negative Kipprichtung gekippt. Danach wiederholen sich die beschriebenen Verfahrensschritte 1 bis 6.
  • Claims (15)

    1. Metallurgisches Aggregat zum Einschmelzen von metallischem Einsatzmaterial und zum Nachbehandeln der Metallschmelze, das aus einer Ausgangsposition in eine positive Kipprichtung (8) um eine Kippachse (7) kippbar oder längs einer Wälzbahn (4) abwälzbar ist, enthaltend
      a) ein mit einer Chargieröffnung (10) zum Einbringen des Einsatzmaterials versehenes Schmelzgefäß (1), das einen Ofenherd (12) zur Aufnahme der Metallschmelze (13) enthält, in dessen Seitenwand eine Abflußöffnung (15) zur Entnahme der Metallschmelze (13) aus dem Ofenherd, beim Kippen des Aggregats angeordnet ist,
      b) eine dem Schmelzgefäß zugeordnete erste Heizeinrichtung (30, 38) zum Einschmelzen des Einsatzmaterials,
      c) ein seitlich am Schmelzgefäß angebrachtes Behandlungsgefäß (2), zur Aufnahme der Metallschmelze aus dem Ofenherd (12) des Schmelzgefäßes (1) und zur metallurgischen Behandlung, das eine Eintrittsöffnung (22) für die Metallschmelze und eine Abstichöffnung (18) enthält,
      d) eine dem Behandlungsgefäß zugeordnete zweite Heizeinrichtung (38) zur metallurgischen Behandlung der Schmelze, und
      e) einen die Abflußöffnung (15) des Schmelzgefäßes (1) mit der Eintrittsöffnung (22) des Behandlungsgefäßes (2) verbindenden Kanal (26), über den die beim Kippen des Aggregats in positiver Kipprichtung (8) aus der Abflußöffnung (15) des Schmelzgefäßes (1) abfließende Metallschmelze (13) in das Behandlungsgefäß (2) überführbar ist, wobei in der Draufsicht die Verbindungslinie (23) vom Gefäßmittelpunkt (17) des Schmelzgefäßes (1) zum Gefäßmittelpunkt (20) des Behandlungsgefäßes (2) gegenüber der positiven Kipprichtung (8) des Aggregats einen spitzen Winkel (α) einschließt.
    2. Metallurgisches Aggregat nach Anspruch 1, dadurch gekennzeichnet, daß es zum Entfernen der Schlacke in einer zur positiven Kipprichtung (8) entgegengesetzten negativen Kipprichtung (9) kippbar bzw. abwälzbar ist.
    3. Metallurgisches Aggregat nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, daß in der Draufsicht eine zur positiven Kipprichtung (8) durch den Mittelpunkt (17) des Schmelzgefäßes (1) gezogene Linie dessen Gefäßwand im Bereich der Ausflußöffnung (15) schneidet.
    4. Metallurgisches Aggregat nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Gefäßwand des Schmelzgefäßes (1) auf der der Abflußöffnung (15) gegenüberliegenden Seite eine Arbeitsöffnung (16) aufweist.
    5. Metallurgisches Aggregat nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Abstichöffnung (18) des Behandlungsgefäßes (2), bezogen auf die positive Kipprichtung (8) exzentrisch im äußeren Randbereich des Bodens (24) des Behandlungsgefäßes (2) angeordnet ist.
    6. Metallurgisches Aggregat nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß bezogen auf die Gefäßmitte (29) die Gefäßwand des Behandlungsgefäßes (2) in negativer Kipprichtung (9) eine Arbeitsöffnung (21) aufweist.
    7. Metallurgisches Aggregat nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß im nichtgekippten Zustand (Ausgangsposition) des metallurgischen Aggregats die Sohle (29) des Verbindungskanals (26) höher liegt als der Gefäßboden (25) des Schmelzgefäßes (1).
    8. Metallurgisches Aggregat nach Anspruch 7, dadurch gekennzeichnet, daß die Sohle (29) des Verbindungskanals (26) gegenüber dem Gefäßboden (25) des Schmelzgefäßes (1) um einen Betrag höher liegt, der in der Ausgangsposition des Aggregats ein Zurückhalten der Schmelze (13) im Ofenherd (12) des Schmelzgefäßes (1) von wenigstens dem halben Fassungsvermögen des Behandlungsgefäßes (2) ermöglicht.
    9. Metallurgisches Aggregat nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß in der Ausgangsposition des Aggregates der Gefäßboden (24) des Behandlungsgefäßes (2) tiefer liegt als der Gefäßboden (25) des Schmelzgefäßes (1).
    10. Metallurgisches Aggregat nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, däß der Verbindungskanal (26) als eine nach oben hin offene Rinne in einer aus feuerfestem Material bestehenden Trennwand (28) zwischen den beiden Gefäßen (1 und 2) ausgebildet ist.
    11. Metallurgisches Aggregat nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß neben der konstruktiven Einheit aus Schmelzgefäß (1) und Behandlungsgefäß (2) eine Hub- und Schwenkvorrichtung (33) für wenigstens eine Elektrode (40) angeordnet ist, die wahlweise in das Schmelzgefäß (1) und das Behandlungsgefäß (2) einführbar ist.
    12. Metallurgisches Aggregat nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, däß die Hub- und Schwenkvorrichtung (33) für die Elektrode (40) auf einem die konstruktive Einheit aus Schmelzgefäß (1) und Behandlungsgefäß (2) tragenden kippbaren Rahmen (3) angeordnet ist.
    13. Metallurgisches Aggregat nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß in das Schmelzgefäß (1) und/oder das Behandlungsgefäß (2) Düsen (40, 32) zum Einblasen von Gasen und Feststoffen münden.
    14. Metallurgisches Aggregat nach einem der Anspruche 1 bis 13, dadurch gekennzeichnet, däß der Deckel (11) des Schmelzgefäßes (1) in einer Haltekonstruktion (35) befestigt ist, die zugleich einen als Chargiergutvorwärmer (34) ausgebildeten Schacht trägt, dessen untere Öffnung in den Innenraum des Schmelzgefäßes (1) mündet.
    15. Metallurgisches Aggregat nach Anspruch 14, dadurch gekennzeichnet, daß der Chariergutvorwärmer (34) Sperrorgane (37) aufweist, die aus einer Schließstellung zum Festhalten von Chargiergut im Innenraum des Chargiergutvorwärmers (34) in eine Freigabestellung bewegbar sind, in der sie den Durchtritt für das Einsatzmaterial durch den Chargiergutvorwärmer freigeben.
    EP95942719A 1994-12-21 1995-12-21 Kippbares metallurgisches aggregat bestehend aus mehreren gefässen Expired - Lifetime EP0799323B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE4445783A DE4445783A1 (de) 1994-12-21 1994-12-21 Kippbares metallurgisches Aggregat
    DE4445783 1994-12-21
    PCT/EP1995/005072 WO1996019592A1 (de) 1994-12-21 1995-12-21 Kippbares metallurgisches aggregat bestehend aus mehreren gefässen

    Publications (2)

    Publication Number Publication Date
    EP0799323A1 EP0799323A1 (de) 1997-10-08
    EP0799323B1 true EP0799323B1 (de) 1999-09-15

    Family

    ID=6536576

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP95942719A Expired - Lifetime EP0799323B1 (de) 1994-12-21 1995-12-21 Kippbares metallurgisches aggregat bestehend aus mehreren gefässen

    Country Status (13)

    Country Link
    US (1) US5882578A (de)
    EP (1) EP0799323B1 (de)
    JP (1) JPH10510880A (de)
    CN (1) CN1043245C (de)
    AT (1) ATE184656T1 (de)
    AU (1) AU4388796A (de)
    BR (1) BR9510171A (de)
    CA (1) CA2208229A1 (de)
    DE (2) DE4445783A1 (de)
    DK (1) DK0799323T3 (de)
    ES (1) ES2135787T3 (de)
    GR (1) GR3031565T3 (de)
    WO (1) WO1996019592A1 (de)

    Families Citing this family (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19634348A1 (de) * 1996-08-23 1998-02-26 Arcmet Tech Gmbh Einschmelzaggregat mit einem Lichtbogenofen
    IT1289021B1 (it) * 1996-11-13 1998-09-25 Danieli Off Mecc Forno elettrico ad arco e relativo procedimento di fusione continua
    LU90141B1 (de) * 1997-09-30 1999-03-31 Wurth Paul Sa Chargiergutvorwaermer
    DE10355549A1 (de) * 2003-11-27 2005-06-23 Intracon Gmbh Chargiergutvorwärmer
    CN103898337B (zh) * 2012-12-31 2016-08-24 保定安保能冶金设备有限公司 再生铝自动熔化铝铁分离工艺
    CN103352123B (zh) * 2013-07-25 2015-05-20 西安电炉研究所有限公司 矿热精炼电炉热装生产设备及其生产工艺
    DE102014115671A1 (de) * 2014-10-28 2016-05-12 Gerhard Fuchs Schmelzvorrichtung und schmelzverfahren
    CN105202907B (zh) * 2015-10-30 2017-09-29 中冶赛迪工程技术股份有限公司 废钢预热型电弧炉及改善侧壁加料电弧炉加热冷区的方法
    CN110257588B (zh) * 2019-07-04 2023-04-14 中冶京诚工程技术有限公司 一种液态金属冶炼系统及冶炼方法

    Citations (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPH02290912A (ja) * 1989-04-28 1990-11-30 Daido Steel Co Ltd 溶解装置及び溶解方法

    Family Cites Families (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US682512A (en) * 1900-07-16 1901-09-10 Wellman Seaver Engineering Company Open-hearth steel-furnace.
    FR1482929A (fr) * 1966-04-01 1967-06-02 Siderurgie Fse Inst Rech Procédé d'élaboration d'un métal au four électrique
    DE2504911C3 (de) * 1975-02-06 1978-12-14 Kloeckner-Werke Ag, 4100 Duisburg Vorrichtung zum Einschmelzen von Schrott, Eisenschwamm o.dgl
    DE3322485A1 (de) * 1982-06-24 1983-12-29 British Steel Corp., London Vorrichtung und verfahren zur metallverarbeitung bzw. -veredelung
    DE3412810A1 (de) * 1984-04-05 1985-10-17 Fried. Krupp Gmbh, 4300 Essen Einrichtung zum abgiessen eines herdofens
    US4552343A (en) * 1985-05-13 1985-11-12 Insul Company, Inc. Combination electric furnace and slag retaining pouring spout
    AT384669B (de) * 1986-03-17 1987-12-28 Voest Alpine Ag Anlage zur herstellung von stahl aus schrott
    DE59001390D1 (de) * 1989-03-02 1993-06-17 Fuchs Technology Ag Einschmelzaggregat mit schachtfoermigem chargiergutvorwaermer.
    US5471495A (en) * 1991-11-18 1995-11-28 Voest-Alpine Industrieanlagenbeau Gmbh Electric arc furnace arrangement for producing steel

    Patent Citations (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPH02290912A (ja) * 1989-04-28 1990-11-30 Daido Steel Co Ltd 溶解装置及び溶解方法

    Also Published As

    Publication number Publication date
    AU4388796A (en) 1996-07-10
    CN1171136A (zh) 1998-01-21
    DE59506858D1 (de) 1999-10-21
    GR3031565T3 (en) 2000-01-31
    CN1043245C (zh) 1999-05-05
    WO1996019592A1 (de) 1996-06-27
    CA2208229A1 (en) 1996-06-27
    DE4445783A1 (de) 1996-06-27
    JPH10510880A (ja) 1998-10-20
    ES2135787T3 (es) 1999-11-01
    US5882578A (en) 1999-03-16
    ATE184656T1 (de) 1999-10-15
    DK0799323T3 (da) 1999-12-20
    EP0799323A1 (de) 1997-10-08
    BR9510171A (pt) 1997-10-14

    Similar Documents

    Publication Publication Date Title
    EP0240485B1 (de) Anlage zur Herstellung von Stahl aus Schrott
    EP0483322B1 (de) Einschmelzaggregat mit zwei nebeneinander angeordneten schmelzöfen
    WO1981001862A1 (en) Metallurgical melting and refining apparatus
    EP0946761A1 (de) Anlage und verfahren zum herstellen von metallschmelzen
    EP0548041A2 (de) Elektro-Lichtbogenofen zur Herstellung von Stahl
    DE69132590T3 (de) Raffinationsofen für Kupfer
    EP0225939B1 (de) Verfahren zum Einschmelzen von Schrott o.dgl. und Vorrichtung zur Durchführung des Verfahrens
    EP0487494B1 (de) Anlage zur Herstellung von flüssigen Metallen
    DE1433431A1 (de) Schmelzofen zur Herstellung von Stahl und Verfahren zum Betrieb des Ofens
    EP0799323B1 (de) Kippbares metallurgisches aggregat bestehend aus mehreren gefässen
    EP0820528B1 (de) Anlage und verfahren zum herstellen von eisenschmelzen nach dem mehrzonenschmelzverfahren
    DE8412739U1 (de) Lichtbogenofen mit Chargiergutvorwärmer
    DE2735808C2 (de) Vorrichtung zum Schmelzen und Raffinieren von verunreinigtem Kupfer
    DE10205660B4 (de) Verfarhen und Vorrichtung zur kontinuierlichen Stahlherstellung unter Einsatz von metallischen Einsatzmaterial
    AT389896B (de) Verfahren zum kontinuierlichen schmelzen von schrott sowie vorrichtung zur durchfuehrung dieses verfahrens
    EP0373378B1 (de) Verfahren zum Betrieb eines Einschmelzaggregates und Einschmelzaggregat für dieses Verfahren
    DE60204221T2 (de) Verfahren zum herstellen von flüssigem roheisen in einem elektrischen ofen
    EP0320673B1 (de) Metallurgisches Gefäss
    AT394732B (de) Vorrichtung zum trennen von schlacke und stahl
    EP1124995B1 (de) Gleichstromlichtbogenofen mit mittigem chargierschacht zur herstellung von stahl sowie verfahren hierzu
    EP0252308A1 (de) Verfahren zum Behandeln von Metallschmelzen und Vorrichtung zum Durchführen des Verfahrens
    AT403846B (de) Schrotteinschmelz-elektro-lichtbogenofen
    EP0291680B1 (de) Lichtbogenofen mit einem auf einer Seite des Ofengefässes vorgesehenen Aufnahmeraum für Chargiergut
    DE2951826C2 (de) Metallurgisches Schmelz- und Frischaggregat
    DE3722645C2 (de)

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19970721

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL PT SE

    17Q First examination report despatched

    Effective date: 19980428

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    ITF It: translation for a ep patent filed

    Owner name: DE DOMINICIS & MAYER S.R.L.

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL PT SE

    REF Corresponds to:

    Ref document number: 184656

    Country of ref document: AT

    Date of ref document: 19991015

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: E. BLUM & CO. PATENTANWAELTE

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 59506858

    Country of ref document: DE

    Date of ref document: 19991021

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2135787

    Country of ref document: ES

    Kind code of ref document: T3

    ET Fr: translation filed
    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T3

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19991209

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: SC4A

    Free format text: AVAILABILITY OF NATIONAL TRANSLATION

    Effective date: 19991209

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20011205

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: PT

    Payment date: 20011211

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20011219

    Year of fee payment: 7

    Ref country code: DK

    Payment date: 20011219

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20011220

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20011221

    Year of fee payment: 7

    Ref country code: AT

    Payment date: 20011221

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20011224

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20011227

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GR

    Payment date: 20011228

    Year of fee payment: 7

    Ref country code: DE

    Payment date: 20011228

    Year of fee payment: 7

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: LU

    Payment date: 20020107

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20020129

    Year of fee payment: 7

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20021221

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20021221

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20021221

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20021222

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20021223

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20021231

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20021231

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20021231

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030131

    BERE Be: lapsed

    Owner name: *ARCMET TECHNOLOGIE G.M.B.H.

    Effective date: 20021231

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030630

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030701

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030701

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030707

    EUG Se: european patent has lapsed
    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: EBP

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20021221

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20030701

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030901

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: MM4A

    Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

    Effective date: 20030630

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20021223

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20051221