EP0795466A1 - Zykloidalsysteme mit Doppel- bzw. Mehrfach-Flügelsystemen - Google Patents

Zykloidalsysteme mit Doppel- bzw. Mehrfach-Flügelsystemen Download PDF

Info

Publication number
EP0795466A1
EP0795466A1 EP97100987A EP97100987A EP0795466A1 EP 0795466 A1 EP0795466 A1 EP 0795466A1 EP 97100987 A EP97100987 A EP 97100987A EP 97100987 A EP97100987 A EP 97100987A EP 0795466 A1 EP0795466 A1 EP 0795466A1
Authority
EP
European Patent Office
Prior art keywords
wing
blades
wings
cycloidal propeller
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97100987A
Other languages
English (en)
French (fr)
Other versions
EP0795466B1 (de
Inventor
Andreas Amelang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voith Hydro Holding GmbH and Co KG
Original Assignee
Voith Hydro GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voith Hydro GmbH and Co KG filed Critical Voith Hydro GmbH and Co KG
Publication of EP0795466A1 publication Critical patent/EP0795466A1/de
Application granted granted Critical
Publication of EP0795466B1 publication Critical patent/EP0795466B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/04Propulsive elements directly acting on water of rotary type with rotation axis substantially at right angles to propulsive direction
    • B63H1/06Propulsive elements directly acting on water of rotary type with rotation axis substantially at right angles to propulsive direction with adjustable vanes or blades
    • B63H1/08Propulsive elements directly acting on water of rotary type with rotation axis substantially at right angles to propulsive direction with adjustable vanes or blades with cyclic adjustment
    • B63H1/10Propulsive elements directly acting on water of rotary type with rotation axis substantially at right angles to propulsive direction with adjustable vanes or blades with cyclic adjustment of Voith Schneider type, i.e. with blades extending axially from a disc-shaped rotary body

Definitions

  • the invention relates to a cycloidal propeller with wings pivotably mounted on the rotor body in certain vane circle positions and extending transversely to the direction of advance, the rotor axis of rotation and the wing pivot axes running parallel to one another and the adjustment of the vanes being controllable by means of a central control stick via a linkage forming the vane kinematics.
  • a cycloidal propeller is described in Voith Research and Construction, Issue 18, Article 3, May 67 with the title "The construction of today's Voith-Schneider propels" or also in Voith special edition 9.94 2000. There is also a description of such a cycloidal propeller in the German interpretation DE-AS 21 41 569.
  • wing kinematics forming the actual wing adjustment are dealt with in detail, so that a detailed description and illustration are omitted here. From the references mentioned, the bearing of the individual blades on the rotor body can also be seen very clearly.
  • a wing shaft connected to the wing is provided, which is mounted in corresponding bearings, in particular plain bearings.
  • a double wing can achieve the same lift and induced drag as a single wing with a shorter wing length.
  • the shorter wing length also brings certain design advantages, since the moment load on the wing bearing is reduced accordingly.
  • Fig. 1 the vane circle is indicated by 9 and the individual vane positions with a, b, c or d, which are four vane circle positions, thus a four-bladed cycloidal propeller with each four wing pairs 2a, 3a; 2b, 3b; 2c, 3c; as well as 2d and 3d, the wing positions have the same circumferential spacing on the wing circle.
  • This is common and corresponds to the previous design of a single-bladed cyclo-propeller with four blades according to FIG. 4.
  • FIG. 2 shows the double wing with its uniform wing shaft 4 in a side view, wing 2a or 3a corresponding in principle to the design of the single-winged, known propeller with wings 12 according to FIG. 4.
  • Fig. 3 shows the view transverse to the viewing direction of Fig. 2 with the two associated wings 2a and 3a of the pair of wings.
  • the distance between these two wings of a pair is preferably at least somewhat larger than the maximum thickness of the profile of a wing. The optimal distance must be determined in individual cases.
  • the position of the wings of a pair of wings with respect to one another can also deviate from the exact parallelism, in particular a certain offset of the two wing profiles with respect to one another can also be carried out.
  • wing profiles of a pair of wings are designed somewhat differently. It would also be conceivable that not only a pair of wings forming two parallel wings, but three wings or more are used per wing circle position. In general, however, a pair of wings should result in optimal conditions from the overall viewpoint of a hydrodynamic and constructive nature.
  • FIGS. 5 and 6 A double wing constructed from individual parts, which therefore consists of two parallel single wings, is shown in FIGS. 5 and 6 in the corresponding views.
  • the common wing shaft 24 carries a base plate 15 which carries the two wings 22 and 23 of a pair of wings. Outdoors There is a connecting plate 13 at the wing end.
  • the individual plates can be connected to the wings by screws, but also by welding. But the cast version is also a practical version.
  • the connecting plate at the free wing ends can make a certain contribution to improving the efficiency of the double wing or multiple wing.
  • the invention can be used not only in cycloidal propellers, but also in wind turbines.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Die Erfindung betrifft einen Zykloidalpropeller mit am Rotorkörper schwenkbar gelagerten, sich quer zur Vortriebsrichtung erstreckenden Flügeln (2a, 3a; 2b, 3b; 2a, 3a; 2d, 3d), die in bestimmten Flügelkreispositionen (a, b, c, d) des Flügelkreises (9) angeordnet sind, wobei die Rotordrehachse und die Flügelschwenkachsen zueinander parallel verlaufen und die Verstellung der Flügel über ein die Flügelkinematik bildendes Gestänge mittels einem zentralen Steuerknüppel bewirkbar ist. Die Erfindung zeichnet sich aus durch mindestens zwei parallele Flügel je Flügelkreisposition, um das hydrodynamische Verhalten des Propellers zu verbessern. <IMAGE>

Description

  • Die Erfindung betrifft einen Zykloidalpropeller mit am Rotorkörper in bestimmten Flügelkreispositionen schwenkbar gelagerten, sich quer zur Vortriebsrichtung erstreckenden Flügeln, wobei die Rotordrehachse und die Flügelschwenkachsen zueinander parallel verlaufen und die Verstellung der Flügel über ein die Flügelkinematik bildendes Gestänge mittels einem zentralen Steuerknüppel steuerbar ist. Ein solcher Zykloidalpropeller ist beschrieben in Voith Forschung und Konstruktion, Heft 18, Aufsatz 3, Mai 67 mit dem Titel "Die Konstruktion der heutigen Voith-Schneider-Propelle" oder auch im Voith-Sonderdruck 9.94 2000. Ferner findet sich eine Beschreibung eines solchen Zykloidalpropellers in der deutschen Auslegeschrift DE-AS 21 41 569.
  • In der erstgenannten und zuletzt genannten Literaturstelle wird ausführlich auf die die eigentliche Flügelverstellung bildende Flügelkinematik eingegangen, so daß auf eine ausführliche Beschreibung und Darstellung hier verzichtet wird. Man erkennt aus den genannten Literaturstellen auch sehr klar die Lagerung der einzelnen Flügel am Rotorkörper. Dabei ist im allgemeinen bzw. grundsätzlich ein mit dem Flügel verbundener Flügelschaft vorgesehen, der in entsprechenden Lagern, insbesondere Gleitlagern, gelagert ist.
  • In der jüngeren Vergangenheit konnte durch verschiedene Verbesserungen die mechanische Belastbarkeit des Zykloidalpropellers entscheidend verbessert werden.
  • Es ist nun die Aufgabe, entsprechend der höheren, umzusetzenden mechanischen Leistung auch ein besseres hydrodynamisches Verhalten des Voith-Schneider-Propellers zu erreichen.
  • Diese Aufgabe wird gemäß der Erfindung durch die Merkmale des kennzeichnenden Teils des Patentanspruchs 1 gelöst.
  • Durch den Einsatz an mindestens einem Paar von zueinander parallelen oder zumindest quasiparallelen Flügeln je Flügelkreisposition wird erreicht, daß bei gleicher Flügellänge und gleichem Auftrieb beim Doppelflügel (oder Mehrfachflügel allgemein) im Vergleich zum Einzelfllügel ein geringerer induzierter Widerstand auftritt. Dadurch wird ein besserer Vortriebswirkungsgrad des Zykloidalpropellers erreicht, was eine grundsätzliche Verbesserung darstellt. Umgekehrt kann auch ein Doppelflügel den gleichen Auftrieb und induzierten Widerstand wie ein Einzelflügel bei kürzerer Flügellänge erreichen.
  • Die kürzere Flügellänge bringt auch gewisse konstruktive Vorteile, da sich die Momentenbelastung der Flügellagerung entsprechend verringert.
  • Ferner kann bei zumindest einem Flügelpaar je Flügelkreisposition durch die Wechselwirkung zwischen den parallelen Flügeln eine spürbare Reduktion der Unterdruckbereiche am Flügelprofil erreicht werden. Dadurch nimmt die Kavitationsneigung entscheidend ab. Diese geringere Kavitationsneigung bringt die folgenden Vorteile mit sich:
    • 1.) Verringerte Schwingungsanregung, was eine grundsätzliche Verbesserung für höhere Schiffsgeschwindigkeiten darstellt.
    • 2.) Geringerer Geräuschpegel des Propellers (also insbesondere unter Wasser). Dies dürfte ein spezieller Vorteil bei militärischen Anwendungszwecken sein.
    • 3.) Wirkungsgradverbesserung
    • 4.) Vermeidung von Kavitationsschäden
  • Zusammenfassend kann festgestellt werden, daß eine wesentliche Verbesserung des Verhältnisses zwischen Leistung und Schub auftritt.
  • Alle genannten Verbesserungen lassen sich auch durch das günstigere Abreißverhalten des Doppelflügels z. B. im Vergleich zum Einflügler erklären, d.h. die Strömung reißt beim Doppelflügel später ab.
  • Nachfolgend wird die Erfindung anhand der Figuren in der Zeichnung erläutert; dabei stellen im einzelnen dar:
  • Fig. 1
    eine prinzipielle Darstellung der Flügel in den verschiedenen Flügelkreispositionen bei einem vierflügligen Zykloidalpropeller,
    Fig. 2
    eine Seitenansicht eines Flügelpaares,
    Fig. 3
    eine Ansicht des Flügelpaares quer zur Fig. 2,
    Fig. 4
    eine Draufsicht auf die Flügelanordnung auf dem Flügelkreis mit den verschiedenen Positionen bei einem vierflügligen, einfachflügligen Zykloidalpropeller,
    Fig. 5
    eine Seitenansicht eines Flügelpaares bei einer gebauten Konstruktion und
    Fig. 6
    eine Ansicht quer zu Fig. 5.
  • In Fig. 1 ist der Flügelkreis mit 9 angedeutet und die einzelnen Flügelpositionen mit a, b, c oder d, wobei es sich hier um vier Flügelkreispositionen, mithin einen vierflügligen Zykloidalpropeller mit jeweils vier Flügelpaaren 2a, 3a; 2b, 3b; 2c, 3c; sowie 2d und 3d handelt, Die Flügelpositionen haben dabei auf dem Flügelkreis gleiche Umfangsabstände. Dies ist üblich und entspricht der bisherigen Ausführung eines einfachflügligen Zykloialpropellers mit vier Flügeln entsprechend Fig. 4.
  • In Fig. 2 ist der Doppelflügel mit seinem einheitlichen Flügelschaft 4 in Seitenansicht dargestellt, wobei Flügel 2a oder 3a im Prinzip der Ausführung des einfachflügligen, bekannten Propellers mit Flügeln 12 gemäß Fig. 4 entspricht. Fig. 3 zeigt die Ansicht quer zur Blickrichtung der Fig. 2 mit den beiden zusammengehörigen Flügeln 2a und 3a des Flügelpaares. Der Abstand zwischen diesen beiden Flügeln eines Paares ist vorzugsweise zumindest etwas größer als die maximale Dicke des Profils eines Flügels. Der optimale Abstand muß im Einzelfall ermittelt werden. Die Lage der Flügel eines Flügelpaares zueinander kann auch von der genauen Parallelität abweichen, insbesondere kann auch ein gewisser Versatz der beiden Flügelprofile zueinander vorgenommen werden. Denkbar ist auch, daß die Flügelprofile eines Flügelpaares etwas unterschiedlich ausgebildet werden. Denkbar wäre auch, daß nicht nur ein Flügelpaar bildende zwei parallele Flügel, sondern drei Flügel oder mehr je Flügelkreisposition angewendet werden. Im allgemeinen dürfte jedoch ein Flügelpaar optimale Verhältnisse unter der Gesamtheit der Gesichtspunkte hydrodynamischer und konstruktiver Art ergeben.
  • Bei der Auswahl der Anzahl der Flügel dürfte auch die Materialwahl eine große Rolle spielen; es dürfte auch Kunststoff in Kompositbauweise in Betracht kommen.
  • Ein aus Einzelteilen aufgebauter Doppelflügel, der also aus zwei parallelen Einzelflügeln besteht, ist in Figur 5 und 6 in den entsprechenden Ansichten dargestellt. Dabei trägt der gemeinsame Flügelschaft 24 eine Grundplatte 15, die die beiden Flügel 22 und 23 eines Flügelpaares trägt. Am freien Flügelende befindet sich eine Verbindungsplatte 13. Die Verbindung der einzelnen Platten mit den Flügeln kann durch Schrauben, aber auch durch Schweißung erfolgen. Sicher ist aber auch die gegossene Variante eine praktikable Ausführung. Die Verbindungsplatte an den freien Flügelenden kann einen gewissen Beitrag zur Verbesserung des Wirkungsgrades der Doppelflügel bzw. Mehrfachflügel leisten.
  • Die Erfindung läßt sich nicht nur in Zykloidalpropellern, sondern auch bei Windturbinen nutzen.

Claims (8)

  1. Zykloidalpropeller mit am Rotorkörper schwenkbar gelagerten, sich quer zur Vortriebsrichtung erstreckenden Flügeln (2a, 3a; 2b, 3b; 2a,3a; 2d, 3d), die in bestimmten Flügelkreispositionen (a, b, c, d) des Flügelkreises (9) angeordnet sind, wobei die Rotordrehachse und die Flügelschwenkachsen zueinander parallel verlaufen und die Verstellung und Schwenkbewegung der Flügel über ein die Flügelkinematik bildendes Gestänge mittels einem zentralen Steuerknüppel bewirkbar ist, dadurch gekennzeichnet, daß mindestens zwei zueinander parallele Flügel (2a, 3a; 2b, 3b; 2c, 3c; 2d, 3d) je Flügelkreisposition (a, b, c, d) vorgesehen sind.
  2. Zykloidalpropeller nach Anspruch 1, bei dem die einzelnen Flügel jeweils von einem mit der Flügelkinematik verbundenen Flügelschaft (14) gehalten sind, dadurch gekennzeichnet, daß jeweils die Flügel der einzelnen Flügelkreisposition von dem einen Flügelschaft (14) gehalten sind.
  3. Zykloidalpropeller nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß eine gemeinsame Grundplatte (15) für die parallelen Flügel einer Flügelkreisposition vorgesehen ist.
  4. Zykloidalpropeller nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die entsprechenden Flügel einer Flügelposition genau zueinander parallel angeordnet sind.
  5. Zykloidalpropeller nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die einzelnen Flügel jeder Flügelkreisposition (a, b, c, d) nur quasi-parallel zueinander oder mit gegenseitigen Versatz und/oder Winkel zueinander angeordnet sind.
  6. Zykloidalpropeller nach einem der Ansprüche 1 bis 5, gekennzeichnet durch eine ungleiche Länge der Flügel je Flügelkreisposition, insbesondere je Flügelpaar.
  7. Zykloidalpropeller nach einem der Ansprüche 1 bis 6, gekennzeichnet durch eine Verbindungsplatte (13) am freien Flügelende der einzelnen Flügel (22, 23) je Flügelkreisposition (a, b, c, d), deren Längserstreckung zu der Vortriebsrichtung des Propellers parallel ist.
  8. Zykloidalpropeller nach einem der Ansprüche 1 - 7, dadurch gekennzeichnet, daß die Flügelform und die Flügelprofile der Flügel eines Flügelpaares unterschiedlich sind.
EP97100987A 1996-03-16 1997-01-23 Zykloidalsysteme mit Doppel- bzw. Mehrfach-Flügelsystemen Expired - Lifetime EP0795466B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19610454A DE19610454C2 (de) 1996-03-16 1996-03-16 Zykloidalpropeller, insbesondere als Schiffsantrieb
DE19610454 1996-03-16

Publications (2)

Publication Number Publication Date
EP0795466A1 true EP0795466A1 (de) 1997-09-17
EP0795466B1 EP0795466B1 (de) 2001-07-18

Family

ID=7788542

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97100987A Expired - Lifetime EP0795466B1 (de) 1996-03-16 1997-01-23 Zykloidalsysteme mit Doppel- bzw. Mehrfach-Flügelsystemen

Country Status (2)

Country Link
EP (1) EP0795466B1 (de)
DE (2) DE19610454C2 (de)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2350942A (en) * 1940-10-17 1944-06-06 Thomas R Tarn Dual propeller
DE1094622B (de) * 1957-10-12 1960-12-08 Volkswerft Stralsund Veb Doppelpropeller, vorzugsweise fuer Schiffe
DE2141569A1 (de) 1971-08-19 1973-02-22 Voith Gmbh J M Steuerung eines zum erzeugen einer nach groesse und richtung stetig veraenderbaren propellerkraft eingerichteten fahrzeugpropellers
GB2204643A (en) * 1986-09-03 1988-11-16 Dennis George Bourne Marine propeller
EP0295353A1 (de) * 1987-06-13 1988-12-21 Khammas, Achmed Adolf Wolfgang Rotorblatt
DE3835213A1 (de) * 1988-10-15 1990-05-10 Schiffer Dietrich F W Tragfluegelausbildung zur energieuebertragung in den medien wasser und gas und fuer ein fahrzeug zur bewegung auf dem lande bzw. dem wasser und in der luft

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2350942A (en) * 1940-10-17 1944-06-06 Thomas R Tarn Dual propeller
DE1094622B (de) * 1957-10-12 1960-12-08 Volkswerft Stralsund Veb Doppelpropeller, vorzugsweise fuer Schiffe
DE2141569A1 (de) 1971-08-19 1973-02-22 Voith Gmbh J M Steuerung eines zum erzeugen einer nach groesse und richtung stetig veraenderbaren propellerkraft eingerichteten fahrzeugpropellers
GB2204643A (en) * 1986-09-03 1988-11-16 Dennis George Bourne Marine propeller
EP0295353A1 (de) * 1987-06-13 1988-12-21 Khammas, Achmed Adolf Wolfgang Rotorblatt
DE3835213A1 (de) * 1988-10-15 1990-05-10 Schiffer Dietrich F W Tragfluegelausbildung zur energieuebertragung in den medien wasser und gas und fuer ein fahrzeug zur bewegung auf dem lande bzw. dem wasser und in der luft

Also Published As

Publication number Publication date
DE19610454C2 (de) 1997-04-10
DE59704053D1 (de) 2001-08-23
DE19610454A1 (de) 1996-09-19
EP0795466B1 (de) 2001-07-18

Similar Documents

Publication Publication Date Title
DE19643222C2 (de) Auftriebskörper mit veränderbarer Wölbung
EP2594478B1 (de) Propelleranordnung, insbesondere für Wasserfahrzeuge
DE2926180C2 (de) Verstellrotor
DE2922469C2 (de) Rotor für ein Drehflügelflugzeug
DE1556414C3 (de) Rotor fur Drehflügelflugzeuge
DE2333274A1 (de) Geblaeserad
DE69302792T2 (de) Verstellbarer Propeller oder Ventilator
EP0166425B1 (de) Schraube für gasförmige oder flüssige Medien, insbesondere Luftschraube
DE102005049794A1 (de) Propeller
DE1728269A1 (de) Gestaenge fuer Statorschaufeln fuer Axialverdichter
EP0795466B1 (de) Zykloidalsysteme mit Doppel- bzw. Mehrfach-Flügelsystemen
EP2109565B1 (de) Strahlantrieb
EP0785129B1 (de) Zykloidalpropeller, insbesondere als Schiffsantrieb
EP0909703B1 (de) Steuerruder für Wasserfahrzeuge
DE4435606A1 (de) Flügel mit veränderbarer Form bezüglich der Wechselwirkung mit dem strömenden Medium
DE2413199A1 (de) Propeller bzw. turbinenrad
DE10044101A1 (de) Antrieb für schnelle Wasserfahrzeuge
DE3724701C2 (de)
AT500816B1 (de) Motorgetriebener propeller für einen flugkörper
DE19618247A1 (de) Propulsionseinrichtung für Schiffe, bestehend aus zwei gleichsinnig drehenden Propellern
DE2841089A1 (de) Zur umwandlung der dreharbeit in schubarbeit dienende schraube
DE102020128799A1 (de) Antriebseinheit für einen Drehflügler und Drehflügler
DE2032259C (de) Rotor, insbesondere fur Dreh flugelfl ugzeuge mit um die Flug zeugquerachse schwenkbaren Rotoren
DE2356008C3 (de) Propeller
DE1781372A1 (de) Schiffspropeller mit vollkavitierendem Fluegelprofil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19980124

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20000926

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010718

REF Corresponds to:

Ref document number: 59704053

Country of ref document: DE

Date of ref document: 20010823

EN Fr: translation not filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

EN Fr: translation not filed

Free format text: BO 01/51 PAGES: 265, IL Y A LIEU DE SUPPRIMER: LA MENTION DE LA NON REMISE. LA REMISE EST PUBLIEE DANS LE PRESENT BOPI.

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140203

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140121

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140123

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59704053

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150123

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150202