EP0795052A1 - Method of producing shaped cellulose bodies, and yarn made of cellulose filaments - Google Patents

Method of producing shaped cellulose bodies, and yarn made of cellulose filaments

Info

Publication number
EP0795052A1
EP0795052A1 EP95939293A EP95939293A EP0795052A1 EP 0795052 A1 EP0795052 A1 EP 0795052A1 EP 95939293 A EP95939293 A EP 95939293A EP 95939293 A EP95939293 A EP 95939293A EP 0795052 A1 EP0795052 A1 EP 0795052A1
Authority
EP
European Patent Office
Prior art keywords
air
solution
shaped
cellulose
filaments
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95939293A
Other languages
German (de)
French (fr)
Other versions
EP0795052B1 (en
EP0795052B2 (en
Inventor
Jürgen Pitowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akzo Nobel NV
Original Assignee
Akzo Nobel NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6534703&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0795052(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Akzo Nobel NV filed Critical Akzo Nobel NV
Publication of EP0795052A1 publication Critical patent/EP0795052A1/en
Publication of EP0795052B1 publication Critical patent/EP0795052B1/en
Application granted granted Critical
Publication of EP0795052B2 publication Critical patent/EP0795052B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • Y10T428/2965Cellulosic

Definitions

  • the invention relates to a process for the production of cellulosic shaped articles, a solution of cellulose in a tertiary amine N-oxide and optionally water being shaped in a warm state and the shaped solution being cooled with air before being introduced into a coagulation bath, and a Cellulosic filament yarn.
  • the cooling being to take place immediately after molding.
  • the aim of this process is to reduce the stickiness of the freshly extruded moldings, so that a spinneret with a high hole density can be used in the production of cellulosic threads.
  • the shaped solution is preferably exposed to a gas stream.
  • the warm shaped solution is already cooled when the shaped solution leaves the shaping element, for example a spinneret, in which temperatures are typically above 90 ° C., and reaches the so-called air gap.
  • the area between the shaping element and the coagulation bath in which the cellulose is precipitated is referred to as the air gap.
  • the temperature in the air gap is lower than in the spinneret, but is significantly higher than room temperature due to the heat radiation from the spinneret and the heating of the air resulting from the enthalpy flow of the moldings. Due to the permanent evaporation of water, which is usually used as a coagulation bath, the air gap is humid and warm. With the measure proposed in WO 93/19230 to cool the shaped solution immediately after shaping, a faster cooling is brought about, so that the stickiness of the shaped solution decreases accordingly faster.
  • the object of the present invention is to improve such a method, but in particular also to improve the properties of the moldings produced therewith, preferably filaments or a filament yarn.
  • This object is achieved by a process for the production of cellulosic moldings, a solution of cellulose being formed in a tertiary amine N-oxide and optionally water in a warm state and the shaped solution being cooled with air before being introduced into a coagulation bath, with the Cooling-conditioned air is used which has a water content of 0.1 to 7 g of water vapor per kg of dry air and whose relative humidity is less than 85%.
  • the water content of the conditioned air is preferably 0.7 to 4 g of water vapor per kg of dry air, in particular 0.7 to 2 g.
  • the cooling can take place with flowing air, whereby it is blown against the shaped solution or is sucked off from it.
  • the suction can be carried out in such a way that conditioned air is provided and this is sucked through, for example, a bundle of freshly spun fibers or filaments. A combination of blowing and suction is particularly advantageous.
  • the shaped solution can be exposed to the conditioned air over the entire distance up to the introduction into the coagulation bath or only over part of this distance, it being advantageous to apply the air in the first part, i.e. in the area of the air gap which directly adjoins the shaping element.
  • the conditioned air should flow at an angle of 0 to 120 °, preferably 90 °, relative to the direction of movement of the shaped solution, the angle of 0 ° corresponding to an inflow opposite to the direction of travel of the shaped solution.
  • fibers in particular filaments, films, hollow fibers, membranes, for example for use in dialysis, oxygenation or filtration, can be produced in an advantageous manner.
  • the solution can be shaped into a desired cellulosic shaped body using known spinnerets for the production of fibers, slot nozzles or hollow fiber spinnerets. After the shaping, ie before the shaped solution is introduced into the coagulation bath, it can be stretched.
  • a yarn made of cellulosic filaments, produced from a solution of cellulose in a tertiary amine N-oxide and optionally water, is characterized in that the cross-sectional areas of the filaments have a coefficient of variation less than 12%, preferably less than 10%.
  • cooling of the freshly extruded molded articles in the air gap is advantageous in order to reduce their stickiness more quickly.
  • the gas flow must of course have a temperature which is below that of the shaped solution.
  • a gas stream is used which has a temperature of -6 to 24 ° C.
  • the water content of air in g of water vapor per kg of dry air is often referred to as the mixing ratio.
  • the unit g / kg is used for this purpose.
  • the influence of the water content or the mixing ratio is particularly evident in filament production in irregularities in the filament cross sections.
  • the coefficient of variation of the filament cross-sectional areas is 30% in a yarn with 50 individual filaments.
  • the coefficient of variation decreases to 5.8% at the same temperature.
  • it is therefore essential to condition the air gap with dry air.
  • the temperature of the cooling air plays a minor role.
  • air was blown at a blowing speed of 0.8 m / s perpendicular to the thread bundle.
  • the air was blown onto the bundle on one side, and the air was distributed homogeneously with very fine-mesh sieves with a width of 10 cm, and the blowing was carried out over a distance of 10 cm from the nozzle outlet.
  • the filaments were drawn in the air gap by a factor of 16 and dried after passing through a water bath for coagulation and downstream washing baths to remove the NMMO.
  • the take-off speed was 420 m / min.
  • the filament bundles obtained in each case were cut twice at a distance of one meter perpendicular to the bundle axis.
  • the cross-sectional areas of the filaments were transferred to a computer image analysis system (Quantimet 970) and evaluated using a light microscope (magnification 570: 1) and a video camera. The area of each filament was determined.
  • the coefficient of variation of the filament cross-sectional area in percent was calculated from the mean value of the filament cross-sections of each bundle examined, two sectional images being evaluated per bundle, and the standard deviation as the ratio of standard deviation to mean.
  • the resulting air stream was then cooled to the desired temperature with a heat exchanger.
  • the relative humidity and the water content were determined with a psychrometer (ALMEMO 2290-2 with psychrometer sensor AN 846 or humidity / temperature sensor AFH 9646-2).
  • the air was previously condensed Pre-dried air further dried with a dehumidifier (model 120 KS from Munters GmbH). The dry air was also reheated using a heat exchanger. The determination of the relative humidity and the water content of the air, which was dried to a water content of less than 4 g / kg, was carried out with a mirror-cooled dew point meter (S4000 RS from MICHELL Instruments).
  • Table II shows that outside the range according to the invention the variation coefficients of the filament cross-sectional areas are above 14% and values of over 30% are even reached. Such high fluctuations are in the production of filament yarn is undesirable, since these have a negative effect on processing into textile fabrics and in particular lead to a non-uniform coloring of the fabric. Processing problems may also arise due to the different strengths of the individual filaments among one another and with respect to the yarn.
  • Examples 16 and 22 show that both requirements, ie a water content below 7 g of water vapor per kg of dry air and a relative humidity below 85%, must be guaranteed for the present invention. In example 16, although the water content was in the range claimed, the air had a higher relative humidity and a coefficient of variation of 16.1% resulted.
  • Example 22 shows the conditions of the ambient air at a temperature of 21 ° C, at a relative humidity of 60% and a water content of 9.2 g / kg.
  • the relative humidity is in the claimed range, the water content is not, and a coefficient of variation of 23.4% results.
  • This example further illustrates that it is not sufficient to cool with ambient air and that it is not sufficient to simply blow on with ambient air that is cooler than the temperature usually prevailing in the air gap in order to achieve an improvement in textile properties .

Abstract

Process for manufacturing cellulose formed objects, whereby a solution of cellulose is formed in the warm state in a tertiary amine N-oxide and, if necessary, water and the formed solution is cooled with air before introducing it into a coagulation bath. Conditioned air is employed for cooling which exhibits a water content of 0.1 to 7 g water vapor per kg dry air and whose relative humidity amounts to less than 85%.

Description

Verfahren zur Herstellung cellulosischer Foπukörper und ein Garn aus cellulosischen Filamenten Process for producing cellulosic foam bodies and a yarn made of cellulosic filaments
* * ** * *
BeschreibungsDescriptive
Die Erfindung betrifft ein Verfahren zur Herstellung cellu¬ losischer Formkörper, wobei eine Lösung von Cellulose in einem tertiären Amin-N—oxid und gegebenenfalls Wasser in warmem Zustand geformt wird und die geformte Lösung vor dem Einbringen in ein Koagulationsbad mit Luft gekühlt wird, sowie ein Garn aus cellulosischen Filamenten.The invention relates to a process for the production of cellulosic shaped articles, a solution of cellulose in a tertiary amine N-oxide and optionally water being shaped in a warm state and the shaped solution being cooled with air before being introduced into a coagulation bath, and a Cellulosic filament yarn.
Ein derartiges Verfahren wird in der WO 93/19230 be¬ schrieben, wobei die Kühlung unmittelbar nach dem Formen erfolgen soll. Mit diesem Verfahren soll erreicht werden, daß die Klebrigkeit der frisch extrudierten Formkörper vermindert wird, so daß bei der Herstellung cellulosischer Fäden eine Spinndüse mit hoher Lochdichte eingesetzt werden kann. Zur Kühlung wird die geformte Lösung bevorzugt einem Gasstrom ausgesetzt. Eine Kühlung der warmen geformten Lösung erfolgt bereits, wenn die geformte Lösung das Formungsorgan, beispielsweise eine Spinndüse, in der typischerweise Temperaturen über 90°C vorliegen, verläßt und in den sogenannten Luftspalt gelangt. Als Luftspalt wird der Bereich zwischen dem Formungsorgan und dem Koagulationsbad, in dem die Cellulose gefällt wird, bezeichnet. Die Temperatur im Luftspalt ist niedriger als in der Spinndüse, ist aber aufgrund der Wärmestrahlung durch die Spinndüse und der durch den Enthalpiestrom der Form¬ körper resultierenden Erwärmung der Luft deutlich höher als Raumtemperatur. Durch die permanente Verdampfung von Wasser, das üblicherweise als Koagulationsbad verwendet wird, liegen somit im Luftspalt feuchtwarme Verhältnisse vor. Mit der in der WO 93/19230 vorgeschlagenen Maßnahme, die geformte Lösung unmittelbar nach der Formung zu kühlen, wird eine schnellere Abkühlung bewirkt, so daß die Klebrigkeit der geformten Lösung dementsprechend schneller abnimmt.Such a method is described in WO 93/19230, the cooling being to take place immediately after molding. The aim of this process is to reduce the stickiness of the freshly extruded moldings, so that a spinneret with a high hole density can be used in the production of cellulosic threads. For cooling, the shaped solution is preferably exposed to a gas stream. The warm shaped solution is already cooled when the shaped solution leaves the shaping element, for example a spinneret, in which temperatures are typically above 90 ° C., and reaches the so-called air gap. The area between the shaping element and the coagulation bath in which the cellulose is precipitated is referred to as the air gap. The temperature in the air gap is lower than in the spinneret, but is significantly higher than room temperature due to the heat radiation from the spinneret and the heating of the air resulting from the enthalpy flow of the moldings. Due to the permanent evaporation of water, which is usually used as a coagulation bath, the air gap is humid and warm. With the measure proposed in WO 93/19230 to cool the shaped solution immediately after shaping, a faster cooling is brought about, so that the stickiness of the shaped solution decreases accordingly faster.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein derartiges Verfahren insbesondere aber auch die Eigen¬ schaften der damit hergestellten Formkörper, vorzugsweise Filamente, bzw. einem Filamentgarn, zu verbessern.The object of the present invention is to improve such a method, but in particular also to improve the properties of the moldings produced therewith, preferably filaments or a filament yarn.
Diese Aufgabe wird durch ein Verfahren zur Herstellung cellulosischer Formkörper gelöst, wobei eine Lösung von Cellulose in einem tertiären Amin-N-oxid und gegebenenfalls Wasser in warmem Zustand geformt wird und die geformte Lösung vor dem Einbringen in ein Koagulationsbad mit Luft gekühlt wird, wobei zur Kühlung konditionierte Luft einge¬ setzt wird, die einen Wassergehalt von 0,1 bis 7 g Wasser¬ dampf je kg trockene Luft aufweist und deren relative Feuchtigkeit weniger als 85% beträgt. Vorzugsweise beträgt der Wassergehalt der konditionierten Luft 0,7 bis 4 g Wasserdampf je kg trockene Luft, insbe¬ sondere 0,7 bis 2 g. Die Kühlung kann mit strömender Luft erfolgen, wobei diese gegen die geformte Lösung geblasen oder von dieser abgesogen wird. Das Absaugen kann derart erfolgen, daß konditionierte Luft bereitgestellt wird und diese beispielsweise durch ein Bündel frischgesponnener Fasern oder Filamente hindurchgesogen wird. Besonders vorteilhaft ist eine Kombination von Anblasung und Absaugung.This object is achieved by a process for the production of cellulosic moldings, a solution of cellulose being formed in a tertiary amine N-oxide and optionally water in a warm state and the shaped solution being cooled with air before being introduced into a coagulation bath, with the Cooling-conditioned air is used which has a water content of 0.1 to 7 g of water vapor per kg of dry air and whose relative humidity is less than 85%. The water content of the conditioned air is preferably 0.7 to 4 g of water vapor per kg of dry air, in particular 0.7 to 2 g. The cooling can take place with flowing air, whereby it is blown against the shaped solution or is sucked off from it. The suction can be carried out in such a way that conditioned air is provided and this is sucked through, for example, a bundle of freshly spun fibers or filaments. A combination of blowing and suction is particularly advantageous.
Die geformte Lösung kann der konditionierten Luft über die gesamte Strecke bis zum Einbringen in das Koagulationsbad ausgesetzt werden oder nur über einen Teil dieser Strecke, wobei es von Vorteil ist, die Beaufschlagung mit der Luft im ersten Teil vorzunehmen, d.h. in dem Bereich des Luft¬ spalts, der sich unmittelbar an das Formungsorgan an¬ schließt. Die konditionierte Luft sollte unter einem Winkel von 0 bis 120°, vorzugsweise 90°, relativ zur Bewegungs¬ richtung der geformten Lösung strömen, wobei der Winkel von 0° einer Anströmung entgegengesetzt zur Laufrichtung der geformten Lösung entspricht.The shaped solution can be exposed to the conditioned air over the entire distance up to the introduction into the coagulation bath or only over part of this distance, it being advantageous to apply the air in the first part, i.e. in the area of the air gap which directly adjoins the shaping element. The conditioned air should flow at an angle of 0 to 120 °, preferably 90 °, relative to the direction of movement of the shaped solution, the angle of 0 ° corresponding to an inflow opposite to the direction of travel of the shaped solution.
Mit dem erfindungsgemäßen Verfahren lassen sich in vorteil¬ hafter Weise Fasern, insbesondere Filamente, Filme, Hohl¬ fasern, Membranen, beispielsweise zum Einsatz in der Dialyse, Oxygenation oder Filtration, herstellen. Die Formung der Lösung zu einem gewünschten cellulosischen Form¬ körper kann mit bekannten Spinndüsen zur Herstellung von Fasern, Schlitzdüsen oder Hohlfadenspinndüsen erfolgen. Im Anschluß an die Formung, d.h. vor dem Einbringen der ge¬ formten Lösung in das Koagulationsbad, kann diese verstreckt werden. Ein Garn aus cellulosischen Filamenten, hergestellt aus einer Lösung von Cellulose in einem tertiären Amin-N-oxid und gegebenenfalls Wasser, zeichnet sich dadurch aus, daß die Querschnittsflächen der Filamente einen Variations¬ koeffizienten kleiner als 12%, vorzugsweise kleiner als 10% aufweisen.With the method according to the invention, fibers, in particular filaments, films, hollow fibers, membranes, for example for use in dialysis, oxygenation or filtration, can be produced in an advantageous manner. The solution can be shaped into a desired cellulosic shaped body using known spinnerets for the production of fibers, slot nozzles or hollow fiber spinnerets. After the shaping, ie before the shaped solution is introduced into the coagulation bath, it can be stretched. A yarn made of cellulosic filaments, produced from a solution of cellulose in a tertiary amine N-oxide and optionally water, is characterized in that the cross-sectional areas of the filaments have a coefficient of variation less than 12%, preferably less than 10%.
Wie bereits ausgeführt, ist eine Abkühlung der frisch- extrudierten Formkörper im Luftspalt von Vorteil, um so deren Klebrigkeit rascher zu verringern. Um überhaupt kühlen zu können, muß der Gasström naturgemäß eine Temperatur auf¬ weisen, die unterhalb der der geformten Lösung liegt. Gemäß der WO 93/19230 wird ein Gasstrom eingesetzt, der eine Temperatur von -6 bis 24°C aufweist.As already stated, cooling of the freshly extruded molded articles in the air gap is advantageous in order to reduce their stickiness more quickly. In order to be able to cool at all, the gas flow must of course have a temperature which is below that of the shaped solution. According to WO 93/19230, a gas stream is used which has a temperature of -6 to 24 ° C.
Es wurde nun aber gefunden, daß nicht die Temperatur als solche, sondern der Wassergehalt der Luft und deren relative Feuchtigkeit auf die Eigenschaften der cellulosischen Form¬ körper einen wesentlichen Einfluß haben. Der Wassergehalt von Luft in g Wasserdampf je kg trockener Luft wird oftmals auch als das Mischungsverhältnis bezeichnet. Im folgenden wird hierfür vereinfacht die Einheit g/kg verwendet. Ins¬ besondere bei der Herstellung von Filamenten zeigte es sich, daß es wichtig ist, im Luftspalt möglichst konstante klima¬ tische Bedingungen zu schaffen, d.h. üblicherweise auftre¬ tende Schwankungen des Umgebungsklimas auszuschalten. Ins¬ besondere ist dabei wichtig, daß Schwankungen in der Luft¬ feuchtigkeit vermieden werden, und daß die Luft nur einen geringen Wassergehalt aufweist. Selbst bei Vorhandensein von Klimaanlagen können jahreszeitliche Schwankungen und zum Teil auch tageszeitliche Schwankungen in Räumen nicht aus¬ reichend unterdrückt werden. Weiterhin sollte die Konditi- onierung möglichst gleichmäßig erfolgen, da schon geringe Instabilitäten bezüglich Anblasstärke und Anblasrichtung die Festigkeit, Dehnung und Titerkonstanz von Filamenten negativ beeinflussen.However, it has now been found that it is not the temperature as such, but rather the water content of the air and its relative humidity which have a significant influence on the properties of the cellulosic shaped bodies. The water content of air in g of water vapor per kg of dry air is often referred to as the mixing ratio. In the following, the unit g / kg is used for this purpose. In particular in the manufacture of filaments, it was found that it is important to create climatic conditions that are as constant as possible in the air gap, ie to eliminate fluctuations in the ambient climate that usually occur. It is particularly important that fluctuations in the air humidity are avoided and that the air has only a low water content. Even in the presence of air conditioning systems, seasonal fluctuations and in some cases also fluctuations in the time of day in rooms cannot be adequately suppressed. Furthermore, the conditioning should be carried out as evenly as possible, since it is already low Instabilities regarding the blowing strength and blowing direction negatively influence the strength, elongation and consistency of the filaments.
Der Einfluß des Wassergehaltes bzw. des Mischungsverhält¬ nisses zeigt sich bei der Filamentherstellung insbesondere in Unregelmäßigkeiten der Filamentquerschnitte. Bei einer Kühlung mit Luft von 20°C und einem Wassergehalt von 14 g/kg und einer relativen Feuchtigkeit von 94% beträgt der Variationskoeffizient der Filamentquerschnittsflachen 30% in einem Garn mit 50 Einzelfilamenten. Bei Reduzierung des Wassergehaltes auf 1,2 g/kg und einer relativen Feuchtigkeit von 8,5% erniedrigt sich der Variationskoeffizient bei gleicher Temperatur auf 5,8%. Selbst bei Einsatz von wärmerer Luft von beispielsweise 40°C, aber einem geringen Wassergehalt von 3,4 g/kg und einer relativen Feuchtigkeit von 7,4% resultiert ein Variationskoeffizient von 11,3%, der somit um einem Faktor 2,7 geringer ist als bei Verwendung von kühlerer Luft mit höherer Feuchtigkeit. Erfindungsgemäß ist es daher wesentlich, eine Konditionierung des Luft¬ spaltes mit trockener Luft vorzunehmen. Die Temperatur der Kühlluft spielt dabei eher eine untergeordnete Rolle.The influence of the water content or the mixing ratio is particularly evident in filament production in irregularities in the filament cross sections. With cooling with air at 20 ° C and a water content of 14 g / kg and a relative humidity of 94%, the coefficient of variation of the filament cross-sectional areas is 30% in a yarn with 50 individual filaments. When the water content is reduced to 1.2 g / kg and the relative humidity is 8.5%, the coefficient of variation decreases to 5.8% at the same temperature. Even when using warmer air of, for example, 40 ° C, but a low water content of 3.4 g / kg and a relative humidity of 7.4%, a variation coefficient of 11.3% results, which is therefore a factor of 2.7 less than when using cooler air with higher humidity. According to the invention, it is therefore essential to condition the air gap with dry air. The temperature of the cooling air plays a minor role.
Die Erfindung wird im folgenden anhand von weiteren Beispielen näher erläutert und beschrieben.The invention is explained and described in more detail below with the aid of further examples.
Die obengenannten und auch die im weiteren ausgeführten Beispiele wurden erhalten, indem eine Lösung aus 14 Gew.% des Zellstoffs Viscokraft ELV (International Paper Company) mit einem Polymerisationsgrad von 680, ca. 76 Gew.% N-Methylmorpholin-N-oxid (NMMO) -einem tertiären Amin-N- oxid-, 10 Gew.% Wasser und 0,14 Gew.% Gallussäurepropylester als Stabilisator durch eine Spinndüsenplatte mit 50 Düsenlöchern von jeweils 130 μm Düsenlochdurchmesser zu einem Filamentgarn versponnen wurde. Die in der Spinndüse (T = 110°C) geformten Filamente wurden in einem Luftspalt von 18 cm Länge gekühlt. Im Luftspalt erfolgte eine Anblasung mit Luft mit einer Anblasgeschwindigkeit von 0,8 m/s rechtwinklig zum Fadenbündel. Die Luft wurde ein¬ seitig auf das Bündel geblasen, und die homogene Verteilung der Luft erfolgte mit sehr feinmaschigen Sieben mit einer Breite von 10 cm, und die Anblasung erfolgte über eine Strecke von 10 cm ab Düsenaustritt.The above-mentioned and also the examples given below were obtained by a solution of 14% by weight of the Viscokraft ELV (International Paper Company) pulp with a degree of polymerization of 680, approx. 76% by weight of N-methylmorpholine-N-oxide (NMMO ) -A tertiary amine-N-oxide, 10% by weight water and 0.14% by weight propyl gallic acid as a stabilizer with a spinneret plate 50 nozzle holes, each 130 μm in diameter, were spun into a filament yarn. The filaments formed in the spinneret (T = 110 ° C) were cooled in an air gap of 18 cm in length. In the air gap, air was blown at a blowing speed of 0.8 m / s perpendicular to the thread bundle. The air was blown onto the bundle on one side, and the air was distributed homogeneously with very fine-mesh sieves with a width of 10 cm, and the blowing was carried out over a distance of 10 cm from the nozzle outlet.
Die Filamente wurden im Luftspalt um einen Faktor 16 ver¬ streckt und nach Durchlaufen eines Wasserbades zur Koagulation und nachgeschalteten Waschbädern zur Entfernung des NMMO getrocknet. Die Abzugsgeschwindigkeit betrug 420 m/min.The filaments were drawn in the air gap by a factor of 16 and dried after passing through a water bath for coagulation and downstream washing baths to remove the NMMO. The take-off speed was 420 m / min.
Die jeweils erhaltenen Filamentbündel wurden in einem Abstand von einem Meter 2 mal senkrecht zur Bündelachse durchgeschnitten. Die Querschnittsflächen der Filamente wurden mittels eines Lichtmikroskops (Vergrößerung 570 : 1) und einer Videokamera in ein Computer-Bild-Analyse-System (Quantimet 970) übertragen und ausgewertet. Die Fläche jedes Filaments wurde bestimmt. Aus dem Mittelwert der Filament¬ querschnitte jedes untersuchten Bündels, wobei pro Bündel zwei Schnittbilder ausgewertet wurden, und der Standard¬ abweichung wurde der Variationskoeffizient der Filament- querschnittsfläche in Prozent als das Verhältnis von Standardabweichung zu Mittelwert berechnet.The filament bundles obtained in each case were cut twice at a distance of one meter perpendicular to the bundle axis. The cross-sectional areas of the filaments were transferred to a computer image analysis system (Quantimet 970) and evaluated using a light microscope (magnification 570: 1) and a video camera. The area of each filament was determined. The coefficient of variation of the filament cross-sectional area in percent was calculated from the mean value of the filament cross-sections of each bundle examined, two sectional images being evaluated per bundle, and the standard deviation as the ratio of standard deviation to mean.
Zur Herstellung von konditionierter Luft wurde von Raumluft ausgegangen, die eine Temperatur von 21°C, einen Wasserge¬ halt von 9,2 g/kg und eine relative Feuchtigkeit von 60% aufwies, und die zunächst über Filter gereinigt wurde. Zur Erhöhung des Mischungsverhältnisses wurde die Luft mit Wasserdampf gesättigter Luft (relative Feuchtigkeit 100%) von 80°C gemischt. Um einen Massenstrom ra(x) konditionierte Luft mit dem Wassergehalt x zu erhalten, wurde ein Massen¬ strom iriy Umgebungsluft mit dem Wassergehalt xu mit einem Massenstrom wasserdampfgesättigter Luft mn mit dem Wasser¬ gehalt x^ gemäß m(x) = mu + m^ gemischt. Das Mischungsver¬ hältnis von mu und mj- berechnet sich gemäß folgender Gleichung:For the production of conditioned air, room air was assumed which had a temperature of 21 ° C, a water content of 9.2 g / kg and a relative humidity of 60%. had, and which was first cleaned using filters. To increase the mixing ratio, the air was mixed with water vapor saturated air (relative humidity 100%) of 80 ° C. In order to obtain a mass flow ra (x) conditioned air with the water content x, a mass flow iri y ambient air with the water content x u with a mass flow of water vapor-saturated air m n with the water content x ^ according to m (x) = m u + m ^ mixed. The mixing ratio of m u and m j - is calculated according to the following equation:
mu ___ (xh ~ x) + x u ) mh (x ~ xu) x + xh) m u ___ (x h ~ x) + x u ) m h ( x ~ x u) x + x h)
Der resultierende Luftstrom wurde anschließend auf die gewünschte Temperatur mit einem Wärmeaustauscher abgekühlt. Die relative Feuchtigkeit und der Wassergehalt wurde mit einem Psychrometer (ALMEMO 2290-2 mit Psychrometergeber AN 846 bzw. Feuchte-/ Temperaturfühler AFH 9646-2) bestimmt.The resulting air stream was then cooled to the desired temperature with a heat exchanger. The relative humidity and the water content were determined with a psychrometer (ALMEMO 2290-2 with psychrometer sensor AN 846 or humidity / temperature sensor AFH 9646-2).
Zur Erniedrigung des Wassergehaltes wurde Umgebungsluft abgekühlt, bis diese eine relative Feuchtigkeit von 100% aufwies. Anschließend erfolgte eine weitere Abkühlung, und das auskondensierende Wasser wurde abgeschieden. Mit dieser Vorgehensweise ließ sich die Luft bis zu einem Wassergehalt von etwa 4 g/kg trocknen. Im Anschluß daran erfolgte eine Wiedererwärmung der Luft auf die gewünschte Temperatur. Die relative Feuchtigkeit und der Wassergehalt wurden mit dem Psychrometer gemessen.In order to lower the water content, ambient air was cooled until it had a relative humidity of 100%. This was then cooled further and the water which condensed out was separated off. With this procedure, the air could be dried to a water content of approximately 4 g / kg. The air was then reheated to the desired temperature. The relative humidity and water content were measured with the psychrometer.
Um konditionierte Luft mit einem Wassergehalt unter 4 g/kg zu erhalten, wurde die zuvor durch Auskondensieren vorgetrocknete Luft mit einem Luftentfeuchter (Modell 120 KS der Firma Munters GmbH) weiter getrocknet. Die Wiederer¬ wärmung der trockenen Luft erfolgte ebenfalls mit einem Wärmeaustauscher. Die Bestimmung der relativen Feuchtigkeit und des Wassergehaltes der Luft, die auf einen Wassergehalt von weniger als 4 g/kg getrocknet wurde, erfolgte mit einem spiegelgekühlten Taupunktsmesser (S4000 RS der Firma MICHELL Instruments) .In order to obtain conditioned air with a water content below 4 g / kg, the air was previously condensed Pre-dried air further dried with a dehumidifier (model 120 KS from Munters GmbH). The dry air was also reheated using a heat exchanger. The determination of the relative humidity and the water content of the air, which was dried to a water content of less than 4 g / kg, was carried out with a mirror-cooled dew point meter (S4000 RS from MICHELL Instruments).
In den nachfolgenden Tabellen sind die untersuchten Luftzu¬ stände, charakterisiert durch die Temperatur (T/°C), den Wassergehalt (x/(g/kg)) und die relative Feuchtigkeit (rH/%), sowie die Variationskoeffizienten der Filamentquer¬ schnittsflachen (V/%) angegeben.In the following tables the examined air conditions, characterized by the temperature (T / ° C), the water content (x / (g / kg)) and the relative humidity (rH /%), as well as the variation coefficients of the filament cross-sectional areas (V /%) given.
Tabelle I: Beispiele gemäß der ErfindungTable I: Examples according to the invention
Beispiel T/°C x/(g/kg) rH/% V/%Example T / ° C x / (g / kg) rH /% V /%
1 6 4,7 80 8,11 6 4.7 80 8.1
2 6 1,8 30 5,02 6 1.8 30 5.0
3 10 1,7 22 5,03 10 1.7 22 5.0
4 10 2,3 30 6,14 10 2.3 30 6.1
5 10 3,0 39 6,65 10 3.0 39 6.6
6 10 3,8 50 6,56 10 3.8 50 6.5
7 10 4,8 62 7,77 10 4.8 62 7.7
8 10 5,4 68 8,58 10 5.4 68 8.5
9 10 0,9 11 5,09 10 0.9 11 5.0
10 20 1,2 9 5,810 20 1.2 9 5.8
11 21 1,0 7 5,411 21 1.0 7 5.4
12 21 2,1 14 8,012 21 2.1 14 8.0
13 21 3,1 20 9,813 21 3.1 20 9.8
14 31 2,1 8 8,414 31 2.1 8 8.4
15 40 3,4 7 11,3 Tabelle I zeigt deutlich, daß quasi unabhängig von der Temperatur der konditionierten Luft die niedrigsten Variationskoeffizienten der Filamentquerschnittsflächen resultieren, wenn die konditionierte Luft einen geringen Wassergehalt aufweist, wie bei den Beispielen Nr. 2, 3, 9, 10 und 11, bei denen bei Wassergehalten unterhalb von 2 g/kg der Variationskoeffizient nur in der Größenordnung von 5 bis 6 % liegt. Die relative Feuchtigkeit lag bei diesen Beispielen unterhalb 30%. Unter Einhaltung der erfindungs¬ gemäßen Bedingungen ist der Variationskoeffizient selbst bei hoher Temperatur (Beispiel 15) niedriger als außerhalb des erfindungsgemäßen Bereichs bei erheblich tieferen Temperaturen.15 40 3.4 7 11.3 Table I clearly shows that, irrespective of the temperature of the conditioned air, the lowest coefficients of variation of the filament cross-sectional areas result when the conditioned air has a low water content, as in Examples Nos. 2, 3, 9, 10 and 11, in those with water contents below 2 g / kg the coefficient of variation is only in the order of 5 to 6%. The relative humidity in these examples was below 30%. In compliance with the conditions according to the invention, the coefficient of variation is lower even at high temperature (example 15) than outside the range according to the invention at considerably lower temperatures.
Tabelle II: VergleichsbeispieleTable II: Comparative Examples
leispiel T/°C x/(g/kg) rH/% V/%example T / ° C x / (g / kg) rH /% V /%
16 6 5,1 87 16,116 6 5.1 87 16.1
17 10 7,5 97 14,517 10 7.5 97 14.5
18 11 8,0 97 16,818 11 8.0 97 16.8
19 12 8,2 92 20,819 12 8.2 92 20.8
20 12 8,9 100 21,920 12 8.9 100 21.9
21 20 14,0 94 30,021 20 14.0 94 30.0
22 21 9,2 60 23,422 21 9.2 60 23.4
23 21 13,7 89 26,623 21 13.7 89 26.6
24 21 15,4 100 31,624 21 15.4 100 31.6
Tabelle II verdeutlicht, daß außerhalb des erfindungsgemäßen Bereichs die Variationskoeffizienten der Filamentquer- schnittsflächen oberhalb von 14% liegen und sogar Werte von über 30% erreicht werden. Derart hohe Schwankungen sind bei der Herstellung von Filamentgarn unerwünscht, da sich diese bei der Verarbeitung zu textilen Flächengebilden negativ auswirken und insbesondere zu einer uneinheitlichen Färbung des Flächengebildes führen. Ebenso kann es aufgrund unter¬ schiedlicher Festigkeiten der Einzelfilamente untereinander und in bezug auf das Garn zu Verarbeitungsproblemen kommen. Zudem wird mit den Beispielen 16 und 22 gezeigt, daß für die vorliegende Erfindung beide Forderungen, d.h. ein Wasser¬ gehalt unterhalb von 7 g Wasserdampf je kg trockene Luft und eine relative Feuchtigkeit unterhalb 85% gewährleistet sein müssen. Bei Beispiel 16 lag zwar der Wassergehalt in dem beanspruchten Bereich, jedoch wies die Luft eine höhere relative Feuchtigkeit auf, und es resultierte ein Varia¬ tionskoeffizient von 16,1%. Beispiel 22 zeigt die Bedin¬ gungen der Umgebungsluft bei einer Temperatur von 21°C, bei einer relativen Feuchtigkeit von 60% und einem Wassergehalt von 9,2 g/kg. Bei diesem Beispiel liegt zwar die relative Feuchtigkeit in dem beanspruchten Bereich, nicht jedoch der Wassergehalt, und es resultiert ein Variationskoeffizient von 23,4%. Dieses Beispiel verdeutlicht darüber hinaus, daß es nicht ausreichend ist, eine Kühlung mit Umgebungsluft vorzunehmen, und daß es nicht ausreichend ist, eine einfache Anblasung mit Raumluft durchzuführen, die kühler ist als die üblicherweise im Luftspalt herrschende Temperatur, um eine Verbesserung textiler Eigenschaften zu erreichen. Table II shows that outside the range according to the invention the variation coefficients of the filament cross-sectional areas are above 14% and values of over 30% are even reached. Such high fluctuations are in the production of filament yarn is undesirable, since these have a negative effect on processing into textile fabrics and in particular lead to a non-uniform coloring of the fabric. Processing problems may also arise due to the different strengths of the individual filaments among one another and with respect to the yarn. In addition, Examples 16 and 22 show that both requirements, ie a water content below 7 g of water vapor per kg of dry air and a relative humidity below 85%, must be guaranteed for the present invention. In example 16, although the water content was in the range claimed, the air had a higher relative humidity and a coefficient of variation of 16.1% resulted. Example 22 shows the conditions of the ambient air at a temperature of 21 ° C, at a relative humidity of 60% and a water content of 9.2 g / kg. In this example, although the relative humidity is in the claimed range, the water content is not, and a coefficient of variation of 23.4% results. This example further illustrates that it is not sufficient to cool with ambient air and that it is not sufficient to simply blow on with ambient air that is cooler than the temperature usually prevailing in the air gap in order to achieve an improvement in textile properties .

Claims

* * *Patentansprüche: * * * Claims:
1. Verfahren zur Herstellung cellulosischer Formkörper, wobei eine Lösung von Cellulose in einem tertiären Amin-N-oxid und gegebenenfalls Wasser in warmem Zustand geformt wird und die geformte Lösung vor dem Einbringen in ein Koagulationsbad mit Luft gekühlt wird, dadurch gekennzeichnet, daß zur Kühlung konditionierte Luft eingesetzt wird, die einen Wassergehalt von 0,1 bis 7 g Wasserdampf je kg trockene Luft aufweist und deren relative Feuchtigkeit weniger als 85% beträgt.1. A process for the production of cellulosic moldings, a solution of cellulose in a tertiary amine N-oxide and optionally water being shaped in a warm state and the shaped solution being cooled with air before being introduced into a coagulation bath, characterized in that for cooling conditioned air is used which has a water content of 0.1 to 7 g of water vapor per kg of dry air and whose relative humidity is less than 85%.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Wassergehalt 0,7 bis 4 g Wasserdampf je kg trockene Luft, vorzugsweise 0,7 bis 2 g beträgt. 2. The method according to claim 1, characterized in that the water content is 0.7 to 4 g of water vapor per kg of dry air, preferably 0.7 to 2 g.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeich¬ net, daß die Kühlung mit strömender Luft erfolgt, wobei diese gegen die geformte Lösung geblasen und/oder von dieser abgesogen wird.3. The method according to claim 1 or 2, characterized gekennzeich¬ net that the cooling is carried out with flowing air, which is blown against the shaped solution and / or is sucked from it.
4. Verfahren nach Anspruch 1, 2 oder 3, dadurch gekenn¬ zeichnet, daß die geformte Lösung der konditionierten Luft über die gesamte Strecke bis zum Einbringen in das Koagulationsbad ausgesetzt wird.4. The method according to claim 1, 2 or 3, characterized gekenn¬ characterized in that the shaped solution of the conditioned air is exposed over the entire distance until it is introduced into the coagulation bath.
5. Verfahren nach Anspruch 1, 2 oder 3, dadurch gekenn- zeichent, daß die geformte Lösung der konditionierten Luft über einen Teil der Strecke bis zum Einbringen in das Koagulationsbad ausgesetzt wird.5. The method according to claim 1, 2 or 3, characterized in that the shaped solution is exposed to the conditioned air over part of the distance until it is introduced into the coagulation bath.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die geformte Lösung der konditionierten Luft im ersten Teil der Strecke ausgesetzt wird.6. The method according to claim 5, characterized in that the shaped solution is exposed to the conditioned air in the first part of the route.
7. Verfahren nach einem oder mehreren der Ansprüche 1 bis7. The method according to one or more of claims 1 to
6, dadurch gekennzeichnet, daß die konditionierte Luft unter einem Winkel von 0° bis 120°, vorzugsweise 90°, relativ zur Bewegungsrichtung der geformten Lösung strömt, wobei der Winkel von 0° einer Anströmung entgegengesetzt zur Laufrichtung der geformten Lösung entspricht.6, characterized in that the conditioned air flows at an angle of 0 ° to 120 °, preferably 90 °, relative to the direction of movement of the shaped solution, the angle of 0 ° corresponding to an inflow opposite to the direction of travel of the shaped solution.
8. Verfahren nach einem oder mehreren der Ansprüche 1 bis8. The method according to one or more of claims 1 to
7, dadurch gekennzeichnet, daß die geformte Lösung vor dem Einbringen in das Koagulationsbad verstreckt wird. 7, characterized in that the shaped solution is stretched before being introduced into the coagulation bath.
9. Verfahren nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß Fasern, insbesondere Filamente, Filme, Hohlfasern und Membranen aus der Lösung hergestellt werden.9. The method according to one or more of claims 1 to 8, characterized in that fibers, in particular filaments, films, hollow fibers and membranes are made from the solution.
10. Garn aus cellulosischen Filamenten hergestellt aus einer Lösung von Cellulose in einem tertiären Amin-N-oxid und gegebenenfalls Wasser, dadurch gekennzeichnet, daß die Querschnittsflächen der Filamente einen Variations¬ koeffizienten kleiner als 12%, vorzugsweise kleiner als 10%, aufweisen. 10. Yarn made of cellulosic filaments made from a solution of cellulose in a tertiary amine N-oxide and optionally water, characterized in that the cross-sectional areas of the filaments have a coefficient of variation less than 12%, preferably less than 10%.
EP95939293A 1994-12-02 1995-11-24 Method of producing shaped cellulose bodies, and yarn made of cellulose filaments Expired - Lifetime EP0795052B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4442890 1994-12-02
DE4442890 1994-12-02
PCT/EP1995/004634 WO1996017118A1 (en) 1994-12-02 1995-11-24 Method of producing shaped cellulose bodies, and yarn made of cellulose filaments

Publications (3)

Publication Number Publication Date
EP0795052A1 true EP0795052A1 (en) 1997-09-17
EP0795052B1 EP0795052B1 (en) 1998-06-24
EP0795052B2 EP0795052B2 (en) 2006-04-26

Family

ID=6534703

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95939293A Expired - Lifetime EP0795052B2 (en) 1994-12-02 1995-11-24 Method of producing shaped cellulose bodies, and yarn made of cellulose filaments

Country Status (16)

Country Link
US (2) US5902532A (en)
EP (1) EP0795052B2 (en)
JP (1) JPH10510011A (en)
KR (1) KR100398294B1 (en)
CN (1) CN1066214C (en)
AT (1) ATE167709T1 (en)
AU (1) AU695212B2 (en)
CA (1) CA2205466A1 (en)
CZ (1) CZ288742B6 (en)
DE (1) DE59502659D1 (en)
ES (1) ES2120243T5 (en)
HU (1) HU220367B (en)
PL (1) PL183097B1 (en)
SK (1) SK67697A3 (en)
TW (1) TW300924B (en)
WO (1) WO1996017118A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1693495A2 (en) 2005-02-21 2006-08-23 Cordenka GmbH Airbag fabric

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9605504D0 (en) * 1996-03-15 1996-05-15 Courtaulds Plc Manufacture of elongate members
AT405531B (en) 1997-06-17 1999-09-27 Chemiefaser Lenzing Ag METHOD FOR PRODUCING CELLULOSIC FIBERS
AT408656B (en) * 1998-06-04 2002-02-25 Chemiefaser Lenzing Ag METHOD FOR PRODUCING CELLULOSIC MOLDED BODIES
US6773648B2 (en) 1998-11-03 2004-08-10 Weyerhaeuser Company Meltblown process with mechanical attenuation
DE19954152C2 (en) * 1999-11-10 2001-08-09 Thueringisches Inst Textil Method and device for producing cellulose fibers and cellulose filament yarns
AT408355B (en) * 2000-06-29 2001-11-26 Chemiefaser Lenzing Ag Process for producing cellulosic fibres
DE10043297B4 (en) * 2000-09-02 2005-12-08 Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. Process for the production of cellulose fibers and cellulose filament yarns
EP1415026B1 (en) * 2001-08-11 2007-09-12 Lenzing Aktiengesellschaft Process for the preparation of cellulosic shaped bodies
DE10200406A1 (en) * 2002-01-08 2003-07-24 Zimmer Ag Spinning device and process with turbulent cooling blowing
DE10200405A1 (en) * 2002-01-08 2002-08-01 Zimmer Ag Cooling blowing spinning apparatus and process
DE10206089A1 (en) 2002-02-13 2002-08-14 Zimmer Ag bursting
US7905721B2 (en) * 2007-06-05 2011-03-15 Husky Injection Molding Systems Ltd. Air source device and a method for use in a molding system
TWI667378B (en) 2014-01-03 2019-08-01 奧地利商蘭精股份有限公司 Cellulosic fibre

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4246221A (en) * 1979-03-02 1981-01-20 Akzona Incorporated Process for shaped cellulose article prepared from a solution containing cellulose dissolved in a tertiary amine N-oxide solvent
US4144080A (en) * 1977-07-26 1979-03-13 Akzona Incorporated Process for making amine oxide solution of cellulose
US4416698A (en) 1977-07-26 1983-11-22 Akzona Incorporated Shaped cellulose article prepared from a solution containing cellulose dissolved in a tertiary amine N-oxide solvent and a process for making the article
US4324593A (en) * 1978-09-01 1982-04-13 Akzona Incorporated Shapeable tertiary amine N-oxide solution of cellulose, shaped cellulose product made therefrom and process for preparing the shapeable solution and cellulose products
DD277289A1 (en) 1988-11-24 1990-03-28 Schwarza Chemiefaser METHOD OF DISPENSING VISCOELASTIC POLYMER SOLUTIONS
AT395863B (en) * 1991-01-09 1993-03-25 Chemiefaser Lenzing Ag METHOD FOR PRODUCING A CELLULOSIC MOLDED BODY
AT395862B (en) * 1991-01-09 1993-03-25 Chemiefaser Lenzing Ag METHOD FOR PRODUCING A CELLULOSIC MOLDED BODY
ATA53792A (en) * 1992-03-17 1995-02-15 Chemiefaser Lenzing Ag METHOD FOR PRODUCING CELLULOSIC MOLDED BODIES, DEVICE FOR IMPLEMENTING THE METHOD AND USE OF A SPINNING DEVICE
TW257811B (en) * 1993-04-21 1995-09-21 Chemiefaser Lenzing Ag
GB2307203B (en) * 1993-04-21 1997-09-10 Chemiefaser Lenzing Ag Process for the production of cellulose fibres having a reduced tendency to fibrillation
MY115308A (en) 1993-05-24 2003-05-31 Tencel Ltd Spinning cell
AT401271B (en) * 1993-07-08 1996-07-25 Chemiefaser Lenzing Ag METHOD FOR PRODUCING CELLULOSE FIBERS
JP3445865B2 (en) * 1995-04-06 2003-09-08 花王株式会社 Cellulosic fiber modification method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9617118A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1693495A2 (en) 2005-02-21 2006-08-23 Cordenka GmbH Airbag fabric
EP1693495A3 (en) * 2005-02-21 2010-06-09 Cordenka GmbH Airbag fabric

Also Published As

Publication number Publication date
EP0795052B1 (en) 1998-06-24
AU4117796A (en) 1996-06-19
HU220367B (en) 2001-12-28
TW300924B (en) 1997-03-21
CA2205466A1 (en) 1996-06-06
CN1066214C (en) 2001-05-23
ATE167709T1 (en) 1998-07-15
CN1168701A (en) 1997-12-24
SK67697A3 (en) 1997-10-08
EP0795052B2 (en) 2006-04-26
US5902532A (en) 1999-05-11
CZ288742B6 (en) 2001-08-15
WO1996017118A1 (en) 1996-06-06
KR100398294B1 (en) 2003-12-31
CZ167497A3 (en) 1997-10-15
ES2120243T3 (en) 1998-10-16
AU695212B2 (en) 1998-08-06
PL183097B1 (en) 2002-05-31
PL320507A1 (en) 1997-10-13
ES2120243T5 (en) 2006-11-16
DE59502659D1 (en) 1998-07-30
JPH10510011A (en) 1998-09-29
US6042944A (en) 2000-03-28
HUT77266A (en) 1998-03-02

Similar Documents

Publication Publication Date Title
EP0494852B1 (en) Process for the production of cellulosic articles
EP0797694B1 (en) Solvent-spun cellulosic filaments
EP0795052B1 (en) Method of producing shaped cellulose bodies, and yarn made of cellulose filaments
EP0574870B1 (en) Process for producing cellulose moulded articles
EP0490870B1 (en) Process for the production of cellulose articles
EP1936017B1 (en) Method and device for manufacturing a spunbonding fabric made of cellulose filaments
EP0659219B1 (en) Cellulose fibres
EP0494851B1 (en) Process for the production of cellulosic articles
DD201702A5 (en) HIGH-MODULAR POLYACRYLNITRILE FIBERS AND FIBERS AND METHOD FOR THE PRODUCTION THEREOF
DE4219658C2 (en) Process for the production of cellulose fiber filaments and foils by the dry-wet extrusion process
EP0608744B1 (en) Cellulose acetate filaments, an optically isotropic spinning solution therefor and its use for the production of the filaments
AT405531B (en) METHOD FOR PRODUCING CELLULOSIC FIBERS
DE1469058A1 (en) Process for the production of artificial threads
EP1352114A1 (en) Method for spin stretching extruded threads
EP0051203B1 (en) Process for the production of dry spun hollow polyacrylonitrile filaments and fibres
DE2736302C3 (en) Process for the production of polypyrrolidone threads
AT405532B (en) CELLULOSIC MICROFIBER
DE102019109069A1 (en) Process for spinning polyacrylonitrile fibers from solutions
DE19717257A1 (en) Method of manufacturing cellulosic bodies using coagulation bath
EP0283831A1 (en) Process for producing yarns by melt-spinning polyethylene terephthalate
EP1299583B1 (en) Method for producing cellulose fibres
DE1494664B (en) Process for the production of continuous borrowed thread from acrylonitrile polymers by wet spinning

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970526

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19971121

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 167709

Country of ref document: AT

Date of ref document: 19980715

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59502659

Country of ref document: DE

Date of ref document: 19980730

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980907

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2120243

Country of ref document: ES

Kind code of ref document: T3

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: LURGI Z. AG/ALCERU S. GMBH/THUERING. INSTITUT FUER

Effective date: 19990322

NLR1 Nl: opposition has been filed with the epo

Opponent name: LURGI Z. AG/ALCERU S. GMBH/THUERING. INSTITUT FUER

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: LURGI Z. AG/ALCERU S. GMBH/THUERING. INSTITUT FUER

Effective date: 19990322

NLR1 Nl: opposition has been filed with the epo

Opponent name: LURGI Z. AG/ALCERU S. GMBH/THUERING. INSTITUT FUER

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAE Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOS REFNO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

R26 Opposition filed (corrected)

Opponent name: ZIMMER AKTIENGESELLSCHAFT/ ALCERU SCHWARZA GMBH/ T

Effective date: 19990322

NLR1 Nl: opposition has been filed with the epo

Opponent name: ZIMMER AKTIENGESELLSCHAFT/ ALCERU SCHWARZA GMBH/ T

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: NEWCELL GMBH & CO. KG

Free format text: AKZO NOBEL N.V.#VELPERWEG 76, POSTBUS 9300#6824 BM ARNHEM (NL) -TRANSFER TO- NEWCELL GMBH & CO. KG#KASINOSTRASSE 19-21#42103 WUPPERTAL (DE)

Ref country code: CH

Ref legal event code: NV

Representative=s name: HANS ULRICH SEIFERT FELBER SEIFERT & PARTNER

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20051018

Year of fee payment: 11

Ref country code: CH

Payment date: 20051018

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20051024

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20051103

Year of fee payment: 11

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20060426

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)
NLR2 Nl: decision of opposition

Effective date: 20060426

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPEO

NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Date of ref document: 20060629

Kind code of ref document: T5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20061130

Year of fee payment: 12

ET3 Fr: translation filed ** decision concerning opposition
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070601

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070601

BERE Be: lapsed

Owner name: *AKZO NOBEL N.V.

Effective date: 20061130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20071107

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20071022

Year of fee payment: 13

Ref country code: FR

Payment date: 20071017

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20081130

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20081124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071124

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081124

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20081125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120831

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140603

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59502659

Country of ref document: DE

Effective date: 20140603