EP0790409B1 - Measuring circuit for an ionic current in ignition devices for internal combustion engines - Google Patents

Measuring circuit for an ionic current in ignition devices for internal combustion engines Download PDF

Info

Publication number
EP0790409B1
EP0790409B1 EP97101843A EP97101843A EP0790409B1 EP 0790409 B1 EP0790409 B1 EP 0790409B1 EP 97101843 A EP97101843 A EP 97101843A EP 97101843 A EP97101843 A EP 97101843A EP 0790409 B1 EP0790409 B1 EP 0790409B1
Authority
EP
European Patent Office
Prior art keywords
voltage
ignition
circuit arrangement
circuit
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97101843A
Other languages
German (de)
French (fr)
Other versions
EP0790409A3 (en
EP0790409A2 (en
Inventor
Ulrich Dr. Bahr
Michael Daetz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP0790409A2 publication Critical patent/EP0790409A2/en
Publication of EP0790409A3 publication Critical patent/EP0790409A3/en
Application granted granted Critical
Publication of EP0790409B1 publication Critical patent/EP0790409B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/10Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having continuous electric sparks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/045Layout of circuits for control of the dwell or anti dwell time
    • F02P3/0453Opening or closing the primary coil circuit with semiconductor devices
    • F02P3/0456Opening or closing the primary coil circuit with semiconductor devices using digital techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • F02P2017/125Measuring ionisation of combustion gas, e.g. by using ignition circuits

Definitions

  • the invention relates to a circuit arrangement for ion current measurement according to the preamble of claim 1.
  • This known generation of the measuring voltage is relatively simple, but requires a large storage capacitor.
  • the measuring voltage is special for longer measuring phases, as they occur at low speeds, not constant, since the storage capacitor discharged by the measuring current becomes.
  • the measuring current therefore has a current superimposed by the discharge caused by stray capacitances in spark plug, ignition coil and leads becomes.
  • the measuring current is a leakage current through the Voltage limiting used Zener diode superimposed.
  • Another Disadvantage of this known circuit arrangement is that the Current measuring resistor is connected in series with the storage capacitor. This causes a non-linearity, since the voltage applied to the Ionenmeßorder Voltage is a function of the measured value.
  • a voltage positive polarity applied to the spark plug to an ion current with negative polarity caused by the combustion becomes.
  • This voltage is generated by a capacitor with the low potential side the secondary winding of the ignition coil connected by means of the charged via a diode electric ignition current is to get the voltage with positive polarity.
  • a zener diode provides the voltage limiting on the capacitor.
  • the capacitor current is supplied to a current / voltage conversion unit to the off converting the ionic current flowing to the capacitor into a voltage.
  • the o. G. Disadvantage of a nonlinearity not on, as in the Current / voltage converter the negative terminal of the capacitor on one virtual ground potential is maintained.
  • the two known circuit arrangements have the disadvantage in common, that for measuring the ion current, a voltage between 70 V and 400 V. is required, the to the ion measuring path, d. H. to the spark plug one Internal combustion engine is to create.
  • a circuit arrangement for ion current measurement known in which a measuring voltage through one on the primary side the ignition coil applied AC voltage is generated. there is the applied on the primary side AC voltage across the ignition coil transformed to a higher voltage level, with frequencies in the Range from 10 kHz to 100 kHz.
  • the ion current signal causes an amplitude modulation of the alternating current generated on the secondary side.
  • a disadvantage of this known circuit arrangement is on the one hand the use of filters containing the ionic current signal whose useful frequency range between 100 Hz and 20 kHz, separate from the carrier signal and on the other hand, the AC excitation due to the imbalance the ionic current characteristic resulting nonlinear distortions.
  • zener diodes For the derivation of the ignition current generated during ignition are two zener diodes connected in series are connected to the secondary circuit. To Compensation of the occurring in these Zener diodes leakage - the the ion current measurement falsified - a control loop is provided, which likewise is controlled by the output of the operational amplifier.
  • This control loop is from another operational amplifier with appropriate constructed of resistors and capacitor existing circuitry.
  • the object of the present invention is a circuit arrangement specify the type mentioned above, the o. g. disadvantage avoids, to a high measurement quality of the ion stream in the combustion chamber an internal combustion engine leads and feasible with little effort is.
  • circuit means are provided, with which a constant measuring voltage applied to the secondary circuit of the ignition coil which has a voltage value equal to or less than the value the voltage of the electrical system is and further provided a rectifier element is that the ignition current generated during the ignition of the spark plug derives from the electrical system.
  • particularly preferred embodiment of the invention become the measuring sections of serving as ion current probes spark plugs an internal combustion engine connected in parallel, so that thereby the Circuit complexity remains extremely low.
  • the ignition coil is a differential amplifier provided.
  • the differential amplifier is connected as an inverting amplifier, so that the desired voltage is applied to the other input.
  • the simplest circuit In as a measuring signal serving voltage, which then an evaluation is supplied.
  • FIG. 1 shows a transistor ignition system, with only the sake of simplicity a Zündendto with a spark plug Zk for an internal combustion engine is shown.
  • the ignition output stage comprises an ignition coil Tr with primary and secondary circuits, consisting of a primary and secondary winding, wherein the already mentioned spark plug Zk is connected to the secondary winding.
  • the primary winding is connected with its one connection to a vehicle battery supplied by a board battery voltage U B, for example, 12 V and connected with its other terminal to a firing transistor 1.
  • This ignition transistor 1 is controlled by the control electrode of a control circuit 2, are supplied to the ignition transistor 1 via the connecting line ignition triggering pulses.
  • the secondary winding is connected with its high voltage side to the spark plug Zk, while the low potential side is guided to the inverting input of a differential amplifier 3.
  • a constant reference voltage U ref preferably 5 V, is applied to the non-inverting input of this differential amplifier 3, this constant reference voltage being generated by a constant-voltage source 6.
  • This constant reference voltage U ref is supplied via this differential amplifier 3 to the secondary circuit of the ignition coil Zk and passes through this as MeB voltage U meß to the working as Ionenstrommeßorder spark plug Zk.
  • the differential amplifier 3 is constructed as an inverting amplifier by its inverting input via a resistor R with its output connected is.
  • diodes D1 and D2 are present, which derive the ignition current to ground or to the vehicle electrical system potential.
  • the diode D1 is so connected between the Invertlerenden input of the differential amplifier 3 and the electrical system U B , that the ignition can flow to the electrical system.
  • the second diode D2 lies with its anode at the ground potential and is also connected with its cathode to the inverting input of the differential amplifier 3.
  • a resistor (not shown in FIG. 1) in the supply line be provided to the inverting input of the differential amplifier 3, which additionally limits the current flowing into the differential amplifier 3.
  • the inverting differential amplifier 3 converts the ion current into a voltage U ion , which is supplied as a measuring signal to an evaluation unit 5.
  • the secondary circuit of the ignition coil Tr supplied measuring voltage U meß here preferably 5 V, is constant during the entire measurement period. Since the ion measuring current is in the ⁇ A range, a differential amplifier 3 is used with a low input current, which is currently available at low cost. Due to the low-impedance provision of this measuring voltage U meß accounts transhipment of stray capacitances, as in other known systems with AC load , as z. B. knocking combustion can occur. This advantage of the invention is particularly noticeable when several ion current measuring sections are operated in parallel, as will be explained below with reference to FIG. 2, because in this case the effective stray capacitance can multiply.
  • FIG. 1 further shows a control unit 4 which performs the function of engine management takes over and in turn controls the control circuit 2.
  • this ECU 4 via an input E motor parameters, such as load, speed and temperature supplied.
  • Corresponding actuators are controlled via outputs A.
  • the generated by the evaluation circuit 5 Ion current signal is also supplied to the control unit 4.
  • the ion current signal can be used to control the knocking of the To detect internal combustion engine and via a control of the ignition timing to build up a corresponding knock control.
  • Another application is to detect the ion current signal for detection of flare misfires.
  • Figure 2 shows a transistorized a 4-cylinder internal combustion engine having each cylinder associated ignition output stages, each ignition of an ignition coil Tr 1 ... Tr 4, each with a firing transistor 1a ... 1d and associated spark plug Zk 1 ... Zk 4 is constructed.
  • the ignition transistors 1a ... 1d are connected via their control electrodes of a Circuit 2a driven to the cylinder selection, which in turn with a Control circuit 2 is connected to the corresponding Zündausletteimpulse for the individual cylinders this circuit 2a supplies.
  • control unit 4 which drives the control circuit 2.
  • the low potential side of the secondary circuit of each ignition coil Tr 1 ... Tr 4 is led to a circuit node S, which is connected to the inverting input of a differential amplifier 3.
  • This differential amplifier 3 is also constructed as an inverter of the amplifier by means of a resistor R connecting the inverting input to the output.
  • the non-inverting input of this differential amplifier 3 is supplied with a constant reference voltage U ref , which is generated by a constant-voltage source 6.
  • This constant reference voltage U ref is smaller than the vehicle electrical system voltage and is 5 V and leads to the desired voltage U measured at circuit node S and therefore also to the parallel ion current paths of the spark plug Zk 1 ... Zk. 4
  • diodes D1 and D2 for the derivation of the ignition current to ground or vehicle electrical system intended.
  • the measuring signal U ion obtained at the output of the differential amplifier 3 is fed to an evaluation circuit 5, which in turn is controlled by a control unit 4 whose function corresponds to that control unit from FIG.
  • the circuit arrangement according to the invention for ion current measurement is not only in transistor ignition systems, as in the two embodiments used, but also in alternating currents or high voltage capacitor ignitions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Description

Die Erfindung betrifft eine Schaltungsanordnung zur Ionenstrommessung gemäß dem Oberbegriff des Patentanspruches 1.The invention relates to a circuit arrangement for ion current measurement according to the preamble of claim 1.

Eine solche schaltungsanordnung ist aus den Druckschriften DE-OS 30 06 665 und DE 19 50 24 02 A1 bekannt.Such a circuit arrangement is known from the publications DE-OS 30 06 665 and DE 19 50 24 02 A1.

So wird bei der Schaltungsanordnung nach der DE-OS 30 06 665 zwischen der Hochspannungsquelle und der Zündkerze ein Element (Zenerdlode oder Varistor) geschaltet, an dem eine konstante Spannung abfällt und dem ein Kondensator zugeordnet ist, an dem sich die an dem Element abfallende Spannung aufbaut, so daß diese Spannung als Meßspannungsquelle verwendbar ist. Der Kondensator kann dabei parallel zur Zenerdiode bzw. dem Varistor über weitere in Laderichtung geschaltete Dioden verbunden werden.Thus, in the circuit arrangement according to DE-OS 30 06 665 between the High voltage source and the spark plug one element (Zenerdlode or Varistor) switched, at which a constant voltage drops and the one Associated with the condenser, at which the falling on the element Voltage builds up so that this voltage can be used as a measuring voltage source is. The capacitor can be parallel to the zener diode or the Varistor be connected via other connected in the charging direction diodes.

Diese bekannte Erzeugung der Meßspannung ist relativ einfach, erfordert jedoch einen großen Speicherkondensator. Die Meßspannung ist besonders bei längeren Meßphasen, wie sie bei niedrigen Drehzahlen vorkommen, nicht konstant, da der Speicherkondensator durch den Meßstrom entladen wird. Dem Meßstrom ist daher ein Strom überlagert, der durch die Entladung von Streukapazitäten in Zündkerze, Zündspule und Zuleitungen hervorgerufen wird. Weiterhin ist dem Meßstrom ein Leckstrom durch die zur Spannungsbegrenzung verwendete Zenerdiode überlagert. Ein weiterer Nachteil dieser bekannten Schaltungsanordnung besteht darin, daß der Strommeßwiderstand in Reihe zum Speicherkondensator geschaltet ist. Dieses bewirkt eine Nichtlinearität, da die an der Ionenmeßstrecke anliegende Spannung eine Funktion des Meßwertes ist. This known generation of the measuring voltage is relatively simple, but requires a large storage capacitor. The measuring voltage is special for longer measuring phases, as they occur at low speeds, not constant, since the storage capacitor discharged by the measuring current becomes. The measuring current therefore has a current superimposed by the discharge caused by stray capacitances in spark plug, ignition coil and leads becomes. Furthermore, the measuring current is a leakage current through the Voltage limiting used Zener diode superimposed. Another Disadvantage of this known circuit arrangement is that the Current measuring resistor is connected in series with the storage capacitor. This causes a non-linearity, since the voltage applied to the Ionenmeßstrecke Voltage is a function of the measured value.

Bei der schaltungsanordnung gemäß der DE 19 50 24 02 A1 wird eine Spannung positiver Polarität an die Zündkerze angelegt, um einen Ionenstrom mit negativer Polarität abzutasten, der durch die Verbrennung hervorgerufen wird. Zur Erzeugung dieser Spannung wird ein Kondensator mit der Niedrigpotentlalseite der Sekundärwicklung der Zündspule verbunden, der mittels dem über eine Diode zugeführten elektrischen Zündstrom geladen wird, um die Spannung mit positiver Polarität zu erhalten. Eine Zenerdiode sorgt für die Spannungsbegrenzung an dem Kondensator. Der Kondensatorstrom wird einer Strom/Spannungs-Wandlereinheit zugeführt, um den aus dem Kondensator fließenden lonenstrom in eine Spannung umzuwandeln. Dabei tritt der o. g. Nachteil einer Nichtlinearität nicht auf, da bei dem Strom/Spannungs-Wandler der negative Anschluß des Kondensators auf einem virtuellen Massepotential gehalten wird.In the circuit arrangement according to DE 19 50 24 02 A1, a voltage positive polarity applied to the spark plug to an ion current with negative polarity caused by the combustion becomes. This voltage is generated by a capacitor with the low potential side the secondary winding of the ignition coil connected by means of the charged via a diode electric ignition current is to get the voltage with positive polarity. A zener diode provides the voltage limiting on the capacitor. The capacitor current is supplied to a current / voltage conversion unit to the off converting the ionic current flowing to the capacitor into a voltage. The o. G. Disadvantage of a nonlinearity not on, as in the Current / voltage converter the negative terminal of the capacitor on one virtual ground potential is maintained.

Den beiden bekannten Schaltungsanordnungen ist der Nachteil gemeinsam, daß zur Messung des Ionenstromes eine Spannung zwischen 70 V und 400 V erforderlich ist, die an die lonenmeßstrecke, d. h. an die Zündkerze einer Brennkraftmaschine anzulegen ist.The two known circuit arrangements have the disadvantage in common, that for measuring the ion current, a voltage between 70 V and 400 V. is required, the to the ion measuring path, d. H. to the spark plug one Internal combustion engine is to create.

Ferner ist es auch bekannt, daß die Verwendung einer Meßspannung von ca. 400 V die Verrußungsgeschwindigkeit beim Kaltstart einer Brennkraftmaschine erhöht, wie dies beispielsweise In der EP 0 30 55 47 B1 beschrieben ist.Furthermore, it is also known that the use of a measuring voltage of about 400 V the sooting rate during cold start of an internal combustion engine increased, as described for example in EP 0 30 55 47 B1.

Weiterhin ist aus der DE-OS 33 27 766 eine Schaltungsanordnung zur Ionenstrommessung bekannt, bei der eine Meßspannung durch eine auf der Primärseite der Zündspule angelegten Wechselspannung erzeugt wird. Dabei wird die auf der Primärseite angelegte Wechselspannung über die Zündspule auf ein höheres Spannungsniveau transformiert, wobei Frequenzen im Bereich von 10 kHz bis 100 kHz verwendet werden. Das lonenstromsignal bewirkt eine Amplitudenmodulation des sekundärseitig entstehenden Wechselstromes. Nachteilig bei dieser bekannten schaltungsanordnung ist einerseits die Verwendung von Filtern, die das Ionenstromsignal, dessen Nutzfrequenzbereich zwischen 100 Hz und 20 kHz beträgt, vom Trägersignal trennen und andererseits die bei Wechselstromanregung durch die Unsymmetrie der Ionenstromkennlinie entstehenden nichtlinearen Verzerrungen. Diese Unsymmetrie ergibt sich aufgrund der höheren Beweglichkeit der negativen Ladungsträger gegenüber der positiven lonen. Bei unsymmetrischen Elektroden, wie sie bei einer Zündkerze vorliegen, entsteht dann ein größerer Strom, wenn sich die unbeweglicheren positiven Ladungsträger auf die größere Elektrode hin bewegen.Furthermore, from DE-OS 33 27 766 a circuit arrangement for ion current measurement known, in which a measuring voltage through one on the primary side the ignition coil applied AC voltage is generated. there is the applied on the primary side AC voltage across the ignition coil transformed to a higher voltage level, with frequencies in the Range from 10 kHz to 100 kHz. The ion current signal causes an amplitude modulation of the alternating current generated on the secondary side. A disadvantage of this known circuit arrangement is on the one hand the use of filters containing the ionic current signal whose useful frequency range between 100 Hz and 20 kHz, separate from the carrier signal and on the other hand, the AC excitation due to the imbalance the ionic current characteristic resulting nonlinear distortions. This Unbalance arises due to the higher mobility of the negative Charge carrier towards the positive ions. In unbalanced Electrodes, such as those found in a spark plug, then creates a larger one Electricity, if the immobile positive charge carriers on the move larger electrode.

Schließlich Ist In der US 5,483,818 eine Schaltungsanordnung zur Detektion eines Ionenstromes beschrieben, bei der die Niedrigpotentialseite des Sekundärkreises der Zündspule über einen Widerstand auf den invertierenden Eingang eines Operationsverstärkers geführt ist, während dessem nichtinvertierenden Eingang eine Referenzspannung von ca. 40 V zugeführt wird. Dieser operationsverstärker ist mittels eines Widerstandes als invertierender verstärker geschaltet, so daß die Referenzspannung zum zwecke der Ionenstrommessung als Meßspannung an dem sekundärkreis anliegt. Die am Ausgang dieses Operationsverstärkers als Ionenstrommeßsignal erzeugte Meßspannung wird zur Auswertung einer Schwellwertschaltung zugeführt.Finally, in US 5,483,818 there is a circuit arrangement for detection an ionic current described in which the low potential side of the secondary circuit the ignition coil via a resistor to the inverting Input of an operational amplifier is guided, while its non-inverting Input a reference voltage of about 40 V is supplied. This operational amplifier is by means of a resistor as inverting switched amplifier so that the reference voltage for purposes of ion current measurement as a measuring voltage applied to the secondary circuit. The at the exit this operational amplifier as measuring voltage generated Ionenstrommeßsignal is supplied for evaluation of a threshold circuit.

Zur Ableitung des während der Zündung erzeugten Zündstromes sind zwei in Serie geschaltete zenerdioden an den Sekundärkreis angeschlossen. Zur Kompensation des in diesen Zenerdioden auftretenden Leckstromes - der die lonenstrommessung verfälscht - ist ein Regelkreis vorgesehen, der ebenfalls von dem Ausgang des Operationsverstärkers gesteuert wird. Dieser Regelkreis ist aus einem weiteren Operationsverstärker mit entsprechender aus Widerständen und Kondensator bestehender Beschaltung aufgebaut.For the derivation of the ignition current generated during ignition are two zener diodes connected in series are connected to the secondary circuit. to Compensation of the occurring in these Zener diodes leakage - the the ion current measurement falsified - a control loop is provided, which likewise is controlled by the output of the operational amplifier. This control loop is from another operational amplifier with appropriate constructed of resistors and capacitor existing circuitry.

Der Nachteil dieser bekannten Schaltungsanordnung liegt in deren aufwendigem Schaltungsaufbau und der damit verbundenen hohen Herstellungskosten.The disadvantage of this known circuit arrangement lies in the complex Circuit design and the associated high production costs.

Daher besteht die Aufgabe der vorliegenden Erfindung darin, eine Schaltungsanordnung der eingangs genannten Art anzugeben, die die o. g. Nachteile vermeidet, zu einer hohen Meßqualität des lonenstromes im Brennraum einer Brennkraftmaschine führt und mit geringem Aufwand realisierbar ist.Therefore, the object of the present invention is a circuit arrangement specify the type mentioned above, the o. g. disadvantage avoids, to a high measurement quality of the ion stream in the combustion chamber an internal combustion engine leads and feasible with little effort is.

Diese Aufgabe wird durch die kennzeichnenden Merkmale des Patentanspruches 1 gelöst, wonach Schaltungsmittel vorgesehen sind, mit denen eine konstante Meßspannung an den Sekundärkreis der Zündspule angelegt wird, die einen Spannungswert aufweist, die gleich oder kleiner als der Wert der Spannung des Bordnetzes ist und ferner ein Gleichrichterelement vorgesehen ist, das den während der Zündung der Zündkerze erzeugten Zündstrom auf das Bordnetz ableitet.This object is achieved by the characterizing features of claim 1, according to which circuit means are provided, with which a constant measuring voltage applied to the secondary circuit of the ignition coil which has a voltage value equal to or less than the value the voltage of the electrical system is and further provided a rectifier element is that the ignition current generated during the ignition of the spark plug derives from the electrical system.

Durch die erfindungsgemäße Verwendung einer Meßspannung, deren Wert der Bordnetzspannung des Fahrzeuges bzw. kleiner als dieselbe ist, werden die bei Verwendung einer Meßspannung in der Größenordnung von 40 V bis 400 V auftretenden Nachteile vermieden. Außerdem Ist der hierfür erforderliche schaltungsaufwand sehr gering, obwohl gleichzeitig mit dieser erfindungsgemäßen schaltungsanordnung über die gesamte Meßphase eine konstante Meßspannung geliefert wird.By the inventive use of a measuring voltage whose value the vehicle electrical system voltage of the vehicle or less than the same is when using a measuring voltage in the order of 40 V to 400 V occurring disadvantages avoided. Also is required for this circuit complexity very low, although at the same time with this invention circuit arrangement over the entire measuring phase a constant Measuring voltage is supplied.

Da die Größe des lonenstromes direkt proportional zur angelegten Meßspannung ist und eine Sättigung, wie dies z. B. vom Flammenlonisationsdetektor her bekannt ist, wegen der hohen lonenkonzentratlon und den geringen freien Weglängen der Ionen nicht auftritt, führt eine konstante Meßspannung zu dem Vorteil, daß deren Genauigkeit direkt in das Ionenstromsignal eingeht.Since the size of the ion current directly proportional to the applied measuring voltage is and a saturation, as z. B. from the flame ionization detector Her known because of the high Ionenkonzentratlon and the low free path lengths of the ions does not occur, leads to a constant measuring voltage to the advantage that their accuracy directly into the ion current signal received.

Ferner führt die Verwendung einer niedrigen Meßspannung auch dazu, daß sich Nebenschlußwiderstände, wie sie beim Kaltstart durch Verrußung der Zündkerzen entstehen, nicht so stark auswirken, da der spezifische Leitwert von Ruß proportional mit der anliegenden Spannung ansteigt.Furthermore, the use of a low measuring voltage also causes Shunt Resistors, as in the cold start by sooting the Spark plugs do not impact as much as the specific conductance of soot increases proportionally with the applied voltage.

Gemäß einer weiteren, besonders bevorzugten Ausführungsform der Erfindung werden die Meßstrecken der als lonenstromsonden dienenden Zündkerzen einer Brennkraftmaschine parallelgeschaltet, so daß hierdurch der Schaltungsaufwand äußerst gering bleibt.According to a further, particularly preferred embodiment of the invention become the measuring sections of serving as ion current probes spark plugs an internal combustion engine connected in parallel, so that thereby the Circuit complexity remains extremely low.

Als bevorzugtes Schaltungsmittel zum Anlegen der Meßspannung an den Sekundärkreis der Zündspule ist ein Differenzverstärker vorgesehen. Dabei wird gemäß einer weiteren Ausführungsform der Erfindung dessen einem Eingang eine Referenzspannung zugeführt, deren Wert der Meßspannung entspricht und der Differenzverstärker als invertierender Verstärker geschaltet, so daß am anderen Eingang die gewünschte Meßspannung anliegt. Damit wird der Ionenstrom mit einfachsten schaltungsmitteln In eine als Meßsignal dienende Spannung umgewandelt, die anschließend einer Auswertung zugeführt wird.As a preferred circuit means for applying the measuring voltage to the secondary circuit the ignition coil is a differential amplifier provided. there becomes according to a further embodiment of the invention of one Input a reference voltage supplied, their value of the measuring voltage corresponds and the differential amplifier is connected as an inverting amplifier, so that the desired voltage is applied to the other input. In order to the ion current with the simplest circuit means In as a measuring signal serving voltage, which then an evaluation is supplied.

im folgenden soll die Erfindung anhand von Ausführungsbeispielen Im Zusammenhang mit den Zeichnungen dargestellt und erläutert werden. Es zeigen:

Figur 1
ein erstes Ausführungsbeispiel der erfindungsgemäßen Schaltungsanordnung und
Figur 2
ein zweites Ausführungsbeispiel der erfindungsgemäßen Schaltungsanordnung.
In the following the invention will be illustrated and explained with reference to embodiments in conjunction with the drawings. Show it:
FIG. 1
a first embodiment of the circuit arrangement according to the invention and
FIG. 2
A second embodiment of the circuit arrangement according to the invention.

Die Figur 1 zeigt eine Transistorzündanlage, wobei der Einfachheit halber lediglich eine Zündendstufe mit einer Zündkerze Zk für eine Brennkraftmaschine dargestellt ist.FIG. 1 shows a transistor ignition system, with only the sake of simplicity a Zündendstufe with a spark plug Zk for an internal combustion engine is shown.

Die Zündendstufe umfaßt eine Zündspule Tr mit Primär- und Sekundärkreis, bestehend aus einer Primär- und Sekundärwicklung, wobei an die Sekundärwicklung die schon genannte Zündkerze Zk angeschlossen ist. Die Primärwicklung ist mit ihrem einen Anschluß an eine von einer Bordbatterie gelieferten Bordnetzspannung UB von beispielsweise 12 V angeschlossen und mit ihrem anderen Anschluß mit einem Zündtransistor 1 verbunden. Dieser Zündtransistor 1 wird über dessen Steuerelektrode von einer Regelschaltung 2 angesteuert, Indem über deren Verbindungsleitung Zündauslöseimpulse diesem Zündtransistor 1 zugeführt werden.The ignition output stage comprises an ignition coil Tr with primary and secondary circuits, consisting of a primary and secondary winding, wherein the already mentioned spark plug Zk is connected to the secondary winding. The primary winding is connected with its one connection to a vehicle battery supplied by a board battery voltage U B, for example, 12 V and connected with its other terminal to a firing transistor 1. This ignition transistor 1 is controlled by the control electrode of a control circuit 2, are supplied to the ignition transistor 1 via the connecting line ignition triggering pulses.

Die Sekundärwicklung ist mit ihrer Hochspannungsseite mit der Zündkerze Zk verbunden, während deren Niedrigpotentialseite auf den invertierenden Eingang eines Differenzverstärkers 3 geführt ist. An den nicht-invertierenden Eingang dieses Differenzverstärkers 3 wird eine konstante Referenzspannung Uref, vorzugsweise 5 V angelegt, wobei diese konstante Referenzspannung von einer Konstantspannungsquelle 6 erzeugt wird. Diese konstante Referenzspannung Uref wird über diesen Differenzverstärker 3 dem sekundärkreis der Zündspule Zk zugeführt und gelangt über diese als MeBspannung Umeß an die als Ionenstrommeßstrecke arbeitende Zündkerze Zk.The secondary winding is connected with its high voltage side to the spark plug Zk, while the low potential side is guided to the inverting input of a differential amplifier 3. A constant reference voltage U ref , preferably 5 V, is applied to the non-inverting input of this differential amplifier 3, this constant reference voltage being generated by a constant-voltage source 6. This constant reference voltage U ref is supplied via this differential amplifier 3 to the secondary circuit of the ignition coil Zk and passes through this as MeB voltage U meß to the working as Ionenstrommeßstrecke spark plug Zk.

Der Differenzverstärker 3 ist als Invertierender Verstärker aufgebaut, indem dessen invertierender Eingang über einen Widerstand R mit dessen Ausgang verbunden ist.The differential amplifier 3 is constructed as an inverting amplifier by its inverting input via a resistor R with its output connected is.

um während des Zündvorganges an der Zündkerze Zk einen niederohmigen Pfad für den Sekundärstrom zur Verfügung zu stellen, sind Dioden D1 und D2 vorhanden, die den Zündstrom auf Masse bzw. Bordnetzpotential ableiten. Hierzu ist die Diode D1 derart zwischen dem Invertlerenden Eingang des Differenzverstärkers 3 und dem Bordnetz UB geschaltet, daß der Zündstrom auf das Bordnetz abfließen kann. Die zweite Diode D2 liegt dagegen mit ihrer Anode auf dem Massepotential und ist mit ihrer Kathode ebenfalls mit dem invertierenden Eingang des Differenzverstärkers 3 verbunden. Die Verwendung einer Diode zur Ableitung von positiven Spannungen auf das Bordnetzpotential hat gegenüber der Verwendung von zenerdioden den Vorteil, daß die Leckströme von Dioden deutlich niedriger sind als diejenigen der Zenerdioden.In order to provide a low-impedance path for the secondary current during the ignition process at the spark plug Zk, diodes D1 and D2 are present, which derive the ignition current to ground or to the vehicle electrical system potential. For this purpose, the diode D1 is so connected between the Invertlerenden input of the differential amplifier 3 and the electrical system U B , that the ignition can flow to the electrical system. The second diode D2, however, lies with its anode at the ground potential and is also connected with its cathode to the inverting input of the differential amplifier 3. The use of a diode for deriving positive voltages to the electrical system potential has the advantage over the use of zener diodes that the leakage currents of diodes are significantly lower than those of the zener diodes.

Ferner kann ein Widerstand (in der Figur 1 nicht dargestellt) In der Zuleitung zum invertierenden Eingang des Differenzverstärkers 3 vorgesehen werden, der den in den Differenzverstärker 3 fließenden Strom zusätzlich begrenzt.Furthermore, a resistor (not shown in FIG. 1) in the supply line be provided to the inverting input of the differential amplifier 3, which additionally limits the current flowing into the differential amplifier 3.

Der invertierende Differenzverstärker 3 wandelt den Ionenstrom in eine Spannung Uion um, die als Meßsignal einer Auswerteeinheit 5 zugeführt wird. Die dem Sekundärkreis der Zündspule Tr zugeführte Meßspannung Umeß, hier vorzugsweise 5 V, ist während der gesamten Meßdauer konstant. Da der lonenmeßstrom im µA-Bereich liegt, wird ein Differenzverstärker 3 mit einem niedrigen Eingangsstrom verwendet, der heutzutage kostengünstig verfügbar ist. Durch die niederohmige Bereitstellung dieser Meßspannung Umeß entfallen Umladungen von Streukapazitäten, wie sie In anderen bekannten Systemen bei Wechselstrombelastung, wie sie z. B. bei klopfender Verbrennung, auftreten können. Dieser Vorteil der Erfindung macht sich besonders dann bemerkbar, wenn mehrere lonenstrommeßstrecken parallel betrieben werden, wie dies weiter unten anhand von Figur 2 erläutert wird, weil sich dabei die wirksame Streukapazität vervielfachen kann.The inverting differential amplifier 3 converts the ion current into a voltage U ion , which is supplied as a measuring signal to an evaluation unit 5. The secondary circuit of the ignition coil Tr supplied measuring voltage U meß , here preferably 5 V, is constant during the entire measurement period. Since the ion measuring current is in the μA range, a differential amplifier 3 is used with a low input current, which is currently available at low cost. Due to the low-impedance provision of this measuring voltage U meß accounts transhipment of stray capacitances, as in other known systems with AC load , as z. B. knocking combustion can occur. This advantage of the invention is particularly noticeable when several ion current measuring sections are operated in parallel, as will be explained below with reference to FIG. 2, because in this case the effective stray capacitance can multiply.

Die Figur 1 zeigt ferner ein Steuergerät 4, das die Funktion eines Motormanagements übernimmt und seinerseits die Regelschaltung 2 ansteuert. Hierzu werden dieser Steuereinheit 4 über einen Eingang E Motorparameter, wie Last, Drehzahl und Temperatur zugeführt. Entsprechende Aktuatoren werden über Ausgänge A gesteuert. Das von der Auswerteschaltung 5 erzeugte Ionenstromsignal wird gleichfalls dem steuergerät 4 zugeführt.FIG. 1 further shows a control unit 4 which performs the function of engine management takes over and in turn controls the control circuit 2. For this be this ECU 4 via an input E motor parameters, such as load, speed and temperature supplied. Corresponding actuators are controlled via outputs A. The generated by the evaluation circuit 5 Ion current signal is also supplied to the control unit 4.

Das Ionenstromsignal kann dazu verwendet werden, um das Klopfen der Brennkraftmaschine zu detektieren und über eine Steuerung des Zündzeitpunktes eine entsprechende Klopfregelung aufzubauen.The ion current signal can be used to control the knocking of the To detect internal combustion engine and via a control of the ignition timing to build up a corresponding knock control.

Eine weitere Anwendung besteht darin, das Ionenstromsignal zur Erkennung von Entflammungsaussetzern zu verwenden.Another application is to detect the ion current signal for detection of flare misfires.

Bei 4-Takt-Motoren kann sich der Zylinder bei der Kurbelposition, bei der die Zündung erfolgen soll sowohl im Kompressions- als auch im Auspufftakt befinden. Nur wenn der Zündvorgang im Kompressionstakt durchgeführt wird, entsteht eine normale Verbrennung mit dem zugehörigen lonenstromsignal. Bei Zündung im Auspufftakt ist das lonenstromsignal nahezu Null. Hierdurch kann die Phasenbeziehung zwischen Kurbel- und Nockenwelle erkannt werden.In 4-stroke engines, the cylinder at the crank position, in which the Ignition should be located both in the compression and in the exhaust stroke. Only when the ignition process is performed in the compression stroke becomes, results in a normal combustion with the associated ion current signal. When ignited in the exhaust stroke, the ion current signal is nearly Zero. This allows the phase relationship between crankshaft and camshaft be recognized.

Figur 2 zeigt eine Transistorzündanlage einer 4-Zylinder-Brennkraftmaschine mit jeweils einem Zylinder zugeordneten Zündendstufen, wobei jede Zündendstufe aus einer Zündspule Tr1 ... Tr4, jeweils einem Zündtransistor 1a ... 1d und zugehöriger Zündkerze Zk1 ... Zk4 aufgebaut ist.Figure 2 shows a transistorized a 4-cylinder internal combustion engine having each cylinder associated ignition output stages, each ignition of an ignition coil Tr 1 ... Tr 4, each with a firing transistor 1a ... 1d and associated spark plug Zk 1 ... Zk 4 is constructed.

Die Zündtransistoren 1a ... 1d werden über deren Steuerelektroden von einer Schaltung 2a zur Zylinderselektion angesteuert, die ihrerseits mit einer Regelschaltung 2 verbunden ist, die die entsprechenden Zündauslöseimpulse für die einzelnen Zylinder dieser Schaltung 2a zuführt. The ignition transistors 1a ... 1d are connected via their control electrodes of a Circuit 2a driven to the cylinder selection, which in turn with a Control circuit 2 is connected to the corresponding Zündauslöseimpulse for the individual cylinders this circuit 2a supplies.

Gleichfalls wie in dem Ausführungsbeispiel gemäß Figur 1 ist ein Steuergerät 4 vorgesehen, das die Regelschaltung 2 ansteuert.Likewise, as in the embodiment of Figure 1 is a control unit 4 is provided, which drives the control circuit 2.

Zur Messung des lonenstromes ist jeweils die Niedrigpotentialseite des sekundärkreises jeder Zündspule Tr1 ... Tr4 auf einen Schaltungsknoten S geführt, der mit dem invertierenden Eingang eines Differenzverstärkers 3 verbunden ist. Dieser Differenzverstärker 3 Ist ebenfalls als Invertlerender Verstärker mittels eines den Invertierenden Eingang mit dem Ausgang verbindenden Widerstandes R aufgebaut. Dem nicht-invertierenden Eingang dieses Differenzverstärkers 3 wird eine konstante Referenzspannung Uref zugeführt, die von einer Konstantspannungsquelle 6 erzeugt wird. Diese konstante Referenzspannung Uref ist kleiner als die Bordnetzspannung und beträgt 5 V und führt zu der erwünschten Meßspannung Umeß am Schaltungsknoten S und somit auch an den parallelgeschalteten Ionenstromstrecken der Zündkerzen Zk1 ... Zk4.For measuring the ion current, the low potential side of the secondary circuit of each ignition coil Tr 1 ... Tr 4 is led to a circuit node S, which is connected to the inverting input of a differential amplifier 3. This differential amplifier 3 is also constructed as an inverter of the amplifier by means of a resistor R connecting the inverting input to the output. The non-inverting input of this differential amplifier 3 is supplied with a constant reference voltage U ref , which is generated by a constant-voltage source 6. This constant reference voltage U ref is smaller than the vehicle electrical system voltage and is 5 V and leads to the desired voltage U measured at circuit node S and therefore also to the parallel ion current paths of the spark plug Zk 1 ... Zk. 4

Ferner sind ebenso wie in dem Ausführungsbeispiel gemäß Figur 1 zwei Dioden D1 und D2 zur Ableitung des Zündstromes auf Masse bzw. Bordnetz vorgesehen.Further, as in the embodiment of FIG. 1, there are two diodes D1 and D2 for the derivation of the ignition current to ground or vehicle electrical system intended.

Das am Ausgang des Differenzverstärkers 3 erhaltene Meßsignal Uion wird einer Auswerteschaltung 5 zugeführt, die ihrerseits von einem Steuergerät 4 angesteuert wird, dessen Funktion demjenigen Steuergerät aus Figur 1 entspricht.The measuring signal U ion obtained at the output of the differential amplifier 3 is fed to an evaluation circuit 5, which in turn is controlled by a control unit 4 whose function corresponds to that control unit from FIG.

Schließlich kann auch in diesem Ausführungsbeispiel gemäß Figur 2 ein zusätzlicher Widerstand (ebenfalls nicht dargestellt) in der Zuleitung zum invertierenden Eingang des Differenzverstärkers 3 vorgesehen werden, der den in den Differenzverstärker 3 fließenden Strom zusätzlich begrenzt.Finally, in this embodiment according to Figure 2, an additional Resistor (also not shown) in the lead to the inverting Input of the differential amplifier 3 are provided, the additionally limits the current flowing in the differential amplifier 3.

Die erfindungsgemäße Schaltungsanordnung zur Ionenstrommessung ist nicht nur bei Transistorzündanlagen, wie in den beiden Ausführungsbeispielen dargestellt, einsetzbar, sondern gleichfalls bei Wechseistromzündungen oder Hochspannungskondensatorzündungen.The circuit arrangement according to the invention for ion current measurement is not only in transistor ignition systems, as in the two embodiments used, but also in alternating currents or high voltage capacitor ignitions.

Claims (7)

  1. Circuit arrangement for measuring an ionic current in the combustion chamber of an internal combustion engine, comprising:
    a) an ignition coil (Tr, Tr1 ... Tr4) which has a primary circuit and a secondary circuit and is fed by a vehicle's electrical system which supplies a vehicle's electrical system voltage (UB),
    b) a spark plug (Zk, Zk1 ... Zk4) which is arranged in the secondary circuit and simultaneously serves as an ionic current probe,
    characterized by the following feature:
    c) switching means are provided (3, R) with which a constant measuring voltage (Umeas) is applied to the low potential side of the secondary circuit of the ignition coil (Tr, Tr1 ... Tr4) which has a voltage value which is identical to or smaller than the value of the vehicle's electrical system voltage (UB), and
    d) in addition a rectifier element (D1) is provided which conducts away the ignition current (Iign) generated during the ignition of the spark plug (Zk, Zk1 ... Zk4) to the vehicle's electrical system.
  2. Circuit arrangement according to Claim 1, characterized in that a semiconductor diode (D1) is provided as rectifier element.
  3. Circuit arrangement according to one of the preceding claims, characterized in that when there are a plurality of ignition coils (Tr1 ... Tr4), the measuring sections which are formed by the ionic current probes are connected in parallel in each case with one spark plug (Zk1 ... Zk4) as ionic current probe.
  4. Circuit arrangement according to one of the preceding claims, characterized in that a differential amplifier which is connected as in inverting amplifier is provided as the switching means (3, R).
  5. Circuit arrangement according to Claim 4, characterized in that one of the inputs of the differential amplifier (3) is connected to the low potential side of the secondary circuit of the ignition coil (Tr, Tr1 ... Tr4) and a reference voltage (Uref) is fed to the other input, the value of which reference voltage (Uref) corresponds to the measuring voltage (Umeas), and the output of the differential amplifier (3) is connected to one of the inputs via a resistor (R).
  6. Circuit arrangement according to Claim 5, characterized in that the reference voltage (Uref) is generated by a constant voltage source (6).
  7. Circuit arrangement according to one of Claims 4 to 6, characterized in that the negative voltage peaks which are present at the input of the differential amplifier (3, R) are conducted away to earth potential of the vehicle's electrical system with a diode (D2).
EP97101843A 1996-02-16 1997-02-06 Measuring circuit for an ionic current in ignition devices for internal combustion engines Expired - Lifetime EP0790409B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19605803A DE19605803A1 (en) 1996-02-16 1996-02-16 Circuit arrangement for ion current measurement
DE19605803 1996-02-16

Publications (3)

Publication Number Publication Date
EP0790409A2 EP0790409A2 (en) 1997-08-20
EP0790409A3 EP0790409A3 (en) 1999-01-20
EP0790409B1 true EP0790409B1 (en) 2003-08-20

Family

ID=7785611

Family Applications (3)

Application Number Title Priority Date Filing Date
EP97101843A Expired - Lifetime EP0790409B1 (en) 1996-02-16 1997-02-06 Measuring circuit for an ionic current in ignition devices for internal combustion engines
EP97101842A Expired - Lifetime EP0790408B1 (en) 1996-02-16 1997-02-06 Measuring circuit for an ionic current in ignition devices for internal combustion engines
EP97101844A Expired - Lifetime EP0790406B1 (en) 1996-02-16 1997-02-06 Electronic ignition system for internal combustion engines

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP97101842A Expired - Lifetime EP0790408B1 (en) 1996-02-16 1997-02-06 Measuring circuit for an ionic current in ignition devices for internal combustion engines
EP97101844A Expired - Lifetime EP0790406B1 (en) 1996-02-16 1997-02-06 Electronic ignition system for internal combustion engines

Country Status (4)

Country Link
US (3) US6043660A (en)
EP (3) EP0790409B1 (en)
DE (4) DE19605803A1 (en)
ES (1) ES2166479T3 (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19605803A1 (en) * 1996-02-16 1997-08-21 Daug Deutsche Automobilgesells Circuit arrangement for ion current measurement
JP3129403B2 (en) * 1997-05-15 2001-01-29 トヨタ自動車株式会社 Ion current detector
DE19720535C2 (en) * 1997-05-16 2002-11-21 Conti Temic Microelectronic Method for detecting knocking combustion in an internal combustion engine with an AC ignition system
DE19829583C1 (en) * 1998-07-02 1999-10-07 Daimler Chrysler Ag Breakthrough voltage determining method for AC ignition system diagnosis in IC engine
US6357427B1 (en) 1999-03-15 2002-03-19 Aerosance, Inc. System and method for ignition spark energy optimization
DE19917261C5 (en) * 1999-04-16 2010-09-09 Siemens Flow Instruments A/S Electromagnetic flowmeter arrangement
DE19917268B4 (en) 1999-04-16 2005-07-14 Siemens Flow Instruments A/S Method for checking an electromagnetic flowmeter and electromagnetic flowmeter arrangement
US6186130B1 (en) * 1999-07-22 2001-02-13 Delphi Technologies, Inc. Multicharge implementation to maximize rate of energy delivery to a spark plug gap
US6378513B1 (en) * 1999-07-22 2002-04-30 Delphi Technologies, Inc. Multicharge ignition system having secondary current feedback to trigger start of recharge event
DE19956032A1 (en) * 1999-11-22 2001-05-23 Volkswagen Ag Misfire detection circuit in an internal combustion engine
DE10031553A1 (en) * 2000-06-28 2002-01-10 Bosch Gmbh Robert Inductive ignition device with ion current measuring device
US6360587B1 (en) * 2000-08-10 2002-03-26 Delphi Technologies, Inc. Pre-ignition detector
AT409406B (en) * 2000-10-16 2002-08-26 Jenbacher Ag IGNITION SYSTEM WITH AN IGNITION COIL
DE10104753B4 (en) * 2001-02-02 2014-07-03 Volkswagen Ag Method and device for detecting the combustion process in a combustion chamber of an internal combustion engine
DE10125574A1 (en) * 2001-05-25 2002-11-28 Siemens Building Tech Ag Flame monitoring device with which an asymmetrical voltage is applied across burner and ionization electrode to detect presence of flame
US6781384B2 (en) * 2001-07-24 2004-08-24 Agilent Technologies, Inc. Enhancing the stability of electrical discharges
DE10152171B4 (en) * 2001-10-23 2004-05-06 Robert Bosch Gmbh Device for igniting an internal combustion engine
US6954074B2 (en) * 2002-11-01 2005-10-11 Visteon Global Technologies, Inc. Circuit for measuring ionization current in a combustion chamber of an internal combustion engine
US6935323B2 (en) * 2003-07-01 2005-08-30 Caterpillar Inc Low current extended duration spark ignition system
WO2007019066A2 (en) * 2005-08-04 2007-02-15 Mau-Chung Frank Chang Phase coherent differential structures
JP4188367B2 (en) * 2005-12-16 2008-11-26 三菱電機株式会社 Internal combustion engine ignition device
AT504369B8 (en) 2006-05-12 2008-09-15 Ge Jenbacher Gmbh & Co Ohg IGNITION DEVICE FOR AN INTERNAL COMBUSTION ENGINE
US7603226B2 (en) * 2006-08-14 2009-10-13 Henein Naeim A Using ion current for in-cylinder NOx detection in diesel engines and their control
DE102007034399B4 (en) * 2007-07-24 2019-06-19 Daimler Ag Method for operating an ignition system for a spark-ignitable internal combustion engine of a motor vehicle and ignition system
DE102007034390B4 (en) * 2007-07-24 2019-05-29 Daimler Ag Method for operating an ignition system for a spark-ignitable internal combustion engine of a motor vehicle and ignition system
DE102008031027A1 (en) * 2008-06-30 2009-12-31 Texas Instruments Deutschland Gmbh Automatic testing device
US20100006066A1 (en) * 2008-07-14 2010-01-14 Nicholas Danne Variable primary current for ionization
US8461844B2 (en) * 2009-10-02 2013-06-11 Woodward, Inc. Self charging ion sensing coil
DE102009057925B4 (en) * 2009-12-11 2012-12-27 Continental Automotive Gmbh Method for operating an ignition device for an internal combustion engine and ignition device for an internal combustion engine for carrying out the method
JP2013517427A (en) * 2010-01-20 2013-05-16 セム アクティエボラグ Apparatus and method for analyzing engine performance
DE102010061799B4 (en) 2010-11-23 2014-11-27 Continental Automotive Gmbh Method for operating an ignition device for an internal combustion engine and ignition device for an internal combustion engine for carrying out the method
CN102852693B (en) * 2011-06-28 2015-05-27 比亚迪股份有限公司 Ignition coil failure diagnosis system and diagnosis method thereof
US10054067B2 (en) * 2012-02-28 2018-08-21 Wayne State University Using ion current signal for engine performance and emissions measuring techniques and method for doing the same
DE102013004728A1 (en) 2013-03-19 2014-09-25 Daimler Ag Method for operating an internal combustion engine and internal combustion engine
JP6207223B2 (en) * 2013-05-01 2017-10-04 キヤノン株式会社 Motor drive device and control method thereof
US9249774B2 (en) 2013-10-17 2016-02-02 Ford Global Technologies, Llc Spark plug fouling detection for ignition system
CN103745816B (en) * 2013-12-31 2018-01-12 联合汽车电子有限公司 A kind of high-energy ignition coil
AT517272B1 (en) 2015-06-03 2017-03-15 Ge Jenbacher Gmbh & Co Og Method for operating an internal combustion engine
JP6956904B2 (en) * 2018-12-25 2021-11-02 三菱電機株式会社 Ion current detection circuit, ignition control device and ignition system
CN111835323A (en) * 2019-04-17 2020-10-27 联合汽车电子有限公司 Internal drive ignition IGBT overload protection method and device

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3945362A (en) * 1973-09-17 1976-03-23 General Motors Corporation Internal combustion engine ignition system
DE2623865A1 (en) * 1976-05-28 1977-12-08 Bosch Gmbh Robert IGNITION SYSTEM, IN PARTICULAR FOR COMBUSTION MACHINERY
US4329576A (en) * 1979-11-05 1982-05-11 Rapistan, Inc. Data storage means and reading system therefor
US4380989A (en) * 1979-11-27 1983-04-26 Nippondenso Co., Ltd. Ignition system for internal combustion engine
DE3006665A1 (en) * 1980-02-22 1981-09-03 Robert Bosch Gmbh, 7000 Stuttgart VOLTAGE SOURCE FOR MEASURING ION CURRENT ON THE COMBUSTION ENGINE
DE3327766A1 (en) * 1983-08-02 1985-02-14 Atlas Fahrzeugtechnik GmbH, 5980 Werdohl KNOCK DETECTION CIRCUIT ON AN OTTO ENGINE
DE3615548A1 (en) * 1986-05-09 1987-11-12 Bosch Gmbh Robert IGNITION SYSTEM FOR INTERNAL COMBUSTION ENGINES
FR2603339B1 (en) * 1986-08-27 1988-12-16 Renault Sport DEVICE FOR DETECTING COMBUSTION ABNORMALITY IN A CYLINDER OF AN INTERNAL COMBUSTION ENGINE WITH CONTROLLED IGNITION
IT1208855B (en) * 1987-03-02 1989-07-10 Marelli Autronica VARIABLE SPARK ENERGY IGNITION SYSTEM FOR INTERNAL COMBUSTION ENGINES PARTICULARLY FOR MOTOR VEHICLES
SE457831B (en) * 1987-08-27 1989-01-30 Saab Scania Ab PROCEDURES AND ARRANGEMENTS FOR DETECTING IONIZATION CURRENT IN A COMBUSTION ENGINE IGNITION SYSTEM
US5056497A (en) * 1989-04-27 1991-10-15 Aisin Seiki Kabushiki Kaisha Ignition control system
DE3924985A1 (en) * 1989-07-28 1991-02-07 Volkswagen Ag FULLY ELECTRONIC IGNITION DEVICE FOR AN INTERNAL COMBUSTION ENGINE
JP2552754B2 (en) * 1990-05-18 1996-11-13 三菱電機株式会社 Internal combustion engine combustion detection device
US5293129A (en) * 1990-11-09 1994-03-08 Mitsubishi Denki Kabushiki Kaisha Ionic current sensing apparatus for engine spark plug with negative ignition voltage and positive DC voltage application
US5309888A (en) * 1991-08-02 1994-05-10 Motorola, Inc. Ignition system
JP2536353B2 (en) * 1991-10-04 1996-09-18 三菱電機株式会社 Ion current detection device for internal combustion engine
JPH05149229A (en) * 1991-11-26 1993-06-15 Mitsubishi Electric Corp Ion current detecting device for internal combustion engine
US5337716A (en) * 1992-02-04 1994-08-16 Mitsubishi Denki Kabushiki Kaisha Control apparatus for internal combustion engine
US5446385A (en) * 1992-10-02 1995-08-29 Robert Bosch Gmbh Ignition system for internal combustion engines
US5483818A (en) * 1993-04-05 1996-01-16 Ford Motor Company Method and apparatus for detecting ionic current in the ignition system of an internal combustion engine
JPH06299941A (en) * 1993-04-12 1994-10-25 Nippondenso Co Ltd Ion current detecting device
JP2880058B2 (en) * 1993-12-21 1999-04-05 本田技研工業株式会社 Misfire detection device for internal combustion engine
JP3192541B2 (en) * 1994-01-28 2001-07-30 三菱電機株式会社 Misfire detection circuit for internal combustion engine
DE4437480C1 (en) * 1994-10-20 1996-03-21 Bosch Gmbh Robert Method for monitoring the function of an internal combustion engine for detecting misfires
JP3194676B2 (en) * 1994-11-08 2001-07-30 三菱電機株式会社 Misfire detection device for internal combustion engine
GB9515272D0 (en) * 1994-12-23 1995-09-20 Philips Electronics Uk Ltd An ignition control circuit, and engine system
DE19605803A1 (en) * 1996-02-16 1997-08-21 Daug Deutsche Automobilgesells Circuit arrangement for ion current measurement

Also Published As

Publication number Publication date
DE19605803A1 (en) 1997-08-21
US5758629A (en) 1998-06-02
DE59710592D1 (en) 2003-09-25
EP0790409A3 (en) 1999-01-20
US5914604A (en) 1999-06-22
DE59705316D1 (en) 2001-12-20
ES2166479T3 (en) 2002-04-16
EP0790408A3 (en) 1999-01-20
EP0790408A2 (en) 1997-08-20
EP0790406A3 (en) 1999-01-27
US6043660A (en) 2000-03-28
EP0790408B1 (en) 2001-11-14
EP0790406B1 (en) 2003-07-02
EP0790406A2 (en) 1997-08-20
EP0790409A2 (en) 1997-08-20
DE59710359D1 (en) 2003-08-07

Similar Documents

Publication Publication Date Title
EP0790409B1 (en) Measuring circuit for an ionic current in ignition devices for internal combustion engines
DE19524539C1 (en) Circuit arrangement for ion current measurement in the combustion chamber of an internal combustion engine
DE19601353C2 (en) Combustion state detection device for an internal combustion engine
DE19781523C2 (en) Device and method for communication between an ignition module and a control unit in an ignition system of an internal combustion engine
EP0752580B1 (en) Measuring circuit for an ionic current
DE19502402C2 (en) Misfire sampling circuit for an internal combustion engine
DE4207140C2 (en) Misfire detector system for detecting misfire in an internal combustion engine
DE19514633C2 (en) Device for detecting misfires in an internal combustion engine
DE4133743C2 (en) Ignition device for an internal combustion engine
DE19730362A1 (en) Internal combustion engine state measurement device
DE4242124A1 (en)
DE19614288C1 (en) Ion-current measurement circuit e.g. for motor vehicle IC engine combustion chamber
DE19681614B4 (en) Method for identifying the combustion chamber of an internal combustion engine located in the compression stroke, method for starting an internal combustion engine, and device for an internal combustion engine
DE4244181C2 (en) Misfire detection system for an internal combustion engine
DE4239803A1 (en) Ionisation current detector for IC engine ignition monitor - measures ionisation current through ignition coils during combustion of gas mixture
DE19618980B4 (en) Combustion monitoring device for an internal combustion engine
DE4020986C2 (en) Electronic ignition system for an internal combustion engine
DE19648969A1 (en) Combustion state monitoring for IC engine
EP0801294B1 (en) High frequency ion current measurement after AC current ignition
DE19524540C1 (en) Circuit for measuring ion currents in an engine combustion chamber
DE4207141C2 (en) Misfire detector system for detecting misfire in an internal combustion engine
DE102011004850A1 (en) Self-energy for ignition sump with integrated ion detection circuit
DE69727871T2 (en) Method for detecting the phase position of a cylinder for ignition in an internal combustion engine
DE4207139C2 (en) Misfire detector system for internal combustion engines
EP1054154B1 (en) Device for the measuring of an ion current for an internal-combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19990211

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VOLKSWAGEN AKTIENGESELLSCHAFT

Owner name: DAIMLERCHRYSLER AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VOLKSWAGEN AKTIENGESELLSCHAFT

Owner name: CONTI TEMIC MICROELECTRONIC GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VOLKSWAGEN AKTIENGESELLSCHAFT

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE ES FR GB IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20030820

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030820

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59710592

Country of ref document: DE

Date of ref document: 20030925

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031201

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20030820

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090206

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150228

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59710592

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160901