EP1054154B1 - Device for the measuring of an ion current for an internal-combustion engine - Google Patents
Device for the measuring of an ion current for an internal-combustion engine Download PDFInfo
- Publication number
- EP1054154B1 EP1054154B1 EP20000107750 EP00107750A EP1054154B1 EP 1054154 B1 EP1054154 B1 EP 1054154B1 EP 20000107750 EP20000107750 EP 20000107750 EP 00107750 A EP00107750 A EP 00107750A EP 1054154 B1 EP1054154 B1 EP 1054154B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- current
- voltage
- measuring
- operational amplifier
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P17/00—Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
- F02P17/12—Testing characteristics of the spark, ignition voltage or current
Definitions
- the invention relates to a device for detecting an ion current for an internal combustion engine according to the preamble of claim 1.
- ionization of various molecules takes place during combustion. If an electric field is applied in a region of the combustion chamber, an ion movement can be generated, which in turn can be measured as current. This ionic current has a correlation to the pressure curve in the combustion chamber and can thus be used for combustion control.
- DE 197 33 869 A1 and DE 197 30 362 A1 Another approach followed by the embodiments in the DE 197 34 039 A1 .
- DE 197 33 869 A1 and DE 197 30 362 A1 According to these publications, a voltage continuous analog signal is converted into a voltage discrete pulse train and communicated to the combustion control unit for further evaluation.
- the DE 197 30 362 A1 uses for this purpose a comparator circuit whose threshold value can be set by the combustion control unit via a voltage interface.
- the DE 197 33 869 A1 uses masking circuits and a bandpass filter to convert the ionic current signal into a pulse knocking signal which is sent to the combustion control unit for further evaluation.
- the combustion control unit in this case has no possibility of intervention on the threshold values for knock signal detection, which can lead to disadvantages during the application phase of such a system.
- the DE 197 34 039 A1 uses a pulse generation device for misfire detection.
- the DE 197 34 039 A1 and the DE 197 33 869 A1 additionally use the unfiltered voltage signal via the measuring resistor. All the above procedures lead to an increased wiring complexity. On the other hand, the noise and feedback problems remain in the evaluation of this voltage-continuous analog signal.
- a measuring resistor to ground at the measuring point leads to a negative voltage signal relative to the reference ground. This forces an additional negative power supply and a reverse amplifier for the signal evaluation. For noise suppression, it is therefore useful to introduce a band limit in this amplifier stage. However, this requires matched capacitors at the inverting amplifier.
- the use of a measuring shunt thus increases the switching complexity and cost.
- a measuring shunt also forms a voltage divider with the measuring channel in the combustion chamber, ie the choice of this resistor reduces the size of the already small ion current anyway.
- a misfire apparatus and method for detecting a misfire in which an ignition current is measured in an ignition system.
- a current / voltage converter unit for a pair of cylinders is used for this purpose.
- the circuit including the operational amplifier further includes resistors and a capacitor, wherein a resistor and a capacitor are connected in parallel with a transistor which transitions to the conducting state when a high level reset signal is applied to its input.
- a misfire scanning circuit for an internal combustion engine is known, with which misfires can be detected on the basis of the presence or absence of an ion current.
- the ion current is caused by combustion by applying a voltage to spark plugs of the internal combustion engine.
- the misfire sensing circuit comprises a current to voltage converter unit, which in turn comprises an operational amplifier whose inverting input is connected to one electrode of a capacitor on the low potential side and whose non-inverting input is grounded.
- the object of the invention is to provide a self-diagnostic device for detecting an ionic current for an internal combustion engine, which comprises the aforementioned Avoid disadvantages and provides a vehicle-ready processed ion current measurement signal in a simple manner.
- Meßsignalkonverter a current / voltage converter, which consists of an operational amplifier.
- the negative input of the operational amplifier is connected to the Meßwoodser Wegungs owned, the Zündstrombypass and a resistor with its output, which provides the measurement signal.
- the positive input of the operational amplifier is at a slightly elevated potential.
- a voltage converter in the form of an interface converter, for example, from Tietze, Schenck, 9th ed., Page 366, known.
- this circuit is normally used to adapt a current interface with controllable impressed current to a voltage interface. In this case, the circuit acts as a current sink.
- the circuit is used in conjunction with an impressed constant voltage source, namely the ion measuring voltage generating means, and therefore acts as a current source for the ion current.
- an impressed constant voltage source namely the ion measuring voltage generating means
- the operational amplifier is not operating in its saturation, there is a linear relationship between the combustion chamber Meßleitleitleitwert and the output of the operational amplifier, which is directly the measurement voltage.
- the advantage over a solution with a measuring resistor is a continuously positive voltage.
- the measuring node so the negative input of the operational amplifier, virtually to ground, ie the entire capacitor voltage lies above the combustion chamber measuring section, so that the measurement does not falsify the conductivity to be measured.
- Fig. 1 is a schematic overview of a device according to the invention for detecting an ion current shown.
- This device comprises a Ionenstrommeßwoodser Wegungs Sk 1, a Zündstrombypass 2, which is connected in parallel to a protective circuit 3 and a current / voltage converter 4.
- the current / voltage converter 4 in turn is connected in series with a filter stage 5 and an optional additional output driver 6.
- the ion current measuring voltage generating device 1 is connected via an interface Schn_Z with an ignition system, which is not shown in detail.
- the measuring voltage generating device 1 is connected via an interface 1 a to the Zündstrombypass 2, the protective circuit 3 and the current / voltage converter 4.
- the interfaces 4-5, 5-6 and ECU define the connections between the corresponding device parts.
- the individual device parts namely the measuring voltage generating device 1, the Zündstrombypass 2, the protection circuit 3, the current / voltage converter 4, the filter stage 5 and the optional output driver 6 are below in the Fig. 2 to 10 Shown in detail by means of circuit diagrams.
- a known embodiment of a measuring voltage generating device 1 is shown.
- This consists essentially of an ignition device which comprises an ignition coil L1, a control device, here in the form of a transistor T1, and a spark plug X1.
- the spark plug X1 and the transistor T1 are grounded.
- the transistor is connected on the collector side to the primary winding of the coil L1, which in turn is applied to a supply voltage Ub. How out Fig. 2 becomes clear, several of these ignition arrangements can be connected in series.
- the secondary winding of the coil L1 is connected on the one hand to the spark plug X1, on the other hand to the secondary-side ground return 4a, which causes a parallel connection of a storage capacitor Cs and one or more Zener diodes Dz.
- Z_S is the interface to the ignition system. With 1a is already off Fig. 1 known interface referred.
- the quantities L2, T2, X2 designate the parts of a second, parallel ignition arrangement.
- FIG. 3 another embodiment of a known measuring voltage generating device 1 is shown, wherein the with Fig. 2 corresponding reference numerals designate the same or corresponding parts.
- This second embodiment of a measuring voltage generating device 1 consists essentially of a primary-side charging circuit with at least one low-voltage diode DL and a resistor RL connected in series therewith, which has a common node with at least one high-voltage diode Dh to the high-voltage side of at least one spark plug X1, Xx. Furthermore, a parallel circuit of a storage capacitor Cs and one or more Zener diodes Dz is provided. The cathodes of the high-voltage diodes Dh each form a common node with the high-voltage side UH1... UHX of the associated ignition coil, L1... Lx.
- the anodes of the low-voltage diodes DL each form a common node, with the ground-side terminal UL1 ?? ULX the primary side of the zugehärigen ignition coil L1 ........ Lx.
- Fig. 4 is a per se known embodiment of a Zündstrombypasses (reference numeral 2 in Fig. 1 ) and a protection circuit (reference numeral 3 in FIG Fig. 1 ).
- the entire arrangement consists of an ignition diode Dzs and at least one ignition diode Ds connected inversely thereto.
- two series-connected protective diodes Ds are provided.
- the Zündstrombypass is especially important in the first ignition phase.
- a current / voltage converter 4 comprises an operational amplifier OP, which is connected with its negative input to the measuring voltage generator 1 and the Zündstrombypass 2. Furthermore, the negative input of the operational amplifier is connected via a resistor Rq to the output thereof, which essentially supplies the measuring signal.
- the positive input of the operational amplifier is presently grounded. Alternatively, it can also be at a slightly elevated potential.
- an inventive current / voltage converter is shown, which (compared to those in Fig. 5 ) optionally has a capacitor Ctp connected in parallel with the resistor Rq, which effects an early band limitation. Otherwise, a diagnostic offset circuit in the form of at least one series resistor Rv and a Schottky diode Do is provided.
- the capacitor Co which is connected in parallel with the Schottky diode Do, in the present case improves the stability of the offset voltage, but is not absolutely necessary.
- the offset circuit may alternatively be generated by a voltage divider, a Zener voltage or a reference voltage source.
- the present use of the current-voltage converter 4 ensures that the measured voltage is always positive. Otherwise, the negative input of the operational amplifier virtually to ground, so that the entire capacitor voltage is applied across the combustion chamber measuring path and the measurement of the floating value is not distorted.
- the present circuit according to the FIGS. 5 and 6 acts as a current source for the ion current using the ion current measuring voltage generating device as a constant current source.
- the current / measuring voltage transmission ratio is set via the feedback resistor Rq. So long as the operational amplifier does not operate in its saturation, there is a linear relationship between the Brennraum-Meßrownleitwert and the output of the operational amplifier, which is directly the measurement voltage.
- Fig. 7 is a first known per se embodiment of the filter stage 5 is shown. Such a filter stage should preferably be used with an output driver 6 for decoupling. An appropriate output driver is in Fig. 9 shown. The decoupling ensures interference immunity.
- an active filter stage as described in US Pat Fig. 8 is shown used.
- This filter stage forms a second to third order low-pass filter R5, C5 (compare Tietze, Schenck, 9th ed., Page 419) and can simultaneously serve as an anti-aliasing filter for digital signal processing in the combustion control unit (ECU).
- An active filter stage, as in Fig. 8 Used in combination with a current-voltage conversion device, as in Fig. 6 is shown, a cost-effective implementation of the invention, which offers a great deal of flexibility for the application.
- Fig. 9 an optional driver stage is shown in a first embodiment.
- a current interface as used in Fig. 10 (see also Tietze, Schenck, 9th ed., page 369). Namely, a current interface offers the advantage that potential potential offsets between the control unit near the combustion chamber and the combustion control unit have less influence on the signal transmission.
- An arrangement of the overall circuit should preferably be aimed at in the vicinity of the combustion chamber and the ignition coil for emission reasons. Otherwise, the masses of the high-voltage side would have to be led over longer distances in the engine compartment. Ideally, one integrates the compact circuit alone or in conjunction with the or the associated ignition coils on the ignition coil or in a belonging to a cylinder group attachment device in the combustion chamber and Zündspul publication.
- the present invention offers a simple possibility for generating a vehicle-adapted ion current measurement signal.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Ignition Installations For Internal Combustion Engines (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Description
Die Erfindung betrifft eine Vorrichtung zur Erfassung eines Ionenstroms für eine Brennkraftmaschine gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a device for detecting an ion current for an internal combustion engine according to the preamble of
In einer Brennkraftmaschine mit innerer Verbrennung findet während der Verbrennung eine Ionisation verschiedener Moleküle statt. Wird ein elektrisches Feld in einem Bereich des Brennraumes angelegt, so kann eine Ionenbewegung erzeugt werden, die wiederum als Strom gemessen werden kann. Dieser Ionenstrom weist eine Korrelation zum Druckverlauf im Brennraum auf und kann somit zur Verbrennungskontrolle eingesetzt werden.In an internal combustion engine, ionization of various molecules takes place during combustion. If an electric field is applied in a region of the combustion chamber, an ion movement can be generated, which in turn can be measured as current. This ionic current has a correlation to the pressure curve in the combustion chamber and can thus be used for combustion control.
Zur Erfassung des Ionenstroms ist es allgemein bekannt, ein ungefiltertes spannungskontinuierliches Analogsignal an eine Auswerteeinrichtung weiterzuleiten. So ist es aus der
Allen vorgenannten Anordnungen ist gemein, daß sie nur bedingt in einer Fahrzeugumgebung einsetzbar sind, da das Ionenstromsignal im µA-Bereich liegt.All of the above arrangements have in common that they can only be used to a limited extent in a vehicle environment, since the ion current signal is in the μA range.
Einen anderen Ansatz verfolgen die Ausführungsformen in der
Im übrigen führt die Verwendung eines Meßwiderstandes gegen Masse am Meßpunkt zu einem negativen Spannungssignal gegenüber der Bezugsmasse. Dies erzwingt eine zusätzliche negative Spannungsversorgung und einen Umkehrverstärker für die Signalauswertung. Zur Rauschunterdrückung ist es daher sinnvoll, in diese Verstärkerstufe eine Bandbegrenzung einzuführen. Dies erfordert jedoch beim Umkehrverstärker abgeglichene Kondensatoren. Die Verwendung eines Meß-Shunts erhöht folglich die Schaltkomplexität und -kosten. Im übrigen bildet ein Meß-Shunt außerdem einen Spannungsteiler mit dem Meßkanal im Brennraum, d. h. die Wahl dieses Widerstands verringert die Größe des sowieso schon kleinen lonenstroms.Moreover, the use of a measuring resistor to ground at the measuring point leads to a negative voltage signal relative to the reference ground. This forces an additional negative power supply and a reverse amplifier for the signal evaluation. For noise suppression, it is therefore useful to introduce a band limit in this amplifier stage. However, this requires matched capacitors at the inverting amplifier. The use of a measuring shunt thus increases the switching complexity and cost. Moreover, a measuring shunt also forms a voltage divider with the measuring channel in the combustion chamber, ie the choice of this resistor reduces the size of the already small ion current anyway.
Aus der
Aus der
Aus der
Aufgabe der Erfindung ist es, eine selbstdiagnosefähige Vorrichtung zur Erfassung eines Ionenstroms für eine Brennkraftmaschine zu schaffen, die die vorgenannten Nachteile vermeidet und ein fahrzeuggerecht aufbereitetes lonenstrom-Meßsignal auf einfache Art und Weise liefert.The object of the invention is to provide a self-diagnostic device for detecting an ionic current for an internal combustion engine, which comprises the aforementioned Avoid disadvantages and provides a vehicle-ready processed ion current measurement signal in a simple manner.
Diese Aufgabe wird durch die im Anspruch 1 genannten Merkmale gelöst.This object is achieved by the features mentioned in
Gemäß dem Anspruch 1 wird als Meßsignalkonverter ein Strom-/Spannungskonverter verwendet, der aus einem Operationsverstärker besteht. Der negative Eingang des Operationsverstärkers ist mit der Meßspannungserzeugungseinrichtung, dem Zündstrombypass und über einen Widerstand mit dessen Ausgang, welcher das Meßsignal liefert, verbunden. Der positive Eingang des Operationsverstärkers liegt auf einem leicht erhöhten Potential. Zwar ist ein solcher Stromspannungskonverter in Form eines Schnittstellenkonverters, beispielsweise aus Tietze, Schenck, 9. Aufl., Seite 366, bekannt. Doch wird diese Schaltung normalerweise zur Anpasnung einer Stromschnittstelle mit regelbarem eingeprägten Strom an eine Spannungsschnittstelle verwendet. In diesem Fall wirkt die Schaltung als Stromsenke. Vorliegend wird die Schaltung jedoch in Verbindung mit einer eingeprägten Konstantspannungsquelle, nämlich der lonenmeßspannungserzeugungseinrichtung, verwendet und fungiert daher als Stromquelle für den Ionenstrom. Solange der Operationsverstärker nicht in seiner Sättigung arbeitet, besteht ein lineares Verhältnis zwischen dem Brennraum-Meßstreckenleitwert und dem Ausgang des Operationsverstärkers, der direkt die Meßspannung darstellt.According to
Der Vorteil gegenüber einer Lösung mit einem Meßwiderstand ist eine fortwährend positive Spannung. Darüber hinaus liegt der Meßknoten, also der negative Eingang des Operationsverstärkers, virtuell auf Masse, d. h. die gesamte Kondensatorspannung liegt über der Brennraum-Meßstrecke an, so daß die Messung nicht den zu messenden Leitwert verfälscht.The advantage over a solution with a measuring resistor is a continuously positive voltage. In addition, the measuring node, so the negative input of the operational amplifier, virtually to ground, ie the entire capacitor voltage lies above the combustion chamber measuring section, so that the measurement does not falsify the conductivity to be measured.
Weitere Vorteile und Merkmale sind in den Unteransprüchen definiert.Further advantages and features are defined in the subclaims.
Eine besondere Ausführungsform der Erfindung wird nachfolgend und mit Bezug auf die beiliegenden Zeichnungen näher erläutert. Dabei soll das Ausführungsbeispiel nur zum Verständnis der Erfindung dienen und in keiner Weise schutzbegrenzend wirken.A particular embodiment of the invention will be explained in more detail below and with reference to the accompanying drawings. In this case, the embodiment should only serve to understand the invention and in no way have a protective effect.
Die Zeichnungen zeigen in
- Fig. 1
- eine schematische Übersicht einer Vorrichtung zur Erfassung eines Ionenstroms gemäß der vorliegenden Erfindung,
- Fig. 2
- eine erste Ausführungsform einer an sich bekannten Strommeßspannungserzeugungseinrichtung,
- Fig. 3
- eine zweite Ausführungsform einer an sich bekannten Ionenmeßspannungserzeugungseinrichtung,
- Fig. 4
- eine mögliche Ausführungsform eines Zündstrombypasses sowie einer Schutzschaltung, welche ebenfalls an sich bekannt sind,
- Fig. 5
- eine mögliche Ausführungsform eines Strom-/Spannungskonverters,
- Fig. 6
- eine mögliche Ausführungsform eines erfindungsgemäßen Strom-/Span-nungskonverters mit Diagnoseschaltung und optionaler Bandbegrenzung und,
- Fig. 7
- eine erste Ausführungsform einer an sich bekannten Filterstufe,
- Fig. 8
- eine zweite Ausführungsform einer aktiven Filterstufe,
- Fig. 9
- eine erste Ausführungsform eines Ausgangstreibers und
- Fig. 10
- eine zweite Ausführungsform eines Ausgangstreibers in Form einer Stromschnittstelle.
- Fig. 1
- a schematic overview of an apparatus for detecting an ion current according to the present invention,
- Fig. 2
- a first embodiment of a current measurement voltage generating device known per se,
- Fig. 3
- A second embodiment of a known Ionenmeßspannungserzeugungseinrichtung,
- Fig. 4
- a possible embodiment of a Zündstrombypasses and a protection circuit, which are also known per se,
- Fig. 5
- a possible embodiment of a current / voltage converter,
- Fig. 6
- A possible embodiment of a current / voltage converter according to the invention with diagnostic circuit and optional band limitation and,
- Fig. 7
- A first embodiment of a filter stage known per se,
- Fig. 8
- a second embodiment of an active filter stage,
- Fig. 9
- a first embodiment of an output driver and
- Fig. 10
- a second embodiment of an output driver in the form of a current interface.
In
Die lonenstrom-Meßspannungserzeugungseinrichtung 1 ist über eine Schnittstelle Schn_Z mit einem Zündsystem verbunden, welches nicht näher dargestellt ist. Auf der anderen Seite ist die Meßspannungserzeugungseinrichtung 1 über eine Schnittstelle 1a mit dem Zündstrombypass 2, der Schutzschaltung 3 und dem Strom-/Spannungskonverter 4 verbunden. Die Schnittstellen 4-5, 5-6 und ECU definieren die Verbindungen zwischen den entsprechenden Vorrichtungsteilen dar.The ion current measuring
Die einzelnen Vorrichtungsteile, nämlich die Meßspannungserzeugungseinrichtung 1, den Zündstrombypass 2, die Schutzschaltung 3, der Strom-/Spannungskonverter 4, die Filterstufe 5 und der optionale Ausgangstreiber 6 sind nachfolgend in den
In
Die Größen L2, T2, X2 bezeichnen die Teile einer zweiten, parallelen Zündanordnung.The quantities L2, T2, X2 designate the parts of a second, parallel ignition arrangement.
In
Die Anoden der Niederspannungsdioden DL bilden je einen gemeinsamen Knoten, mit dem masseseitigen Anschluß UL1 ...... ULX der Primärseite der zugehärigen Zündspule L1........Lx.The anodes of the low-voltage diodes DL each form a common node, with the ground-side terminal UL1 ...... ULX the primary side of the zugehärigen ignition coil L1 ........ Lx.
In
In
In der Ausführungsform gemäß
Die vorliegende Verwendung des Strom-Spannungskonverters 4 stellt sicher, daß die gemessene Spannung immer positiv ist. Im übrigen liegt der negative Eingang des Operationsverstärkers virtuell auf Masse, so daß die gesamte Kondensatorspannung über der Brennraum-Meßstrecke anliegt und die Messung des Gleitwertes nicht verfälscht wird. Die vorliegende Schaltung gemäß der
In
Alternativ kann jedoch eine aktive Filterstufe, wie sie in
Natürlich ist alternativ auch eine Bandpaßlösung vorstellbar, wenn es um eine reine Klopferkennung geht und dann evtl. die gleichen Anteile des Meßsignals irrelevant werden.Of course, alternatively, a bandpass solution is conceivable when it comes to a pure knock detection and then possibly the same proportions of the measured signal are irrelevant.
In
Bevorzugt sollte jedoch eine Stromschnittstelle, wie sie in
Eine Anordnung der Gesamtschaltung ist vorzugsweise in Brennraum- und Zündspulennähe aus Störaussendungsgründen anzustreben. Andernfalls müßten die Massen der Hochspannungsseite über längere Strecken im Motorraum geführt werden. Idealerweise integriert man die kompakte Schaltung allein oder in Verbindung mit der oder den zugehörigen Zündspulen auf der Zündspule oder in einem zu einer Zylindergruppe gehörenden Anbausteuergerät in Brennraum- und Zündspulnähe.An arrangement of the overall circuit should preferably be aimed at in the vicinity of the combustion chamber and the ignition coil for emission reasons. Otherwise, the masses of the high-voltage side would have to be led over longer distances in the engine compartment. Ideally, one integrates the compact circuit alone or in conjunction with the or the associated ignition coils on the ignition coil or in a belonging to a cylinder group attachment device in the combustion chamber and Zündspulnähe.
Die vorliegende Erfindung bietet eine einfache Möglichkeit zur Erzeugung eines fahrzeuggerecht aufbereiteten lonenstrom-Meßsignals.The present invention offers a simple possibility for generating a vehicle-adapted ion current measurement signal.
Claims (4)
- A device for detecting an ion current for an internal combustion engine, comprising:a measurement voltage generator (1), an ignition current bypass (2) connected to the measurement voltage generator (1) and a measurement signal converter (4) connected to the measurement voltage generator (1) and the ignition current bypass (2), wherein a current/voltage converter is used as the measurement signal converter (4) and consists of an operational amplifier, the negative input of which is connected to the measurement voltage generator (1), the ignition current bypass (2) and, via a resistor, to the output thereof, which supplies the measurement signal, characterised in that the positive input of the operational amplifier is at a slightly elevated potential, so a potential offset is provided at the positive input of the operational amplifier, which is used to diagnose the circuit.
- A device according to claim characterise in that the output of the current/voltage converter is connected to a filler stage (5), more especially an active filter stage.
- A device according to claim 2, characterised in that an output driver (6) is provided, which is connected to the output of the filter stage (5).
- A device according to claim 3, characterised in that the output driver (6) is configured as a current interface.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19922747 | 1999-05-18 | ||
DE1999122747 DE19922747C2 (en) | 1999-05-18 | 1999-05-18 | Device for detecting an ion current for an internal combustion engine |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1054154A2 EP1054154A2 (en) | 2000-11-22 |
EP1054154A3 EP1054154A3 (en) | 2002-08-21 |
EP1054154B1 true EP1054154B1 (en) | 2010-01-20 |
Family
ID=7908379
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20000107750 Expired - Lifetime EP1054154B1 (en) | 1999-05-18 | 2000-04-11 | Device for the measuring of an ion current for an internal-combustion engine |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP1054154B1 (en) |
DE (2) | DE19922747C2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3619219B2 (en) * | 2002-08-06 | 2005-02-09 | 三菱電機株式会社 | Combustion state detection device for internal combustion engine |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3006665A1 (en) | 1980-02-22 | 1981-09-03 | Robert Bosch Gmbh, 7000 Stuttgart | VOLTAGE SOURCE FOR MEASURING ION CURRENT ON THE COMBUSTION ENGINE |
DE3339569A1 (en) | 1983-11-02 | 1985-05-09 | Atlas Fahrzeugtechnik GmbH, 5980 Werdohl | MEASURING CIRCUIT FOR ION CURRENT MEASUREMENT |
KR960000442B1 (en) | 1990-11-26 | 1996-01-06 | 미쓰비시덴키 가부시키가이샤 | Ionic current sensing apparatus |
KR940010732B1 (en) * | 1991-02-15 | 1994-10-24 | 미쓰비시덴키 가부시키가이샤 | Combustion detecting apparatus for internal combustion engine |
US5392641A (en) * | 1993-03-08 | 1995-02-28 | Chrysler Corporation | Ionization misfire detection apparatus and method for an internal combustion engine |
JP3192541B2 (en) * | 1994-01-28 | 2001-07-30 | 三菱電機株式会社 | Misfire detection circuit for internal combustion engine |
JP3477923B2 (en) * | 1995-06-29 | 2003-12-10 | 三菱電機株式会社 | Combustion state detector for internal combustion engine |
JP3593217B2 (en) * | 1996-09-04 | 2004-11-24 | トヨタ自動車株式会社 | Knock detection device for internal combustion engine |
JP3441909B2 (en) | 1997-02-07 | 2003-09-02 | 三菱電機株式会社 | Device for detecting combustion state of internal combustion engine |
JP3338624B2 (en) | 1997-02-18 | 2002-10-28 | 三菱電機株式会社 | Device for detecting combustion state of internal combustion engine |
JP3361948B2 (en) | 1997-02-18 | 2003-01-07 | 三菱電機株式会社 | Device for detecting combustion state of internal combustion engine |
JP3264854B2 (en) | 1997-02-19 | 2002-03-11 | 三菱電機株式会社 | Device for detecting combustion state of internal combustion engine |
JP3423862B2 (en) * | 1997-07-24 | 2003-07-07 | トヨタ自動車株式会社 | Knock control device for internal combustion engine |
-
1999
- 1999-05-18 DE DE1999122747 patent/DE19922747C2/en not_active Expired - Fee Related
-
2000
- 2000-04-11 DE DE50015847T patent/DE50015847D1/en not_active Expired - Lifetime
- 2000-04-11 EP EP20000107750 patent/EP1054154B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
DE19922747C2 (en) | 2003-02-06 |
DE19922747A1 (en) | 2000-11-30 |
EP1054154A2 (en) | 2000-11-22 |
DE50015847D1 (en) | 2010-03-11 |
EP1054154A3 (en) | 2002-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0790409B1 (en) | Measuring circuit for an ionic current in ignition devices for internal combustion engines | |
DE19601353C2 (en) | Combustion state detection device for an internal combustion engine | |
EP0516633B1 (en) | Process and device for monitoring the functioning of an electrical consumer | |
DE4204484C2 (en) | Combustion detector device for an internal combustion engine | |
EP0752580B1 (en) | Measuring circuit for an ionic current | |
DE19514633C2 (en) | Device for detecting misfires in an internal combustion engine | |
DE3006665A1 (en) | VOLTAGE SOURCE FOR MEASURING ION CURRENT ON THE COMBUSTION ENGINE | |
EP0752582A2 (en) | Measuring circuit for an ionic current | |
DE10317377A1 (en) | Knock detection device for an internal combustion engine | |
DE69331790T2 (en) | Misfire detector using various methods at high and low engine speeds | |
DE69511664T2 (en) | Device for misfire detection of an internal combustion engine | |
EP0848161B1 (en) | Inductive ignition coils system for motor | |
DE19648969C2 (en) | Device for detecting the state of combustion in an internal combustion engine | |
DE69412039T2 (en) | Method and device of a coil ignition with additional discharges for diagnosis | |
DE19926079B4 (en) | Device for detecting the state of combustion in an internal combustion engine | |
EP2795755A1 (en) | Protection apparatus, method and power supply system | |
DE4239803A1 (en) | Ionisation current detector for IC engine ignition monitor - measures ionisation current through ignition coils during combustion of gas mixture | |
DE19614288C1 (en) | Ion-current measurement circuit e.g. for motor vehicle IC engine combustion chamber | |
EP1054154B1 (en) | Device for the measuring of an ion current for an internal-combustion engine | |
WO2006094607A1 (en) | Device for ignition control | |
DE3417676C2 (en) | ||
EP0502549B1 (en) | Spark survey in spark ignition engine | |
DE69116430T2 (en) | Ignition system for internal combustion engines, in particular for the detection of misfires | |
EP0801294A1 (en) | High frequency ion current measurement after AC current ignition | |
DE2431799B2 (en) | CIRCUIT FOR PROCESSING IMPULSE-SHAPED MEASURING SIGNALS OF AN INDUCTIVE SENSOR THAT TAPS THE IGNITION CURRENT IN THE IGNITION SYSTEM OF A GASOLINE ENGINE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20020905 |
|
AKX | Designation fees paid |
Designated state(s): DE ES FR GB IT SE |
|
17Q | First examination report despatched |
Effective date: 20060413 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB IT SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 50015847 Country of ref document: DE Date of ref document: 20100311 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100501 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20100602 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100120 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20101021 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50015847 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50015847 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111031 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20160422 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20160422 Year of fee payment: 17 Ref country code: IT Payment date: 20160428 Year of fee payment: 17 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170411 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20171229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170411 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170411 |