EP0781965B1 - Domestic hot water producing system with a gas heater and method for controlling the temperature of the domestic hot water in such a system - Google Patents

Domestic hot water producing system with a gas heater and method for controlling the temperature of the domestic hot water in such a system Download PDF

Info

Publication number
EP0781965B1
EP0781965B1 EP96402520A EP96402520A EP0781965B1 EP 0781965 B1 EP0781965 B1 EP 0781965B1 EP 96402520 A EP96402520 A EP 96402520A EP 96402520 A EP96402520 A EP 96402520A EP 0781965 B1 EP0781965 B1 EP 0781965B1
Authority
EP
European Patent Office
Prior art keywords
hot water
temperature
domestic hot
gas
ecs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96402520A
Other languages
German (de)
French (fr)
Other versions
EP0781965A1 (en
Inventor
Philippe Pontiggia
Olivier Tastet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Engie SA
Original Assignee
Gaz de France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaz de France SA filed Critical Gaz de France SA
Publication of EP0781965A1 publication Critical patent/EP0781965A1/en
Application granted granted Critical
Publication of EP0781965B1 publication Critical patent/EP0781965B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/08Regulating fuel supply conjointly with another medium, e.g. boiler water
    • F23N1/082Regulating fuel supply conjointly with another medium, e.g. boiler water using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/36PID signal processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/52Fuzzy logic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/04Measuring pressure
    • F23N2225/06Measuring pressure for determining flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/19Measuring temperature outlet temperature water heat-exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/14Fuel valves electromagnetically operated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/16Fuel valves variable flow or proportional valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2241/00Applications
    • F23N2241/04Heating water

Definitions

  • the present invention relates to a production installation domestic hot water for gas boilers with atmospheric burners, comprising a boiler hearth fitted with a burner supplied with gas by via an electrically controlled modulation valve, and at least one heat exchanger between said hearth and a circuit for domestic hot water production with a water inlet line cold and a domestic hot water drawing line.
  • the invention also relates to a method for regulating the domestic hot water temperature in a production facility domestic hot water by heat exchange with a boiler hearth with an atmospheric burner, the supply rate of which gas is modulated from a servo system.
  • the object of the invention is to remedy the aforementioned drawbacks and to allow the temperature to be maintained at a constant and stable value domestic hot water outlet from a production facility domestic hot water by gas boiler, regardless of the water flow pulsed, even when the flow variations are very sudden due to when a user switches on or off a hot water consumption.
  • a domestic hot water production installation for an atmospheric burner gas boiler, comprising a boiler hearth equipped with a burner supplied with gas by means of an electrically controlled modulation valve, and at least one heat exchanger between said hearth and a domestic hot water production circuit comprising a cold water inlet line and a domestic hot water drawing line, characterized in that it further comprises a device for measuring the flow rate (Q DHW ) of drawing domestic hot water from the domestic hot water production circuit, a device for measuring the temperature (Ts) of the domestic hot water leaving the heat exchanger heat and an electrically controlled modulation valve control system, the modulation valve control system comprising a closed loop regulation module of the modulation valve from the a temperature (Ts) measured by said device for measuring temperature and a set temperature (Tc), a proportional action module for direct regulation of the modulation valve on the basis of the information (Q DHW ) supplied by the flow rate measurement (Q DHW ), and a pulse control module of the modulation valve from the flow variations detected by the flow
  • Q DHW
  • the closed-loop regulation module includes a PID (Proportional-Integral-Derivative) type control circuit whose input quantity consists of the difference between the temperature (Ts) measured by said temperature measuring device and the set temperature (Tc).
  • PID Proportional-Integral-Derivative
  • the module closed loop regulation includes a fuzzy controller receiving input temperature error information E corresponding to the difference between the temperature (Ts) measured by said device for measuring the temperature and set temperature (Tc), as well as information corresponding to the derivative with respect to the time of the error information of temperature.
  • the closed-loop regulation module further includes a PI (Proportional-Integral) type servo circuit placed at the output of the fuzzy controller and receiving as input (dQ G ) flow variation gas supply to the burner.
  • PI Proportional-Integral
  • the flow rate (Q G ) of gas supply to said burner is further controlled from the difference between the actual temperature (Ts) of the domestic hot water produced and a set temperature (Tc) according to a control closed-loop PID (Proportional-Integral-Derivative) type.
  • Ts actual temperature
  • Tc set temperature
  • the flow rate (Q G ) of gas supply to said burner is further controlled, by a fuzzy command, from temperature error information E corresponding to the difference between the temperature real temperature (Ts) of the domestic hot water produced and a set temperature (Tc), and from information corresponding to the derivative with respect to time of the temperature error information E.
  • the flow rate (Q G ) of gas supply to said burner is further controlled from the output information of the fuzzy control according to a PI type control (Proportional-Integral).
  • FIG. 1 schematically shows a domestic hot water production installation comprising a gas boiler hearth 10 equipped with an atmospheric burner 12 supplied by a flow Q G of gas from a modulating valve 20 with control electric.
  • the domestic hot water production circuit comprises an inlet 11 for supplying cold water at a temperature Tef, a heat exchanger 13 between the cold water and the heat released in the hearth 10 by the flame from the burner 12 and an outlet 14 for supplying domestic hot water at an outlet temperature Ts and with a flow rate DHW .
  • the DHW flow rate of domestic hot water drawn by users varies suddenly and unpredictably depending on the number of hot water consumption devices switched on or off (shower, sink, bathtub , dishwasher,). If the quantity of heat produced in the furnace of the boiler 10 remains constant, the variations in the flow rate DHW will automatically lead to variations of the same order for the temperature Ts of the domestic hot water produced, which is unpleasant for the users. This is why the installation according to the invention is equipped with a system 100 for controlling the regulating valve 20 so as to be able to adjust in real time the gas flow rate Q G supplied to the burner 12 and thus ensure constant maintenance. or almost constant of the temperature Ts leaving the domestic hot water.
  • the installation includes a flow meter 40 placed on the domestic hot water production circuit in order to continuously measure the actual flow of hot water drawn.
  • the domestic hot water outlet temperature Ts is likewise measured by a temperature probe 30 provide, by lines 41, respectively 32, information on the values of the flow rate DHW and of the temperature Ts at control system 100 for regulating valve 20, which may include a microcontroller associated with analog-digital converters (for input information) and a digital-analog converter (for controlling valve 20).
  • a set temperature value Tc to which must be maintained the outlet temperature Ts of the domestic hot water, can be defined once and for all in the control system 100 or be provided from external information applied by a line 31 to through a communication interface between the control system 100 and users.
  • the control system 100 comprises a regulation module 104 which receives as input, via the line 41, information supplied by the flow meter 40 concerning the flow rate Q DHW of domestic hot water drawn.
  • the module 104 detects significant sudden variations in the flow rate DHW which constitute jumps in flow rate of a value ⁇ Q DHW , and generates at the output, on a line 141, a control signal tending to instantly cause a peak in the flow rate of gas Q G3 to be supplied by the modulation valve 20 to the burner 12, as soon as such a flow jump ⁇ Q DHW occurs.
  • the positive coefficient k 2 is a constant whose value is determined according to the type of boiler and the nature of the combustible gas used.
  • the temperature of the cold water Tef can be between 5 ° C and 15 ° C with an average value of 10 ° C; the set temperature can be 50 ° C, the capacity value calorific of water Cp can be taken equal to 4180 J / kg; the power PCI gas lower heat for natural gas can be in the range of 10,000 and the efficiency ⁇ of the boiler and heat exchangers (i.e. the difference between the power supplied by the boiler and the power recovered by water) can be between 0.7 and 0.95.
  • the coefficient k 2 can thus have a value of the order of 20.
  • the value of the additional gas flow Q G3 supplied by the burner 12 should be at peak point level of the order of 2 m 3 / h.
  • control system 100 equipped with a microcontroller acts by time step and the function f (t) mentioned above, which must define a peak with an abrupt growth then a more decay slow, is expressed in a sampled form.
  • k 1 can be chosen to be 0.8 and the value of the peak will be brought back to a value close to zero after 5 seconds.
  • Figure 2 shows a curve 210 giving the evolution of the domestic hot water flow Q DHW as a function of time, with a first section 211 corresponding to a relatively regular Q DHW flow 1 corresponding for example to the consumption of hot water by a user taking a shower or bath.
  • a second section 212 corresponds to a flow of hot water drawn Q ECS2 increased between times t 1 and t 2 due to the withdrawal of hot water by another user or device such as a dishwasher.
  • a third section 213 after time t 2 corresponds to a return to the conditions prior to time t 1 , that is to say the stopping of additional hot water withdrawal.
  • the withdrawal of an additional flow of hot water causes a sudden jump in flow at time t 1 , in the direction of an increase and a sudden jump in flow, but in the direction of a decrease, at time t 2 .
  • FIG. 3 shows a curve 220 giving the outlet temperature Ts of domestic hot water produced by the installation according to the invention. We see that this outlet temperature Ts remains permanently equal to the setpoint temperature Tc or very close to it.
  • the temperature Ts remains equal to the setpoint temperature Tc both on a section 221, prior to the instant t 1 , and during most of the section 223 between the instants t 1 and t 2 or on the section 225 after the instant t 2 .
  • a very slight residual negative peak 222 or a very slight residual positive peak 224 may be present in the vicinity of times t 1 and t 2 taking into account the reaction time of the burner 12, but these fluctuations are much less than in the case of a modulation system not including the pulse regulation module 104 creating positive or negative selective gas flow peaks.
  • FIG. 3 There is thus shown in dotted lines in FIG. 3 the evolution of the outlet temperature Ts of the domestic hot water in the case where the impulse regulation module 104 is absent, but where the control system 100 comprises only one more classic 103 proportional control module.
  • a regulation module 103 receives information from the flow meter 40 and provides, at the switching valve 20, a signal controlling the evolution of the gas flow rate Q G2 supplied to the burner 12, according to a law of proportionality.
  • the two regulation modules 103 and 104 coexist and deliver, by lines 142, 141, to a summing circuit 105 of the signals controlling an evolution of the gas flow rate Q G according, on the one hand , a proportional evolution Q G2 and, on the other hand, an impulse evolution Q G3 .
  • the valve 20 is controlled by the signals from the summing circuit 105.
  • FIG. 4 shows a curve 230 giving the evolution, as a function of time, of the gas flow rate Q G applied to the burner 12 by the modulation valve 20 when the latter receives control signals from the summing circuit 105 whose inputs are connected, by lines 142 and 141, to regulation modules 103 and 104.
  • the flow rate Q G of gas is equal to the flow rate Q G2 of gas fixed by the proportional regulation module 103 as a function of the regular hot water flow rate of section 211 of Figure 2.
  • the impulse control module 104 At time t 1 when a jump in hot water flow rate ⁇ Q DHW is detected by the impulse control module 104, it immediately comes into action and provides a gas flow peak Q G3 (reference 232) which greatly attenuates, or even eliminates, the temperature drop Ts after time t 1 .
  • the gas flow peak Q G3 gradually returns to zero, but the proportional control module 103 has meanwhile entered into action to readjust the gas flow Q G2 to a value greater than the value of the gas flow Q G2 prior to l 'instant t 1 , to take account of the increase in the hot water flow rate Q DHW .
  • the tip 232 is thus followed by a section 233 in the form of a plateau until the instant t 2 .
  • the regulation process is identical to that of time t 1 , but in reverse.
  • the impulse regulation module 104 detects a jump in the hot water flow rate ⁇ Q DHW negative and causes a negative peak in the gas flow Q G3 which is subtracted from the previous gas flow Q G2 , then this gas flow peak Q G3 ( reference 234) returns to zero but, taking into account the downward readjustment of the gas flow rate Q G2 defined by the proportional regulation module 103, the overall value Q G of the gas flow rate supplied to the burner 12 returns to a value substantially equal to that preceding the instant t 1 (section 235).
  • Pulse type regulation through the regulation module 104 and direct or proportional type regulation through the module regulation 103 are superimposed and both exploit the information of flow supplied by the flow meter 40.
  • a third type of regulation can be superimposed on the two preceding modes of regulation.
  • a closed loop regulation circuit 102 which generates, on an output line 143, a control signal of the closed loop gas flow which is applied to the summing circuit 105 to allow, by the through the modulation valve 20, to provide the burner 12 with a gas flow Q G1 adjusted as a function of the value of the water temperature Ts measured by the temperature probe 30.
  • a comparator 101 makes it possible to compare the value Ts of the temperature of the domestic hot water measured, applied by a line 32, to the set temperature Tc supplied by a line 31.
  • the temperature difference E constitutes the input of the closed-loop regulation module 102.
  • the closed loop regulation module 102 can include a PID (Proportional-Integral-Derivative) type control.
  • the closed-loop regulation module 102 includes a fuzzy controller 122 and is a fuzzy control system with fuzzy control rules, membership functions and an inference table.
  • the fuzzy controller 122 receives as input error information temperature E which corresponds to the difference made by the comparator 101 between the temperature Ts measured by the temperature probe 30 and the setpoint temperature Tc.
  • the fuzzy controller 122 receives on a second input, via a differentiator circuit 121, connected to the comparator 101, information corresponding to the derivative dE / dt of the temperature error information.
  • the fuzzy controller 122 provides, as output, information concerning the variation in the gas flow rate dQ G1 which must be applied to the burner of the assembly 10, 20 for heating the domestic water.
  • FIG. 6 shows an example of an inference table which may be suitable for the fuzzy controller 122.
  • the abbreviations ZE, NG, PG respectively represent the terms zero, large negative, large positive which characterize the difference E or the derivative of the difference dE / dt previously defined as input variables of the fuzzy controller 122, as well as the output variable dQ G1 .
  • the output variable dQ G1 must be negative and large, c that is to say, the gas flow rate Q G1 applied to the burner should be significantly reduced as a result of the control of the regulating module 102.
  • the difference E is negative large and the derivative of the difference dE / dt is positive and large, the output variable dQ G1 will be zero, that is to say that there n there will be no correction to be made by the regulation loop 102.
  • the input variable dE / dt provided by the differentiator 121 can be considered as negative large if it is between -2 • / s and -1 • / s or below, zero if it is between -1 • / s and +1 • / s and positive large if it is between +1 • / s and +2 • / s or beyond.
  • the output variable dQ G1 can itself, for example, be considered to be equal to a value of -2 m 3 / h if it must be negative large, zero if it must be equal to zero, or equal to a value of + 2m 3 / h if it must be positive large.
  • Figures 7, 8 and 9 show examples of membership functions relating to the fuzzy characteristics applicable respectively to the temperature difference E, to the derivative of the temperature difference dE / dt with respect to time and to the variation dQ G1 of the gas flow.
  • the fuzzy controller 122 includes a fuzzification input stage allowing to provide fuzzy input variables from E variables and dE / dt taking into account the membership functions of these variables entry. A fuzzy output is then determined, in an inference stage fuzzy, from predefined control rules and fuzzy entries from the fuzzification stage.
  • control signal for the variation of the gas flow rate dQ G1 to be applied to the burner by the valve 20.
  • the control signal can be obtained from a fuzzy output value by a method such as that of determining the center of gravity of all the predefined rules whose synthesis served to constitute the associated inference table.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Combustion (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Seasonings (AREA)

Abstract

The hot water system includes a device (40) measuring the flow (Qecs) of sanitary hot water in the circuit (11,14), and a further device (30) measuring the temperature (Ts) of this water at the output of the heat exchanger (13). A control system (100) controls the modulation valve (20) in response to the detected temperature and a reference temperature (Tc). A module (103) providing proportional control action adjusts the valve (Qecs) adjusting the pulsed flow of gas to the burner, thus providing a continuously adjusted and controlled burner output in response to the measured conditions. The proportional action operates according to a control formula taking account of the flow and temperature measurements, and the known characteristics of the boiler.

Description

La présente invention a pour objet une installation de production d'eau chaude sanitaire pour chaudière à gaz à brûleur atmosphérique, comprenant un foyer de chaudière équipé d'un brûleur alimenté en gaz par l'intermédiaire d'une vanne de modulation commandée électriquement, et au moins un échangeur de chaleur entre ledit foyer et un circuit de production d'eau chaude sanitaire comportant une ligne d'arrivée d'eau froide et une ligne de puisage d'eau chaude sanitaire.The present invention relates to a production installation domestic hot water for gas boilers with atmospheric burners, comprising a boiler hearth fitted with a burner supplied with gas by via an electrically controlled modulation valve, and at least one heat exchanger between said hearth and a circuit for domestic hot water production with a water inlet line cold and a domestic hot water drawing line.

L'invention concerne également un procédé de régulation de la température d'eau chaude sanitaire dans une installation de production d'eau chaude sanitaire par échange de chaleur avec un foyer de chaudière à gaz comportant un brûleur atmosphérique dont le débit d'alimentation en gaz est modulé à partir d'un système d'asservissement.The invention also relates to a method for regulating the domestic hot water temperature in a production facility domestic hot water by heat exchange with a boiler hearth with an atmospheric burner, the supply rate of which gas is modulated from a servo system.

Dans les installations connues de production d'eau chaude sanitaire par chaudière à gaz, il est bien connu que la température de sortie de l'eau chaude sanitaire a tendance à varier en fonction de la quantité d'eau chaude consommée par les utilisateurs. Ainsi, en cas d'augmentation du débit de puisage d'eau chaude par un utilisateur prenant un bain ou une douche, ou du fait de la mise en service d'un autre appareil consommant de l'eau chaude, tel qu'un lave-vaisselle, la température de sortie de l'eau chaude produite a tendance à baisser. Pour remédier à cet inconvénient, on a déjà envisagé de procéder à une régulation du débit de gaz fourni au brûleur de la chaudière, ce débit étant commandé par une vanne de modulation à commande électrique.In known installations for producing domestic hot water by gas boiler, it is well known that the water outlet temperature domestic hot water tends to vary depending on the amount of water hot consumed by users. Thus, in the event of an increase in flow rate of hot water drawn by a user taking a bath or shower, or due to the commissioning of another device consuming hot water, such as a dishwasher, outlet water temperature hot product tends to decrease. To remedy this drawback, we has already considered regulating the flow of gas supplied to the boiler burner, this flow being controlled by a valve electrically controlled modulation.

Les divers systèmes d'asservissement connus, mécaniques ou électroniques, ne se sont toutefois pas montrés suffisamment efficaces pour garantir une température constante de l'eau chaude consommée, même en cas de variations brusques de débit, qui sont pourtant fréquentes en pratique, notamment lorsque plusieurs utilisateurs s'approvisionnent en eau chaude à partir d'une même installation de production d'eau chaude.The various known, mechanical or electronic, however, have not been sufficiently effective to guarantee a constant temperature of the hot water consumed, even in the event of sudden variations in flow, which are nevertheless frequent in practice, especially when several users are purchasing hot water from the same hot water production facility.

L'invention a pour but de remédier aux inconvénients précités et de permettre le maintien à une valeur constante et stable de la température de sortie de l'eau chaude sanitaire fournie par une installation de production d'eau chaude sanitaire par chaudière à gaz, quel que soit le débit d'eau puisée, y compris lorsque les variations de débit sont très brusques du fait de la mise en marche ou de l'arrêt par un utilisateur d'un appareil de consommation d'eau chaude. The object of the invention is to remedy the aforementioned drawbacks and to allow the temperature to be maintained at a constant and stable value domestic hot water outlet from a production facility domestic hot water by gas boiler, regardless of the water flow pulsed, even when the flow variations are very sudden due to when a user switches on or off a hot water consumption.

Ces buts sont atteints grâce à une installation de production d'eau chaude sanitaire pour chaudière à gaz à brûleur atmosphérique, comprenant un foyer de chaudière équipé d'un brûleur alimenté en gaz par l'intermédiaire d'une vanne de modulation commandée électriquement, et au moins un échangeur de chaleur entre ledit foyer et un circuit de production d'eau chaude sanitaire comportant une ligne d'arrivée d'eau froide et une ligne de puisage d'eau chaude sanitaire, caractérisée en ce qu'elle comprend en outre un dispositif de mesure du débit (QECS) de puisage d'eau chaude sanitaire dans le circuit de production d'eau chaude sanitaire, un dispositif de mesure de la température (Ts) de l'eau chaude sanitaire en sortie de l'échangeur de chaleur et un système de commande de la vanne de modulation commandée électriquement, le système de commande de la vanne de modulation comprenant un module de régulation en boucle fermée de la vanne de modulation à partir de la température (Ts) mesurée par ledit dispositif de mesure de température et d'une température de consigne (Tc), un module à action proportionnelle de régulation directe de la vanne de modulation à partir des informations (QECS) fournies par le dispositif de mesure de débit de puisage (QECS), et un module de régulation impulsionnelle de la vanne de modulation à partir des variations de débit détectées par le dispositif de mesure de débit, le module de régulation impulsionnelle engendrant un signal créant un pic du débit d'alimentation en gaz du brûleur par la vanne de modulation à chaque variation brusque significative de débit de puisage d'eau chaude sanitaire (QECS) mesurée par ledit dispositif de mesure, le pic étant positif ou négatif selon que la variation correspond à une augmentation ou une diminution de ce débit, les valeurs initiale et finale du pic étant nulles et l'amplitude d'un pic étant proportionnelle à la variation de débit détectée.These goals are achieved by means of a domestic hot water production installation for an atmospheric burner gas boiler, comprising a boiler hearth equipped with a burner supplied with gas by means of an electrically controlled modulation valve, and at least one heat exchanger between said hearth and a domestic hot water production circuit comprising a cold water inlet line and a domestic hot water drawing line, characterized in that it further comprises a device for measuring the flow rate (Q DHW ) of drawing domestic hot water from the domestic hot water production circuit, a device for measuring the temperature (Ts) of the domestic hot water leaving the heat exchanger heat and an electrically controlled modulation valve control system, the modulation valve control system comprising a closed loop regulation module of the modulation valve from the a temperature (Ts) measured by said device for measuring temperature and a set temperature (Tc), a proportional action module for direct regulation of the modulation valve on the basis of the information (Q DHW ) supplied by the flow rate measurement (Q DHW ), and a pulse control module of the modulation valve from the flow variations detected by the flow measurement device, the pulse control module generating a signal creating a peak in the flow d '' gas supply to the burner by the modulation valve at each significant abrupt change in domestic hot water drawing rate (Q DHW ) measured by said measuring device, the peak being positive or negative depending on whether the variation corresponds to an increase or a reduction in this flow, the initial and final values of the peak being zero and the amplitude of a peak being proportional to the variation in flow detected.

De façon plus particulière, le module de régulation impulsionnelle comprend des moyens pour engendrer un signal échantillonné créant un pic de débit de gaz (QG3) dont la valeur est obtenue en fonction du débit de puisage d'eau chaude sanitaire (QECS) par la formule échantillonnée suivante : QG3(n) = k1.QG3(n-1) + k2.(QECS(n) - QECS(n-1)),

  • k1 est un coefficient dont la valeur est comprise entre 0 et 1,
  • k2 est un paramètre positif réglé en fonction du type de chaudière,
  • QG3(n) et QG3(n-1) désignent la valeur de pic du débit de gaz (QG3) aux instants n et n-1, et
  • QECS(n) et QECS(n-1) désignent la valeur du débit de puisage d'eau sanitaire aux instants n et n-1.
  • More particularly, the impulse regulation module comprises means for generating a sampled signal creating a gas flow peak (Q G3 ) whose value is obtained as a function of the domestic hot water drawing rate (Q DHW ) by the following sampled formula: Q G3 (n) = k1.Q G3 (n-1) + k2. (Q DHW (n) - Q DHW (n-1)), or
  • k 1 is a coefficient whose value is between 0 and 1,
  • k 2 is a positive parameter adjusted according to the type of boiler,
  • Q G3 (n) and Q G3 (n-1) denote the peak value of the gas flow (Q G3 ) at times n and n-1, and
  • Q DHW (n) and Q DHW (n-1) designate the value of the domestic water drawing flow at times n and n-1.
  • Selon un mode particulier de réalisation, le module de régulation impulsionnelle comprend des moyens pour définir le paramètre positif k2 réglé en fonction du type de chaudière, à partir des informations suivantes : capacité calorifique (Cp) de l'eau, rendement (η) de l'installation, pouvoir calorifique inférieur (PCI) du gaz, température de consigne (Tc) et température de l'eau froide (Tef) introduite dans le circuit de circulation d'eau chaude sanitaire, selon la formule k2 = Cp.(Tc - Tef) / η.PCI. According to a particular embodiment, the impulse regulation module comprises means for defining the positive parameter k 2 adjusted as a function of the type of boiler, on the basis of the following information: heat capacity (Cp) of water, efficiency (η) of the installation, lower calorific value (PCI) of the gas, set temperature (Tc) and cold water temperature (Tef) introduced into the domestic hot water circulation circuit, according to the formula k 2 = Cp. (Tc - Tef) / η.PCI.

    Avantageusement, le module de régulation en boucle fermée comprend un circuit d'asservissement du type PID (Proportionnel-Intégrale-Dérivée) dont la grandeur d'entrée est constituée par l'écart entre la température (Ts) mesurée par ledit dispositif de mesure de température et la température de consigne (Tc).Advantageously, the closed-loop regulation module includes a PID (Proportional-Integral-Derivative) type control circuit whose input quantity consists of the difference between the temperature (Ts) measured by said temperature measuring device and the set temperature (Tc).

    Selon un autre mode de réalisation avantageux, le module de régulation en boucle fermée comprend un contrôleur flou recevant en entrée une information d'erreur de température E correspondant à la différence entre la température (Ts) mesurée par ledit dispositif de mesure de la température et la température de consigne (Tc), ainsi qu'une information correspondant à la dérivée par rapport au temps de l'information d'erreur de température.According to another advantageous embodiment, the module closed loop regulation includes a fuzzy controller receiving input temperature error information E corresponding to the difference between the temperature (Ts) measured by said device for measuring the temperature and set temperature (Tc), as well as information corresponding to the derivative with respect to the time of the error information of temperature.

    Dans ce cas, de préférence, le module de régulation en boucle fermée comprend en outre un circuit d'asservissement de type PI (Proportionnel-Intégrale) placé en sortie du contrôleur flou et recevant en entrée une information (dQG) de variation de débit d'alimentation en gaz du brûleur.In this case, preferably, the closed-loop regulation module further includes a PI (Proportional-Integral) type servo circuit placed at the output of the fuzzy controller and receiving as input (dQ G ) flow variation gas supply to the burner.

    Ceci permet d'éviter d'éventuelles instabilités ou oscillations du système.This avoids possible instabilities or oscillations of the system.

    L'invention concerne également un procédé de régulation de la température d'eau chaude sanitaire dans une installation de production d'eau chaude sanitaire par échange de chaleur avec un foyer de chaudière à gaz comportant un brûleur atmosphérique dont le débit d'alimentation en gaz est modulé à partir d'un système d'asservissement, caractérisé en ce que le débit (QG) d'alimentation en gaz dudit brûleur est asservi à partir de la mesure du débit (QECS) de puisage d'eau chaude sanitaire, d'une part, par une régulation directe à action proportionnelle à partir de ladite mesure du débit (QECS) de puisage d'eau chaude sanitaire et, d'autre part, par une régulation impulsionnelle à partir des sauts significatifs (ΔQECS) de la valeur mesurée du débit (QECS) de puisage d'eau chaude sanitaire, la régulation impulsionnelle agissant sur le débit (QG) d'alimentation en gaz dudit brûleur de manière à créer un pic selon une fonction "pic" f(t) telle que, si t=0 est l'instant du saut de débit ΔQECS positif, respectivement négatif, la fonction f(t) est définie par:

    • f(0-) = 0
    • f(0+) = k2 ΔQECS, avec k2 coefficient positif,
    • f est décroissante (resp. croissante) sur ]0, + ∝[
    • lim f(t) = 0
      t → + ∝.
    The invention also relates to a method for regulating the temperature of domestic hot water in an installation for producing domestic hot water by heat exchange with a gas boiler hearth comprising an atmospheric burner whose gas supply rate is modulated from a control system, characterized in that the flow rate (Q G ) of gas supply to said burner is controlled from the measurement of the flow rate (Q DHW ) for drawing domestic hot water, on the one hand, by direct regulation with proportional action from said flow measurement (Q DHW ) of domestic hot water drawing and, on the other hand, by impulse regulation from significant jumps (ΔQ DHW ) of the measured value of the flow rate (Q DHW ) of domestic hot water drawing, the impulse regulation acting on the flow rate (Q G ) of gas supply to said burner so as to create a peak according to a "peak" function f ( t) as e, if t = 0 is the instant of the flow jump ΔQ DHW positive, respectively negative, the function f (t) is defined by:
    • f (0-) = 0
    • f (0+) = k 2 ΔQ DHW , with k 2 positive coefficient,
    • f is decreasing (resp. increasing) on] 0, + ∝ [
    • lim f (t) = 0
      t → + ∝.

    Dans ce cas, le coefficient positif k2 peut être réglé en fonction du type de chaudière, à partir des informations suivantes : capacité calorifique (Cp) de l'eau, rendement (η) de l'installation, pouvoir calorifique inférieur (PCI) du gaz, température de consigne (Tc) et température de l'eau froide (Tef) introduite dans le circuit de circulation d'eau chaude sanitaire, selon la formule: k2 = Cp.(Tc - Tef) /η.PCI. In this case, the positive coefficient k 2 can be adjusted according to the type of boiler, from the following information: heat capacity (Cp) of water, efficiency (η) of the installation, lower heat capacity (PCI) of gas, set temperature (Tc) and cold water temperature (Tef) introduced into the domestic hot water circulation circuit, according to the formula: k 2 = Cp. (Tc - Tef) /η.PCI.

    Avantageusement, le débit (QG) d'alimentation en gaz dudit brûleur est en outre asservi à partir de l'écart entre la température réelle (Ts) de l'eau chaude sanitaire produite et une température de consigne (Tc) selon un asservissement en boucle fermée du type PID (Proportionnel-Intégrale-Dérivée).Advantageously, the flow rate (Q G ) of gas supply to said burner is further controlled from the difference between the actual temperature (Ts) of the domestic hot water produced and a set temperature (Tc) according to a control closed-loop PID (Proportional-Integral-Derivative) type.

    Selon un autre mode de réalisation avantageux, le débit (QG) d'alimentation en gaz dudit brûleur est en outre asservi, par une commande floue, à partir d'une information d'erreur de température E correspondant à la différence entre la température réelle (Ts) de l'eau chaude sanitaire produite et une température de consigne (Tc), et à partir d'une information correspondant à la dérivée par rapport au temps de l'information E d'erreur de température. According to another advantageous embodiment, the flow rate (Q G ) of gas supply to said burner is further controlled, by a fuzzy command, from temperature error information E corresponding to the difference between the temperature real temperature (Ts) of the domestic hot water produced and a set temperature (Tc), and from information corresponding to the derivative with respect to time of the temperature error information E.

    Dans ce cas, de préférence, le débit (QG) d'alimentation en gaz dudit brûleur est en outre asservi à partir de l'information de sortie de la commande floue selon un asservissement de type PI (Proportionnel-Intégrale).In this case, preferably, the flow rate (Q G ) of gas supply to said burner is further controlled from the output information of the fuzzy control according to a PI type control (Proportional-Integral).

    D'autres caractéristiques et avantages de l'invention ressortiront de la description suivante de modes particuliers de réalisation, donnés à titre d'exemples, en référence aux dessins annexés, sur lesquels :

    • la Figure 1 est un schéma-bloc d'ensemble d'une installation de production d'eau chaude sanitaire selon l'invention ;
    • la Figure 2 est un diagramme montrant un exemple d'évolution brusque, en fonction du temps du débit QECS d'eau chaude sanitaire puisée dans une installation telle que celle de la Figure 1 ;
    • la Figure 3 est un diagramme montrant de façon comparative l'évolution de la température de sortie d'eau chaude sanitaire produite dans une installation classique et dans l'installation de la Figure 1, lorsque le débit d'eau chaude puisée évolue selon le diagramme de la Figure 2 ;
    • la Figure 4 est un diagramme montrant l'évolution en fonction du temps de la quantité de gaz foumie au brûleur de l'installation de la Figure 1, lorsque le débit d'eau chaude puisée évolue selon le diagramme de la Figure 2 ;
    • la Figure 5 est un schéma-bloc d'une variante de réalisation de l'installation de production d'eau chaude sanitaire selon l'invention qui met en oeuvre un contrôleur flou ;
    • la Figure 6 montre un exemple de table d'inférence pouvant être associée au contrôleur flou de l'installation de la Figure 5 ;
    • la Figure 7 montre un exemple de fonctions d'appartenance d'une variable d'entrée (écart de température E) du contrôleur flou de l'installation de la Figure 5 ;
    • la Figure 8 montre un exemple de fonctions d'appartenance d'une autre variable d'entrée (dérivée par rapport au temps de l'écart de température E) du contrôleur flou de l'installation de la Figure 5 ; et
    • la Figure 9 montre un exemple de fonctions d'appartenance de la variable de sortie (écart de débit d'alimentation en gaz dQG) du contrôleur flou de l'installation de la Figure 5.
    Other characteristics and advantages of the invention will emerge from the following description of particular embodiments, given by way of examples, with reference to the appended drawings, in which:
    • Figure 1 is an overall block diagram of a domestic hot water production installation according to the invention;
    • Figure 2 is a diagram showing an example of an abrupt change, as a function of time, in the DHW flow rate of domestic hot water drawn from an installation such as that of Figure 1;
    • Figure 3 is a diagram showing in a comparative manner the evolution of the outlet temperature of domestic hot water produced in a conventional installation and in the installation of Figure 1, when the flow of hot water drawn changes according to the diagram of Figure 2;
    • Figure 4 is a diagram showing the evolution over time of the quantity of gas supplied to the burner of the installation of Figure 1, when the flow of hot water drawn changes according to the diagram of Figure 2;
    • Figure 5 is a block diagram of an alternative embodiment of the domestic hot water production installation according to the invention which implements a fuzzy controller;
    • Figure 6 shows an example of an inference table that can be associated with the fuzzy controller of the installation of Figure 5;
    • Figure 7 shows an example of membership functions of an input variable (temperature difference E) of the fuzzy controller of the installation of Figure 5;
    • Figure 8 shows an example of membership functions of another input variable (derived with respect to time from the temperature difference E) of the fuzzy controller of the installation of Figure 5; and
    • Figure 9 shows an example of membership functions of the output variable (gas supply flow difference dQ G ) of the fuzzy controller of the installation of Figure 5.

    La Figure 1 représente de façon schématique une installation de production d'eau chaude sanitaire comprenant un foyer de chaudière à gaz 10 équipé d'un brûleur atmosphérique 12 alimenté par un débit QG de gaz à partir d'une vanne de modulation 20 à commande électrique. Le circuit de production d'eau chaude sanitaire comprend une entrée 11 d'alimentation en eau froide à une température Tef, un échangeur de chaleur 13 entre l'eau froide et la chaleur dégagée dans le foyer 10 par la flamme issue du brûleur 12 et une sortie 14 de foumiture d'eau chaude sanitaire à une température de sortie Ts et avec un débit QECS.Figure 1 schematically shows a domestic hot water production installation comprising a gas boiler hearth 10 equipped with an atmospheric burner 12 supplied by a flow Q G of gas from a modulating valve 20 with control electric. The domestic hot water production circuit comprises an inlet 11 for supplying cold water at a temperature Tef, a heat exchanger 13 between the cold water and the heat released in the hearth 10 by the flame from the burner 12 and an outlet 14 for supplying domestic hot water at an outlet temperature Ts and with a flow rate DHW .

    Dans une installation domestique, le débit QECS de l'eau chaude sanitaire puisée par les utilisateurs varie de façon brusque et non prévisible en fonction du nombre d'appareils de consommation d'eau chaude mis en ou hors service (douche, lavabo, baignoire, lave-vaisselle,...). Si la quantité de chaleur produite dans le foyer de la chaudière 10 reste constante, les variations du débit QECS conduiront automatiquement à des variations du même ordre pour la température Ts de l'eau chaude sanitaire produite, ce qui s'avère désagréable pour les utilisateurs. C'est pourquoi l'installation selon l'invention est équipée d'un système 100 de commande de la vanne de régulation 20 de manière à pouvoir ajuster en temps réel le débit de gaz QG fourni au brûleur 12 et ainsi assurer un maintien constant ou quasi constant de la température Ts de sortie de l'eau chaude sanitaire.In a domestic installation, the DHW flow rate of domestic hot water drawn by users varies suddenly and unpredictably depending on the number of hot water consumption devices switched on or off (shower, sink, bathtub , dishwasher,...). If the quantity of heat produced in the furnace of the boiler 10 remains constant, the variations in the flow rate DHW will automatically lead to variations of the same order for the temperature Ts of the domestic hot water produced, which is unpleasant for the users. This is why the installation according to the invention is equipped with a system 100 for controlling the regulating valve 20 so as to be able to adjust in real time the gas flow rate Q G supplied to the burner 12 and thus ensure constant maintenance. or almost constant of the temperature Ts leaving the domestic hot water.

    Pour cela, l'installation comprend un débitmètre 40 placé sur le circuit de production d'eau chaude sanitaire afin de mesurer en permanence le débit réel d'eau chaude puisée. La température Ts de sortie de l'eau chaude sanitaire est, de la même façon, mesurée par une sonde de température 30 fournissent, par des lignes 41, respectivement 32, des informations sur les valeurs du débit QECS et de la température Ts au système 100 de commande de la vanne de régulation 20, qui peut comprendre un micro-contrôleur associé à des convertisseurs analogiques-numériques (pour les informations d'entrée) et un convertisseur numérique-analogique (pour la commande de la vanne 20).For this, the installation includes a flow meter 40 placed on the domestic hot water production circuit in order to continuously measure the actual flow of hot water drawn. The domestic hot water outlet temperature Ts is likewise measured by a temperature probe 30 provide, by lines 41, respectively 32, information on the values of the flow rate DHW and of the temperature Ts at control system 100 for regulating valve 20, which may include a microcontroller associated with analog-digital converters (for input information) and a digital-analog converter (for controlling valve 20).

    Une valeur de température de consigne Tc, à laquelle doit être maintenue la température de sortie Ts de l'eau chaude sanitaire, peut être définie une fois pour toutes dans le système de commande 100 ou être foumie à partir d'une information externe appliquée par une ligne 31 à travers une interface de communication entre le système de commande 100 et les utilisateurs.A set temperature value Tc, to which must be maintained the outlet temperature Ts of the domestic hot water, can be defined once and for all in the control system 100 or be provided from external information applied by a line 31 to through a communication interface between the control system 100 and users.

    Conformément à l'invention, le système de commande 100 comprend un module de régulation 104 qui reçoit en entrée, par la ligne 41, une information fournie par le débitmètre 40 concemant le débit QECS d'eau chaude sanitaire puisée. Le module 104 détecte les variations brusques significatives du débit QECS qui constituent des sauts de débit d'une valeur ΔQECS, et génère en sortie, sur une ligne 141, un signal de commande tendant à provoquer instantanément un pic du débit de gaz QG3 devant être foumi par la vanne de modulation 20 au brûleur 12, dès l'apparition d'un tel saut de débit ΔQECS.According to the invention, the control system 100 comprises a regulation module 104 which receives as input, via the line 41, information supplied by the flow meter 40 concerning the flow rate Q DHW of domestic hot water drawn. The module 104 detects significant sudden variations in the flow rate DHW which constitute jumps in flow rate of a value ΔQ DHW , and generates at the output, on a line 141, a control signal tending to instantly cause a peak in the flow rate of gas Q G3 to be supplied by the modulation valve 20 to the burner 12, as soon as such a flow jump ΔQ DHW occurs.

    Les propriétés du module 104 générant les pics de débit de gaz QG3 au moment des variations brusques de débit ΔQECS sont les suivantes :

    • les pics de débit de gaz QG3 sont provoqués uniquement par détection de variations du débit de gaz mesuré par le débitmètre 40,
    • les valeurs initiale et finale du pic sont nulles,
    • l'amplitude des pics est proportionnelle à la variation ΔQECS du débit de puisage de l'eau chaude sanitaire,
    • le pic a lieu dans le même sens que la variation ΔQECS du débit de puisage, c'est-à-dire que le pic est positif lorsque le débit QECS d'eau chaude augmente et le pic est négatif lorsque le débit QECS d'eau chaude diminue.
    The properties of the module 104 generating the gas flow peaks Q G3 at the time of the sudden variations in the flow rate ΔQ DHW are as follows:
    • the gas flow peaks Q G3 are caused only by detection of variations in the gas flow measured by the flow meter 40,
    • the initial and final values of the peak are zero,
    • the amplitude of the peaks is proportional to the variation ΔQ DHW of the domestic hot water drawing flow,
    • the peak takes place in the same direction as the variation ΔQ DHW of the draw-off flow, that is to say that the peak is positive when the Q DHW flow of hot water increases and the peak is negative when the Q DHW flow hot water decreases.

    D'une manière générale, la fonction "pic" f(t) donnant la configuration du pic en fonction du temps lors d'un saut de débit ΔQECS positif (resp. négatif) peut s'exprimer de la façon suivante:
    soit t = 0 l'instant du saut de débit ΔQECS positif (resp. négatif), alors la fonction f(t) se définit par:

    • f(0-) = 0
    • f(0+) = k2 ΔQECS, avec k2 > 0,
    • f est décroissante (resp. croissante) sur ]0, + ∝[
    • lim f = 0
      t → + α.
    In general, the "peak" function f (t) giving the configuration of the peak as a function of time during a flow jump ΔQ DHW positive (resp. Negative) can be expressed as follows:
    let t = 0 the instant of the flow jump ΔQ DHW positive (resp. negative), then the function f (t) is defined by:
    • f (0-) = 0
    • f (0+) = k 2 ΔQ DHW , with k 2 > 0,
    • f is decreasing (resp. increasing) on] 0, + ∝ [
    • lim f = 0
      t → + α.

    Le coefficient k2 positif est une constante dont la valeur est déterminée en fonction du type de chaudière et de la nature du gaz combustible utilisé.The positive coefficient k 2 is a constant whose value is determined according to the type of boiler and the nature of the combustible gas used.

    A titre d'exemple, le coefficient k2 peut être défini à partir des informations suivantes :

  • capacité calorifique de l'eau Cp
  • rendement de l'installation η
  • pouvoir calorifique inférieur du gaz PCI
  • température de consigne Tc et
  • température Tef de l'eau froide introduite dans le circuit de fourniture d'eau chaude.
  • For example, the coefficient k 2 can be defined from the following information:
  • heat capacity of water Cp
  • installation efficiency η
  • lower calorific value of PCI gas
  • setpoint temperature Tc and
  • temperature Tef of the cold water introduced into the hot water supply circuit.
  • Dans ce cas, la formule donnant k2 peut s'écrire : k2 = Cp . (Tc - Tef) /η. PCI In this case, the formula giving k 2 can be written: k 2 = Cp. (Tc - Tef) / η. PCI

    A titre d'exemple, la température de l'eau froide Tef peut être comprise entre 5°C et 15°C avec une valeur moyenne de 10°C ; la température de consigne peut être de 50°C, la valeur de la capacité calorifique de l'eau Cp peut être prise égale à 4180 J/kg; le pouvoir calorifique inférieur du gaz PCI pour du gaz naturel peut être de l'ordre de 10 000 et le rendement η de la chaudière et des échangeurs de chaleur (c'est-à-dire l'écart entre la puissance fournie par la chaudière et la puissance récupérée par l'eau) peut être compris entre 0,7 et 0,95.For example, the temperature of the cold water Tef can be between 5 ° C and 15 ° C with an average value of 10 ° C; the set temperature can be 50 ° C, the capacity value calorific of water Cp can be taken equal to 4180 J / kg; the power PCI gas lower heat for natural gas can be in the range of 10,000 and the efficiency η of the boiler and heat exchangers (i.e. the difference between the power supplied by the boiler and the power recovered by water) can be between 0.7 and 0.95.

    Dans des conditions de fonctionnement typiques, le coefficient k2 peut ainsi présenter une valeur de l'ordre de 20.Under typical operating conditions, the coefficient k 2 can thus have a value of the order of 20.

    Avec un tel exemple, en cas de saut de débit positif (resp. négatif) ΔQECS de 6 litres par minute, soit 0,1 kg/s, la valeur du débit supplémentaire de gaz QG3 fourni par le brûleur 12 devra être au niveau de la pointe du pic de l'ordre de 2 m3/h.With such an example, in the event of a positive flow rate (resp. Negative) ΔQ DHW of 6 liters per minute, i.e. 0.1 kg / s, the value of the additional gas flow Q G3 supplied by the burner 12 should be at peak point level of the order of 2 m 3 / h.

    En pratique, le système de commande 100 équipé d'un micro-contrôleur agit par pas de temps et la fonction f(t) mentionnée plus haut, qui doit définir un pic avec une croissance brusque puis une décroissance plus lente, est exprimée sous une forme échantillonnée.In practice, the control system 100 equipped with a microcontroller acts by time step and the function f (t) mentioned above, which must define a peak with an abrupt growth then a more decay slow, is expressed in a sampled form.

    Ainsi, la fonction "pic" assurée par le module de régulation 104 et donnant la valeur du débit de gaz supplémentaire QG3 à fournir au brûleur 12 peut être liée au débit instantané d'eau chaude sanitaire QECS par la formule échantillonnée suivante : QG3(n) = k1.QG3(n-1) + k2.(QECS (n) - QECS (n-1))

    0<k1 <1
    (k1 étant lié à la période d'échantillonnage des mesures et à l'inertie de l'installation),
    k2
    est un coefficient positif réglé en fonction de la chaudière, par exemple de la façon indiquée plus haut,
    QG3(n) et QG3(n-1)
    désignent la valeur du pic de débit de gaz aux instants n et n-1
    QECS(n) et QECS(n-1)
    désignent la valeur du débit d'eau chaude sanitaire mesurée par le débitmètre 40 et échantillonné aux instants n et n-1.
    Thus, the "peak" function provided by the regulation module 104 and giving the value of the additional gas flow rate Q G3 to be supplied to the burner 12 can be linked to the instantaneous flow rate of domestic hot water Q DHW by the following sampled formula: Q G3 (n) = k 1 .Q G3 (n-1) + k 2 . (Q DHW (n) - Q DHW (n-1)) or
    0 <k 1 <1
    (k 1 being linked to the measurement sampling period and the inertia of the installation),
    k 2
    is a positive coefficient adjusted according to the boiler, for example as indicated above,
    Q G3 (n) and Q G3 (n-1)
    denote the value of the gas flow peak at times n and n-1
    Q DHW (n) and Q DHW (n-1)
    designate the value of the domestic hot water flow rate measured by the flow meter 40 and sampled at times n and n-1.

    A titre d'exemple, si la période d'échantillonnage des mesures est de 0,5 seconde, k1 pourra être choisi égal à 0,8 et la valeur du pic sera ramenée à une valeur proche de zéro au bout de 5 secondes.For example, if the measurement sampling period is 0.5 seconds, k 1 can be chosen to be 0.8 and the value of the peak will be brought back to a value close to zero after 5 seconds.

    Les diagrammes des Figures 2 à 4 permettent de mieux visualiser le rôle du module de régulation 104.The diagrams in Figures 2 to 4 allow you to better visualize the role of the regulation module 104.

    La Figure 2 montre une courbe 210 donnant l'évolution du débit d'eau chaude sanitaire QECS en fonction du temps, avec un premier tronçon 211 correspondant à un débit QECS1 relativement régulier correspondant par exemple à la consommation d'eau chaude par un utilisateur prenant une douche ou un bain. Un deuxième tronçon 212 correspond à un débit d'eau chaude puisée QECS2 accru entre les instants t1 et t2 du fait du prélèvement d'eau chaude par un autre utilisateur ou appareil tel qu'un lave-vaisselle. Un troisième tronçon 213 après l'instant t2 correspond à un retour aux conditions antérieures à l'instant t1, c'est-à-dire l'arrêt de prélèvement supplémentaire d'eau chaude. Comme on peut le voir sur la Figure 2, le prélèvement d'un débit supplémentaire d'eau chaude provoque un saut brusque de débit à l'instant t1, dans le sens d'une augmentation et un saut aussi brusque de débit, mais dans le sens d'une diminution, à l'instant t2.Figure 2 shows a curve 210 giving the evolution of the domestic hot water flow Q DHW as a function of time, with a first section 211 corresponding to a relatively regular Q DHW flow 1 corresponding for example to the consumption of hot water by a user taking a shower or bath. A second section 212 corresponds to a flow of hot water drawn Q ECS2 increased between times t 1 and t 2 due to the withdrawal of hot water by another user or device such as a dishwasher. A third section 213 after time t 2 corresponds to a return to the conditions prior to time t 1 , that is to say the stopping of additional hot water withdrawal. As can be seen in Figure 2, the withdrawal of an additional flow of hot water causes a sudden jump in flow at time t 1 , in the direction of an increase and a sudden jump in flow, but in the direction of a decrease, at time t 2 .

    La Figure 3 montre une courbe 220 donnant la température de sortie Ts de l'eau chaude sanitaire produite par l'installation conforme à l'invention. On voit que cette température de sortie Ts reste en permanence égale à la température de consigne Tc ou très proche de celle-ci.Figure 3 shows a curve 220 giving the outlet temperature Ts of domestic hot water produced by the installation according to the invention. We see that this outlet temperature Ts remains permanently equal to the setpoint temperature Tc or very close to it.

    La température Ts reste égale à la température de consigne Tc aussi bien sur un tronçon 221, antérieur à l'instant t1, que pendant la majeure partie du tronçon 223 compris entre les instants t1 et t2 ou sur le tronçon 225 postérieur à l'instant t2. Une très légère pointe négative résiduelle 222 ou une très légère pointe positive résiduelle 224 peuvent être présentes au voisinage des instants t1 et t2 compte tenu du temps de réaction du brûleur 12, mais ces fluctuations sont bien moindres que dans le cas d'un système de modulation ne comportant pas le module de régulation impulsionnel 104 créateur de pointes de débit de gaz sélectives positives ou négatives.The temperature Ts remains equal to the setpoint temperature Tc both on a section 221, prior to the instant t 1 , and during most of the section 223 between the instants t 1 and t 2 or on the section 225 after the instant t 2 . A very slight residual negative peak 222 or a very slight residual positive peak 224 may be present in the vicinity of times t 1 and t 2 taking into account the reaction time of the burner 12, but these fluctuations are much less than in the case of a modulation system not including the pulse regulation module 104 creating positive or negative selective gas flow peaks.

    On a ainsi représenté en pointillés sur la Figure 3 l'évolution de la température de sortie Ts de l'eau chaude sanitaire dans le cas où le module de régulation impulsionnelle 104 serait absent, mais où le système de commande 100 ne comporterait qu'un module de régulation 103 plus classique à action proportionnelle. Un tel module de régulation 103 (Figure 1) reçoit une information de la part du débitmètre 40 et foumit, à la vanne de commutation 20, un signal commandant l'évolution du débit de gaz QG2 foumi au brûleur 12, selon une loi de proportionnalité. Dans le cas où un tel module de régulation directe 103 est utilisé seul, en cas de variation brusque du débit d'eau chaude QECS, comme aux instants t1 et t2, la température Ts s'écarte beaucoup plus fortement de la valeur de consigne Tc et met plus longtemps à revenir à cette valeur (tronçons 226 et 227 en pointillés sur la Figure 3).There is thus shown in dotted lines in FIG. 3 the evolution of the outlet temperature Ts of the domestic hot water in the case where the impulse regulation module 104 is absent, but where the control system 100 comprises only one more classic 103 proportional control module. Such a regulation module 103 (FIG. 1) receives information from the flow meter 40 and provides, at the switching valve 20, a signal controlling the evolution of the gas flow rate Q G2 supplied to the burner 12, according to a law of proportionality. In the case where such a direct regulation module 103 is used alone, in the event of an abrupt variation in the hot water flow rate Q DHW , as at times t 1 and t 2 , the temperature Ts deviates much more strongly from the value Tc setpoint and takes longer to return to this value (sections 226 and 227 with dotted lines in Figure 3).

    Dans le système de commande 100 selon l'invention, les deux modules de régulation 103 et 104 coexistent et délivrent, par des lignes 142,141, à un circuit sommateur 105 des signaux commandant une évolution du débit de gaz QG selon, d'une part, une évolution proportionnelle QG2 et, d'autre part, une évolution impulsionnelle QG3. La vanne 20 est commandée par les signaux issus du circuit sommateur 105.In the control system 100 according to the invention, the two regulation modules 103 and 104 coexist and deliver, by lines 142, 141, to a summing circuit 105 of the signals controlling an evolution of the gas flow rate Q G according, on the one hand , a proportional evolution Q G2 and, on the other hand, an impulse evolution Q G3 . The valve 20 is controlled by the signals from the summing circuit 105.

    La Figure 4 montre une courbe 230 donnant l'évolution, en fonction du temps, du débit de gaz QG appliqué au brûleur 12 par la vanne de modulation 20 lorsque celle-ci reçoit des signaux de commande du circuit sommateur 105 dont les entrées sont reliées, par les lignes 142 et 141, aux modules de régulation 103 et 104.FIG. 4 shows a curve 230 giving the evolution, as a function of time, of the gas flow rate Q G applied to the burner 12 by the modulation valve 20 when the latter receives control signals from the summing circuit 105 whose inputs are connected, by lines 142 and 141, to regulation modules 103 and 104.

    Dans la période antérieure à l'instant t1 (tronçon 231), le débit QG de gaz est égal au débit QG2 de gaz fixé par le module de régulation proportionnelle 103 en fonction du débit d'eau chaude régulier du tronçon 211 de la Figure 2. A l'instant t1 où un saut de débit d'eau chaude ΔQECS est détecté par le module de régulation impulsionnelle 104, celui-ci entre immédiatement en action et foumit une pointe de débit de gaz QG3 (référence 232) qui permet d'atténuer fortement, voire supprimer, la chute de température Ts après l'instant t1. La pointe de débit de gaz QG3 revient progressivement à zéro, mais le module de régulation proportionnelle 103 est entre temps entré en action pour réajuster le débit de gaz QG2 à une valeur supérieure à la valeur du débit de gaz QG2 antérieure à l'instant t1, pour tenir compte de l'augmentation du débit d'eau chaude prélevée QECS. La pointe 232 est ainsi suivie par un tronçon 233 en forme de plateau jusqu'à l'instant t2. A l'instant t2, le processus de régulation est identique à celui de l'instant t1, mais en sens inverse. Le module de régulation impulsionnelle 104 détecte un saut de débit d'eau chaude ΔQECS négatif et provoque une pointe négative du débit de gaz QG3 qui se retranche du débit de gaz QG2 précédent, puis cette pointe de débit de gaz QG3 (référence 234) revient à zéro mais, compte tenu du réajustement à la baisse du débit de gaz QG2 défini par le module de régulation proportionnelle 103, la valeur globale QG du débit de gaz fourni au brûleur 12 revient à une valeur sensiblement égale à celle précédant l'instant t1 (tronçon 235).In the period prior to time t 1 (section 231), the flow rate Q G of gas is equal to the flow rate Q G2 of gas fixed by the proportional regulation module 103 as a function of the regular hot water flow rate of section 211 of Figure 2. At time t 1 when a jump in hot water flow rate ΔQ DHW is detected by the impulse control module 104, it immediately comes into action and provides a gas flow peak Q G3 (reference 232) which greatly attenuates, or even eliminates, the temperature drop Ts after time t 1 . The gas flow peak Q G3 gradually returns to zero, but the proportional control module 103 has meanwhile entered into action to readjust the gas flow Q G2 to a value greater than the value of the gas flow Q G2 prior to l 'instant t 1 , to take account of the increase in the hot water flow rate Q DHW . The tip 232 is thus followed by a section 233 in the form of a plateau until the instant t 2 . At time t 2 , the regulation process is identical to that of time t 1 , but in reverse. The impulse regulation module 104 detects a jump in the hot water flow rate ΔQ DHW negative and causes a negative peak in the gas flow Q G3 which is subtracted from the previous gas flow Q G2 , then this gas flow peak Q G3 ( reference 234) returns to zero but, taking into account the downward readjustment of the gas flow rate Q G2 defined by the proportional regulation module 103, the overall value Q G of the gas flow rate supplied to the burner 12 returns to a value substantially equal to that preceding the instant t 1 (section 235).

    La régulation de type impulsionnel à travers le module de régulation 104 et la régulation de type direct ou proportionnel à travers le module de régulation 103 se superposent et exploitent toutes deux les informations de débit fournies par le débitmètre 40.Pulse type regulation through the regulation module 104 and direct or proportional type regulation through the module regulation 103 are superimposed and both exploit the information of flow supplied by the flow meter 40.

    Avantageusement, un troisième type de régulation peut être superposé aux deux modes de régulation précédents. Ainsi, on voit sur la Figure 1 un circuit de régulation en boucle fermée 102 qui engendre, sur une ligne de sortie 143, un signal de commande du débit de gaz en boucle fermée qui est appliqué au circuit sommateur 105 pour permettre, par l'intermédiaire de la vanne de modulation 20, de foumir au brûleur 12 un débit de gaz QG1 ajusté en fonction de la valeur de la température d'eau Ts mesurée par la sonde de température 30. Un comparateur 101 permet de comparer la valeur Ts de la température de l'eau chaude sanitaire mesurée, appliquée par une ligne 32, à la température de consigne Tc fournie par une ligne 31. L'écart de température E constitue l'entrée du module de régulation en boucle fermée 102.Advantageously, a third type of regulation can be superimposed on the two preceding modes of regulation. Thus, we see in Figure 1 a closed loop regulation circuit 102 which generates, on an output line 143, a control signal of the closed loop gas flow which is applied to the summing circuit 105 to allow, by the through the modulation valve 20, to provide the burner 12 with a gas flow Q G1 adjusted as a function of the value of the water temperature Ts measured by the temperature probe 30. A comparator 101 makes it possible to compare the value Ts of the temperature of the domestic hot water measured, applied by a line 32, to the set temperature Tc supplied by a line 31. The temperature difference E constitutes the input of the closed-loop regulation module 102.

    Le module de régulation en boucle fermée 102 peut comprendre un asservissement du type PID (Proportionnel-Intégrale-Dérivée).The closed loop regulation module 102 can include a PID (Proportional-Integral-Derivative) type control.

    Toutefois, selon une variante de réalisation avantageuse, qui est illustrée par la Figure 5, le module de régulation en boucle fermée 102 comprend un contrôleur flou 122 et constitue un système à commande floue possédant des règles de commande floues, des fonctions d'appartenance et une table d'inférence.However, according to an advantageous alternative embodiment, which is illustrated in FIG. 5, the closed-loop regulation module 102 includes a fuzzy controller 122 and is a fuzzy control system with fuzzy control rules, membership functions and an inference table.

    Le contrôleur flou 122 reçoit en entrée une information d'erreur de température E qui correspond à la différence effectuée par le comparateur 101 entre la température Ts mesurée par la sonde de température 30 et la température de consigne Tc.The fuzzy controller 122 receives as input error information temperature E which corresponds to the difference made by the comparator 101 between the temperature Ts measured by the temperature probe 30 and the setpoint temperature Tc.

    Le contrôleur flou 122 reçoit sur une deuxième entrée, par l'intermédiaire d'un circuit dérivateur 121, relié au comparateur 101, une information correspondant à la dérivée dE/dt de l'information d'erreur de température. Le contrôleur flou 122 fournit en sortie une information concernant la variation du débit de gaz dQG1 qui doit être appliquée au brûleur de l'ensemble 10, 20 de chauffage de l'eau sanitaire.The fuzzy controller 122 receives on a second input, via a differentiator circuit 121, connected to the comparator 101, information corresponding to the derivative dE / dt of the temperature error information. The fuzzy controller 122 provides, as output, information concerning the variation in the gas flow rate dQ G1 which must be applied to the burner of the assembly 10, 20 for heating the domestic water.

    On a représenté sur la Figure 6 un exemple de table d'inférence pouvant convenir pour le contrôleur flou 122. Les abréviations ZE, NG, PG représentent respectivement les termes zéro, négatif grand, positif grand qui caractérisent l'écart E ou la dérivée de l'écart dE/dt précédemment définis comme variables d'entrée du contrôleur flou 122, ainsi que la variable de sortie dQG1.FIG. 6 shows an example of an inference table which may be suitable for the fuzzy controller 122. The abbreviations ZE, NG, PG respectively represent the terms zero, large negative, large positive which characterize the difference E or the derivative of the difference dE / dt previously defined as input variables of the fuzzy controller 122, as well as the output variable dQ G1 .

    A titre d'exemple, selon une des règles, si l'écart E est positif grand, et la dérivée de l'écart dE/dt est également positive et grande, alors la variable de sortie dQG1 devra être négative et grande, c'est-à-dire qu'il conviendra de diminuer de façon sensible le débit de gaz QG1 appliqué au brûleur du fait de la commande du module de régulation 102.For example, according to one of the rules, if the difference E is positive large, and the derivative of the difference dE / dt is also positive and large, then the output variable dQ G1 must be negative and large, c that is to say, the gas flow rate Q G1 applied to the burner should be significantly reduced as a result of the control of the regulating module 102.

    Si, selon un autre cas possible, l'écart E est négatif grand et la dérivée de l'écart dE/dt est positive et grande, la variable de sortie dQG1 sera nulle, c'est-à-dire qu'il n'y aura pas de correction à apporter par la boucle de régulation 102.If, according to another possible case, the difference E is negative large and the derivative of the difference dE / dt is positive and large, the output variable dQ G1 will be zero, that is to say that there n there will be no correction to be made by the regulation loop 102.

    Pour les divers cas de cet exemple particulier, il convient de se reporter à la table d'inférence de la Figure 6 qui constitue un tableau matriciel à double entrée.For the various cases of this particular example, it is advisable to refer to the inference table in Figure 6 which constitutes a table double entry matrix.

    Naturellement, à chacune des variables d'entrée E, dE/dt et de sortie dQG1 ont été au préalable associées les caractéristiques floues NG, ZE et PG précédemment mentionnées.Naturally, each of the input variables E, dE / dt and output dQ G1 was previously associated with the fuzzy characteristics NG, ZE and PG previously mentioned.

    Ainsi, à titre d'exemple, on peut considérer que l'écart de température E fourni par le comparateur 101 est négatif grand s'il est compris entre -20° et +10° et positif grand s'il est compris entre +10° et +20° ou au-delà. So, for example, we can consider that the difference of temperature E supplied by comparator 101 is negative large if it is between -20 ° and + 10 ° and positive large if it is between + 10 ° and + 20 ° or above.

    De même, à titre d'exemple, la variable d'entrée dE/dt fournie par le différentiateur 121 peut être considérée comme négative grande si elle est comprise entre -2/s et -1/s ou en deçà, zéro si elle est comprise entre-1/s et +1 /s et positive grande si elle est comprise entre +1/s et +2/s ou au-delà.Similarly, by way of example, the input variable dE / dt provided by the differentiator 121 can be considered as negative large if it is between -2 / s and -1 / s or below, zero if it is between -1 / s and +1 / s and positive large if it is between +1 / s and +2 / s or beyond.

    La variable de sortie dQG1 peut elle-même, à titre d'exemple, être considérée comme égale à une valeur de -2 m3/h si elle doit être négative grande, nulle si elle doit être égale à zéro, ou égale à une valeur de + 2m3/h si elle doit être positive grande.The output variable dQ G1 can itself, for example, be considered to be equal to a value of -2 m 3 / h if it must be negative large, zero if it must be equal to zero, or equal to a value of + 2m 3 / h if it must be positive large.

    Les Figures 7, 8 et 9 montrent des exemples de fonctions d'appartenance relatives aux caractéristiques floues applicables respectivement à l'écart de température E, à la dérivée de l'écart de température dE/dt par rapport au temps et à la variation dQG1 du débit de gaz.Figures 7, 8 and 9 show examples of membership functions relating to the fuzzy characteristics applicable respectively to the temperature difference E, to the derivative of the temperature difference dE / dt with respect to time and to the variation dQ G1 of the gas flow.

    On se reportera aux Figures 7 à 9 pour voir la forme de ces fonctions d'appartenance qui correspondent pour chaque variable donnée à un terme ou une caractérisation floue (NG, ZE, PG). On retrouve des fonctions d'appartenance de forme triangulaire (pour ZE appliquée aux variables E et dE/dt) pour NG et PG (appliquées aux variables E et dE/dt), ou ponctuelle (singletons pour NG, ZE et PG appliquées à la variable de sortie dQG1). Ces fonctions d'appartenance présentent des zones de recouvrement et sont comprises entre zéro et un pour les variables E et dE/dt.We will refer to Figures 7 to 9 to see the form of these membership functions which correspond for each variable given to a term or a fuzzy characterization (NG, ZE, PG). We find membership functions of triangular form (for ZE applied to variables E and dE / dt) for NG and PG (applied to variables E and dE / dt), or punctual (singletons for NG, ZE and PG applied to output variable dQ G1 ). These membership functions have overlap zones and are between zero and one for the variables E and dE / dt.

    Naturellement, il est possible de choisir un nombre de caractéristiques floues supérieur à trois pour chacune des variables d'entrées, selon la précision souhaitée, sans toutefois choisir un nombre trop grand qui produirait une saturation du système.Naturally, it is possible to choose a number of fuzzy characteristics greater than three for each of the variables entries, according to the desired precision, without however choosing a number too large which would cause saturation of the system.

    Le contrôleur flou 122 comprend un étage d'entrée de fuzzification permettant de fournir des variables d'entrée floues à partir des variables E et dE/dt en tenant compte des fonctions d'appartenance de ces variables d'entrée. Une sortie floue est ensuite déterminée, dans un étage d'inférence floue, à partir des règles de commande prédéfinies et des entrées floues issues de l'étage de fuzzification.The fuzzy controller 122 includes a fuzzification input stage allowing to provide fuzzy input variables from E variables and dE / dt taking into account the membership functions of these variables entry. A fuzzy output is then determined, in an inference stage fuzzy, from predefined control rules and fuzzy entries from the fuzzification stage.

    Enfin, dans un étage de défuzzification du contrôleur flou 122, il est produit un signal de commande de la variation du débit de gaz dQG1 devant être appliquée au brûleur par la vanne 20. Le signal de commande peut être obtenu à partir d'une valeur de sortie floue par une méthode telle que celle consistant à déterminer le centre de gravité de l'ensemble des règles prédéfinies dont la synthèse a servi à constituer la table d'inférence associée.Finally, in a defuzzification stage of the fuzzy controller 122, there is produced a control signal for the variation of the gas flow rate dQ G1 to be applied to the burner by the valve 20. The control signal can be obtained from a fuzzy output value by a method such as that of determining the center of gravity of all the predefined rules whose synthesis served to constitute the associated inference table.

    En sortie du contrôleur flou 122, il est possible de disposer un bloc de régulation de type PI (Proportionnel-Intégrale) qui permet de stabiliser des oscillations éventuelles du système. Les signaux de commande issus du module de commande floue 102 sont appliqués au circuit sommateur 105 qui reçoit de la même manière qu'indiqué précédemment en référence à la Figure 1, des signaux du module de régulation proportionnelle 103 et du module de régulation impulsionnelle 104.At the output of the fuzzy controller 122, it is possible to have a block PI (Proportional-Integral) regulation system which stabilizes possible system oscillations. Control signals from of the fuzzy control module 102 are applied to the summing circuit 105 which receives in the same manner as indicated previously with reference in Figure 1, signals from the proportional control module 103 and the impulse regulation module 104.

    Claims (11)

    1. Installation for producing domestic hot water using a gas boiler with atmospheric burner, comprising a boiler heater (10) equipped with a burner (12) supplied with gas via an electrically operated modulating valve (20), and at least one heat exchanger (13) for the exchange of heat between the said heater (10) and a domestic hot water producing circuit (11, 14) comprising a cold water inlet line (11) and a domestic hot water withdrawal line (14),
      characterized in that it further comprises a device (40) for measuring the rate (QECS) at which the domestic hot water is withdrawn from the domestic hot water producing circuit (11, 14), a device (30) for measuring the temperature (Ts) of the domestic hot water at the outlet of the heat exchanger (13) and a system (100) for controlling the electrically operated modulating valve (20), the system (100) for controlling the modulating valve (20) comprising a module (102) for the closed-loop control of the modulating valve (20) on the basis of the temperature (Ts) measured by the said temperature-measuring device (30) and on the basis of a setpoint temperature (Tc), a proportional-action module (103) for directly controlling the modulating valve (20) on the basis of information (QECS) supplied by the device (40) for measuring the withdrawal rate (QECS), and a module (104) for pulsed control of the modulating valve (20) on the basis of flow rate variations detected by the flow measurement device (40), the pulsed control module (104) generating a signal that creates a peak in the rate of supply of gas to the burner (12) by the modulating valve (20) each time there is a significant abrupt variation in the rate of withdrawal (QECS) of domestic hot water measured by the said measurement device (40), the peak being positive or negative depending on whether the variation corresponds to an increase or decrease in this flow rate, the initial and final values of the peak being zero and the amplitude of a peak being proportional to the detected variation in flow rate.
    2. Installation according to Claim 1, characterized in that the pulsed control module (104) comprises means for generating a sampled signal creating a gas flow rate peak (QG3), the value of which is obtained as a function of the rate (QECS) at which domestic hot water is withdrawn, using the following sampled formula: QG3 (n) = k1.QG3 (n-1) + k2. (QECS(n) - QECS (n-1)), where
      k1 is a coefficient, the value of which is between 0 and 1,
      k2 is a positive parameter set as a function of the type of boiler,
      QG3(n) and QG3(n-1) denote the value of the gas flow rate peak (QG3) at the instants n and n-1, and
      QECS (n) and QECS (n-1) denote the value of the rate at which domestic hot water is withdrawn at the instants n and n-1.
    3. Installation according to Claim 2, characterized in that the pulsed control module (104) comprises means for defining the positive parameter k2 set as a function of the type of boiler, on the basis of the following information: the heat capacity (Cp) of the water, the efficiency (η) of the installation, the lower calorific value (PCI) of the gas, the setpoint temperature (Tc) and the temperature (Tef) of the cold water introduced into the domestic hot water circulation circuit, according to the formula k2 = Cp. (Tc - Tef)/η.PCI.
    4. Installation according to any one of Claims 1 to 3, characterized in that the closed-loop control module (102) comprises an automatic control circuit of the PID (proportional-integral-derivative) type, the input variable of which consists of the difference between the temperature (Ts) measured by the said device (30) for measuring the temperature (Ts) and the setpoint temperature (Tc).
    5. Installation according to any one of Claims 1 to 3, characterized in that the closed-loop control module (102) comprises a fuzzy controller (122) receiving, at input, temperature error information E corresponding to the difference between the temperature (Ts) measured by the said temperature measuring device (30) and the setpoint temperature (Tc), and information (dE/dt) corresponding to the derivative with respect to time of the temperature error information.
    6. Installation according to Claim 5, characterized in that the closed-loop control module (102) further comprises an automatic control circuit (123) of the PI (proportional-integral) type placed at the output of the fuzzy controller (122) and receiving, at input, information (dQG) about the variation in the flow rate of gas supplied to the burner.
    7. Method for regulating the temperature of domestic hot water in an installation for producing domestic hot water by the exchange of heat with a heater of a gas boiler comprising an atmospheric burner, the feed gas flow rate of which is modulated using an automatic control system,
      characterized in that the rate (QG) at which gas is supplied to the said burner is controlled on the basis of the measurement of the rate (QECS) at which domestic hot water is withdrawn, on the one hand, by direct control with proportional action on the basis of the said measurement of the rate (QECS) at which domestic hot water is withdrawn and, on the other hand, by pulsed control on the basis of significant jumps (ΔQECS) in the measured value of the rate (QECS) at which domestic hot water is withdrawn, the pulsed control acting on the rate (QG) at which gas is supplied to the said burner so as to create a peak according to a "peak" function f(t) such that if t=0 is the instant of the positive (or negative) flow rate jump ΔQECS, the function f(t) is defined by:
      f(0-) = 0
      f(0+) = k2 ΔQECS, with k2 a positive coefficient
      f is decreasing (or increasing) on ]0, +∝[
      lim f(t) = 0
      t → +∝.
    8. Method according to Claim 7, characterized in that the positive coefficient k2 is set as a function of the type of boiler on the basis of the following information: the heat capacity (Cp) of the water, the efficiency (η) of the installation, the lower calorific value (PCI) of the gas, the setpoint temperature (Tc) and the temperature (Tef) of the cold water introduced into the domestic hot water circulation circuit, according to the formula: k2 = Cp. (Tc - Tef)/η.PCI.
    9. Method according to either one of Claims 7 and 8, characterized in that the rate (QG) at which gas is supplied to the said burner is also automatically controlled on the basis of the difference between the actual temperature (Ts) of the domestic hot water produced and a setpoint temperature (Tc) in a closed-loop automatic control of the PID (proportional-integral-derivative) type.
    10. Method according to either one of Claims 7 and 8, characterized in that the rate (QG) at which gas is supplied to the said burner is also automatically controlled, by fuzzy control, on the basis of temperature error information E corresponding to the difference between the actual temperature (Ts) of the domestic hot water produced and a setpoint temperature (Tc), and on the basis of information corresponding to the derivative with respect to time of the temperature error information E.
    11. Method according to Claim 10, characterized in that the rate (QG) at which gas is supplied to the said burner is also automatically controlled on the basis of the output information from the fuzzy control using automatic control of the PI (proportional-integral) type.
    EP96402520A 1995-12-01 1996-11-22 Domestic hot water producing system with a gas heater and method for controlling the temperature of the domestic hot water in such a system Expired - Lifetime EP0781965B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9514216A FR2741939B1 (en) 1995-12-01 1995-12-01 INSTALLATION FOR PRODUCING DOMESTIC HOT WATER BY GAS BOILER AND METHOD FOR CONTROLLING THE TEMPERATURE OF DOMESTIC HOT WATER IN SUCH AN INSTALLATION
    FR9514216 1995-12-01

    Publications (2)

    Publication Number Publication Date
    EP0781965A1 EP0781965A1 (en) 1997-07-02
    EP0781965B1 true EP0781965B1 (en) 2001-10-10

    Family

    ID=9485055

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP96402520A Expired - Lifetime EP0781965B1 (en) 1995-12-01 1996-11-22 Domestic hot water producing system with a gas heater and method for controlling the temperature of the domestic hot water in such a system

    Country Status (8)

    Country Link
    EP (1) EP0781965B1 (en)
    AT (1) ATE206812T1 (en)
    CZ (1) CZ348296A3 (en)
    DE (1) DE69615809D1 (en)
    FR (1) FR2741939B1 (en)
    HU (1) HUP9603002A3 (en)
    PL (1) PL181478B1 (en)
    SK (1) SK152996A3 (en)

    Families Citing this family (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2764674B1 (en) * 1997-06-11 1999-07-16 Gaz De France METHOD AND ASSOCIATED DEVICE FOR REGULATING THE TEMPERATURE OF A FLUID HEATED BY A BURNER
    GB2400923B (en) * 2003-04-25 2005-06-01 Falmer Investment Ltd Adaptive fuzzy logic temperature control
    WO2008014626A1 (en) * 2006-08-02 2008-02-07 Toby Ag Method for the regulation of a burner
    CN102455135B (en) * 2010-10-27 2013-11-20 宝山钢铁股份有限公司 Furnace temperature control method and control equipment for open fire heating furnace
    US11754291B2 (en) 2020-09-28 2023-09-12 Midea Group Co., Ltd. Modulating oven burner control for gas cooking appliance

    Family Cites Families (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPS5733750A (en) * 1980-08-08 1982-02-23 Yamatake Honeywell Co Ltd Temperature control system of hot water heater
    JPS6131849A (en) * 1984-07-25 1986-02-14 Matsushita Electric Ind Co Ltd Tap-controlled gas hot-water supplier
    JPS63148050A (en) * 1986-12-11 1988-06-20 Hanshin Electric Co Ltd Combustion control method for water heater
    JPH01114616A (en) * 1987-10-28 1989-05-08 Noritz Corp Hot water feeder
    JPH0439569A (en) * 1990-06-01 1992-02-10 Noritz Corp Hot-water temperature controller for gas hot-water supplier
    JPH0452454A (en) * 1990-06-21 1992-02-20 Tokyo Gas Co Ltd Water temperature controller for instantaneous water heater
    JPH04347414A (en) * 1991-05-24 1992-12-02 Matsushita Electric Ind Co Ltd Response output controller

    Also Published As

    Publication number Publication date
    CZ348296A3 (en) 1997-06-11
    PL317274A1 (en) 1997-06-09
    FR2741939A1 (en) 1997-06-06
    HU9603002D0 (en) 1996-12-30
    PL181478B1 (en) 2001-07-31
    HUP9603002A2 (en) 1997-08-28
    ATE206812T1 (en) 2001-10-15
    EP0781965A1 (en) 1997-07-02
    DE69615809D1 (en) 2001-11-15
    HUP9603002A3 (en) 2000-02-28
    FR2741939B1 (en) 1998-02-20
    SK152996A3 (en) 1998-06-03

    Similar Documents

    Publication Publication Date Title
    FR2794334A1 (en) BALLAST FOR DISCHARGE LAMP COMPRISING A VOLTAGE CONVERTER
    FR2567992A1 (en) DEVICE FOR ADJUSTING THE ON AND OFF PERIODS OF A BURNER OF A HOT WATER HEATING SYSTEM
    EP0781965B1 (en) Domestic hot water producing system with a gas heater and method for controlling the temperature of the domestic hot water in such a system
    EP0980034B1 (en) Building heating control system
    FR3066582A1 (en) METHOD AND INSTALLATION OF ENERGY STORAGE USING A WATER HEATER
    EP0148700A2 (en) Method and device to control a space heating installation, comprising a plurality of heat generators
    BE1000575A4 (en) Temperature control system for hot water boiler wall gas mixture a instant.
    FR2963087A1 (en) Method for operating domestic hot water producing apparatus, involves regulating flow of primary pump of primary circuit according to difference between temperatures of domestic water at outlet and inlet of secondary part of exchanger
    FR2640401A1 (en) DEVICE FOR ELECTRONICALLY CONTROLLING THE POWER SUPPLY OF A HEATING RESISTANCE
    WO2021140251A1 (en) Heating system and method
    FR2549205A1 (en) Regulating heating installation taking into account external temp.
    EP3890432B1 (en) Hob comprising an improved cooking programme, cooking system, cooking method and corresponding programme
    FR2638864A1 (en) METHOD FOR ADJUSTING THE AVERAGE VALUE OF THE MIST TEMPERATURE OF A HEATING MEDIUM AND SWITCHING DEVICE FOR CARRYING OUT THE METHOD
    FR3061268A1 (en) METHOD FOR DETERMINING THE DELAY CAPACITY OF A BUILDING OPERATING THERMAL INERTIA, ASSOCIATED DELIGHTING METHOD AND SYSTEM IMPLEMENTING SAID METHODS
    EP0375494B1 (en) Automatic regulation method and apparatus for a discontinuously solid fuel-fired boiler using forced draft, particularly for a wood-fired boiler
    EP0884532B1 (en) Method and device for controlling the temperature of a fluid heated by a burner
    EP0245184A1 (en) Process and installation for central heating using two sources of energy
    FR2505989A1 (en) Electronic control circuit for supplementary heat pump - uses circuits which compare exterior and heating water temperature against set levels and provide switching control to heat pump compressor
    EP0113262A2 (en) Method and device to control the heating of spaces
    FR2542426A1 (en) Method of regulating a central heating installation of an enclosure
    FR2521696A1 (en) Hot water central heating installation - uses outlet water temp. sensor and microprocessor to control operation of boiler and heat pump for optimum usage
    FR2793642A1 (en) Automatic regulation of power output of radiation, convection and storage heating in room responds to temperature measurements taken by thermostat, and controls heaters
    FR2511480A1 (en) SEQUENTIAL POWER CONTROL FOR GAS BOILER
    FR2767909A1 (en) Method and regulator for control of building electrical storage heater
    EP1050714B1 (en) Boiler controlling device

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE DK ES FI GB GR IE IT LI LU MC NL PT SE

    17P Request for examination filed

    Effective date: 19971229

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 20000928

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE DK ES FI GB GR IE IT LI LU MC NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20011010

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

    Effective date: 20011010

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20011010

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20011010

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20011010

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20011010

    REF Corresponds to:

    Ref document number: 206812

    Country of ref document: AT

    Date of ref document: 20011015

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: FRENCH

    REF Corresponds to:

    Ref document number: 69615809

    Country of ref document: DE

    Date of ref document: 20011115

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20011122

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20011122

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20011130

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20011130

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20011130

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020110

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020110

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020110

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020111

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020111

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

    Effective date: 20011010

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020430

    BERE Be: lapsed

    Owner name: GAZ DE FRANCE

    Effective date: 20011130

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    26N No opposition filed