WO2008014626A1 - Method for the regulation of a burner - Google Patents

Method for the regulation of a burner Download PDF

Info

Publication number
WO2008014626A1
WO2008014626A1 PCT/CH2007/000363 CH2007000363W WO2008014626A1 WO 2008014626 A1 WO2008014626 A1 WO 2008014626A1 CH 2007000363 W CH2007000363 W CH 2007000363W WO 2008014626 A1 WO2008014626 A1 WO 2008014626A1
Authority
WO
WIPO (PCT)
Prior art keywords
boiler water
burner
water temperature
power
setpoint
Prior art date
Application number
PCT/CH2007/000363
Other languages
German (de)
French (fr)
Inventor
Josef Wüest
Original Assignee
Toby Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toby Ag filed Critical Toby Ag
Priority to EP07785062.6A priority Critical patent/EP2049839B1/en
Publication of WO2008014626A1 publication Critical patent/WO2008014626A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/08Regulating fuel supply conjointly with another medium, e.g. boiler water
    • F23N1/082Regulating fuel supply conjointly with another medium, e.g. boiler water using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/10Sequential burner running

Definitions

  • the invention relates to a method for controlling a burner according to the preamble of claim 1.
  • Such burners are advantageously used in boilers of residential buildings, with the combination burner / boiler heat for the heating of rooms and usually also for the preparation of domestic hot water is generated.
  • Such boilers are advantageously designed as condensing boiler, through the design of which the exhaust gas is condensed, so that the heat of vaporization is used profitably.
  • the difference between the boiler water temperature and the boiler water temperature setpoint value is used, the boiler water temperature setpoint for the heating operation is derived from the current outside temperature, as known for example from DE-C3-25 49 561 is. If the difference between actual and setpoint is large, the burner is operated at high power. If the difference between actual and setpoint is small, the burner is operated at low power. At the moment of turning on the burner, the difference has its maximum value. The burner is running great performance. If the burner generates heat, the boiler water is heated. As a result, the boiler water temperature actual value increases continuously. Thus, the difference between the actual and setpoint continuously decreases, with the result that the performance of the burner is further reduced.
  • EP-A1-0 781 965 discloses a gas-heated process water heating system and a method for controlling the process water temperature in such a system. This is about reacting to a fluctuating hot water tapping quantity so that the outlet temperature remains as constant as possible. Therefore, there is a means for measuring the flow of the extracted hot water. It is not apparent that a power limitation is provided for the burner, which could be prevented by the short burner run times.
  • the invention has for its object to prevent these short burner life.
  • the determination variable is additionally varied by limiting the current burner output by means of an additional parameter.
  • the difference between the boiler water temperature actual value and the boiler water temperature set point characterizes the actual heat requirement only insufficiently, because it depends also on which part of the respectively produced heat is taken off immediately from the heating circuit. If the heating circuit takes away a lot of heat, the boiler water temperature rises slowly when the burner is running. Does that take Heating circuit on the other hand, little heat from, then the boiler water temperature increases when the burner is running very fast. This then leads to a quick shutdown of the burner, so a short burner runtime.
  • the effectively effective burner output is thus determined not only by the difference between the boiler water temperature actual value and the boiler water temperature setpoint alone, but additionally by the boiler water temperature setpoint.
  • the sole figure shows a graph for the burner output in function of the boiler water temperature setpoint.
  • the boiler water temperature setpoint T KSO II is plotted.
  • the smallest possible value of room temperature corresponds to T RSO H of 20 degrees.
  • the largest possible value is the boiler water temperature maximum setpoint T ⁇ so iiMax- This is determined by the design of the boiler and by the type of heating system and is for example 70 degrees.
  • the boiler water temperature setpoint TK SO II is in a known manner a function of the outside temperature.
  • the burner power Q is plotted.
  • a modulating burner has a maximum operating power, referred to as rated power QN.
  • a burner can now not be operated with a power close to zero, but it has a certain design minimum performance Q min . Modulating the burner thus takes place within the limits Q min and QN.
  • the ratio QN TO Q min is usually referred to as the degree of modulation.
  • a degree of modulation of the value 3 thus means that the minimum power Q min is one third of the rated power QN.
  • This relative modulation degree M re i is 0% when the burner is running at a power equal to the minimum power Q mm , and it is 100% when the burner is running at its nominal power Q N.
  • Boiler water temperature setpoint T ⁇ s oii 45 degrees, namely
  • the straight line AB ⁇ can also be described as a function with the aid of which the degree of modulation M re i can be calculated in percent:
  • the burner output derived from the difference between the boiler water temperature value T ⁇ i St and the boiler water temperature setpoint T KSOII .
  • this difference is 20 degrees.
  • this value is used for the determination of the instantaneous power of the burner.
  • the boiler water temperature actual value Tjci st 20 degrees and the boiler water temperature setpoint TK SO H - 40 degrees, so that again usually used to control the burner power difference between the boiler water temperature T ⁇ i St and the boiler water temperature setpoint T ⁇ S0 n 20 degrees.
  • the difference of 20 degrees is now not used to control the burner power, but there is a power limitation according to the diagram of the figure.
  • the burner output is limited to 40%. It follows, therefore, that due to the power limitation of the invention, the duration of the burner is extended.
  • the temperature difference of 20 degrees was taken as an example to illustrate the effect of the invention. In practice, of course, it depends on the switching difference, which is effective in the controller. These can be values of the order of 8 or 10 degrees, for example. But much higher differences occur regularly, for example, the transition from a working in the heating night reduction to normal operation, often carried out in a so-called rapid heating, thus ensuring that the occurred overnight cooling of rooms and walls is compensated as quickly as possible. Especially with such a rapid heating prevents the inventive limitation of the burner power frequent switching on and off of the burner with all its adverse effects.
  • the connecting line between points A and B in the diagram does not necessarily have to be a straight line. Also possible is a hyperbolic line, which is shown in dotted lines in the diagram. This leads to a stronger one
  • the effective modulation factor M at , s in percent corresponding to the true burner power can be calculated from the relative modulation degree M re i by means of the relationship QN to Q min as follows:
  • the power control for the burner is carried out in the known manner by a ratio controller for the fuel / air mixture.
  • a ratio controller for the fuel / air mixture is carried out in the known manner.
  • the amount of fuel per unit time is regulated and the amount of air tracked.
  • Boiler water temperature maximum setpoint T ⁇ so ii Max is effective, it does not need to switch between heating and hot water storage to control the burner power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

The invention relates to a method for regulating a modulated burner having an output that is variable between a minimal output Q<SUB>min</SUB> and a rated output Q<SUB>N</SUB>, wherein the output is regulated to be proportional to the difference between the boiler water actual temperature value T<SUB>Kact,</SUB> and the boiler water set temperature value T<SUB>Kset</SUB>. According to the invention, there is a power output limit that is derived from the boiler water set temperature value T<SUB>Kset</SUB>. In this way the burner remains in operation for longer with a low heating requirement, and hence the number of burner starts will be reduced.

Description

Verfahren zur Regelung eines Brenners Method for controlling a burner
Die Erfindung bezieht sich auf ein Verfahren zur Regelung eines Brenners gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a method for controlling a burner according to the preamble of claim 1.
Solche Brenner werden vorteilhaft in Heizkesseln von Wohngebäuden verwendet, wobei mit der Kombination Brenner/Heizkessel Wärme für die Heizung von Räumen und meist auch für die Bereitung von warmem Brauchwasser erzeugt wird. Solche Heizkessel sind vorteilhaft als kondensierende Kessel gestaltet, durch deren Bauart das Abgas kondensiert wird, so dass die Verdampfungswärme nutzbringend mitverwendet wird.Such burners are advantageously used in boilers of residential buildings, with the combination burner / boiler heat for the heating of rooms and usually also for the preparation of domestic hot water is generated. Such boilers are advantageously designed as condensing boiler, through the design of which the exhaust gas is condensed, so that the heat of vaporization is used profitably.
Weil bei jedem Start eines Brenners anfangs erhöhte Schadstoffemissionen auftreten und auch Energie aufgewendet werden muss, um den Brennraum vorzulüften, besteht schon seit langer Zeit das Bedürfnis, die Zahl der Einschaltvorgänge zu reduzieren und eine möglichst lange Brennerlaufzeit zu gewährleisten.Because at each start of a burner initially increased pollutant emissions occur and energy must be expended to pre-ventilate the combustion chamber, there is a long time the need to reduce the number of turn-on and to ensure the longest possible burner life.
Stand der TechnikState of the art
Um möglichst lange Brennerlaufzeiten zu erreichen, ist deshalb gemäß DE-C3-25 49 561 vorgesehen worden, die Schaltdifferenz des Thermostaten in Funktion der herrschenden Außentemperatur zu verändern. Gemäß DE-C2-39 32 327 ist darüber hinaus vorgesehen, die Schaltdifferenz auch noch von der Einstellung der Heizkennlinie für den Heizkreis abhängig zu machen.In order to achieve burner times as long as possible, it has therefore been provided according to DE-C3-25 49 561 to change the switching differential of the thermostat in function of the prevailing outside temperature. According to DE-C2-39 32 327 is also provided to make the switching differential also dependent on the setting of the heating curve for the heating circuit.
Aus DE-Cl- 34 26 937 eine Lösung bekannt, bei der ein Hystereseschalter vorgesehen ist, dem ein Integrator vorgschaltet ist. Im Integrator wird die Differenz zwischen einer Bezugstemperatur und einer Messtemperatur integriert.From DE-Cl- 34 26 937 a solution is known in which a hysteresis switch is provided to which an integrator is vorgschaltet. The difference between a reference temperature and a measurement temperature is integrated in the integrator.
Zur Regelung der Leistung eines modulierenden Brenners wird üblicherweise die Differenz zwischen dem Kesselwassertemperatur-Istwert und dem Kesselwassertemperatur-Sollwert benutzt, wobei der Kesselwassertemperatur-Sollwert für den Heizbetrieb aus der aktuellen Außentemperatur abgeleitet ist, wie dies beispielsweise aus DE-C3-25 49 561 bekannt ist. Ist die Differenz zwischen Ist- und Sollwert groß, so wird der Brenner mit hoher Leistung betrieben. Ist die Differenz zwischen Ist- und Sollwert klein, so wird der Brenner mit geringer Leistung betrieben. Im Moment des Einschaltens des Brenners hat die Differenz ihren Maximalwert. Der Brenner läuft mit großer Leistung. Erzeugt der Brenner Wärme, so wird das Kesselwasser erwärmt. In der Folge steigt der Kesselwassertemperatur-Istwert fortlaufend an. Damit wird die Differenz zwischen Ist- und Sollwert fortlaufend kleiner, was zur Folge hat, dass die Leistung des Brenners immer weiter reduziert wird.To regulate the power of a modulating burner usually the difference between the boiler water temperature and the boiler water temperature setpoint value is used, the boiler water temperature setpoint for the heating operation is derived from the current outside temperature, as known for example from DE-C3-25 49 561 is. If the difference between actual and setpoint is large, the burner is operated at high power. If the difference between actual and setpoint is small, the burner is operated at low power. At the moment of turning on the burner, the difference has its maximum value. The burner is running great performance. If the burner generates heat, the boiler water is heated. As a result, the boiler water temperature actual value increases continuously. Thus, the difference between the actual and setpoint continuously decreases, with the result that the performance of the burner is further reduced.
Aus EP-Al-O 781 965 sind eine gasbeheizte Brauchwasserheizanlage und ein Verfahren zur Regelung der Brauchwassertemperatur in einer solchen Anlage bekannt. Hier geht es darum, auf eine schwankende Warmwasser-Zapfmenge regeltechnisch so zu reagieren, dass die Auslauftemperatur möglichst konstant bleibt. Deshalb ist eine Einrichtung zur Messung des Durchflusses des entnommenen Warmwassers vorhanden. Es ist nicht erkennbar, dass dabei eine Leistungsbegrenzung für den Brenner vorgesehen ist, durch die kurze Brennerlaufzeiten verhindert werden könnten.EP-A1-0 781 965 discloses a gas-heated process water heating system and a method for controlling the process water temperature in such a system. This is about reacting to a fluctuating hot water tapping quantity so that the outlet temperature remains as constant as possible. Therefore, there is a means for measuring the flow of the extracted hot water. It is not apparent that a power limitation is provided for the burner, which could be prevented by the short burner run times.
Es hat sich gezeigt, dass diese Betriebsweise nicht optimal ist, weil durchaus immer wieder sehr kurze Brennerlaufzeiten auftreten.It has been shown that this mode of operation is not optimal, because quite often very short burner runtimes occur.
Aufgabe der ErfindungObject of the invention
Der Erfindung liegt die Aufgabe zugrunde, diese kurzen Brennerlaufzeiten zu verhindern.The invention has for its object to prevent these short burner life.
Beschreibung der ErfindungDescription of the invention
Die genannte Aufgabe wird erfindungsgemäß durch die Merkmale des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen ergeben sich aus den abhängigen Ansprüchen.The above object is achieved by the features of claim 1. Advantageous developments emerge from the dependent claims.
Die Verwendung der Differenz zwischen dem Kesselwassertemperatur-Istwert und dem Kesselwassertemperatur-Sollwert als Bestimmungsgröße für die jeweilige aktuelle Brennerleistung reicht offenbar nicht aus. Erfindungsgemäß ist vorgesehen, die Bestimmungsgröße zusätzlich dadurch zu variieren, dass mittels eines zusätzlichen Parameters die aktuelle Brennerleistung begrenzt wird.The use of the difference between the boiler water temperature actual value and the boiler water temperature setpoint as a determinant for the respective current burner output does not seem to be sufficient. According to the invention, the determination variable is additionally varied by limiting the current burner output by means of an additional parameter.
Die Differenz zwischen dem Kesselwassertemperatur-Istwert und dem Kesselwassertemperatur-Sollwert charakterisiert den tatsächlichen Wärmebedarf nur unzureichend, denn es kommt auch noch darauf an, welcher Teil der jeweils produzierten Wärme sogleich vom Heizkreis abgenommen wird. Nimmt der Heizkreis viel Wärme ab, dann steigt die Kesselwassertemperatur bei laufendem Brenner nur langsam. Nimmt der Heizkreis dagegen wenig Wärme ab, dann steigt die Kesselwassertemperatur bei laufendem Brenner sehr schnell. Das führt dann zu einem schnellen Abschalten des Brenners, also zu einer kurzen Brennerlaufzeit.The difference between the boiler water temperature actual value and the boiler water temperature set point characterizes the actual heat requirement only insufficiently, because it depends also on which part of the respectively produced heat is taken off immediately from the heating circuit. If the heating circuit takes away a lot of heat, the boiler water temperature rises slowly when the burner is running. Does that take Heating circuit on the other hand, little heat from, then the boiler water temperature increases when the burner is running very fast. This then leads to a quick shutdown of the burner, so a short burner runtime.
Nach der Erfindung erfolgt eine Begrenzung der für den Regelbetrieb des Brenners erlaubten maximalen Brennerleistung durch den Sollwert der Kesselwassertemperatur als weitere Führungsgröße für den Wärmebedarf. Die effektiv wirksame Brennerleistung wird also nicht nur durch die Differenz zwischen dem Kesselwassertemperatur-Istwert und dem Kesselwassertemperatur-Sollwert allein bestimmt, sondern zusätzlich noch durch den Kesselwassertemperatur-Sollwert.According to the invention, a limitation of the maximum burner power allowed for the regular operation of the burner by the setpoint of the boiler water temperature as a further reference variable for the heat demand takes place. The effectively effective burner output is thus determined not only by the difference between the boiler water temperature actual value and the boiler water temperature setpoint alone, but additionally by the boiler water temperature setpoint.
Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand der Zeichnung näher erläutert.An embodiment of the invention will be explained in more detail with reference to the drawing.
Die einzige Figur zeigt ein Diagramm für die Brennerleistung in Funktion des Kesselwassertemperatur-Sollwerts. Auf der Abszissenachse ist der Kesselwassertemperatur-Sollwert TKSOII aufgetragen. Für den Heizbetrieb entspricht der kleinste mögliche Wert der Raumtemperatur TRSOH von 20 Grad. Der größte mögliche Wert ist der Kesselwassertemperatur-Maximal-Sollwert TκsoiiMax- Dieser ist durch die Bauart des Heizkessels und durch die Art der Heizungsanlage vorgegeben und beträgt beispielsweise 70 Grad. Der Kesselwassertemperatur-Sollwert TKSOII ist dabei in bekannter Weise eine Funktion der Außentemperatur.The sole figure shows a graph for the burner output in function of the boiler water temperature setpoint. On the abscissa axis, the boiler water temperature setpoint T KSO II is plotted. For heating operation, the smallest possible value of room temperature corresponds to T RSO H of 20 degrees. The largest possible value is the boiler water temperature maximum setpoint Tκ so iiMax- This is determined by the design of the boiler and by the type of heating system and is for example 70 degrees. The boiler water temperature setpoint TK SO II is in a known manner a function of the outside temperature.
Auf der Ordinatenachse ist die Brennerleistung Q aufgetragen. Ein modulierender Brenner hat eine maximale Betriebsleistung, bezeichnet als Nennleistung QN. Ein Brenner kann nun nicht mit einer Leistung nahe Null betrieben werden, sondern er hat bauartbedingt eine bestimmte Minimalleistung Qmin. Das Modulieren des Brenners erfolgt also in den Grenzen Qmin und QN- Das Verhältnis QN ZU Qmin wird üblicherweise als Modulationsgrad bezeichnet. Ein Modulationsgrad vom Wert 3 bedeutet also, dass die Minimalleistung Qmin ein Drittel der Nennleistung QN beträgt.On the ordinate axis, the burner power Q is plotted. A modulating burner has a maximum operating power, referred to as rated power QN. A burner can now not be operated with a power close to zero, but it has a certain design minimum performance Q min . Modulating the burner thus takes place within the limits Q min and QN. The ratio QN TO Q min is usually referred to as the degree of modulation. A degree of modulation of the value 3 thus means that the minimum power Q min is one third of the rated power QN.
Zum besseren Verständnis der Erfindung wird hier ein relativer Modulationsgrad Mrei eingeführt. Dieser relative Modulationsgrad Mrei ist 0 %, wenn der Brenner mit einer Leistung läuft, die der Minimalleistung Qmm entspricht, und er ist 100 %, wenn der Brenner mit seiner Nennleistung QN läuft. Erfmdungsgemäß ist nun dem Kesselwassertemperatur-Sollwert TκS0n = 20 Grad die Minimalleistung Qmjn zugeordnet und dem Kesselwassertemperatur-Maximal- Sollwert TκSoiiMax die Nennleistung QN- Diese beiden Punkte, im Diagramm mit A bzw. B bezeichnet, sind durch eine Gerade verbunden. Somit besteht zwischen diesen beiden Grenzen eine lineare Beziehung. Diese Gerade ist der erfindungsgemäß maximal zulässige Modulationsgrad Mrei.For a better understanding of the invention, a relative degree of modulation M re i is introduced here. This relative modulation degree M re i is 0% when the burner is running at a power equal to the minimum power Q mm , and it is 100% when the burner is running at its nominal power Q N. According to the invention, the minimum power Q m j n is assigned to the boiler water temperature setpoint Tκ S0 n = 20 degrees, and the rated power QN- to the boiler water temperature maximum setpoint Tκ S oiiM ax . These two points, labeled A and B in the diagram, are denoted by connected a straight line. Thus, there is a linear relationship between these two boundaries. This straight line is the maximum permissible modulation degree M re i according to the invention.
Aus dem Diagramm lässt sich ablesen, dass bei einem Kesselwassertemperatur- Sollwert TKSOII = 45 Grad der maximal zulässig relative Modulationsgrad Mrei 50 % beträgt. Damit beträgt die im Regelbetrieb maximal zulässige Brennerleistung für einenIt can be seen from the diagram that for a boiler water temperature setpoint T KSO II = 45 degrees, the maximum permissible relative modulation degree M re i is 50%. Thus, the maximum permissible burner output in normal operation is one
Figure imgf000006_0001
Kesselwassertemperatur-Sollwert Tκsoii = 45 Grad, nämlich
Figure imgf000006_0001
Boiler water temperature setpoint Tκ s oii = 45 degrees, namely
Üblicherweise ist ein Kesselwassertemperatur-Sollwert TKSOII = 20 Grad einen Raumtemperatur-Sollwert TRSOH = 20 Grad zugeordnet. Somit lässt sich die Gerade AB auch beschreiben als Funktion, mit deren Hilfe der Modulationsgrad Mrei in Prozent berechenbar ist:Usually, a boiler water temperature setpoint TK SOII = 20 degrees is assigned a room temperature setpoint TR SO H = 20 degrees. Thus, the straight line AB ■ can also be described as a function with the aid of which the degree of modulation M re i can be calculated in percent:
Dass dies dazu führt, kurze Brennerlaufzeiten zu verhindern, wird anhand von BeispielenThat this leads to prevent short burner run times is illustrated by examples
T — TT - T
M = ■ Ks0" - Rsoll -x lOOM = ■ Ks0 "- Rsoll -x lOO
T 1 KSoIl max - T Rsoll erläutert.T 1 KSoIl max - T Rsoll explained.
Üblicherweise wird die Brennerleistung, wie eingangs erwähnt, aus der Differenz zwischen dem Kesselwassertemperatur-Istwert TκiSt und dem Kesselwassertemperatur- Sollwert TKSOII abgeleitet. Angenommen sei, dass bei einem Brennerstart diese Differenz 20 Grad betrage. Bei Brennerregelungen nach dem Stand der Technik wird allein dieser Wert für die Festlegung der momentanen Leistung des Brenners benutzt. Nun seien aber zwei mögliche Fälle unterschieden:Usually, the burner output, as mentioned above, derived from the difference between the boiler water temperature value Tκi St and the boiler water temperature setpoint T KSOII . Suppose that at a burner start this difference is 20 degrees. In burner controls of the prior art, only this value is used for the determination of the instantaneous power of the burner. Now there are two possible cases:
Im ersten Fall sei der Kesselwassertemperatur-Istwert TκiSt = 50 Grad und der Kesselwassertemperatur-Sollwert TKSOII = 70 Grad. Es ist leicht erkennbar, dass dieser Fall auftritt, wenn sehr kalte Witterung herrscht. Aus dem Diagramm lässt sich nun ablesen, dass bei einem Kesselwassertemperatur-Sollwert TKSOH = 70 Grad der zulässige Modulationsgrad Mrei — 100 % beträgt. Der Brenner wird also mit voller Leistung starten. Wenn dann Wärme erzeugt wird, wird in der Folge die der Differenz zwischen dem Kesselwassertemperatur-Istwert TκiSt und dem Kesselwassertemperatur-Sollwert TKSOH abnehmen, was dann zur einer Reduktion der Brennerleistung führt.In the first case, the boiler water temperature actual value Tκi St = 50 degrees and the boiler water temperature setpoint T KSOII = 70 degrees. It is easily recognizable that this case occurs when very cold weather prevails. From the diagram can now be read, in the case of a boiler water temperature setpoint TK SO H = 70 degrees, the permissible degree of modulation M re i is 100%. The burner will start at full power. When heat is then generated, the difference between the boiler water temperature actual value Tκi St and the boiler water temperature setpoint T KSOH will decrease as a result, which then leads to a reduction of the burner output.
Im zweiten Fall sei der Kesselwassertemperatur-Istwert Tjcist = 20 Grad und der Kesselwassertemperatur-Sollwert TKSOH - 40 Grad, so dass auch hier die zur Regelung der Brennerleistung üblicherweise herangezogene Differenz zwischen dem Kesselwassertemperatur-Istwert TκiSt und dem Kesselwassertemperatur-Sollwert TκS0n 20 Grad beträgt. Es ist aber klar, dass dieser Fall auftritt, wenn keine sehr kalte Witterung herrscht. Erfindungsgemäß wird nun aber nicht die Differenz von 20 Grad zur Regelung der Brennerleistung benützt, sondern es erfolgt eine Leistungsbegrenzung gemäß dem Diagramm der Figur. Bei einem Kesselwassertemperatur-Sollwert Tκson = 40 Grad wird die Brennerleistung auf 40 % begrenzt. Daraus folgt nun, dass aufgrund der erfindungsgemäßen Leistungsbegrenzung die Laufzeit des Brenners verlängert wird.In the second case, the boiler water temperature actual value Tjci st = 20 degrees and the boiler water temperature setpoint TK SO H - 40 degrees, so that again usually used to control the burner power difference between the boiler water temperature Tκi St and the boiler water temperature setpoint Tκ S0 n 20 degrees. However, it is clear that this case occurs when there is no very cold weather. According to the invention, however, the difference of 20 degrees is now not used to control the burner power, but there is a power limitation according to the diagram of the figure. At a boiler water temperature setpoint Tκ so n = 40 degrees, the burner output is limited to 40%. It follows, therefore, that due to the power limitation of the invention, the duration of the burner is extended.
Die Temperaturdifferenz von 20 Grad wurde zur Verdeutlichung der Wirkung der Erfindung als Beispiel angenommen. In der Praxis kommt es natürlich auf die Schaltdifferenz an, die im Regler wirksam ist. Das können beispielsweise Werte in der Größenordnung von 8 oder 10 Grad sein. Sehr viel höhere Differenzen treten aber regelmäßig auf, beispielsweise beim Übergang von einer im Heizkreis wirkenden Nachtabsenkung auf den Normalbetrieb, bei dem oftmals eine sogenannte Schnellaufheizung vorgenommen, damit erreicht wird, dass die über Nacht aufgetretene Abkühlung von Räumen und Wänden möglichst schnell ausgeglichen wird. Gerade bei einer solchen Schnellaufheizung verhindert die erfindungsgemäße Begrenzung der Brennerleistung ein häufiges Ein- und Ausschalten des Brenners mit all seinen nachteiligen Wirkungen.The temperature difference of 20 degrees was taken as an example to illustrate the effect of the invention. In practice, of course, it depends on the switching difference, which is effective in the controller. These can be values of the order of 8 or 10 degrees, for example. But much higher differences occur regularly, for example, the transition from a working in the heating night reduction to normal operation, often carried out in a so-called rapid heating, thus ensuring that the occurred overnight cooling of rooms and walls is compensated as quickly as possible. Especially with such a rapid heating prevents the inventive limitation of the burner power frequent switching on and off of the burner with all its adverse effects.
Je geringer der effektive Wärmebedarf, desto stärker wirkt sich die Leistungsbegrenzung hinsichtlich Verlängerung der Brennerlaufzeit aus. Somit wird auch die Zahl der Brennerstarts vermindert. Insbesondere beim Verdampferbrennern wirkt sich das auch in der Weise aus, dass der zusätzliche Energiebedarf für den Brennerstart durch Vorlüften des Brennraums und durch elektrische Aufheizung der Verdampferkammer insgesamt deutlich kleiner wird.The lower the effective heat requirement, the more the power limitation affects the longer the burner runtime. Thus, the number of burner starts is reduced. In particular, in the case of evaporator burners, this also has the effect that the additional energy requirement for the burner startup by pre-venting the combustion chamber and by electrical heating of the evaporator chamber is significantly smaller overall.
Die Verbindungslinie zwischen den Punkten A und B im Diagramm muss nicht notwendigerweise eine Gerade sein. Möglich ist auch eine hyperbelartige Linie, die im Diagramm punktiert eingezeichnet ist. Hierdurch kommt es zu einer stärkerenThe connecting line between points A and B in the diagram does not necessarily have to be a straight line. Also possible is a hyperbolic line, which is shown in dotted lines in the diagram. This leads to a stronger one
Leistungsbegrenzung, die insbesondere bei geringerem als dem maximalen Wärmebedarf stark wirkt.Power limitation, which has a strong effect especially at lower than the maximum heat demand.
Der der wahren Brennerleistung entsprechende effektive Modulationsgrad Mat,s in Prozent lässt sich aus dem relativen Modulationsgrad Mrei mit Hilfe der Beziehung QN ZU Qmin wie folgt berechnen:The effective modulation factor M at , s in percent corresponding to the true burner power can be calculated from the relative modulation degree M re i by means of the relationship QN to Q min as follows:
Figure imgf000008_0001
Figure imgf000008_0001
Die Leistungsregelung für den Brenner erfolgt in der bekannten Weise durch einen Verhältnisregler für das Gemisch Brennstoff/Luft. Es wird also die Brennstoffmenge pro Zeiteinheit geregelt und die Luftmenge nachgeführt.The power control for the burner is carried out in the known manner by a ratio controller for the fuel / air mixture. Thus, the amount of fuel per unit time is regulated and the amount of air tracked.
Da üblicherweise der Kesselwassertemperatur-Sollwert TKSOII nur im Heizbetrieb variiert wird, während bei der Ladung des Warmwasserspeichers grundsätzlich derSince usually the boiler water temperature setpoint T KSOII is varied only in heating mode, while when charging the hot water tank basically the
Kesselwassertemperatur-Maximal-Sollwert TκsoiiMax wirksam ist, bedarf es für die Steuerung der Brennerleistung keines Umschalters zwischen Heizbetrieb und Warmwasserspeicherladung. Boiler water temperature maximum setpoint Tκ so ii Max is effective, it does not need to switch between heating and hot water storage to control the burner power.

Claims

Patentansprüche claims
1. Verfahren zur Regelung eines modulierenden Brenners, dessen Leistung zwischen einer Minimalleistung Qm;n und einer Nennleistung QN variierbar ist, wobei die Leistung proportional zur Differenz zwischen einem Kesselwassertemperatur-Istwert TκiSt und einem Kesselwassertemperatur-Sollwert TKSOÜ regelbar ist, dadurch gekennzeichnet, dass eine Leistungsbegrenzung erfolgt, die aus dem Kesselwassertemperatur-Sollwert TκS0n abgeleitet ist.A method of controlling a modulating burner whose power is between a minimum power Q m ; n and a rated power QN is variable, the power proportional to the difference between a boiler water temperature value Tκi St and a boiler water temperature setpoint T KSOÜ is regulated, characterized in that a power limitation takes place, which is derived from the boiler water temperature setpoint Tκ S0 n ,
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass eine maximal regelbare Leistung des Brenners durch einen maximal zulässigen relativen Modulationsgrad Mrei bestimmt wird, der aus dem Kesselwassertemperatur-Sollwert TKSOII abgeleitet ist.2. The method according to claim 1, characterized in that a maximum controllable power of the burner is determined by a maximum permissible relative modulation degree M re i, which is derived from the boiler water temperature setpoint T KSOI I.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der relative Modulationsgrad Mrei mit abnehmendem Kesselwassertemperatur-Sollwert TκSoii sinkt.3. The method according to claim 2, characterized in that the relative modulation degree M re i decreases with decreasing boiler water temperature setpoint Tκ So ii.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass dem Kesselwassertemperatur-Sollwert TKSOII = 20 Grad eine Minimalleistung Qmin und dem Kesselwassertemperatur-Maximal-Sollwert TκsoiiMax eine Nennleistung QN zugeordnet sind und dass zwischen diesen beiden Grenzen eine lineare Beziehung besteht.4. The method according to claim 3, characterized in that the boiler water temperature setpoint T KSO II = 20 degrees a minimum power Q m i n and the boiler water temperature maximum setpoint TκsoiiMax a rated power Q N are assigned and that between these two limits a linear relationship consists.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass der relative Modulationsgrad Mrei berechnet wird nach der Formel5. The method according to claim 4, characterized in that the relative modulation degree M re i is calculated according to the formula
T 1 Ksoll —— 17 R"sollT 1 Ksoll - 17 R "soll
M ι rnel, = - -xlOO,M ι n el, = - -xlOO,
- T1 KSoII max —T x Rsoll in der TRSOH der Sollwert der Raumtemperatur ist. - T 1 KSoII max -T x Rsoll in which T RSOH is the setpoint of the room temperature.
PCT/CH2007/000363 2006-08-02 2007-07-24 Method for the regulation of a burner WO2008014626A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07785062.6A EP2049839B1 (en) 2006-08-02 2007-07-24 Method for the regulation of a burner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH12412006 2006-08-02
CH1241/06 2006-08-02

Publications (1)

Publication Number Publication Date
WO2008014626A1 true WO2008014626A1 (en) 2008-02-07

Family

ID=37569642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2007/000363 WO2008014626A1 (en) 2006-08-02 2007-07-24 Method for the regulation of a burner

Country Status (2)

Country Link
EP (1) EP2049839B1 (en)
WO (1) WO2008014626A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3004799A1 (en) * 2013-04-23 2014-10-24 Guillot Ind Sa METHOD FOR PROTECTING A CONDENSER AGAINST OVERHEATING

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284221A (en) * 1985-10-08 1987-04-17 Sanyo Electric Co Ltd Combustion control device
JPS63148050A (en) * 1986-12-11 1988-06-20 Hanshin Electric Co Ltd Combustion control method for water heater
EP0781965A1 (en) * 1995-12-01 1997-07-02 Gaz De France Domestic hot water producing system with a gas heater and method for controlling the temperature of the domestic hot water in such a system
DE102004026236A1 (en) * 2003-08-10 2005-12-15 Reinhard Wilzeck Regulator for heating system, uses burning time and stopping time of heating system for generation of control value to regulate internal temperature of system, and determines correlation between time and burner temperature

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6080019A (en) * 1983-10-07 1985-05-07 Omron Tateisi Electronics Co Burning control device of water heater
JPH07111268B2 (en) * 1987-12-09 1995-11-29 松下電器産業株式会社 Water heater controller
JP2601110B2 (en) * 1992-09-28 1997-04-16 三浦工業株式会社 Boiler three-position combustion control method
DE19841256C2 (en) * 1998-09-09 2000-10-26 Viessmann Werke Kg Method and device for heating or cooling a fluid in a heat exchanger or cold exchanger and control therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284221A (en) * 1985-10-08 1987-04-17 Sanyo Electric Co Ltd Combustion control device
JPS63148050A (en) * 1986-12-11 1988-06-20 Hanshin Electric Co Ltd Combustion control method for water heater
EP0781965A1 (en) * 1995-12-01 1997-07-02 Gaz De France Domestic hot water producing system with a gas heater and method for controlling the temperature of the domestic hot water in such a system
DE102004026236A1 (en) * 2003-08-10 2005-12-15 Reinhard Wilzeck Regulator for heating system, uses burning time and stopping time of heating system for generation of control value to regulate internal temperature of system, and determines correlation between time and burner temperature

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3004799A1 (en) * 2013-04-23 2014-10-24 Guillot Ind Sa METHOD FOR PROTECTING A CONDENSER AGAINST OVERHEATING
EP2796807A1 (en) * 2013-04-23 2014-10-29 Guillot Industrie Method for protecting a capacitor against overheating

Also Published As

Publication number Publication date
EP2049839B1 (en) 2018-06-13
EP2049839A1 (en) 2009-04-22

Similar Documents

Publication Publication Date Title
DE19916907C2 (en) Absorption heat pump and method for operating an absorption heat pump
DE102010053211B4 (en) Method for operating and adjusting the heat curve of a heating system
DE102011001223A1 (en) Operating method of heating system used in e.g. homes, involves modulating heat generator, heating circuit pump and bypass valve of heating system, depending on the flow, return and outside temperatures and flow rate of water
EP2526353A2 (en) Method for controlling and regulating heat pumps and cooling systems
EP2049839B1 (en) Method for the regulation of a burner
DE3517902C2 (en)
WO2020165037A1 (en) Method for controlling a circulation pump
EP0563752B1 (en) Method of optimizing the running times of a burner and the number of burner-starts per unit of time in a heating installation
EP0192225A2 (en) Method and apparatus for space temperature regulation
EP0033756A1 (en) Method and device for regulating a heating plant with an installation for obtaining heat from an absorber
DE2524302C2 (en) Method and system for controlling or regulating a heating system
EP2052187B1 (en) Method for controlling a burner
DE3207243A1 (en) Method for regulating a sorption heat pump
DE102005036706C5 (en) Method for setting the hot water setpoint temperature for a heater
DE102010054147A1 (en) Method for operating a heating system
DE3140003A1 (en) Process for operating a heating installation
EP3467316B1 (en) Method for starting a circulation pump and related circulation pump
DE102018200652A1 (en) Method for controlling a circulating pump and circulating pump
EP0384959B1 (en) Regulator for a non-modulating burner
EP0073796A1 (en) Method of controlling a sorption heat pump.
DE102011014907B4 (en) Method for controlling a solar circuit
DE102005005760A1 (en) Method for regulation of heating system, involves use of burning duration, pause duration and efficiency consisting of burning duration and pause duration for generation of guide value for regulation
DE9405531U1 (en) Control device for hot water central heating systems
EP1934666A1 (en) Method for controlling and/or regulating room temperature in a building
DE3702080A1 (en) Method for controlling the switching of a heat consumer between a heat source heated with fuel or electricity and a heat pump, and device for implementing the method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07785062

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007785062

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU