EP0779672A1 - Filtre pseudo-elliptique dans le domaine millimétrique réalisé en technologie guide d'ondes - Google Patents

Filtre pseudo-elliptique dans le domaine millimétrique réalisé en technologie guide d'ondes Download PDF

Info

Publication number
EP0779672A1
EP0779672A1 EP96402571A EP96402571A EP0779672A1 EP 0779672 A1 EP0779672 A1 EP 0779672A1 EP 96402571 A EP96402571 A EP 96402571A EP 96402571 A EP96402571 A EP 96402571A EP 0779672 A1 EP0779672 A1 EP 0779672A1
Authority
EP
European Patent Office
Prior art keywords
cavities
waveguide
retro
coupling
pseudo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96402571A
Other languages
German (de)
English (en)
Inventor
Jean-Denis Schubert
Jean-Claude Cruchon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel Telspace SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Telspace SA filed Critical Alcatel Telspace SA
Publication of EP0779672A1 publication Critical patent/EP0779672A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49016Antenna or wave energy "plumbing" making

Definitions

  • the field of the invention is that of microwave filters and relates more precisely to a pseudo-elliptical filter in the millimeter range produced in waveguide technology.
  • a pseudo-elliptical filter in waveguide technology comprises a certain number of resonant cavities coupled together, for example by irises, and there are a certain number of retro-couplings between certain cavities.
  • microstrip lines It is known that back-couplings can be carried out in the form of microstrip lines.
  • This solution is however not optimal when the filter is carried out in waveguide technology (ie using resonant cavities) because the technologies are not the same. It is therefore necessary to add microstrip lines, provide for impedance adaptations, etc. There follows an increase in terms of cost and size.
  • U.S. Patent No. 4,772,863 to Rosenberg et al. describes a pseudo-elliptical filter produced in waveguide technology and also comprising retro-couplings.
  • One of these filters comprising six cavities, is represented in FIG. 1.
  • the cavities are referenced 10 to 15, the positive couplings 16 to 20 and the retro-couplings 21 to 24.
  • the signal input is denoted E and the output signal is denoted S.
  • a particular arrangement of the cavities 10 to 15 makes it possible to carry out the retro-couplings 21 to 24 by simple irises between the cavities 10 and 13, 11 and 13, 13 and 15 and finally 10 and 15.
  • the disadvantage of this solution is that the signal inputs and outputs in each cavity are not located 90 ° from each other (the angle between a signal input and a signal output is here 120 ° ) and it follows that certain parasitic propagation modes are not suppressed. For example, when such a filter carries a main mode H 011 , the parasitic mode E 111 - which is the most annoying because it is at the same frequency as the mode H 011 - is not deleted in the signal filter output S.
  • the present invention aims in particular to remedy these drawbacks.
  • one of the objectives of the invention is to provide a pseudo-elliptical filter in the millimeter range produced in waveguide technology where the signal inputs and outputs of each cavity are at 90 ° from each other and where the retro-couplings between cavities are carried out without using any other technology, so as to reduce the cost and the bulk and facilitate its realization.
  • Another object of the invention is to provide such a filter where the retro-couplings are not dictated by a particular arrangement of the cavities.
  • a pseudo-elliptical filter comprising resonant cavities positively coupled together, the signal input and output of each cavity being at 90 ° one on the other, this filter comprising at least one signal retro-coupling between two of the cavities, this retro-coupling being produced in the form of a waveguide.
  • this waveguide are optimized so that a true retro-coupling exists between the cavities which it connects, that is to say that at the interfaces between the cavities and the waveguide field lines are parallel and in opposite directions.
  • the waveguide can have iris accesses and, in this case, the back-coupling is carried out on a magnetic field.
  • the waveguide can also have accesses by pins and, in this case, the back-coupling is carried out on an electric field.
  • Figure 2 is a perspective view of a half-shell of a pseudo-elliptical filter according to the present invention, the other half-shell being symmetrical to that shown.
  • the various retro-couplings between cavities of a pseudo-elliptical filter are carried out using waveguides of adequate dimensions, so that, if we consider a retro-coupling between two cavities , the electric or magnetic field conveyed from one of the cavities to the other of the cavities, by means of this waveguide, ideally presents a phase opposition with respect to the same field present in this other cavity.
  • each waveguide has accesses by iris, that is to say that it communicates with the cavities 30 and 33 (32 and 35) by irises 41 and 42 (43 and 44 respectively), the retro-couplings being carried out on magnetic fields. These magnetic fields are represented in some of the cavities, the resonance mode here being the H 011 mode.
  • the waveguides are not resonant and only convey the components of the signals presented at their accesses.
  • the phase ⁇ of the magnetic field coming from the cavity 30 and conveyed in guide 47 is a multiple of k. ⁇ , with odd k.
  • the magnetic field lines are then in opposite directions.
  • the waveguide 48 connecting the cavities 32 and 35 the lengths and sections of the waveguides 47 and 48 are such that the magnetic field coming from a cavity rotates by 540 ° in the waveguide between irises 41 and 42 (43 and 44 respectively).
  • the invention described so far is applied to a retro-coupling on magnetic fields but it is also possible to carry out the retro-couplings on electric fields.
  • a pinule (antenna) is provided at the end of each waveguide to couple on the electric field (case of H 10 mode for example).
  • two waveguides advantageously connect the cavities 30 and 33 and 32 and 35 respectively.
  • a similar result can be obtained by retro-coupling the cavities 31 and 34 by a waveguide of greater length.
  • retro-couplings will be made between cavities 30 and 33, 32 and 35, 34 and 37.
  • the invention is particularly applicable to pseudo-elliptical filters operating in the millimeter band (frequencies between 20 GHz and 100 GHz), but can be used beyond.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

L'invention concerne un filtre pseudo-elliptique comprenant des cavités résonantes (30 à 35) couplés entre eux positivement (36 à 40), l'entrée et la sortie de signal de chaque cavité (30 à 35) étant à 90° l'une de l'autre. Le filtre comprend au moins un rétro-couplage de signal entre deux de ces cavités (30, 33; 32, 35), réalisé sous forme d'un guide d'ondes (47; 48). L'invention s'applique aux filtres pseudo-elliptiques fonctionnant dans la bande millimétrique. <IMAGE>

Description

  • Le domaine de l'invention est celui des filtres hyperfréquences et concerne plus précisément un filtre pseudo-elliptique dans le domaine millimétrique réalisé en technologie guide d'ondes.
  • Les filtres pseudo-elliptiques présentent de nombreux avantages par rapport aux filtres passe-bande classiques : ils sont plus simples à régler, présentent des pertes réduites et leur nombre de pôles est plus faible. Un filtre pseudo-elliptique en technologie guide d'ondes comporte un certain nombre de cavités résonantes couplées entre elles, par exemple par des iris, et il existe un certain nombre de rétro-couplages entre certaines cavités. L'article intitulé "New types of waveguide bandpass filters for satellite transponders" de A.E. Atia et A.E. Williams, Comsat Technical Review, vol.1, n°1, 1971, décrit de tels filtres pseudo-elliptiques.
  • On distinguera dans la suite de cette description les couplages consécutifs (positifs) qui assurent une simple transmission du signal hyperfréquence entre deux cavités voisines (les lignes de champ sont parallèles au niveau du couplage positif et de mêmes sens dans les deux cavités) et les rétro-couplages (non consécutifs) où les lignes de champ, également parallèles, sont de sens opposés.
  • Il est connu que les rétro-couplages peuvent être réalisés sous la forme de lignes micro-ruban. On peut par exemple se référer à l'article intitulé "Miniature dual mode microstrip filters" de J.A. Curtis et S.J. Fiedziusko, pages 443-446 de MTT-S Digest, IEEE, 1991. Cette solution n'est cependant pas optimale lorsque le filtre est réalisé en technologie guide d'ondes (c'est à dire à l'aide de cavités résonantes) car les technologies ne sont pas les mêmes. Il faut donc ajouter des lignes micro-ruban, prévoir des adaptations d'impédance, etc. Il s'en suit une augmentation en terme de coût et d'encombrement.
  • Le brevet américain n°4.772.863 de Rosenberg et al. décrit un filtre pseudo-elliptique réalisé en technologie guide d'ondes et comportant également des rétro-couplages. Un de ces filtres, comportant six cavités, est représenté à la figure 1. Les cavités sont référencées 10 à 15, les couplages positifs 16 à 20 et les rétro-couplages 21 à 24. L'entrée de signal est notée E et la sortie de signal est notée S. Un agencement particulier des cavités 10 à 15 permet de réaliser les rétro-couplages 21 à 24 par de simples iris entre les cavités 10 et 13, 11 et 13, 13 et 15 et enfin 10 et 15.
  • L'inconvénient de cette solution est que les entrées et sorties de signal dans chaque cavité ne sont pas situées à 90° l'une de l'autre (l'angle entre une entrée de signal et une sortie de signal est ici de 120°) et il en résulte que certains modes de propagation parasites ne sont pas supprimés. A titre d'exemple, lorsqu'un tel filtre véhicule un mode principal H011, le mode parasite E111 - qui est le plus gênant car il est à la même fréquence que le mode H011 - n'est pas supprimé dans le signal de sortie S du filtre.
  • De plus, les positions relatives des différentes cavités sont dictées par les caractéristiques du filtre que l'on désire obtenir. Il est donc nécessaire de revoir la disposition des cavités pour tout nouveau type de filtre.
  • Enfin, il n'est pas possible de réaliser n'importe quel type de rétro-couplage (à titre d'exemple, il n'est pas possible de rétro-coupler les cavités 12 et 15).
  • La présente invention a notamment pour objectif de remédier à ces inconvénients.
  • Plus précisément, un des objectifs de l'invention est de fournir un filtre pseudo-elliptique dans le domaine millimétrique réalisé en technologie guide d'ondes où les entrées et sortie de signal de chaque cavité sont à 90° l'une de l'autre et où les rétro-couplages entre cavités sont réalisés sans faire appel à une autre technologie, de manière à diminuer le coût et l'encombrement et faciliter sa réalisation.
  • Un autre objectif de l'invention est de fournir un tel filtre où les rétro-couplages ne sont pas dictés par une disposition particulière des cavités.
  • Ces objectifs, ainsi que d'autres qui apparaîtront par la suite, sont atteints grâce à un filtre pseudo-elliptique comprenant des cavités résonantes couplées entre elles positivement, l'entrée et la sortie de signal de chaque cavité étant à 90° l'une de l'autre, ce filtre comprenant au moins un rétro-couplage de signal entre deux des cavités, ce rétro-couplage étant réalisé sous la forme d'un guide d'ondes.
  • La longueur et la section de ce guide d'ondes sont optimisées de sorte qu'un véritable rétro-couplage existe entre les cavités qu'il relie, c'est à dire qu'aux interfaces entre les cavités et le guide d'ondes les lignes de champ soient parallèles et de sens opposés.
  • Le guide d'ondes peut présenter des accès par iris et, dans ce cas, le rétro-couplage s'effectue sur un champ magnétique.
  • Le guide d'ondes peut également présenter des accès par pinules et, dans ce cas, le rétro-couplage s'effectue sur un champ électrique.
  • D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante d'un mode de réalisation préférentiel, donné à titre illustratif et non limitatif, et des dessins annexés dans lesquels :
    • la figure 1 représente un filtre pseudo-elliptique connu ;
    • la figure 2 est une vue en perspective d'une demi-coquille d'un filtre pseudo-elliptique selon la présente invention.
  • La figure 1 a été décrite précédemment en référence à l'état de la technique.
  • La figure 2 est une vue en perspective d'une demi-coquille d'un filtre pseudo-elliptique selon la présente invention, l'autre demi-coquille étant symétrique de celle représentée.
  • Selon l'invention, les différents rétro-couplages entre cavités d'un filtre pseudo-elliptique sont réalisés à l'aide de guide d'ondes de dimensions adéquates, de sorte que, si l'on considère un rétro-couplage entre deux cavités, le champ électrique ou magnétique véhiculé d'une des cavités vers l'autre des cavités, par l'intermédiaire de ce guide d'ondes, présente idéalement une opposition de phase par rapport au même champ présent dans cette autre cavité.
  • A titre d'exemple, en référence à la figure 2, pour un filtre comportant six cavités 30 à 35 couplées positivement par des iris 36 à 40, l'entrée de signal étant notée E et la sortie de signal étant notée S, on réalise deux rétro-couplages entre les cavités 30 et 33 d'une part et 32 et 35 d'autre part par l'intermédiaire de guide d'ondes 47 et 48 respectivement. Dans le sens de circulation du signal, le guide d'ondes 47 relie les cavités 30 et 33 et le guide d'ondes 48 relie les cavités 32 et 35. Dans le mode de réalisation représenté, chaque guide d'ondes présente des accès par iris, c'est à dire qu'il communique avec les cavités 30 et 33 (32 et 35) par des iris 41 et 42 (43 et 44 respectivement), les rétro-couplages s'effectuant sur des champs magnétiques. Ces champs magnétiques sont représentés dans quelques unes des cavités, le mode de résonance étant ici le mode H011. Les guides d'ondes ne sont pas résonants et ne font que véhiculer les composantes des signaux présentées à leurs accès.
  • En se référant plus précisément au guide d'ondes référencé 47 en regard duquel est représentée la caractéristique de la phase φ du champ magnétique en fonction de la longueur du guide 47 (la phase φ évolue linéairement dans le guide d'ondes 47), il apparaît qu'à certaines distances de l'iris 41, la phase φ du champ magnétique issu de la cavité 30 et véhiculé dans le guide 47 est multiple de k.π, avec k impair. Cela signifie que l'on peut définir des zones, référencées 45 et 46, pour lesquelles le champ magnétique véhiculé dans le guide d'ondes 47 et provenant de la cavité 30 est sensiblement en opposition de phase par rapport au champ magnétique de la cavité à proximité de l'iris 42. Les lignes de champ magnétique sont alors de sens opposés. La même remarque s'applique au guide d'ondes 48 reliant les cavités 32 et 35. Ici, les longueurs et sections des guides d'ondes 47 et 48 sont telles que le champ magnétique issu d'une cavité tourne de 540° dans le guide d'ondes entre les iris 41 et 42 (43 et 44 respectivement).
  • On réalise ainsi des rétro-couplages en technologie guide d'ondes, un rétro-couplage optimal étant réalisé lorsque le champ magnétique issu d'un guide d'ondes est en opposition de phase par rapport à celui proche de la paroi d'une cavité dans laquelle débouche ce guide d'ondes.
  • La section (a) du guide d'ondes, c'est à dire la profondeur de l'usinage réalisé dans la demi-coquille représentée, joue sur la pente de la caractéristique de la figure 2. Cette pente est limitée par la fréquence de coupure du guide d'ondes λc = 2a et par le mode double λc = a. En fonction de la distance séparant deux cavités et plus précisément en fonction de la distance entre deux accès de cavités à rétro-coupler, on détermine la section du guide d'ondes afin de disposer d'une opposition de phase entre les signaux de ces cavités au niveau de ces accès de rétro-couplage.
  • L'invention décrite jusqu'ici est appliquée à un rétro-couplage sur des champs magnétiques mais il est également possible de réaliser les rétro-couplages sur des champs électriques. Dans ce cas, une pinule (antenne) est prévue à l'extrémité de chaque guide d'ondes pour se coupler sur le champ électrique (cas du mode H10 par exemple).
  • Comme indiqué précédemment, dans le cas d'un filtre à six cavités résonantes, dans le sens de circulation du signal, deux guides d'ondes relient avantageusement les cavités 30 et 33 et 32 et 35 respectivement. Un résultat similaire peut être obtenu en rétro-couplant les cavités 31 et 34 par un guide d'ondes de longueur plus importante. Dans le cas d'un filtre à huit cavités, on réalisera des rétro-couplages entre les cavités 30 et 33, 32 et 35, 34 et 37. On peut se référer à l'article intitulé "Synthesis of Microwave Bandpass Filters with Zolotarev Characteristics" de A.S. Belov et Yu.S. Ukraintsev, paru dans la revue JTT Telecommunications & Radio Eng. Part 1, SO Vol.36, n°3, mars 1982, pp.44-49, qui décrit d'autres possibilités de rétro-couplages.
  • D'autres configurations de rétro-couplages sont bien entendu possibles, comme par exemple celles présentées dans le document US-4.772.863 précité.
  • On notera que les entrées et sorties de signal de chaque cavité sont à 90° l'une de l'autre et, dans ce cas, le mode parasite le plus gênant (E111) est supprimé. Une réalisation d'un filtre pour le mode de résonance H011 présente l'avantage de présenter un coefficient de surtension important.
  • L'invention s'applique particulièrement aux filtres pseudo-elliptiques fonctionnant dans la bande millimétrique (fréquences comprises entre 20 GHz et 100 GHz), mais peut être utilisée au-delà.

Claims (4)

  1. Filtre pseudo-elliptique comprenant des cavités résonantes (30 à 35) couplées entre elles positivement (36 à 40), l'entrée et la sortie de signal de chaque cavité (30 à 35) étant à 90° l'une de l'autre, ledit filtre comprenant au moins un rétro-couplage de signal entre deux desdites cavités (30, 33; 32, 35), caractérisé en ce que ledit rétro-couplage est constitué par un guide d'ondes (47; 48).
  2. Filtre selon la revendication 1, caractérisé en ce que ledit guide d'ondes (47; 48) présente des accès par iris (41, 42; 43, 44) et en ce que ledit rétro-couplage s'effectue sur un champ magnétique.
  3. Filtre selon la revendication 1, caractérisé en ce que ledit guide d'ondes (47; 48) présente des accès par pinules et en ce que ledit rétro-couplage s'effectue sur un champ électrique.
  4. Filtre selon l'une des revendications 1 à 3, caractérisé en ce qu'il comporte six cavités (30 à 35) et en ce que deux guides d'ondes (47; 48) relient les cavités 30 et 33 et 32 et 35 respectivement pour réaliser lesdits rétro-couplages.
EP96402571A 1995-12-12 1996-11-28 Filtre pseudo-elliptique dans le domaine millimétrique réalisé en technologie guide d'ondes Withdrawn EP0779672A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9514703 1995-12-12
FR9514703A FR2742262B1 (fr) 1995-12-12 1995-12-12 Filtre pseudo-elliptique dans le domaine millimetrique realise en technologie guide d'ondes

Publications (1)

Publication Number Publication Date
EP0779672A1 true EP0779672A1 (fr) 1997-06-18

Family

ID=9485405

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96402571A Withdrawn EP0779672A1 (fr) 1995-12-12 1996-11-28 Filtre pseudo-elliptique dans le domaine millimétrique réalisé en technologie guide d'ondes

Country Status (4)

Country Link
US (1) US5801606A (fr)
EP (1) EP0779672A1 (fr)
CA (1) CA2192706A1 (fr)
FR (1) FR2742262B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1187248A2 (fr) * 2000-08-29 2002-03-13 Com Dev Ltd. Filtre hyperfréquence à couplage latéral avec des iris espacés circonférentiellement

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69834370T2 (de) * 1997-08-28 2007-03-15 The Boeing Co., Chicago Kupplungsmechanismus für TE011- und TE01delta- Mode-Resonatoren
DE10208666A1 (de) * 2002-02-28 2003-09-04 Marconi Comm Gmbh Bandpassfilter mit parallelen Signalwegen
US6657521B2 (en) 2002-04-26 2003-12-02 The Boeing Company Microwave waveguide filter having rectangular cavities, and method for its fabrication
CN111029690B (zh) * 2019-12-05 2021-09-14 中国联合网络通信集团有限公司 一种滤波器
CN113036365A (zh) * 2019-12-25 2021-06-25 深圳市大富科技股份有限公司 通信设备及其滤波器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2749523A (en) * 1951-12-01 1956-06-05 Itt Band pass filters
JPS52100955A (en) * 1976-02-20 1977-08-24 Nec Corp Microwave band-pass filter
US4360793A (en) * 1981-04-02 1982-11-23 Rhodes John D Extracted pole filter
EP0075498A1 (fr) * 1981-09-04 1983-03-30 Thomson-Csf Filtre à cavités, présentant un couplage entre cavités non adjacentes
JPS58187001A (ja) * 1982-04-27 1983-11-01 Nec Corp 帯域通過「ろ」波器
US4772863A (en) 1986-06-25 1988-09-20 Ant Nachrichtentechnik Gmbh Microwave filter equipped with multiply coupled cavity resonators

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2657649C2 (de) * 1976-12-20 1982-04-29 Siemens AG, 1000 Berlin und 8000 München Filter für sehr kurze elektromagnetische Wellen
US5608363A (en) * 1994-04-01 1997-03-04 Com Dev Ltd. Folded single mode dielectric resonator filter with cross couplings between non-sequential adjacent resonators and cross diagonal couplings between non-sequential contiguous resonators

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2749523A (en) * 1951-12-01 1956-06-05 Itt Band pass filters
JPS52100955A (en) * 1976-02-20 1977-08-24 Nec Corp Microwave band-pass filter
US4360793A (en) * 1981-04-02 1982-11-23 Rhodes John D Extracted pole filter
EP0075498A1 (fr) * 1981-09-04 1983-03-30 Thomson-Csf Filtre à cavités, présentant un couplage entre cavités non adjacentes
JPS58187001A (ja) * 1982-04-27 1983-11-01 Nec Corp 帯域通過「ろ」波器
US4772863A (en) 1986-06-25 1988-09-20 Ant Nachrichtentechnik Gmbh Microwave filter equipped with multiply coupled cavity resonators

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A.E. ATIA, A.E. WILLIAMS: "New types of waveguide bandpass filters for satellite transponders", COMSAT TECHNICAL REVIEW, vol. 1, no. 1, 1971
A.S. BELOV, YU.S. UKRAINTSEV: "Synthesis of Microwave Bandpass Filters with Zolotarev Characteristics", JTT TELECOMMUNICATIONS & RADIO ENG. PART 1, vol. 36, no. 3, March 1982 (1982-03-01), pages 44 - 49
J.A. CURTIS, S.J. FIEDZIUSKO: "Miniature dual mode microstrip filters", MTT-S DIGEST, IEEE, 1991, pages 443 - 446
PATENT ABSTRACTS OF JAPAN vol. 1, no. 156 (E - 074)<8545> 13 December 1977 (1977-12-13) *
PATENT ABSTRACTS OF JAPAN vol. 8, no. 25 (E - 225)<1462> 2 February 1984 (1984-02-02) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1187248A2 (fr) * 2000-08-29 2002-03-13 Com Dev Ltd. Filtre hyperfréquence à couplage latéral avec des iris espacés circonférentiellement
EP1187248A3 (fr) * 2000-08-29 2003-07-02 Com Dev Ltd. Filtre hyperfréquence à couplage latéral avec des iris espacés circonférentiellement

Also Published As

Publication number Publication date
US5801606A (en) 1998-09-01
CA2192706A1 (fr) 1997-06-13
FR2742262B1 (fr) 1998-01-09
FR2742262A1 (fr) 1997-06-13

Similar Documents

Publication Publication Date Title
EP0013222B1 (fr) Déphaseur hyperfréquence à diodes et antenne à balayage électronique comportant un tel déphaseur
EP2184801B1 (fr) Dispositif de filtrage différentiel à résonateurs couplés coplanaires et antenne filtrante munie d&#39;un tel dispositif
EP2184803B1 (fr) Ligne à retard bi-ruban différentielle coplanaire, filtre différentiel d&#39;ordre supérieur et antenne filtrante munis d&#39;une telle ligne
EP2345104A1 (fr) Systeme d&#39;antenne dipole differentielle a structure rayonnante coplanaire et dispositif d&#39;emission/reception
FR3022696A1 (fr) Connecteur pour guide d&#39;ondes plastique
EP0834954A1 (fr) Transition entre un guide d&#39;ondes à crête et un circuit planaire
EP0779672A1 (fr) Filtre pseudo-elliptique dans le domaine millimétrique réalisé en technologie guide d&#39;ondes
EP0021872B1 (fr) Tête hyperfréquence d&#39;émission et de réception simultanées, émetteur-récepteur en ondes millimétriques et radar utilisant une telle tête
US5500763A (en) Transmitter-receiver and optical amplifier for optical communication
EP0015610A1 (fr) Filtre de réflexion de fréquence image en hyperfréquence et récepteur hyperfréquence comprenant un tel filtre
EP1024546A1 (fr) Module de circuit hyperfréquence et son dispositif de connexion à un autre module
EP1067672B1 (fr) Oscillateur hyperfréquence à résonateur diélectrique
FR2871951A1 (fr) Dispositif de transition rntre un guide d&#39;ondes et deux circuits redondants chacun couple a une ligne coplanaire
EP0223673A1 (fr) Dispositif de couplage entre une ligne à ondes de surface électromagnétiques et une ligne microbande extérieure
FR2849718A1 (fr) Filtre passe-bande hyperfrequence en guide d&#39;ondes plan e, a reponse pseudo-elliptique
EP0202152A1 (fr) Oscillateur hyperfréquences fonctionnant en bande millimétrique
EP0128798B1 (fr) Dispositif sélectif accordable à ondes magnétostatiques de volume
CA2031076A1 (fr) Filtre eliminateur de bande pour guide d&#39;ondes hyperfrequences
WO2003102654A1 (fr) Composant de firtrage optique
US20070096844A1 (en) Waveguide for use in dual polarisation probe system
EP1152483A1 (fr) Elément rayonnant hyperfréquence bi-bande
EP0192186B1 (fr) Duplexeur de polarisations
FR2737611A1 (fr) Dispositif de couplage magnetique entre un conducteur principal d&#39;une ligne tem et un guide d&#39;ondes formant resonateur en lambdag/2
EP0935821B1 (fr) Guide d&#39;ondes ameliore pour systeme de sonde de polarisation double
FR2852739A1 (fr) Separateur de polarisations et de bandes de frequences en guide d&#39;onde

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT

17P Request for examination filed

Effective date: 19971022

17Q First examination report despatched

Effective date: 20000731

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL CIT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL SPACE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL SPACE INDUSTRIES

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030415