EP0778084B1 - Absorbent, process for producing the same, and method of treating fruit juice - Google Patents
Absorbent, process for producing the same, and method of treating fruit juice Download PDFInfo
- Publication number
- EP0778084B1 EP0778084B1 EP96117298A EP96117298A EP0778084B1 EP 0778084 B1 EP0778084 B1 EP 0778084B1 EP 96117298 A EP96117298 A EP 96117298A EP 96117298 A EP96117298 A EP 96117298A EP 0778084 B1 EP0778084 B1 EP 0778084B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- adsorbent
- per
- fruit juice
- surface area
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 32
- 235000015203 fruit juice Nutrition 0.000 title claims description 26
- 230000002745 absorbent Effects 0.000 title 1
- 239000002250 absorbent Substances 0.000 title 1
- 239000003463 adsorbent Substances 0.000 claims description 126
- 239000000178 monomer Substances 0.000 claims description 36
- 239000011148 porous material Substances 0.000 claims description 36
- 150000001875 compounds Chemical class 0.000 claims description 31
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 claims description 28
- 229920002554 vinyl polymer Polymers 0.000 claims description 25
- 239000000203 mixture Substances 0.000 claims description 15
- 239000000126 substance Substances 0.000 claims description 15
- 239000011324 bead Substances 0.000 claims description 13
- 229920006037 cross link polymer Polymers 0.000 claims description 12
- 235000011389 fruit/vegetable juice Nutrition 0.000 claims description 8
- 230000000379 polymerizing effect Effects 0.000 claims description 8
- MPMBRWOOISTHJV-UHFFFAOYSA-N but-1-enylbenzene Chemical compound CCC=CC1=CC=CC=C1 MPMBRWOOISTHJV-UHFFFAOYSA-N 0.000 claims description 7
- 235000020971 citrus fruits Nutrition 0.000 claims description 7
- 230000002209 hydrophobic effect Effects 0.000 claims description 5
- 239000011968 lewis acid catalyst Substances 0.000 claims description 5
- 239000000725 suspension Substances 0.000 claims description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 18
- 229920000642 polymer Polymers 0.000 description 10
- 239000001606 7-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxy-5-hydroxy-2-(4-hydroxyphenyl)chroman-4-one Substances 0.000 description 9
- DFPMSGMNTNDNHN-ZPHOTFPESA-N naringin Chemical compound O[C@@H]1[C@H](O)[C@@H](O)[C@H](C)O[C@H]1O[C@H]1[C@H](OC=2C=C3O[C@@H](CC(=O)C3=C(O)C=2)C=2C=CC(O)=CC=2)O[C@H](CO)[C@@H](O)[C@@H]1O DFPMSGMNTNDNHN-ZPHOTFPESA-N 0.000 description 9
- 229930019673 naringin Natural products 0.000 description 9
- 229940052490 naringin Drugs 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 239000011347 resin Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 235000019658 bitter taste Nutrition 0.000 description 6
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 5
- 125000003118 aryl group Chemical group 0.000 description 5
- 235000019400 benzoyl peroxide Nutrition 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- -1 flavonoid compound Chemical class 0.000 description 5
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000003505 polymerization initiator Substances 0.000 description 3
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 2
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- VHLJDTBGULNCGF-UHFFFAOYSA-N Limonin Natural products CC1(C)OC2CC(=O)OCC23C4CCC5(C)C(CC(=O)C6OC56C4(C)C(=O)CC13)c7cocc7 VHLJDTBGULNCGF-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 150000008282 halocarbons Chemical class 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 239000003456 ion exchange resin Substances 0.000 description 2
- 229920003303 ion-exchange polymer Polymers 0.000 description 2
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 2
- KBDSLGBFQAGHBE-MSGMIQHVSA-N limonin Chemical compound C=1([C@H]2[C@]3(C)CC[C@H]4[C@@]([C@@]53O[C@@H]5C(=O)O2)(C)C(=O)C[C@@H]2[C@]34COC(=O)C[C@@H]3OC2(C)C)C=COC=1 KBDSLGBFQAGHBE-MSGMIQHVSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- WVAFEFUPWRPQSY-UHFFFAOYSA-N 1,2,3-tris(ethenyl)benzene Chemical compound C=CC1=CC=CC(C=C)=C1C=C WVAFEFUPWRPQSY-UHFFFAOYSA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- QLLUAUADIMPKIH-UHFFFAOYSA-N 1,2-bis(ethenyl)naphthalene Chemical compound C1=CC=CC2=C(C=C)C(C=C)=CC=C21 QLLUAUADIMPKIH-UHFFFAOYSA-N 0.000 description 1
- KNKRKFALVUDBJE-UHFFFAOYSA-N 1,2-dichloropropane Chemical compound CC(Cl)CCl KNKRKFALVUDBJE-UHFFFAOYSA-N 0.000 description 1
- SLBOQBILGNEPEB-UHFFFAOYSA-N 1-chloroprop-2-enylbenzene Chemical compound C=CC(Cl)C1=CC=CC=C1 SLBOQBILGNEPEB-UHFFFAOYSA-N 0.000 description 1
- 101100313763 Arabidopsis thaliana TIM22-2 gene Proteins 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- 244000248349 Citrus limon Species 0.000 description 1
- 235000005979 Citrus limon Nutrition 0.000 description 1
- 240000004307 Citrus medica Species 0.000 description 1
- 241001672694 Citrus reticulata Species 0.000 description 1
- 240000000560 Citrus x paradisi Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- YIVJZNGAASQVEM-UHFFFAOYSA-N Lauroyl peroxide Chemical compound CCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCC YIVJZNGAASQVEM-UHFFFAOYSA-N 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000002535 acidifier Substances 0.000 description 1
- 229940095602 acidifiers Drugs 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 238000010420 art technique Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- ZPUCINDJVBIVPJ-LJISPDSOSA-N cocaine Chemical compound O([C@H]1C[C@@H]2CC[C@@H](N2C)[C@H]1C(=O)OC)C(=O)C1=CC=CC=C1 ZPUCINDJVBIVPJ-LJISPDSOSA-N 0.000 description 1
- 238000011437 continuous method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229930003935 flavonoid Natural products 0.000 description 1
- 235000017173 flavonoids Nutrition 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 238000010557 suspension polymerization reaction Methods 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L2/00—Non-alcoholic beverages; Dry compositions or concentrates therefor; Preparation or treatment thereof
- A23L2/70—Clarifying or fining of non-alcoholic beverages; Removing unwanted matter
- A23L2/80—Clarifying or fining of non-alcoholic beverages; Removing unwanted matter by adsorption
Definitions
- the present invention relates to a novel adsorbent, a process for producing the adsorbent, and a method of removing bitterness from fruit juice using the adsorbent.
- the quality of fruit juice in particular juice of citrus fruits, varies depending on the kinds of the plants, growing district, harvest, picking time, storage time and method, juicing time, etc. It has hence been difficult to provide a stabilized good flavor by the mere clarification treatment for removing pulp.
- One method which is currently being conducted for stabilizing the quality of citrus fruit juice is to selectively remove bitter components from the fruit juice.
- One known technique for carrying out the above method is to bring fruit juice into contact with an adsorbent to adsorb and separate bitter components only.
- bitter components include naringin, which is a representative flavonoid compound.
- limonin which is a terpenoid compound characteristic of citrus fruits, and the like are also known as other bitter components, the content thereof is very low.
- bitterness removal is to remove naringin.
- this compound having a molecular weight of about 500, to be selectively and efficiently removed with an adsorbent, it is necessary to precisely design the hydrophobicity, i.e., chemical structure, and the pore structure of the adsorbent before the adsorbent is synthesized.
- Patent 4,439,458 (the term “JP-A” as used herein means an "unexamined published Japanese patent application”) is disclosed a method of bitter-component removal using a styrene-divinylbenzene copolymer.
- the adsorbent used in this prior art technique also has a specific surface area of from 500 to 700 m 2 per g of the dry adsorbent.
- JP-W-2-503516 (corresponding to U.S.
- Patent 4,965,083 discloses a method in which a resin produced by post-crosslinking a similar styrene-divinylbenzene copolymer and then incorporating ion-exchange groups thereinto to hydrophilize the crosslinked copolymer is used.
- This prior art resin is disadvantageous in that the process for producing the resin is complicated and involves many steps.
- the above resin has drawbacks in practical use in that handling thereof is troublesome, for example, because the resin should be treated with a chemical, e.g., an acid or alkali, before or after use for bitter-component removal since the resin contains ion-exchange groups.
- a chemical e.g., an acid or alkali
- the subject of the present invention is to provide an adsorbent which is suitable for the selective and efficient removal of bitter components from fruit juice, and which has a pore structure having a high treating ability and contains no ionic functional groups or the like so as to be able to be easily handled.
- the present inventors succeeded in producing an adsorbent which has a hydrophobic chemical structure for hydrophobic adsorption of bitter components onto the adsorbent, a pore volume for facilitating diffusion of the bitter components into inner parts of the adsorbent, and a large specific surface area for efficient adsorption of bitter components. The present invention has thus been completed.
- the present invention provides an adsorbent comprising a porous crosslinked polymer produced by polymerizing one or more monomers comprising, as a main component, an aromatic vinyl monomer compound, said adsorbent having a specific surface area of 1,200 m 2 or larger per g of the dry adsorbent, a pore volume of 0.52 ml or larger per ml of the water-wet adsorbent, and a specific surface area attributable to pores having a radius not smaller than 50 ⁇ of 75 m 2 or larger per ml of the water-wet adsorbent.
- the present invention also provides the adsorbent as described above wherein the aromatic vinyl monomer compound is selected from the group consisting of divinylbenzene or a mixture of divinylbenzene and ethylvinylbenzene.
- the present invention further provides a process for producing each of the adsorbents as described above, which comprises suspension polymerizing a monomer mixture comprising, as a main component, an aromatic vinyl monomer compound in the presence of an inert substance which serves to form a micro-pore structure, and bringing the resulting porous crosslinked-polymer beads into contact with a Lewis acid catalyst in the presence of an inert medium.
- the present invention furthermore provides a method of treating fruit juice which comprises bringing the fruit juice into contact with each of the adsorbents as described above or a mixture thereof.
- the porous crosslinked polymer of which the adsorbent of the present invention is constituted is a polymer produced by polymerizing one or more monomers comprising, as a main component, an aromatic vinyl monomer compound.
- Various processes for producing porous crosslinked polymers have been disclosed.
- the porous crosslinked polymer of the present invention can be produced, for example, according to the process for producing a porous matrix for an ion-exchange resin as described in Nobumasa Hojo, "Kireto Jushi ⁇ Ion Kokan Jushi (Chelate Resin ⁇ Ion-exchange Resin)", published by Kodansha (1976).
- the adsorbent has a specific surface area of from 1,200 to 3,000 m 2 per g of the dry adsorbent, a pore volume of from 0.52 to 1.0 ml per ml of the water-wet adsorbent, and a specific surface area attributable to pores having a radius not smaller than 50 ⁇ of from 75 to 150 m 2 per ml of the water-wet adsorbent. If any of those properties is outside the range specified above, bitterness cannot be selectively and efficiently removed or such an adsorbent is difficult to produce.
- Values of the specific surface area per unit weight of this dry adsorbent were determined by the BET method.
- Values of the pore volume per unit volume of the water-wet adsorbent and values of the specific surface area attributable to pores having a radius not smaller than 50 ⁇ were determined respectively by multiplying values of integrated pore volume (ml per g of the dry adsorbent) and values of specific surface area (m 2 per g of the dry adsorbent) both obtained by the BJH (nitrogen adsorption) method by the bulk density of the adsorbent in water (g of the dry adsorbent/ml of the water-wet adsorbent).
- the aromatic vinyl monomer compound in the present invention is selected from the group consisting of at least one aromatic monovinyl monomer compound, at least one aromatic polyvinyl monomer compound and a mixture thereof. It is especially preferred that the aromatic vinyl monomer compound comprise from 55 to 100% by weight at least one aromatic polyvinyl monomer compound.
- aromatic monovinyl monomer compound examples include styrene, vinyltoluene, ethylvinylbenzene, and vinylbenzyl chloride.
- aromatic polyvinyl monomer compound examples include divinylbenzene, trivinylbenzene, and divinylnaphthalene. These compounds may be used alone or as a mixture of two or more thereof.
- An especially preferred aromatic vinyl monomer compound consists of a mixture of from 100 to 55% by weight divinylbenzene and from 0 to 45% by weight ethylvinylbenzene. If desired and necessary, these aromatic vinyl monomer compounds may be used in combination with a small amount of other copolymerizable vinyl monomer compounds such as, e.g., aliphatic vinyl monomer compounds.
- the inert substance serving to form a micro-pore structure in the process of the present invention may be any of various substances which are soluble in the aromatic vinyl monomer compound or in a monomer mixture containing the same and are substantially insoluble in water.
- examples of such inert substances include aliphatic hydrocarbon compounds such as heptane and octane, aromatic compounds such as benzene, toluene, and xylene, halogenated hydrocarbon compounds such as dichloroethane and chlorobenzene, and linear polymer compounds such as polystyrene. These compounds may be used alone or as a mixture of two or more thereof. Especially preferred of those inert substances is toluene.
- the amount of the inert substance used in the present invention is from 30 to 300 parts by weight, preferably from 75 to 250 parts by weight, per 100 parts by weight of all vinyl monomer compounds used.
- a small amount of a polymerization initiator is added to the vinyl monomer compounds in the presence of the inert substance described above, and the vinyl monomer compounds are polymerized to give a porous crosslinked polymer.
- the polymerization initiator include organic peroxides such as benzoyl peroxide and lauroyl peroxide and organic azo compounds such as azobisisobutyronitrile.
- the polymerization initiator is preferably used in an amount of from 0.01 to 10 parts by weight per 100 parts by weight of all vinyl monomer compounds.
- the polymerization reaction may be carried out according to a known method for suspension polymerization. The reaction product obtained is washed to give porous crosslinked-polymer beads.
- the thus-obtained polymer beads even without undergoing any treatment, have abilities sufficient for use as an adsorbent of the present invention, they are subjected to the posttreatment described below according to the adsorbent production process of the present invention. As a result, an adsorbent having an improved bitterness removal ability can be obtained.
- the characteristic feature of the adsorbent production process of the present invention resides in that an adsorbent having specific properties is produced by suspension polymerizing a monomer mixture comprising, as a main component, an aromatic vinyl monomer compound in the presence of an inert substance which serves to form a micro-pore structure, and bringing the resulting porous crosslinked-polymer beads into contact with a Lewis acid catalyst in the presence of an inert medium.
- a Lewis acid catalyst to cause a crosslinking reaction in a general manner itself is a known technique as described in JP-A-4-18436.
- the inert medium used in the process of the present invention may be a substance by which the polymer beads are wetted and which is inert to the Lewis acid.
- the inert medium include halogenated hydrocarbon compounds such as dichloroethane and dichloropropane. These inert media are preferably used in an amount of from 1 to 10 g per g of the polymer beads.
- the conditions for contact with a Lewis acid catalyst preferably include a temperature of from 50 to 100°C and a contact period of from 1 to 10 hours. After the contact, the catalyst is deactivated and the polymer beads are then washed to produce the desired adsorbent.
- an adsorbent in the process of the present invention, by suitably selecting the production conditions described above, an adsorbent can be produced which has a specific surface area of 1,200 m 2 or larger per g of the dry adsorbent, a pore volume of 0.52 ml or larger per ml of the water-wet adsorbent, and a specific surface area attributable to pores having a radius not smaller than 50 ⁇ of 75 m 2 or larger per ml of the water-wet adsorbent.
- the adsorbent particles obtained those having a particle diameter of from 50 to 2,000 ⁇ m are usually used frequently.
- the adsorbent having the properties specified in the present invention is useful for adsorbing and separating various organic compounds present in liquids. In particular, the adsorbent is extremely effective in the removal of bitter components from citrus fruit juice.
- the adsorbent according to the present invention can be used in a water-wet state for the removal of bitter components from fruit juice.
- This treatment can be conducted, for example, by the batch method in which the adsorbent is introduced into a vessel containing fruit juice to contact the adsorbent with the juice, or by the continuous method in which fruit juice is continuously passed through a column type contacting apparatus packed with the adsorbent.
- the adsorbent which has deteriorated as a result of use in the treatment is regenerated by bringing the adsorbent into contact with hot water or a water-containing alcohol to desorb the adsorbed components.
- the thus-regenerated adsorbent can be reused for the fruit juice treatment.
- Examples of fruit juice from which bitterness can be removed by treatment with the adsorbent of the present invention include juice of citrus fruits such as Chinese citrons, mandarin oranges, grapefruits, oranges, and lemons.
- the adsorbent of the present invention is suitable for fruit juice containing naringin, limonin, etc. as bitter components.
- the fruit juice to which the adsorbent of the present invention is applicable is not limited to juice squeezed from those fruits, and the adsorbent is also applicable to fruit juice which has been filtered, concentrated, diluted, heated, stored at a low temperature, or mixed with other fruit juice, etc., or which has been processed by adding chemicals, e.g., sweeteners, refrigerants, acidifiers, nutrient additives, and dispersants.
- chemicals e.g., sweeteners, refrigerants, acidifiers, nutrient additives, and dispersants.
- Divinylbenzene having a purity of 81% and containing ethylvinylbenzene as an impurity was mixed in an amount of 213 g with 372 g of toluene and 2.9 g of dibenzoyl peroxide having a purity of 75%. This mixture was added to 2,050 ml of warm desalted water containing 2.9 g of poly(vinyl alcohol), and suspended therein by stirring. The suspension was heated with stirring to conduct polymerization reaction at 80°C for 8 hours. The resulting polymer beads were washed with water and dried. To 500 ml of 1,2-dichloroethane were added 100 g of the dry polymer beads.
- adsorbent I The specific surface area of adsorbent I was measured with specific surface area meter Flowsorb® 2300 (Shimadzu Corp.), and was found to be 1,262 m 2 per g of the dry adsorbent.
- adsorbent I had a pore volume per unit volume of the water-wet adsorbent of 0.55 ml per ml of the water-wet adsorbent and a specific surface area attributable to pores having a radius not smaller than 50 ⁇ of 81 m 2 per ml of the water-wet adsorbent.
- Adsorbent I in a water-wet state 50 ml was packed into a glass column having an inner diameter of 14 mm, and the column was maintained at 40°C.
- Desalted water containing naringin (0.75 g/l), citric acid (10 g/l), and sucrose (100 g/l) dissolved therein was passed through the column at 40°C and a space velocity (SV) of 20 BV/hr.
- SV space velocity
- the term "BV" as used herein means a "bed volume". The amount of the solution which had been passed until the concentration of naringin as determined at the column outlet reached 10% of the concentration thereof as determined at the column inlet was measured, and was found to be 74 BV.
- An adsorbent (adsorbent II) was obtained in the same manner as in Example 1, except that the amounts of divinylbenzene, toluene, and dibenzoyl peroxide were changed to 195 g, 391 g, and 2.6 g, respectively.
- This adsorbent had a specific surface area of 1,301 m 2 per g of the dry adsorbent, a pore volume of 0.53 ml per ml of the water-wet adsorbent, and a specific surface area attributable to pores having a radius not smaller than 50 ⁇ of 82 m 2 per ml of the water-wet adsorbent.
- the same naringin solution was passed through adsorbent II in the same manner as in Example 1. As a result, that amount of the solution passed was 77 BV.
- Example 2 Commercial styrene-divinylbenzene copolymer adsorbent "DIAION"® HP20 (manufactured by Mitsubishi Chemical Corp.) was analyzed in the same manner as in Example 1. As a result, this adsorbent was found to have a specific surface area of 601 m 2 per g of the dry adsorbent, a pore volume of 0.44 ml per ml of the water-wet adsorbent, and a specific surface area attributable to pores having a radius not smaller than 50 ⁇ of 40 m 2 per ml of the water-wet adsorbent. The naringin solution was passed through the adsorbent. As a result, that amount of the solution passed was 43 BV.
- adsorbent III An adsorbent (adsorbent III) was obtained in the same manner as in Example 1, except that the amounts of divinylbenzene, toluene, and dibenzoyl peroxide were changed to 234 g, 351 g, and 3.1 g, respectively.
- This adsorbent had a specific surface area of 1,225 m 2 per g of the dry adsorbent, a pore volume of 0.50 ml per ml of the water-wet adsorbent, and a specific surface area attributable to pores having a radius not smaller than 50 ⁇ of 77 m 2 per ml of the water-wet adsorbent.
- the same naringin solution was passed through adsorbent III in the same manner as in Example 1. As a result, that amount of the solution passed was 69 BV.
- adsorbent IV An adsorbent (adsorbent IV) was obtained in the same manner as in Comparative Example 2, except that 12 g of polystyrene was added to the mixture of divinylbenzene, toluene, and dibenzoyl peroxide.
- This adsorbent had a specific surface area of 1,209 m 2 per g of the dry adsorbent, a pore volume of 0.55 ml per ml of the water-wet adsorbent, and a specific surface area attributable to pores having a radius not smaller than 50 ⁇ of 54 m 2 per ml of the water-wet adsorbent.
- the same naringin solution was passed through adsorbent IV in the same manner as in Example 1. As a result, that amount of the solution passed was 69 BV.
- an adsorbent does not have a specific surface area of 1,200 m 2 or larger per g of the dry adsorbent, a pore volume of 0.52 ml or larger per ml of the water-wet adsorbent, and a specific surface area attributable to pores having a radius not smaller than 50 ⁇ of 75 m 2 or larger per ml of the water-wet adsorbent, at the same time.
- the present invention provides an adsorbent having a pore structure suitable for the selective and efficient removal of bitter components from fruit juice, a process for producing the adsorbent, and a method of treating fruit juice using the adsorbent.
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Nutrition Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Non-Alcoholic Beverages (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28162795 | 1995-10-30 | ||
JP281627/95 | 1995-10-30 | ||
JP28162795 | 1995-10-30 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0778084A2 EP0778084A2 (en) | 1997-06-11 |
EP0778084A3 EP0778084A3 (enrdf_load_stackoverflow) | 1997-07-16 |
EP0778084B1 true EP0778084B1 (en) | 2000-03-08 |
Family
ID=17641759
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96117298A Expired - Lifetime EP0778084B1 (en) | 1995-10-30 | 1996-10-28 | Absorbent, process for producing the same, and method of treating fruit juice |
Country Status (3)
Country | Link |
---|---|
US (1) | US5885638A (enrdf_load_stackoverflow) |
EP (1) | EP0778084B1 (enrdf_load_stackoverflow) |
DE (1) | DE69606960T2 (enrdf_load_stackoverflow) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10744434B2 (en) | 2002-04-05 | 2020-08-18 | Basf Se | Use of polymers comprising thermoplastic polymers as filtration aids and/or stabilising agent |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100573601B1 (ko) * | 1997-04-03 | 2006-04-24 | 부처-엘리먼테크 리미티드 | 과일주스 중의 파툴린 농도를 감소시키는 방법 |
US7088757B1 (en) | 1998-02-04 | 2006-08-08 | Semiconductors Gmbh | Use of spiro compounds as laser dyes |
US6380265B1 (en) | 1998-07-09 | 2002-04-30 | W. R. Grace & Co.-Conn. | Dispersion of fine porous inorganic oxide particles and processes for preparing same |
US6841609B2 (en) * | 1998-07-09 | 2005-01-11 | W. R. Grace & Co.-Conn. | Formulation suitable for ink receptive coatings |
US6544577B1 (en) | 1998-12-10 | 2003-04-08 | Tropicana Products, Inc. | Debittered citrus pulp and processing |
US7108887B2 (en) * | 1998-12-10 | 2006-09-19 | Tropicana Products, Inc. | Juice processing incorporating resin treatment |
US6054168A (en) * | 1998-12-10 | 2000-04-25 | Tropicana Products, Inc. | Citrus products incorporating pulp processing |
US7485332B2 (en) * | 1998-12-10 | 2009-02-03 | Tropicana Products, Inc. | Citrus peel juice |
DE10051266A1 (de) * | 2000-10-16 | 2002-04-25 | Basf Ag | Verfahren zur Filtration einer Flüssigkeit, mit einem Filterhilfsmittel und Verfahren zu deren Herstellung |
US7074448B2 (en) * | 2001-09-28 | 2006-07-11 | Tropicana Products, Inc. | Juice deacidification |
US6730343B2 (en) * | 2001-09-28 | 2004-05-04 | Yongsoo Chung | Single strength juice deacidification incorporating juice dome |
US7264837B2 (en) * | 2003-04-02 | 2007-09-04 | Tropicana Products, Inc. | Resin deacidification of citrus juice and high acid maintenance |
DE10345578A1 (de) * | 2003-09-29 | 2005-05-12 | Hans Schreck | Vorrichtung zum Anspritzen von insbesondere Kunststoffformteilen |
US20050175760A1 (en) * | 2004-02-10 | 2005-08-11 | Yongsoo Chung | Single strength juice deacidification incorporating juice dome |
US7550167B1 (en) * | 2004-09-02 | 2009-06-23 | Florida Department Of Citrus | Grapefruit-juice-based beverage preparation method for the elimination of drug absorption interaction |
US8226747B2 (en) * | 2007-09-07 | 2012-07-24 | Kuraray Chemical Co., Ltd. | Adsorbent, process for producing the same, canister and method for using the same |
CN101612553B (zh) | 2008-06-26 | 2013-11-06 | 罗门哈斯公司 | 自由基后交联吸附剂及其制备方法 |
CN101612552A (zh) | 2008-06-26 | 2009-12-30 | 罗门哈斯公司 | 傅氏反应后交联吸附剂及其制备方法 |
CN102294230A (zh) * | 2010-06-24 | 2011-12-28 | 于杰 | 超高交联苯乙烯型大孔吸附剂的合成配方及其工艺路线 |
CN103772578A (zh) * | 2014-01-07 | 2014-05-07 | 中国农业科学院特产研究所 | 树脂法去除人参、西洋参提取物中腐霉利残留的方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4113886A (en) * | 1977-09-28 | 1978-09-12 | General Foods Corporation | Membrane decaffeination |
US4439458A (en) * | 1982-04-26 | 1984-03-27 | The Coca-Cola Company | Preparation of citrus juices, concentrates and dried powders which are reduced in bitterness |
JPS60163903A (ja) * | 1984-02-02 | 1985-08-26 | Mitsubishi Chem Ind Ltd | 架橋共重合体の多孔化方法 |
DD249703A1 (de) * | 1986-05-26 | 1987-09-16 | Bitterfeld Chemie | Verfahren zur herstellung von hydrophilen hochporoesen adsorberharzen |
US4965083A (en) * | 1988-03-23 | 1990-10-23 | The Dow Chemical Company | Removal of bitterness from citrus juices using a post-crosslinked adsorbent resin |
GB8905934D0 (en) * | 1989-03-15 | 1989-04-26 | Dow Europ Sa | A process for preparing adsorptive porous resin beads |
JPH0418436A (ja) | 1990-05-11 | 1992-01-22 | Mitsubishi Kasei Corp | 多孔性樹脂の製造方法 |
US5266685A (en) * | 1992-05-05 | 1993-11-30 | Grain Processing Corporation | Non-bitter protein hydrolyzates |
US5248321A (en) * | 1992-08-06 | 1993-09-28 | The Research Foundation Of State University Of New York At Buffalo | Process of removing sulfur oxides from gaseous mixtures |
US5288307A (en) * | 1992-08-28 | 1994-02-22 | The Dow Chemical Company | Method to reduce fuel vapor emissions |
US5416124A (en) * | 1994-06-21 | 1995-05-16 | The Dow Chemical Company | Polymeric adsorbents with enhanced adsorption capacity and kinetics and a process for their manufacture |
-
1996
- 1996-10-23 US US08/734,800 patent/US5885638A/en not_active Expired - Lifetime
- 1996-10-28 EP EP96117298A patent/EP0778084B1/en not_active Expired - Lifetime
- 1996-10-28 DE DE69606960T patent/DE69606960T2/de not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10744434B2 (en) | 2002-04-05 | 2020-08-18 | Basf Se | Use of polymers comprising thermoplastic polymers as filtration aids and/or stabilising agent |
Also Published As
Publication number | Publication date |
---|---|
EP0778084A2 (en) | 1997-06-11 |
DE69606960D1 (de) | 2000-04-13 |
EP0778084A3 (enrdf_load_stackoverflow) | 1997-07-16 |
DE69606960T2 (de) | 2000-07-27 |
US5885638A (en) | 1999-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0778084B1 (en) | Absorbent, process for producing the same, and method of treating fruit juice | |
US4965083A (en) | Removal of bitterness from citrus juices using a post-crosslinked adsorbent resin | |
US4950332A (en) | Process for decolorizing aqueous sugar solutions via adsorbent resins, and desorption of color bodies from the adsorbent resins | |
US5460725A (en) | Polymeric adsorbents with enhanced adsorption capacity and kinetics and a process for their manufacture | |
US5416124A (en) | Polymeric adsorbents with enhanced adsorption capacity and kinetics and a process for their manufacture | |
EP0481603A1 (en) | Separation of weak organic acids from liquid mixtures | |
WO2008097154A1 (en) | Liquid clarification | |
US4871397A (en) | Process for decolorizing aqueous sugar solution | |
US4895662A (en) | Purification of effluent from wood pulp bleach plant | |
EP0831113A1 (en) | Alkylated porous resin, process for production thereof, and use thereof | |
EP0365635B1 (en) | Process for decolorizing aqueous sugar solutions via adsorbent resins, and desorption of color bodies from the adsorbent resins | |
JPH03224601A (ja) | 液体媒体のカフエイン除去 | |
EP0334641A2 (en) | Removal of bitterness from citrus juices using a post-crosslinked adsorbent resin | |
US6239206B1 (en) | Complexes of heavy metal ions and a polymer, and their use for selective removal of compounds from liquids | |
US5972121A (en) | Decolorization of sugar syrups using functionalized adsorbents | |
US4543261A (en) | Separating whey components into high purity products by ion exchange | |
US5893947A (en) | Process for purifying sugar solutions | |
US5505973A (en) | Process for removing aluminum ions from beer or fruit juice | |
EP0636408A1 (en) | High density, high surface area adsorbents | |
WO2008136741A1 (en) | Lowering of the content of certain substances in a beverage | |
JP3509423B2 (ja) | 吸着剤、その製造方法及び果汁の処理方法 | |
CN110545918A (zh) | 糖溶液的处理 | |
CA1320911C (en) | Purification of effluent from wood pulp bleach plant | |
JPH0549337B2 (enrdf_load_stackoverflow) | ||
RU2005127831A (ru) | Смеси веществ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR IT |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR IT |
|
17P | Request for examination filed |
Effective date: 19970905 |
|
17Q | First examination report despatched |
Effective date: 19981127 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR IT |
|
REF | Corresponds to: |
Ref document number: 69606960 Country of ref document: DE Date of ref document: 20000413 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20141008 Year of fee payment: 19 Ref country code: DE Payment date: 20141023 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20141017 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 69606960 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151028 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160503 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20160630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151102 |