EP0775252B1 - Variables ventilverteilungssystem - Google Patents

Variables ventilverteilungssystem Download PDF

Info

Publication number
EP0775252B1
EP0775252B1 EP94918052A EP94918052A EP0775252B1 EP 0775252 B1 EP0775252 B1 EP 0775252B1 EP 94918052 A EP94918052 A EP 94918052A EP 94918052 A EP94918052 A EP 94918052A EP 0775252 B1 EP0775252 B1 EP 0775252B1
Authority
EP
European Patent Office
Prior art keywords
valve
hydraulic
camshaft
rotational
timing system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94918052A
Other languages
English (en)
French (fr)
Other versions
EP0775252A2 (de
Inventor
Ahmed Syed
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0775252A2 publication Critical patent/EP0775252A2/de
Application granted granted Critical
Publication of EP0775252B1 publication Critical patent/EP0775252B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/18Rocking arms or levers
    • F01L1/185Overhead end-pivot rocking arms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/28Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of coaxial valves; characterised by the provision of valves co-operating with both intake and exhaust ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/10Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic
    • F01L9/11Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic in which the action of a cam is being transmitted to a valve by a liquid column
    • F01L9/12Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic in which the action of a cam is being transmitted to a valve by a liquid column with a liquid chamber between a piston actuated by a cam and a piston acting on a valve stem
    • F01L9/14Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic in which the action of a cam is being transmitted to a valve by a liquid column with a liquid chamber between a piston actuated by a cam and a piston acting on a valve stem the volume of the chamber being variable, e.g. for varying the lift or the timing of a valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/08Shape of cams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34446Fluid accumulators for the feeding circuit

Definitions

  • This invention relates to the art of variable valve control system for internal combustion engines and more particularly, to a fully flexible valve timing system enabling control of load and improvement in effective valve area.
  • VVA variable valve actuation
  • GB patent 1,529,793 disclose other techniques for controlling the valves of an engine.
  • the present invention provides an improved valve opening and duration control arrangement.
  • the above objectives are achieved, according to the invention, by providing an improved control of valve open duration by progressively advancing the intake valve closing phase angle.
  • the closing phase angle is shifted in a stepless manner.
  • the arrangement functions without affecting the opening phase angle and overlap period and is equally adaptable for partial or full phasing of any of the valve events.
  • the charge admitted to the cylinders can be a function of the valve duration in terms of the angular rotation of the crankshaft.
  • a hydraulic engine valve timing system for individually controlling the operation of a cylinder valve; the system having a first rotational camshaft means having a first cam surface for each said valve, a hydraulic actuator means interposed between said valve and said first rotational camshaft means to transmit reciprocating motion to the respective valve; a second rotational control camshaft means having a control cam means for each said actuator means; shaft phasing means to phase said control camshaft means with respect to said first rotational camshaft means, characterised in that said hydraulic actuator means has a contractible interior hydraulic volume by way of the release of hydraulic fluid from the interior hydraulic volume, whereby the hydraulic actuator means is adjustable in effective length so as to overcome the stroke of the first rotational camshaft means, and in that said second rotational control camshaft means cooperates with said actuator means to periodically discharge hydraulic fluid from said interior hydraulic volume and thereby effect a reversal of axial displacement produced by said first rotational camshaft means.
  • a full range phasing mechanism is mounted at the driven end of the control camshaft. This allows the control camshaft to be phased in relation to the first camshaft to modulate the width of the control profile and thus valve duration.
  • a significant increase in the effective valve area is realized by having the main camshaft incorporate "wide" cam lobes. These function to operate the valve during two consecutive strokes, viz. exhaust followed by intake.
  • a further modification is made to the intake system by having a "merged" intake/exhaust manifold wherein the intake and exhaust passages are joined together to form a straight through passage. Forced air means maintain airflow through the passage so that exhaust gases expelled from the valve orifice are diverted in the discharge direction and fresh air is admitted from the upstream direction. This is a particularly useful feature with variable compression ratio engines wherein a large portion of the combustion chamber surface may be occupied by the sub-piston adversely effecting valve area.
  • Fig 1. shows a sectional view of the arrangement 10 constructed according to the invention as illustrated for one valve 101 in an internal combustion engine.
  • valve 101 is shown to be mounted in a partial view of the cylinder head 103.
  • the detail of the valve spring, clips, valve seat etc., are not shown as they are well known in the art and are not taught by the invention.
  • Lubrication channels 104 which provide a conduit for the engine lubricating oil system are illustrated as formed within the cylinder head 103.
  • a hydraulic actuator 140 is mounted on the cylinder head 103, connected with the lubrication channel 104 and positioned adjacent the valve 101.
  • a camshaft 110 is mounted in the cylinder head above the actuator.
  • a cam 111 is mounted on the camshaft 110. The camshaft will rotate to move the cam lift surface 111 into contact with the actuator top piston 142. The downward movement of the top piston will be transmitted via the pressurized fluid medium 141 to the lower plunger 143 causing it to move valve 101 to the open position.
  • the timing of the valve opening is set by the rotation of the camshaft 110.
  • the arrangement 10 provides an additional control element, a pressure relief valve 144 formed in the body of the actuator. It is this control element which allows the adjustment of the open duration of the valve 101.
  • a control camshaft 120 is mounted adjacent the relief valve 144.
  • a control cam with control surface 121 is mounted on the control camshaft and positioned to engage the pin 148 of relief valve 144 for a preselected portion of the rotation of the control camshaft.
  • the control camshaft may be driven by an arrangement taught in U.S. Patent 4,747,375, ('375) granted to John K. Williams.
  • the '375 arrangement allows a crankshaft to drive a camshaft with variable phasing over the entire load range.
  • the present invention utilizes this variable phasing unit to adjust the engagement of the control surface 121 with the pin 148 of the relief valve 144.
  • control camshaft can be made much lighter and at less cost than the main camshaft since it interacts only with the pressure relief mechanism. Accordingly the phasing unit is also very light allowing it to be directly connected to an accelerator pedal.
  • FIG 2 shows another embodiment of the present invention wherein the actuator 140 interacts with the valve 101 via a rocker arm.
  • a rocker arm 102 is hingedly mounted to the top portion of the actuator.
  • a camshaft 110 is mounted over a plurality of rocker arms (one for each valve).
  • a cam 112 is mounted on camshaft 110 and is in sliding contact with rocker 102.
  • the cam 112 shown in this case is the wide lobed cam mentioned above.
  • camshaft 110 will rotate to move the cam lift-surface 112 into contact with the rocker arm 102.
  • the rocker arm 102 will pivot from the hinged mounting to begin to push the valve 101 to an open position.
  • the timing of this event coincides with the beginning of the exhaust stroke of the particular cylinder.
  • the valve remains open during the exhaust stroke and into the intake stroke.
  • the control camshaft 120 is mounted adjacent actuator 140, where control cam surface 121 is engageable by relief pin 148 as before.
  • control cam surface 121 When upon further rotation of control cam 121, the control surface causes the relief pin to be pushed inward to release the hydraulic fluid the actuator 140 will contract to move pivot point 140 downwards as viewed in the drawing. This causes a corresponding upward movement of the opposite end of rocker 102 to bring valve 101 to a closed position under the influence of the valve closing spring.
  • the top surface of the rocker 102 is so shaped as to facilitate the rocker to pivot about a second pivoting point formed by the sliding contact point of cam 112 and rocker 102.
  • a further advantage of this embodiment is that actuator wear is reduced and the actuator can be made simpler since it executes a single function stroke per cycle rather than the double stroke of the first embodiment. Thus in this mode the actuator can function with only a single movable plunger.
  • the wide cam lobe 112 may also be employed in the first embodiment shown in Fig. 1. If needed, the lobe 112 may incorporate a slight depression or valley approximately in the middle to enable the valve to retract slightly while the piston 160 is near the top of its stroke.
  • FIG. 4 shows an embodiment of the merged intake-exhaust system employed in conjunction with a dual function valve.
  • the manifold 150 comprises an upstream portion 151 and a downstream portion 152 respectively to valve 101.
  • An integral roots or scroll type blower 153 driven by the crankshaft is shown attached to the manifold forcing air through conduits 151 and 152.
  • TDC top dead center
  • the fuel injection pulse begins approximately when the valve is near TDC (soon after the gas equilibrium point is reached), and stops before the valve 101 is closed.
  • the fuel injection pulse width may be synchronized with the valve duration pulse, or injection may be through a separate valve port in the cylinder operated in the conventional manner.
  • a separate smaller valve may be positioned across from the main valve(s) in the combustion chamber to open momentarily near the TDC point to flush out trapped gasses.
  • the passage 150 is shown to turn sharply at an acute angle at the point of communication with the cylinder. This creates a ramming effect by the airstream facilitating cylinder charging at high revolutions.
  • Figure 5 shows the detailed design of an alternative actuator.
  • most actuator designs are plagued by slow response times which result in serious degradation of the operational profile at high rpm.
  • Many designs to enhance response time, store the expelled hydraulic fluid in a pressure reservoir. Since the reservoir is connected via conduit, delay arises due to path restriction. Also, transfer of fluid between actuator, and reservoir is effected by solenoids, adding to the cost of the units.
  • the actuator shown in Fig. 5 has an integral pressure reservoir to store the expelled fluid and return it in the shortest possible time during the neutral interval.
  • the actuator 140 encloses an internal volume space 141 formed by the casing and movable plungers 142 and 143.
  • Plungers 142 and 143 are formed with a second smaller diameter to slidably fit into a smaller cylindrical bore formed within the body of the actuator. This reduces the volume of fluid displaced for a proportional relative movement of the plungers improving response time.
  • the first volume chamber 141 communicates with a second volume chamber 145 by way of a check valve 144.
  • Check valve 144 has a large bore diameter respective to the volume chamber to facilitate rapid transfer of fluid.
  • the second volume chamber 145 has a movable piston 146 biased by spring 147 in the direction of the check valve 144.
  • a pin 148 slidably passes through a bore in the actuator body and a second bore in the slidable piston 146 to communicate with the check valve 144. Inward motion of the pin 148 opens check valve 144 allowing hydraulic fluid to enter volume 145 forcing piston 146 against biasing spring 147.
  • the pin is flanged at two points to limit travel.
  • Another check valve 149 admits hydraulic fluid from the engine lubrication system to prime the actuator initially.
  • the spring coefficient 147 can be matched to the coefficient of valve spring 105 to determine the valve return rate in order to avoid excessively high valve seating velocities.
  • damping can also be achieved by having fluid occupy the back space of piston 146 and by spilling this fluid through calibrated spill bores.
  • chamber 145 incorporates a small bore at a preselected volume to bleed off excess fluid.
  • the base of the actuator is flanged for mounting on the cylinderhead.
  • An oil inlet passage is shown which mates with a corresponding oil supply channel 104 from the engine lubrication system.
  • Another spring is mounted between the outer peripheral flange of plunger 142 and housing 140 to urge the plunger against the cam face and improve response.
  • relief pin 148 is operated by small two-position solenoids attached to the actuator. Signals from an ECU can then be employed to operate the actuators. In some modes of operation a number of valves in each cylinder may be disabled to increase the flow velocity into the cylinders. This can also be done by having split lobes for the control cam 121 and engaging pin 148 before intake begins for some of the valves.
  • the actuators may be used in conjunction with a conventional throttle valve in which the actuators are altogether disabled (in the fully extended position) at high rpm and charge flow is controlled in the usual manner for the upper load ranges.
  • the above invention demonstrates a vastly improved and efficient valve control system for an engine's valves. Furthermore, the system overcomes many of the disadvantages of the prior art in a very cost effective manner. System reliability is improved, while at the same time energy drain and stress on moving components is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Claims (10)

  1. Hydraulisches Motorventilsteuerungssystem (10) zum individuellen Steuern der Betätigung eines Zylinderventils (101), wobei das System Folgendes hat: eine erste Rotationsnockenwellenvorrichtung (110) mit einer ersten Nockenoberfläche (111, 112) für jedes genannte Ventil, eine hydraulische Aktorvorrichtung (140), die zwischen dem genannten Ventil und der genannten ersten Rotationsnockenwellenvorrichtung angeordnet ist, um die Hin- und Herbewegung des betreffenden Ventils zu übertragen, eine zweite Rotationssteuerungsnockenwellenvorrichtung (120) mit einer Steuernockenvorrichtung (121) für jede genannte Aktorvorrichtung, eine Wellensynchronisiervorrichtung zum Synchronisieren der genannten Steuerungsnockenwellenvorrichtung in Bezug auf die genannte erste Rotationsnockenwellenvorrichtung,
    dadurch gekennzeichnet, dass die genannte hydraulische Aktorvorrichtung (140) durch die Freisetzung von Hydraulikfluid aus dem inneren Hydraulikvolumen ein verkleinerbares inneres Hydraulikvolumen (141) hat, wodurch die wirksame Länge der hydraulischen Aktorvorrichtung verstellbar ist, um den Hub der ersten Rotationsnockenwellenvorrichtung (110) zu überwinden, und dadurch, dass die genannte zweite Rotationssteuerungsnockenwellenvorrichtung (120) mit der genannten Aktorvorrichtung (140) zusammenwirkt, um periodisch Hydraulikfluid aus dem genannten inneren Hydraulikvolumen (141) abzulassen und dadurch eine Umkehrung der durch die genannte erste Rotationsnockenwellenvorrichtung erzeugten axialen Verdrängung bewirkt.
  2. Hydraulisches Motorventilsteuerungssystem nach Anspruch 1, dadurch gekennzeichnet, dass die Wellensynchronisiervorrichtung an der zweiten Rotationssteuerungsnockenwellenvorrichtung (120) montiert ist.
  3. Hydraulisches Motorventilsteuerungssystem nach Anspruch 2, dadurch gekennzeichnet, dass die Wellensynchronisiervorrichtung auch auf der ersten Rotationsnockenwellenvorrichtung (110) montiert ist.
  4. Hydraulisches Motorventilsteuerungssystem nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Steuernockenvorrichtung (121) mit einem Entlastungsventil (144) zusammenwirkt, das im Gehäuse der hydraulischen Aktorvorrichtung (140) gebildet ist, wobei das Öffnen des Entlastungsventils eine Verringerung der wirksamen Länge der hydraulischen Aktorvorrichtung ermöglicht, und dadurch, dass das Entlastungsventil zu seiner geschlossenen Stellung hin federvorgespannt ist.
  5. Hydraulisches Motorventilsteuerungssystem nach Anspruch 4, dadurch gekennzeichnet, dass das Entlastungsventil (144) mit einem Stift (148) verbunden ist, der mit der zweiten Rotationssteuerungsnockenwellenvorrichtung (120) in Eingriff kommt.
  6. Hydraulisches Motorventilsteuerungssystem nach einem der Ansprüche 1 bis 3, das eine Kammer (145) hat, die aus dem inneren Hydraulikvolumen (141) abgelassenes Fluid aufnehmen kann, wobei sich ein verschiebbarer federvorgespannter Kolben (146) in der Kammer (145) befindet, und dadurch gekennzeichnet, dass das Entlastungsventil (144) auch ein Rückschlagventil ist, das ausgeführt ist, um nach Beendigung eines Ventilhubs Fluid aus der Kammer (145) in das innere Hydraulikvolumen (141) zurückkehren zu lassen.
  7. Hydraulisches Motorventilsteuerungssystem nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass sich zwischen der hydraulischen Aktorvorrichtung (140) und dem Zylinderventil (101) ein Kipphebel (102) befindet und dass der Kipphebel an die Aktorvorrichtung angelenkt ist.
  8. Hydraulisches Motorventilsteuerungssystem nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Ventilvorrichtung (101) ein Einlassventil und ein Auslassventil ist.
  9. Hydraulisches Motorventilsteuerungssystem nach Anspruch 8, dadurch gekennzeichnet, dass die erste Rotationsnockenwellenvorrichtung (110) eine breite Nockenerhebung (112) hat, die ausgeführt ist, um das Zylinderventil (101) während des Ansaugtaktes und des Ausschubtaktes in seinem offenen Zustand zu halten.
  10. Hydraulisches Motorventilsteuerungssystem nach Anspruch 9, dadurch gekennzeichnet, dass die breite Nockenerhebung (112) ungefähr in der Mitte der Erhebungsoberfläche eine Vertiefung hat, wobei die Vertiefung ermöglicht, dass sich das Ventil geringfügig zurückzieht, während der Kolben des Zylinders nahe der Spitze seines Hubs ist.
EP94918052A 1993-05-24 1994-05-23 Variables ventilverteilungssystem Expired - Lifetime EP0775252B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US6635093A 1993-05-24 1993-05-24
US66350 1993-05-24
PCT/US1994/005635 WO1994028288A2 (en) 1993-05-24 1994-05-23 Variable valve timing system

Publications (2)

Publication Number Publication Date
EP0775252A2 EP0775252A2 (de) 1997-05-28
EP0775252B1 true EP0775252B1 (de) 2003-03-26

Family

ID=22068937

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94918052A Expired - Lifetime EP0775252B1 (de) 1993-05-24 1994-05-23 Variables ventilverteilungssystem

Country Status (5)

Country Link
EP (1) EP0775252B1 (de)
JP (1) JP3597532B2 (de)
AU (1) AU6953894A (de)
DE (1) DE69432362T2 (de)
WO (1) WO1994028288A2 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8215292B2 (en) 1996-07-17 2012-07-10 Bryant Clyde C Internal combustion engine and working cycle
GB2526554A (en) * 2014-05-27 2015-12-02 Eaton Srl Valvetrain with variable valve actuation
ES2632104T3 (es) * 2014-09-23 2017-09-08 Fpt Motorenforschung Ag Conjunto de control auxiliar para controlar la apertura/cierre de las válvulas de impulsión de un motor de combustión, en particular para una operación de freno de motor por descompresión

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR817159A (fr) * 1937-02-01 1937-08-27 Nouveau système de distribution des gaz par inertie dans les moteurs à combustion diesel et ses dérivés
US2105699A (en) * 1937-01-11 1938-01-18 Thomas F Boyle Monovalve cylinder head construction
DE3048887A1 (de) * 1980-12-23 1982-07-22 Audi Nsu Auto Union Ag, 7107 Neckarsulm Steuerbarer ventiltrieb, insbesondere fuer die gaswechselventile einer hubkolben-brennkraftmaschine
JPS6065214A (ja) * 1983-09-19 1985-04-15 Mitsubishi Motors Corp バブルタイミング機構
US4615307A (en) * 1984-03-29 1986-10-07 Aisin Seiki Kabushiki Kaisha Hydraulic valve lifter for variable displacement engine
US4696265A (en) * 1984-12-27 1987-09-29 Toyota Jidosha Kabushiki Kaisha Device for varying a valve timing and lift for an internal combustion engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3004396A1 (de) * 1980-02-07 1981-08-13 Dr.Ing.H.C. F. Porsche Ag, 7000 Stuttgart Ventilsteuerung fuer brennkraftmaschinen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2105699A (en) * 1937-01-11 1938-01-18 Thomas F Boyle Monovalve cylinder head construction
FR817159A (fr) * 1937-02-01 1937-08-27 Nouveau système de distribution des gaz par inertie dans les moteurs à combustion diesel et ses dérivés
DE3048887A1 (de) * 1980-12-23 1982-07-22 Audi Nsu Auto Union Ag, 7107 Neckarsulm Steuerbarer ventiltrieb, insbesondere fuer die gaswechselventile einer hubkolben-brennkraftmaschine
JPS6065214A (ja) * 1983-09-19 1985-04-15 Mitsubishi Motors Corp バブルタイミング機構
US4615307A (en) * 1984-03-29 1986-10-07 Aisin Seiki Kabushiki Kaisha Hydraulic valve lifter for variable displacement engine
US4696265A (en) * 1984-12-27 1987-09-29 Toyota Jidosha Kabushiki Kaisha Device for varying a valve timing and lift for an internal combustion engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 009, no. 202 (M - 405) 20 August 1985 (1985-08-20) *

Also Published As

Publication number Publication date
DE69432362D1 (de) 2003-04-30
AU6953894A (en) 1994-12-20
JPH08510528A (ja) 1996-11-05
WO1994028288A2 (en) 1994-12-08
DE69432362T2 (de) 2004-03-04
WO1994028288A3 (en) 1994-12-08
EP0775252A2 (de) 1997-05-28
JP3597532B2 (ja) 2004-12-08

Similar Documents

Publication Publication Date Title
US6237551B1 (en) Multi-cylinder diesel engine with variable valve actuation
US9206749B2 (en) Variable compression ratio systems for opposed-piston and other internal combustion engines, and related methods of manufacture and use
US5002022A (en) Valve control system with a variable timing hydraulic link
US5205251A (en) Rotary valve for internal combustion engine
US6250266B1 (en) Variable valve timing mechanism for engine
US6354252B1 (en) Device for varying a piston engine effective volumetric displacement and/or volumetric ratio of during its operation
US4651684A (en) Valve timing control system for internal combustion engine
US4009694A (en) Gasoline engine torque regulator with partial speed correction
EP0515520A1 (de) Ventilsteuervorrichtung.
Lenz et al. Variable valve timing—A possibility to control engine load without throttle
US4476823A (en) Hydraulic valve timing control device for an internal combustion engine
US3963006A (en) Oil flow positive valve drive mechanism for gasoline engines
US20090308340A1 (en) Cam-Driven Hydraulic Lost-Motion Mechanisms for Overhead Cam and Overhead Valve Valvetrains
US5058857A (en) Solenoid operated valve assembly
US6595170B2 (en) Hydraulic valve-operating mechanism
EP0775252B1 (de) Variables ventilverteilungssystem
JP3381311B2 (ja) 内燃機関の可変動弁装置
KR100258047B1 (ko) 내연 기관의 밸브 특성 제어 장치
US5992362A (en) Variable lift and timing system for valves
KR20080055396A (ko) 가변 밸브 리프트 장치
WO1997019260A1 (en) Valve operating system
GB2494176A (en) Desmodromic hydraulic valve train
KR960013352B1 (ko) 자동차의 흡, 배기 밸브 개폐시기 조절장치
JP2712928B2 (ja) 内燃機関の可変動弁装置
RU2139431C1 (ru) Двигатель внутреннего сгорания

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19951229

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT SE

17Q First examination report despatched

Effective date: 19990128

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SYED, AHMED

AK Designated contracting states

Designated state(s): DE ES FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69432362

Country of ref document: DE

Date of ref document: 20030430

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030930

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031230

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081201

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20081201

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081201

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081201

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090523

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090523