EP0765438A1 - Process and device for controlling an electromagnetic consumer - Google Patents

Process and device for controlling an electromagnetic consumer

Info

Publication number
EP0765438A1
EP0765438A1 EP96909039A EP96909039A EP0765438A1 EP 0765438 A1 EP0765438 A1 EP 0765438A1 EP 96909039 A EP96909039 A EP 96909039A EP 96909039 A EP96909039 A EP 96909039A EP 0765438 A1 EP0765438 A1 EP 0765438A1
Authority
EP
European Patent Office
Prior art keywords
time
current
signal
solenoid valve
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96909039A
Other languages
German (de)
French (fr)
Other versions
EP0765438B1 (en
Inventor
Jürgen GRAS
Hans-Peter STRÖBELE
Rainer Kienzler
Alfred Konrad
Wolfgang Schmauder
Volker Gandert
Matthias Kretzschmar
Franz Thömmes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0765438A1 publication Critical patent/EP0765438A1/en
Application granted granted Critical
Publication of EP0765438B1 publication Critical patent/EP0765438B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2017Output circuits, e.g. for controlling currents in command coils using means for creating a boost current or using reference switching
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2031Control of the current by means of delays or monostable multivibrators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value

Definitions

  • the invention relates to a method and a device for controlling an electromagnetic consumer.
  • DE-044 15 361 discloses a method and a device for controlling an electromagnetic consumer. Such electromagnetic consumers are used in particular to control the fuel metering in internal combustion engines.
  • a solenoid valve determines the injection duration.
  • a certain period of time usually elapses between the activation time and the reaction of the solenoid valve. This period is usually referred to as the switching time of the valve. This switching time depends on various parameters, such as the coil temperature and the current flowing through the coil.
  • a variable switching time of the solenoid valve in turn results in a variable injection duration and thus a changing amount of injected fuel.
  • the object of the invention is to increase the accuracy in a method and a device for controlling the amount of fuel injected. This object is achieved by the features characterized in the independent claims.
  • FIG. 1 shows a block diagram of the device according to the invention
  • FIG. 2 shows a detailed block diagram of an embodiment
  • FIGS. 3 and 4 show different signals plotted over time.
  • the invention is described below using the example of a device for controlling the amount of fuel to be injected into an internal combustion engine. However, it is not limited to this application. It can always be used when the activation duration of an electromagnetic consumer is to be controlled. This is particularly the case when the control duration specifies a size, such as the volume flow of a medium flowing through the solenoid valve.
  • 100 denotes a solenoid valve.
  • a first connection of the coil of the solenoid valve 100 is connected to a supply voltage Ubat.
  • a second connection of the coil of the solenoid valve is connected to ground via a switching means 110 and a current measuring means 120.
  • the switching means is preferably implemented as a transistor.
  • the current measuring means is preferably an ohmic resistor, the voltage drop across the ohmic resistor being evaluated for current measurement.
  • a switching signal A is applied to the switching means 110. As long as the control signal A assumes a high level, the switching means 110 closes and thus releases the current flow through the consumer.
  • the control signal A is provided by an OR gate 130.
  • the OR gate 130 The OR gate
  • the 130 links the output signal B of a control unit 140 and the output signal ty of a time extension 150.
  • the time extension 150 is fed the output signal B of the control unit 140 and the output signal of a current determination 160.
  • the current determination 160 evaluates the voltage drop across the resistor 120.
  • the switching means 110 releases the current flow through the consumer 100. After the current flows through the solenoid valve 100, the solenoid valve releases the fuel metering into the internal combustion engine.
  • the signal B drops to its low level and there is no signal from the time extension 150, the signal A also drops to the low level, which leads to the opening of the switching means 110 and an interruption of the Current flow leads. As a result, the solenoid valve 100 closes again and the fuel metering ends.
  • the switch-off behavior of the solenoid valve 100 is largely determined by the magnetic force at the time of the switch-off. Different sizes have an influence on this magnetic force. On the one hand, this is the voltage, tolerances of the inductance, the coil resistance and temperature influences.
  • the switching time essentially depends on the current current value 11 when switching off, that is to say when signal A drops to a low level. Large current values result in longer switching times than small current values.
  • the current is usually not a constant variable.
  • the current depends on the one hand on the resistance of the coil and thus on the
  • a current control can be provided, in which the current fluctuates between two current values.
  • the current increases after switching on according to an exponential function. It can happen that the time at which the valve is switched off occurs at a time when the current has not yet reached its end value. In these cases, the switching time deviates from its predetermined value.
  • the current value II is recorded at the time of the switch-off time T 1 specified by the control unit, which corresponds to the activation end.
  • the time extension 150 corrects the actual switch-off time T2 in such a way that a time is set as the effective activation time of the solenoid valve which results when switching off when the final current value réellemax is reached.
  • rectification time ⁇ t is determined as a function of the current value II at the switch-off time.
  • the time extension 150 emits a signal t v with a high level. The result of this is that the output signal A of the OR operation 130 remains at a high level for this period of time .DELTA.t and the actuation period of the solenoid valve is thus extended by this time .DELTA.t.
  • Electricity can be used.
  • a so-called sense fat is also possible.
  • This is a field-effect transistor that provides a partial current that is proportional to the current flowing through the consumer.
  • a possible embodiment of the time extension 150 is shown in more detail in FIG. Elements already described in FIG. 1 are identified by corresponding reference numerals.
  • the voltage applied to the current measuring resistor 120 reaches an operational amplifier 210 via a switching means 200.
  • the switching means 200 is switched depending on the signal B from the control unit.
  • a resistor 220 and a capacitor 230 are connected to ground between the switching means 200 and the operational amplifier 210.
  • the second input of the operational amplifier 210 is connected to the center tap of a voltage divider consisting of the resistors 240 and 245.
  • the voltage divider consisting of resistors 240 and 245 is connected between ground and a voltage source VCC.
  • the output of the operational amplifier 210 is fed back to its second input via a resistor 250.
  • the signal ty is present at the output of the operational amplifier and is led to the OR gate 130.
  • This facility now works as follows. As long as signal B is high, switch 200 is in its closed state. The consequence of this is that the capacitor charges up to the voltage drop across the resistor 120, which voltage is proportional to the current through the consumer.
  • the output signal t v of the operational amplifier 210 assumes a high signal level.
  • the switch 200 opens and the capacitor 230 is discharged to ground via the resistor 220.
  • the operational amplifier switches through, which has the consequence that the output signal of the operational amplifier drops to 0.
  • This circuit has the effect that the delay time by which the duty cycle is extended depends on the current value 11 which flows through the consumer 100.
  • the time extension 150 comprises a map in which the relationship between the instantaneous value I j of the current at the time t ⁇ of the drop in the signal B and the time period ⁇ t by which the activation is extended is stored is.
  • This variable can also be calculated on the basis of the current value 1 ⁇ in accordance with a predetermined function f (I ⁇ ).
  • the characteristic diagram or the function f (I ⁇ ) are chosen such that a long period of time ⁇ t results for small current values I ⁇ _ and a short period of time ⁇ t for large current values 1 ⁇ .
  • the switching time TS of the valve depends on the current I lf flowing at the time of switching off. This relationship can be determined by theoretical considerations or by measurements.
  • a correction value ⁇ t can be assigned to each current value I 1 , so that the switching time is a good approximation regardless of the current value ⁇ i and thus of fluctuations in the supply voltage, but only depends on the activation time.
  • FIG. 3 the conditions are shown that are present when the cut-off, that is carried out to a low signal level of the falling of the signal B when the current has reached its final value by the consumer I m ax.
  • the drive signal B and the drive signal A are plotted in FIG. 3a.
  • the current I flowing through the valve is plotted in FIG. 3b and the state of the solenoid valve is plotted in FIG. 3c.
  • control signal B is at a high level, the current I flowing through the solenoid valve assumes its maximum value I max .
  • the solenoid valve is in its open position.
  • control unit 140 withdraws control signal B. This causes the current I to drop to 0.
  • the solenoid valve remains in its open position for another time. Only after the delay time has expired at time t 0 does the solenoid valve assume its new position and close.
  • the delay time between the time t1 and the time t 0 ff is referred to as the switching time TS.
  • FIG. 4 shows the situation in the event that the switch-off takes place at a time t1 at which the current value II has not yet reached the maximum value I max at the time t. If the switch-off takes place here at the same time, the switching time is considerably shorter and the metering is correspondingly shortened, which results in a lower fuel quantity.
  • FIG. 4a the signal B of the control unit 140 is again plotted, in FIG. 4b the signal B with which the switching means 110 is applied, in FIG. 4c the current I and the state of the solenoid valve is plotted in FIG. 4d.
  • signal A and signal B assume their high level.
  • the solenoid valve is in its open state.
  • control unit 140 takes signal B back from its high to its low signal level.
  • the instantaneous current value II at the time t- is smaller than the current value I ma ⁇ - This has the consequence that the switching time would be shorter than in the shutdown process shown in FIG.
  • the time extension 150 In order to correct the activation duration accordingly, the time extension 150 generates a signal t v which is present for the duration ⁇ t. This in turn has the effect that the output signal A, which is applied to the switching means 110, is present until the time t 2 . This has the effect that the current continues to rise and does not drop until time t 2 .
  • the solenoid valve only blocks the fuel flow from time t 0 ff.
  • the signal t v or the delay time ⁇ t is specified so that the valve closes after the fall of the signal B after a fixed switching time TS.
  • the switching time TS is preferably determined at a specific current value I max and taken into account by the control unit when determining the signal B.
  • the current value I max is an arbitrary current value.
  • the time extension 150 corrects the control signal A by a time period ⁇ t, which depends on the current value II at the switch-off time.
  • the time period ⁇ t is preferably dependent on the 32580 -

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Magnetically Actuated Valves (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

A process for controlling an electromagnetic consumer, especially a magnetic valve, which affects the quantity of fuel to be injected into an internal combustion engine, wherein the duration of the control of the magnetic valve can be corrected by a delay, where the delay can be predetermined dependently upon the momentary value of the current to the desired switch-off process.

Description

Verfahren und Vorrichtung zur Steuerung eines elektro¬ magnetischen VerbrauchersMethod and device for controlling an electromagnetic consumer
Stand der TechnikState of the art
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Steuerung eines elektromagnetischen Verbrauchers. Aus der DE-044 15 361 ist ein Verfahren und eine Vorrichtung zur Steuerung eines elektromagnetischen Verbrauchers be¬ kannt. Solche elektromagnetischen Verbraucher dienen insbe¬ sondere zur Steuerung der Kraftstoffzumessung bei Brenn¬ kraf maschinen. Hierbei legt ein Magnetventil die Einspritz- dauer fest.The invention relates to a method and a device for controlling an electromagnetic consumer. DE-044 15 361 discloses a method and a device for controlling an electromagnetic consumer. Such electromagnetic consumers are used in particular to control the fuel metering in internal combustion engines. Here, a solenoid valve determines the injection duration.
Bei Magnetventilen verstreicht üblicherweise zwischen dem Ansteuerzeitpunkt und der Reaktion des Magnetventils eine gewisse Zeitspanne. Diese Zeitspanne wird üblicherweise als Schaltzeit des Ventils bezeichnet. Diese Schaltzeit hängt von verschiedenen Parametern ab, wie beispielsweise der Spu¬ lentemperatur und von dem durch die Spule fließenden Strom. Eine variable Schaltzeit des Magnetventils hat wiederum eine variable Einspritzdauer und damit eine sich ändernde einge- spritzte Kraftstoffmenge zur Folge. Aufgabe der ErfindungIn the case of solenoid valves, a certain period of time usually elapses between the activation time and the reaction of the solenoid valve. This period is usually referred to as the switching time of the valve. This switching time depends on various parameters, such as the coil temperature and the current flowing through the coil. A variable switching time of the solenoid valve in turn results in a variable injection duration and thus a changing amount of injected fuel. Object of the invention
Der Erfindung liegt die Aufgabe zugrunde, bei einem Verfah¬ ren und einer Vorrichtung zur Steuerung der eingespritzten Kraftstoffmenge die Genauigkeit zu erhöhen. Diese Aufgabe wird durch die in den unabhängigen Ansprüchen gekennzeichne¬ ten Merkmale gelöst.The object of the invention is to increase the accuracy in a method and a device for controlling the amount of fuel injected. This object is achieved by the features characterized in the independent claims.
Mit dem erfindungsgemäßen Verfahren und der erfindungsgemä- ßen Vorrichtung läßt sich die Genauigkeit der Kraftstoffzu- messung wesentlich verbessern. Vorteilhafte und zweckmäßige Ausgestaltungen und Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichne .The accuracy of the fuel metering can be significantly improved with the method and the device according to the invention. Advantageous and expedient refinements and developments of the invention are characterized in the subclaims.
Zeichnungdrawing
Die Erfindung wird nachstehend anhand der in der Zeichnung dargestellten Ausfuhrungsformen erläutert. Es zeigen Figur 1 ein Blockdiagramm der erfindungsgemäßen Vorrichtung, Figur 2 ein detailliertes Blockdiagramm einer Ausführungsform und Figur 3 und 4 verschiedene über der Zeit aufgetragene Signale.The invention is explained below with reference to the embodiments shown in the drawing. FIG. 1 shows a block diagram of the device according to the invention, FIG. 2 shows a detailed block diagram of an embodiment and FIGS. 3 and 4 show different signals plotted over time.
Beschreibung der AusführungsbeispieleDescription of the embodiments
Die Erfindung wird im folgenden am Beispiel einer Vor¬ richtung zur Steuerung der einzuspritzenden Kraftstoffmenge in eine Brennkraftmaschine beschrieben. Sie ist aber nicht auf diese Anwendung beschränkt. Sie kann immer dann einge- setzt werden, wenn die Ansteuerdauer eines elektromagneti¬ schen Verbrauchers zu steuern ist. Dies ist insbesondere dann der Fall, wenn die Ansteuerdäuer eine Größe, wie bei¬ spielsweise den durch das Magnetventil fließenden Volumen- εtrom eines Mediums, festlegt. Mit 100 ist ein Magnetventil bezeichnet. Ein erster Anschluß der Spule des Magnetventils 100 steht mit einer Versorgungs¬ spannung Ubat in Verbindung. Ein zweiter Anschluß der Spule des Magnetventils steht über ein Schaltmittel 110 sowie ein Strommeßmittel 120 mit Masse in Verbindung. Das Schaltmittel ist vorzugsweise als Transistor realisiert. Bei dem Strom¬ meßmittel handelt es sich vorzugsweise um einen ohmschen Widerstand, wobei der Spannungsabfall an dem ohmschen Wider¬ stand zur Strommessung ausgewertet wird.The invention is described below using the example of a device for controlling the amount of fuel to be injected into an internal combustion engine. However, it is not limited to this application. It can always be used when the activation duration of an electromagnetic consumer is to be controlled. This is particularly the case when the control duration specifies a size, such as the volume flow of a medium flowing through the solenoid valve. 100 denotes a solenoid valve. A first connection of the coil of the solenoid valve 100 is connected to a supply voltage Ubat. A second connection of the coil of the solenoid valve is connected to ground via a switching means 110 and a current measuring means 120. The switching means is preferably implemented as a transistor. The current measuring means is preferably an ohmic resistor, the voltage drop across the ohmic resistor being evaluated for current measurement.
Das Schaltmittel 110 wird mit einem Ansteuersignal A beauf¬ schlagt. Solange das Ansteuersignal A einen hohen Pegel an¬ nimmt, schließt das Schaltmittel 110 und gibt damit den Stromfluß durch den Verbraucher frei. Das Ansteuersignal A wird von einem ODER-Glied 130 bereitgestellt. Das ODER-GliedA switching signal A is applied to the switching means 110. As long as the control signal A assumes a high level, the switching means 110 closes and thus releases the current flow through the consumer. The control signal A is provided by an OR gate 130. The OR gate
130 verknüpft das Ausgangssignal B einer Steuereinheit 140 und das Ausgangssignal ty einer Zeitverlängerung 150. Der Zeitverlängerung 150 wird das Ausgangssignal B der Steuer¬ einheit 140 und das Ausgangssignal einer Stromermittlung 160 zugeleitet. Die Stromermittlung 160 wertet den Spannungsab¬ fall am Widerstand 120 aus.130 links the output signal B of a control unit 140 and the output signal ty of a time extension 150. The time extension 150 is fed the output signal B of the control unit 140 and the output signal of a current determination 160. The current determination 160 evaluates the voltage drop across the resistor 120.
Diese Einrichtung arbeitet nun wie folgt. Die SteuereinheitThis facility now works as follows. The control unit
140 berechnet ausgehend von nicht dargestellten Signalen ein Ansteuersignal B zur Beaufschlagung des Schaltmittels 110.140 calculates a control signal B to act on the switching means 110 on the basis of signals not shown.
Nimmt das Signal B einen hohen Pegel an, so nimmt das Signal A ebenfalls einen hohen Pegel an, das Schaltmittel 110 gibt den Stromfluß durch den Verbraucher 100 frei. Nachdem der Strom durch das Magnetventil 100 fließt, gibt das Magnetven- til die Kraftstoffzumessung in die Brennkraftmaschine frei.If the signal B assumes a high level, the signal A also assumes a high level, the switching means 110 releases the current flow through the consumer 100. After the current flows through the solenoid valve 100, the solenoid valve releases the fuel metering into the internal combustion engine.
Fällt das Signal B auf seinen niederen Pegel ab, und liegt kein Signal von der Zeitverlängerung 150 vor, so fällt das Signal A ebenfalls auf den niederen Pegel ab, was zu einem Öffnen des Schaltmittels 110 und zu einer Unterbrechung des Stromflusses führt. Dies hat zur Folge, daß das Magnetventil 100 wieder schließt und die Kraftstoffzumessung endet.If the signal B drops to its low level and there is no signal from the time extension 150, the signal A also drops to the low level, which leads to the opening of the switching means 110 and an interruption of the Current flow leads. As a result, the solenoid valve 100 closes again and the fuel metering ends.
Das Abschaltverhalten des Magnetventils 100 wird maßgeblich durch die Magnetkraft zum Zeitpunkt des Abschaltens be¬ stimmt. Auf diese Magnetkraft haben verschiedene Größen Ein¬ fluß. Dies ist zum einen die Spannung, Toleranzen der Induk¬ tivität, der Spulenwiderstand sowie Temperatureinflüsse. Die Schaltzeit hängt im wesentlichen vom momentanen Stromwert 11 beim Abschalten, das heißt beim Abfall des Signals A auf niederen Pegel ab. Bei großen Stromwerten ergeben sich län¬ gere Schaltzeiten als bei kleinen Stromwerten.The switch-off behavior of the solenoid valve 100 is largely determined by the magnetic force at the time of the switch-off. Different sizes have an influence on this magnetic force. On the one hand, this is the voltage, tolerances of the inductance, the coil resistance and temperature influences. The switching time essentially depends on the current current value 11 when switching off, that is to say when signal A drops to a low level. Large current values result in longer switching times than small current values.
Üblicherweise ist der Strom keine konstante Größe. Der Strom hängt zum einen vom Widerstand der Spule und damit von derThe current is usually not a constant variable. The current depends on the one hand on the resistance of the coil and thus on the
Temperatur der Spule ab. Ferner kann eine Stromregelung vor¬ gesehen sein, bei der der Strom zwischen zwei Stromwerten hin und her schwankt. Bei Induktivitäten steigt der Strom nach dem Einschalten gemäß einer Exponentialfunktion an. Es kann der Fall eintreten, daß der Zeitpunkt, bei dem das Ven¬ til abgeschaltet wird, zu einem Zeitpunkt erfolgt, wo der Strom noch nicht seinen Endwert erreicht hat. In diesen Fäl¬ len weicht die Schaltzeit von ihrem vorgegebenen Wert ab.Temperature of the coil. Furthermore, a current control can be provided, in which the current fluctuates between two current values. With inductors, the current increases after switching on according to an exponential function. It can happen that the time at which the valve is switched off occurs at a time when the current has not yet reached its end value. In these cases, the switching time deviates from its predetermined value.
Erfindungsgemäß wird der Stromwert II zum Zeitpunkt des von der Steuereinheit vorgegebenen Abschaltzeitpunktes Tl, der dem Ansteuerende entspricht, erfaßt. In Abhängigkeit von diesem Stromwert II korrigiert die Zeitverlängerung 150 den tatsächlichen Abschaltzeitpunkt T2 so, daß sich als effek- tive Ansteuerdauer des Magnetventils eine Zeit einstellt, die sich beim Abschalten bei erreichen des Stromendwerts ϊmax ergibt.According to the present invention, the current value II is recorded at the time of the switch-off time T 1 specified by the control unit, which corresponds to the activation end. Depending on this current value II, the time extension 150 corrects the actual switch-off time T2 in such a way that a time is set as the effective activation time of the solenoid valve which results when switching off when the final current value erreichenmax is reached.
Ausgehend von dem Stromwert II zum Zeitpunkt t1# wenn das Signal B auf seinen niederen Pegel abfällt, wird eine Kor- rekturzeit Δt als Funktion von dem Stromwert II zum Ab¬ schaltzeitpunkt ermittelt. Für diese Zeitdauer Δt gibt die Zeitverlängerung 150 ein Signal tv mit einem hohen Pegel ab. Dies hat zur Folge, daß das Ausgangssignal A der ODER-Verknüpfung 130 für diese Zeitdauer Δt auf hohem Pegel bleibt und damit die Ansteuerdauer des Magnetventils um diese Zeit Δt verlängert wird.Starting from the current value II at the time t 1 # when the signal B drops to its low level, a correction is made. rectification time Δt is determined as a function of the current value II at the switch-off time. For this period of time Δt, the time extension 150 emits a signal t v with a high level. The result of this is that the output signal A of the OR operation 130 remains at a high level for this period of time .DELTA.t and the actuation period of the solenoid valve is thus extended by this time .DELTA.t.
Alternativ zu dem Strommeßwiderstand 120 können auch andere Verfahren zur Messung des durch den Verbraucher fließendenAs an alternative to the current measuring resistor 120, other methods for measuring the current flowing through the consumer can also be used
Stroms verwendet werden. Beispielsweise ist auch die Verwen¬ dung eines sogenannten Sensefet möglich. Hierbei handelt es sich um einen Feldeffekttransistor, der als Ausgangsgröße einen dem durch den Verbraucher fließenden Strom proportio- nalen Teilstrom zur Verfügung stellt.Electricity can be used. For example, the use of a so-called sense fat is also possible. This is a field-effect transistor that provides a partial current that is proportional to the current flowing through the consumer.
In Figur 2 ist eine mögliche Ausführungsform der Zeitverlän¬ gerung 150 detaillierter dargestellt. Bereits in Figur 1 be¬ schriebene Elemente sind mit entsprechenden Bezugszeichen bezeichnet. Das am Strommeßwiderstand 120 anliegende Span¬ nung gelangt über ein Schaltmittel 200 zu einem Operations¬ verstärker 210. Das Schaltmittel 200 wird abhängig von dem Signal B der Steuereinheit geschaltet. Zwischen dem Schalt- mittel 200 und dem Operationsverstärker 210 ist ein Wider- stand 220 und ein Kondensator 230 gegen Masse geschaltet.A possible embodiment of the time extension 150 is shown in more detail in FIG. Elements already described in FIG. 1 are identified by corresponding reference numerals. The voltage applied to the current measuring resistor 120 reaches an operational amplifier 210 via a switching means 200. The switching means 200 is switched depending on the signal B from the control unit. A resistor 220 and a capacitor 230 are connected to ground between the switching means 200 and the operational amplifier 210.
Der zweite Eingang des Operationsverstärkers 210 ist mit dem Mittenabgriff eines Spannungsteilers bestehend aus den Wi¬ derständen 240 und 245 verbunden. Der Spannungsteiler beste¬ hend aus den Widerständen 240 und 245 ist zwischen Masse und einer Spannungsquelle VCC geschaltet. Der Ausgang des Opera¬ tionsverstärkers 210 ist über einen Widerstand 250 auf sei¬ nen zweiten Eingang zurückgeführt. Am Ausgang des Ope¬ rationsverstärkers liegt das Signal ty an, das zum ODER-Glied 130 geführt wird. Diese Einrichtung arbeitet nun wie folgt. Solange das Signal B einen hohen Pegel annimmt, ist der Schalter 200 in seinem geschlossenen Zustand. Dies hat zur Folge, daß sich der Kon¬ densator auf die am Widerstand 120 abfallenden Spannung auf- lädt, die proportional zum Strom durch den Verbraucher ist. Das Ausgangssignal tv des Operationsverstärkers 210 nimmt dabei einen hohen Signalpegel an. Fällt das Signal B auf seinen niederen Signalpegel ab, so öffnet der Schalter 200 und der Kondensator 230 wird über den Widerstand 220 nach Masse entladen. Sobald die am Kondensator anliegende Span¬ nung einen vom Spannungsteiler, bestehend aus den Widerstän¬ den 240 und 245 vorgebbaren Wert unterschreitet, schaltet der Operationsverstärker durch, was zur Folge hat, daß das Ausgangssignal des Operationsverstärkers auf 0 abfällt. Diese Schaltung bewirkt, daß die Verzδgerungszeit, um die die Einschaltdauer verlängert wird, vom Stromwert 11, der durch den Verbraucher 100 fließt, abhängt.The second input of the operational amplifier 210 is connected to the center tap of a voltage divider consisting of the resistors 240 and 245. The voltage divider consisting of resistors 240 and 245 is connected between ground and a voltage source VCC. The output of the operational amplifier 210 is fed back to its second input via a resistor 250. The signal ty is present at the output of the operational amplifier and is led to the OR gate 130. This facility now works as follows. As long as signal B is high, switch 200 is in its closed state. The consequence of this is that the capacitor charges up to the voltage drop across the resistor 120, which voltage is proportional to the current through the consumer. The output signal t v of the operational amplifier 210 assumes a high signal level. If the signal B drops to its low signal level, the switch 200 opens and the capacitor 230 is discharged to ground via the resistor 220. As soon as the voltage applied to the capacitor falls below a value that can be predetermined by the voltage divider consisting of resistors 240 and 245, the operational amplifier switches through, which has the consequence that the output signal of the operational amplifier drops to 0. This circuit has the effect that the delay time by which the duty cycle is extended depends on the current value 11 which flows through the consumer 100.
Bei einer weiteren Ausgestaltung ist vorgesehen, daß die Zeitverlängerung 150 ein Kennfeld umfaßt in dem der Zusam¬ menhang zwischen dem Momentanwert Ij des Stroms zum Zeit¬ punkt t^ des Abfalls des Signals B und der Zeitspanne Δt um die die Ansteuerung verlängert wird, abgelegt ist. Ferner kann diese Größe ausgehend vom Stromwert 1^ gemäß einer vor- gegebenen Funktion f (I^) berechnet werden. Das Kennfeld bzw. die Funktion f (I^) sind dabei so gewählt, daß sich bei klei¬ nen Stromwerten Iη_ eine große Zeitdauer Δt und bei großen Stromwerten 1^ eine kleine Zeitdauer Δt ergibt. Die Schalt¬ zeit TS des Ventils hängt vom Strom Ilf der zum Zeitpunkt des Abschaltens fließt, ab. Dieser Zusammenhang kann durch theoretische Betrachtungen oder durch Messungen ermittelt werden. Jedem Stromwert I1 kann ein Korrekturwert Δt zuge¬ ordnet werden, so daß in guter Näherung die Schaltzeit unab¬ hängig vom Stromwert ∑i und damit von Schwankungen der Ver- sorgungsspannung ist, sondern nur noch von der Ansteuerzeit abhäng .In a further embodiment, it is provided that the time extension 150 comprises a map in which the relationship between the instantaneous value I j of the current at the time t ^ of the drop in the signal B and the time period Δt by which the activation is extended is stored is. This variable can also be calculated on the basis of the current value 1 ^ in accordance with a predetermined function f (I ^). The characteristic diagram or the function f (I ^) are chosen such that a long period of time Δt results for small current values Iη_ and a short period of time Δt for large current values 1 ^. The switching time TS of the valve depends on the current I lf flowing at the time of switching off. This relationship can be determined by theoretical considerations or by measurements. A correction value Δt can be assigned to each current value I 1 , so that the switching time is a good approximation regardless of the current value ∑i and thus of fluctuations in the supply voltage, but only depends on the activation time.
In Figur 3 sind die Verhältnisse dargestellt, die vorliegen, wenn die Abschaltung, das heißt der Abfall des Signals B auf einen niederen Signalpegel erfolgt, wenn der Strom durch den Verbraucher seinen Endwert Imax erreicht hat. In Figur 3a ist das Ansteuersignal B und das Ansteuersignal A aufgetra¬ gen. In Figur 3b ist der Strom I, der durch das Ventil fließt und in Figur 3c der Zustand des Magnetventils aufge¬ tragen.In Figure 3, the conditions are shown that are present when the cut-off, that is carried out to a low signal level of the falling of the signal B when the current has reached its final value by the consumer I m ax. The drive signal B and the drive signal A are plotted in FIG. 3a. The current I flowing through the valve is plotted in FIG. 3b and the state of the solenoid valve is plotted in FIG. 3c.
Zu Beginn liegt das Ansteuersignal B auf hohem Pegel, der Strom I, der durch das Magnetventil fließt, nimmt seinen Maximalwert Imax an. Das Magnetventil befindet sich in sei¬ ner geöffneten Position. Zum Zeitpunkt tl nimmt die Steuer¬ einheit 140 das Ansteuersignal B zurück. Dies bewirkt, daß der Strom I auf 0 abfällt. Das Magnetventil bleibt für eine weitere Zeit in seiner geöffneten Position. Erst nach Ablauf Verzδgerungszeit zum Zeitpunkt t0 nimmt das Magnetventil seine neue Position ein und schließt. Die Verzδgerungszeit zwischen dem Zeitpunkt tl und dem Zeitpunkt t0ff wird als Schaltzeit TS bezeichnet.At the beginning, the control signal B is at a high level, the current I flowing through the solenoid valve assumes its maximum value I max . The solenoid valve is in its open position. At time t1, control unit 140 withdraws control signal B. This causes the current I to drop to 0. The solenoid valve remains in its open position for another time. Only after the delay time has expired at time t 0 does the solenoid valve assume its new position and close. The delay time between the time t1 and the time t 0 ff is referred to as the switching time TS.
In Figur 4 sind die Verhältnisse dargestellt für den Fall, daß die Abschaltung zu einem Zeitpunkt tl erfolgt, bei dem der Stromwert II zum Zeitpunkt t noch nicht den Maximalwert Imax erreicht hat. Erfolgt hier die Abschaltung zum gleichen Zeitpunkt, so ist die Schaltzeit wesentlich kürzer und die Zumessung ist entsprechend verkürzt, was eine geringere Kraftstoffmenge zur Folge hat.FIG. 4 shows the situation in the event that the switch-off takes place at a time t1 at which the current value II has not yet reached the maximum value I max at the time t. If the switch-off takes place here at the same time, the switching time is considerably shorter and the metering is correspondingly shortened, which results in a lower fuel quantity.
In Figur 4a ist wiederum das Signal B der Steuereinheit 140, in Figur 4b das Signal B mit dem das Schaltmittel 110 beauf- schlagt wird, aufgetragen, in Figur 4c ist der Strom I und in Figur 4d der Zustand des Magnetventils aufgetragen. Zu Beginn nehmen das Signal A und das Signal B ihren hohen Pe¬ gel an. Dies hat zur Folge, daß das Magnetventil in seinem geöffneten Zustand ist. Zum Zeitpunkt t nimmt die Steuer¬ einheit 140 das Signal B von seinem hohen auf seinen niede¬ ren Signalpegel zurück. Der momentane Stromwert II zum Zeit¬ punkt t- ist kleiner als der Stromwert Imaχ- Dies hat zur Folge, daß die Schaltzeit kürzer als bei dem in Figur 3 dar¬ gestellten Abschaltvorgang wäre.In FIG. 4a, the signal B of the control unit 140 is again plotted, in FIG. 4b the signal B with which the switching means 110 is applied, in FIG. 4c the current I and the state of the solenoid valve is plotted in FIG. 4d. At the beginning, signal A and signal B assume their high level. As a result, the solenoid valve is in its open state. At time t, control unit 140 takes signal B back from its high to its low signal level. The instantaneous current value II at the time t- is smaller than the current value I ma χ- This has the consequence that the switching time would be shorter than in the shutdown process shown in FIG.
Um die Ansteuerdauer entsprechend zu korrigieren erzeugt die Zeitverlängerung 150 ein Signal tv, das für die Zeitdauer Δt anliegt. Dies wiederum bewirkt, daß das Ausgangssignal A, mit dem das Schaltmittel 110 beaufschlagt wird, bis zum Zeitpunkt t2 anliegt. Dies bewirkt, daß der Strom weiterhin ansteigt und erst ab dem Zeitpunkt t2 abfällt. Das Magnet¬ ventil sperrt den Kraftstofffluß erst ab dem Zeitpunkt t0ff.In order to correct the activation duration accordingly, the time extension 150 generates a signal t v which is present for the duration Δt. This in turn has the effect that the output signal A, which is applied to the switching means 110, is present until the time t 2 . This has the effect that the current continues to rise and does not drop until time t 2 . The solenoid valve only blocks the fuel flow from time t 0 ff.
Das Signal tv bzw. die Verzugszeit Δt wird so vorgeben, daß das Ventil nach dem Abfall des Signals B nach Ablauf einer festen Schaltzeit TS schließt. Vorzugsweise wird die Schalt¬ zeit TS bei einem bestimmten Stromwert Imax ermittelt und von der Steuereinheit bei der Ermittlung des Signals B be¬ rücksichtigt. Bei einer Ausgestaltung der Erfindung kann auch vorgesehen sein, daß es sich bei dem Stromwert Imax um einen beliebigen Stromwert handelt. Um zu erreichen, daß das Ventil zum Zeitpunkt t0ff schließt gibt die Steuereinheit 140 ein Signal B aus, das um die Schaltzeit TS vor dem Zeit¬ punkt t0ff auf seinen niederen Pegel abfällt.The signal t v or the delay time Δt is specified so that the valve closes after the fall of the signal B after a fixed switching time TS. The switching time TS is preferably determined at a specific current value I max and taken into account by the control unit when determining the signal B. In one embodiment of the invention it can also be provided that the current value I max is an arbitrary current value. In order to ensure that the valve closes at time t 0 ff, control unit 140 outputs a signal B which drops to its low level by switching time TS before time t 0 ff.
Weicht der Stromwert II, der bei Abfall des Signals B auf den Wert 0 vorliegt von dem Wert Imax ab, so korrigiert die Zeitverlängerung 150 das Ansteuersignal A um eine Zeitdauer Δt, die von dem Stromwert II zum Abschaltzeitpunkt abhängt, anliegt. Vorzugsweise wird die Zeitdauer Δt abhängig von der 32580 --If the current value II, which is present when the signal B drops to the value 0, deviates from the value I max , then the time extension 150 corrects the control signal A by a time period Δt, which depends on the current value II at the switch-off time. The time period Δt is preferably dependent on the 32580 -
Differenz zwischen dem Stromwert II bei Abfall des Signals B und dem Stromwert Imax bei dem die erwartete Schaltzeit TS ermittelt wurde vorgegeben. Sind die beiden Stromwerte II und Imax gleich, so wird die Zeitdauer Δt zu 0. Ist der Stromwert II kleiner als der Stromwert Imax so wird die An¬ steuerung verlängert, wobei der Wert Δt, um den die Ansteue¬ rung verlängert wird, bei großen Abweichungen der beiden Werte größer ist als bei kleinen Abweichungen. Difference between the current value II when signal B drops and the current value I max at which the expected switching time TS was determined was specified. If the two current values II and I max are equal, the time period Δt becomes 0. If the current value II is smaller than the current value I max , the control is extended, the value Δt by which the control is extended, with large deviations of the two values is larger than with small deviations.

Claims

Ansprüche Expectations
1. Verfahren zur Ansteuerung eines elektromagnetischen Ver- brauchers, insbesondere eines Magnetventils zur Beeinflußung der in eine Brennkraftmaschine einzuspritzenden Kraftstoff- menge, wobei die Dauer der Ansteuerung des Magnetventils um eine Verzugszeit (Δt) korrigierbar ist, dadurch gekennzeich¬ net, daß die Verzugszeit (Δt) abhängig von dem Momentanwert (II) des Stroms zu einem AbsehaltZeitpunkt (t^) einstellbar ist.1. Method for controlling an electromagnetic consumer, in particular a solenoid valve for influencing the amount of fuel to be injected into an internal combustion engine, the duration of the solenoid valve activation being correctable by a delay time (Δt), characterized in that the delay time ( Δt) is adjustable depending on the instantaneous value (II) of the current at a time of departure (t ^).
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Verzugszeit (Δt) abhängig von der Differenz zwischen dem Momentanwert des Stroms (II) und einem Stromwert (Im x) vor¬ gebbar ist.2. The method according to claim 1, characterized in that the delay time (Δt) depending on the difference between the instantaneous value of the current (II) and a current value (I mx ) can be predetermined.
3. Verfahren nach Anspruch 1 oder 1, dadurch gekennzeichnet, daß die Verzugszeit abhängig von dem Momentanwert des Stroms (II) in einem Kennfeld abgelegt ist.3. The method according to claim 1 or 1, characterized in that the delay time is stored as a function of the instantaneous value of the current (II) in a map.
4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß bei einem kleinen Momentanwert des Stroms (II) ein gro¬ ßer Wert für die Verzugszeit (Δt) vorgebbar ist.4. The method according to claim 2 or 3, characterized in that with a small instantaneous value of the current (II) a large value for the delay time (Δt) can be predetermined.
5. Verfahren nach einem der Ansprüche 2 bis 4, dadurch ge¬ kennzeichnet, daß bei einem großen Momentanwert des Stroms (II) ein kleiner Wert für die Verzugszeit (Δt) vorgebbar ist. 5. The method according to any one of claims 2 to 4, characterized ge indicates that a small value for the delay time (Δt) can be predetermined for a large instantaneous value of the current (II).
6. Vorrichtung zur Ansteuerung eines elektromagnetischen Verbrauchers, insbesondere eines Magnetventils, das die in eine Brennkraftmaschine einzuspritzende Kraftstoffmenge be¬ einflußt, mit Mitteln, die die Dauer der Ansteuerung des Magnetventils um eine Verzugszeit (Δt) korrigieren, dadurch gekennzeichnet, daß Mittel vorgesehen sind, die die Verzugs¬ zeit (Δt) abhängig von dem Momentanwert (II) des Stroms zu einem Abschaltzeitpunkt (tη_) einstellen. 6. Device for controlling an electromagnetic consumer, in particular a solenoid valve, which influences the amount of fuel to be injected into an internal combustion engine, with means that correct the duration of the actuation of the solenoid valve by a delay time (Δt), characterized in that means are provided, which set the delay time (Δt) as a function of the instantaneous value (II) of the current at a switch-off time (tη_).
EP96909039A 1995-04-12 1996-04-12 Process and device for controlling an electromagnetic consumer Expired - Lifetime EP0765438B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19513878A DE19513878A1 (en) 1995-04-12 1995-04-12 Method and device for controlling an electromagnetic consumer
DE19513878 1995-04-12
PCT/DE1996/000642 WO1996032580A1 (en) 1995-04-12 1996-04-12 Process and device for controlling an electromagnetic consumer

Publications (2)

Publication Number Publication Date
EP0765438A1 true EP0765438A1 (en) 1997-04-02
EP0765438B1 EP0765438B1 (en) 2001-09-26

Family

ID=7759554

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96909039A Expired - Lifetime EP0765438B1 (en) 1995-04-12 1996-04-12 Process and device for controlling an electromagnetic consumer

Country Status (7)

Country Link
US (1) US5878722A (en)
EP (1) EP0765438B1 (en)
JP (1) JP4079993B2 (en)
KR (1) KR100413141B1 (en)
CN (1) CN1071406C (en)
DE (2) DE19513878A1 (en)
WO (1) WO1996032580A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3818607B2 (en) * 1997-01-27 2006-09-06 株式会社小松製作所 Control device and control method for cam-driven electronic control unit injector
JP4119116B2 (en) * 2001-08-02 2008-07-16 株式会社ミクニ Fuel injection method
DE10234265A1 (en) 2001-08-16 2003-02-27 Bosch Gmbh Robert Controlling electromagnetic load, especially magnetic valve for combustion engine fuel system, involves determining switching time and/or correction value starting from current value
JP4067384B2 (en) * 2002-10-30 2008-03-26 株式会社ミクニ Fuel injection method
KR20050097519A (en) * 2003-02-03 2005-10-07 가부시키가이샤 미쿠니 Method and device for fuel injection
DE102005056210A1 (en) * 2005-11-25 2007-05-31 Robert Bosch Gmbh Electrical current cycle control for electromagnetic actuator to provide safe closing of hydraulic valve in automobile braking system
DE102006059625A1 (en) 2006-12-14 2008-06-19 Robert Bosch Gmbh Device and method for controlling an electromagnetic valve
DE102009027311A1 (en) * 2009-06-30 2011-01-05 Robert Bosch Gmbh Method for operating an internal combustion engine
DE102010001261A1 (en) * 2010-01-27 2011-07-28 Robert Bosch GmbH, 70469 Control device for an electromagnetic actuator and method for operating an electromagnetic actuator
EP2672847B1 (en) 2011-02-11 2015-04-22 Batmark Limited Inhaler component
AT510837B1 (en) 2011-07-27 2012-07-15 Helmut Dr Buchberger INHALATORKOMPONENTE
JP5754357B2 (en) * 2011-11-18 2015-07-29 株式会社デンソー Fuel injection control device for internal combustion engine
JP6260501B2 (en) * 2013-10-11 2018-01-17 株式会社デンソー Fuel injection control device for internal combustion engine
JP6156307B2 (en) * 2013-10-11 2017-07-05 株式会社デンソー Fuel injection control device for internal combustion engine
DE102014208837A1 (en) * 2014-05-12 2015-11-12 Robert Bosch Gmbh Method for controlling an opening behavior of injection valves
GB2533135B (en) 2014-12-11 2020-11-11 Nicoventures Holdings Ltd Aerosol provision systems
CA3022340C (en) 2016-04-27 2021-09-21 Nicoventures Holdings Limited Electronic aerosol provision system and vaporizer therefor
DE112022001021T5 (en) * 2021-05-11 2023-12-28 Hitachi Astemo, Ltd. Fuel injection control device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57203845A (en) * 1981-06-08 1982-12-14 Nippon Denso Co Ltd Most suitable control device for internal-combustion engine
JP2521086B2 (en) * 1987-04-06 1996-07-31 株式会社ゼクセル Control device for fuel injection pump
DE3729954A1 (en) * 1987-09-07 1989-03-16 Sikora Gernot METHOD AND DEVICE FOR CONTROLLING INJECTION VALVES
DE3805033A1 (en) * 1988-02-18 1989-08-31 Bosch Gmbh Robert FUEL INJECTION PUMP FOR INTERNAL COMBUSTION ENGINES
IT1223958B (en) * 1988-11-30 1990-09-29 Marelli Autronica CLOSED RING CONTROL DEVICE FOR IDLE ROTATION SPEED OF AN INTERNAL COMBUSTION ENGINE
DE4020094C2 (en) * 1990-06-23 1998-01-29 Bosch Gmbh Robert Method and device for controlling an electromagnetic consumer
DE4120461C2 (en) * 1991-06-21 2000-09-14 Bosch Gmbh Robert Method and device for controlling a solenoid-controlled fuel metering system
DE4140043A1 (en) * 1991-12-05 1993-06-09 Robert Bosch Gmbh, 7000 Stuttgart, De Inductive load driving system esp. for IC engine control - measures current shortly after switch=on and immediately after switch=off and calculates effective value, e.g. by averaging
JPH05248300A (en) * 1992-03-04 1993-09-24 Zexel Corp Fuel injection device
DE69320826T2 (en) * 1992-03-26 1999-01-21 Zexel Corp Fuel injector
US5325837A (en) * 1992-11-19 1994-07-05 Robert Bosch Gmbh Fuel injection apparatus for internal combustion engines
DE4305488A1 (en) * 1993-02-23 1994-08-25 Bosch Gmbh Robert Control circuit for a solenoid valve
EP0644323B1 (en) * 1993-09-17 1997-12-10 Siemens Aktiengesellschaft Device for detecting an operation condition of an injection pump
DE4415361B4 (en) * 1994-05-02 2005-05-04 Robert Bosch Gmbh Method and device for controlling an electromagnetic consumer
US5646600A (en) * 1995-01-12 1997-07-08 General Electric Company Instrument for detecting potential future failures of valves in critical control systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9632580A1 *

Also Published As

Publication number Publication date
DE19513878A1 (en) 1996-10-17
DE59607756D1 (en) 2001-10-31
CN1150469A (en) 1997-05-21
EP0765438B1 (en) 2001-09-26
WO1996032580A1 (en) 1996-10-17
CN1071406C (en) 2001-09-19
JPH10501865A (en) 1998-02-17
JP4079993B2 (en) 2008-04-23
KR100413141B1 (en) 2004-04-30
US5878722A (en) 1999-03-09

Similar Documents

Publication Publication Date Title
EP0765438B1 (en) Process and device for controlling an electromagnetic consumer
EP0692067A1 (en) Process and device for driving an electromagnetic consumer
EP0764238B1 (en) Method and device for controlling an electromagnetic consumer
WO2008071533A1 (en) Device and method for controlling an electromagnetic valve
EP0840684B1 (en) Method and device for activating a solenoid valve
DE4322199A1 (en) Method and device for controlling an electromagnetic consumer
EP1430207B1 (en) Method and device for controlling an electromagnetic consumer
DE19735560B4 (en) Method and device for controlling a consumer
EP0720770B1 (en) Process and device for driving an electromagnetic consumer
DE10336606B4 (en) Actuation method and actuator for an actuator
EP0889223B1 (en) Process and device for detecting the switching time of an electrovalve
EP0801797A1 (en) Arrangement for controlling a consumer
EP1005051B1 (en) Method for driving an electromagnetic consumer
DE19646052A1 (en) Method and device for controlling a consumer
DE4335687A1 (en) Device for regulating a voltage drop across a consumer
DE4222650A1 (en) Method and device for controlling an electromagnetic consumer
DE102004029906B4 (en) Method and device for controlling an injection valve and computer program
DE4415361A1 (en) Method and device for controlling an electromagnetic consumer
DE4321127A1 (en) Device for controlling an electromagnetic consumer
DE10138483A1 (en) Control method for electromagnetic device for fuel metering in internal combustion engine, by correcting excitation based on duration of current pulse
DE102008018011B4 (en) Circuit arrangement for operating a capacitive load and use of such a circuit arrangement
DE19750027A1 (en) Method and device for controlling an electromagnetic consumer
DE10134332A1 (en) Controlling load, especially for fuel injection for IC engines, involves determining minimum separation between control process using parameter characterizing flow in load
DE10034458A1 (en) Electromagnetic valve actuator power supply, e.g. for IC engine fuel injector, has a boost voltage provided by capacitor
DE102014211897A1 (en) Method for operating an electromagnetic consumer, in particular an actuator of an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR IT

17P Request for examination filed

Effective date: 19970417

17Q First examination report despatched

Effective date: 19990304

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REF Corresponds to:

Ref document number: 59607756

Country of ref document: DE

Date of ref document: 20011031

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090626

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100506

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100427

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110412