EP0761832B1 - Heat resistant platinum based material - Google Patents

Heat resistant platinum based material Download PDF

Info

Publication number
EP0761832B1
EP0761832B1 EP96109856A EP96109856A EP0761832B1 EP 0761832 B1 EP0761832 B1 EP 0761832B1 EP 96109856 A EP96109856 A EP 96109856A EP 96109856 A EP96109856 A EP 96109856A EP 0761832 B1 EP0761832 B1 EP 0761832B1
Authority
EP
European Patent Office
Prior art keywords
platinum
weight
boron
zirconium
based material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96109856A
Other languages
German (de)
French (fr)
Other versions
EP0761832A1 (en
Inventor
Manfred Dr. Poniatowski
Ernst Dr. Drost
Stefan Zeuner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Degussa GmbH
Degussa Huels AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa GmbH, Degussa Huels AG filed Critical Degussa GmbH
Publication of EP0761832A1 publication Critical patent/EP0761832A1/en
Application granted granted Critical
Publication of EP0761832B1 publication Critical patent/EP0761832B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal

Definitions

  • the invention relates to a heat-resistant platinum material, for many uses in industry and in Laboratory can be used where there are special requirements mechanical, thermal and chemical resistance be required.
  • Such qualities are found in the platinum materials increasingly for high temperature use in the Glass industry, in petrochemicals, in laboratory equipment and in Spark plugs for engines needed.
  • a dispersoid preferably zirconium oxide and yttrium oxide are used.
  • a platinum material is used in US Pat. No. 4,123,263 Glass spinnerets described, the platinum 10 to 40% by weight rhodium, 0.015 to 1.5% by weight zirconium and / or Contains yttrium and 0.001 to 0.5% by weight boron.
  • the Manufacture is carried out using melting metallurgy Intermediate annealing during deformation.
  • This material has an improved creep resistance, Creep rupture strength and resistance to However, grain growth is insufficient.
  • the Rhodium additive which is responsible for the creep resistance of the Material is essentially responsible, considerable Additional costs and is for example when melting optical glasses undesirable because rhodium is in Glass melts in small amounts and dissolves a yellow color caused.
  • DD-PS 157 709 is a platinum metal alloy known, in addition to 0.5 to 5 wt.% Gold and / or nickel 0.01 to 0.5% by weight yttrium, 0.001 to 0.5% by weight calcium and Contains 0.001 to 0.5% by weight boron. This material will also made by melt metallurgy and can also be used in internally oxidized state can be used.
  • This object is achieved by a Platinum material dissolved, in addition to natural Impurities 0.10 to 0.35% by weight of zirconium and / or Zirconium oxide and 0.002 to 0.02% by weight boron and / or Contains boron oxide, the rest of platinum.
  • the material preferably contains 0.15 to 0.25% by weight. Zirconium and / or zirconium oxide and 0.005 to 0.01% by weight Boron and / or boron oxide.
  • zirconium additives to platinum alloys in Amounts of less than 0.5% by weight have a grain-refining effect demonstrate. This goes hand in hand with significantly higher strengths compared to the unalloyed platinum and also applies to the Creep resistance. At higher temperatures is one Coarse grain formation by secondary recrystallization, and as The consequence of this is an early failure due to a slip however inevitable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Insulated Conductors (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Catalysts (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

A heat-resistant platinum material with more than 99.5% by weight platinum, with high long-term creep resistance and low grain growth at high temperature contains 0.1 to 0.35% by weight zirconium and/or zirconium oxide and 0.002 to 0.02% by weight boron and/or boron oxide.

Description

Die Erfindung betrifft einen warmfesten Platinwerkstoff, der für viele Verwendungszwecke in der Industrie und im Labor einsetzbar ist, wo besondere Anforderungen an mechanische, thermische und chemische Beständigkeit gefordert werden.The invention relates to a heat-resistant platinum material, for many uses in industry and in Laboratory can be used where there are special requirements mechanical, thermal and chemical resistance be required.

Es sind verschiedene technische Lösungen bekannt geworden, um die Warmfestigkeit von Platin zu steigern. Die effizienteste Methode beruht auf der Dispersionshärtung, der gleichmäßigen Verteilung einer geringen Menge (z.B. <1 Gew.%) von thermisch stabilen, harten und im Grundmetall nicht löslichen Partikeln mit Teilchengröße < 50 nm. Dispersoide dieser Art hemmen die Versetzungsbewegung im Gitter und damit eine makroskopische Verformung über lange Zeit bei hohen Temperaturen. Sie verhindern so den vorzeitigen Materialausfall durch Kornvergröberung, Abgleiten und Bruch.Various technical solutions have become known to increase the heat resistance of platinum. The most efficient method is based on dispersion hardening, the even distribution of a small amount (e.g. <1% by weight) of thermally stable, hard and in the base metal insoluble particles with particle size <50 nm. Dispersoids of this type inhibit the dislocation movement in the Grid and thus a macroscopic deformation over a long period Time at high temperatures. So you prevent that premature loss of material due to grain coarsening, Slipping and breaking.

Bei den Platinwerkstoffen werden derartige Qualitäten in zunehmendem Maße für den Hochtemperatureinsatz in der Glasindustrie, in der Petrochemie, in Laborgeräten sowie in Zündkerzen für Motoren benötigt. Als Dispersoide werden vorzugsweise Zirkoniumoxid und Yttriumoxid verwendet.Such qualities are found in the platinum materials increasingly for high temperature use in the Glass industry, in petrochemicals, in laboratory equipment and in Spark plugs for engines needed. As a dispersoid preferably zirconium oxide and yttrium oxide are used.

Zur Herstellung dieser Werkstoffe werden verschiedene Varianten der Pulvermetallurgie genutzt, die jedoch grundsätzlich aufwendig sind und im Hinblick auf verschiedene Einsatzanforderungen nicht immer angewendet werden können.Various are used to manufacture these materials Variants of powder metallurgy used, however are fundamentally complex and with regard to different application requirements are not always applied can be.

Es sind daher auch Herstellwege beschritten worden, die auf der konventionellen Schmelzmetallurgie beruhen und mit legierungstechnischen Maßnahmen versuchen, eine Korngrößenstabilisierung zu erreichen.There have therefore also been manufacturing routes based on based on conventional smelting metallurgy and with try alloying measures, a To achieve grain size stabilization.

So wird in der US-PS 4 123 263 ein Platinwerkstoff für Glasspinndüsen beschrieben, der neben Platin 10 bis 40 Gew.% Rhodium, 0,015 bis 1,5 Gew.% Zirkonium und/oder Yttrium und 0,001 bis 0,5 Gew.% Bor enthält. Die Herstellung erfolgt schmelzmetallurgisch mit Zwischenglühungen bei der Verformung. Dieser Werkstoff weist zwar eine verbesserte Kriechbeständigkeit auf, Zeitstandfestigkeit und die Beständigkeit gegen Kornwachstum sind jedoch unzureichend. Außerdem bringt der Rhodiumzusatz, der für die Kriechbeständigkeit des Werkstoffs wesentlich verantwortlich ist, beträchtliche Zusatzkosten und ist beispielsweise beim Schmelzen optischer Gläser unerwünscht, da Rhodium sich in Glasschmelzen in geringen Mengen löst und eine Gelbfärbung verursacht.For example, a platinum material is used in US Pat. No. 4,123,263 Glass spinnerets described, the platinum 10 to 40% by weight rhodium, 0.015 to 1.5% by weight zirconium and / or Contains yttrium and 0.001 to 0.5% by weight boron. The Manufacture is carried out using melting metallurgy Intermediate annealing during deformation. This material has an improved creep resistance, Creep rupture strength and resistance to However, grain growth is insufficient. In addition, the Rhodium additive, which is responsible for the creep resistance of the Material is essentially responsible, considerable Additional costs and is for example when melting optical glasses undesirable because rhodium is in Glass melts in small amounts and dissolves a yellow color caused.

Aus der DD-PS 157 709 ist eine Platinmetallegierung bekannt, die neben 0,5 bis 5 Gew.% Gold und/oder Nickel 0,01 bis 0,5 Gew.% Yttrium, 0,001 bis 0,5 Gew.% Kalzium und 0,001 bis 0,5 Gew.% Bor enthält. Dieser Werkstoff wird ebenfalls schmelzmetallurgisch hergestellt und kann auch im innnerlich oxidierten Zustand eingesetzt werden.DD-PS 157 709 is a platinum metal alloy known, in addition to 0.5 to 5 wt.% Gold and / or nickel 0.01 to 0.5% by weight yttrium, 0.001 to 0.5% by weight calcium and Contains 0.001 to 0.5% by weight boron. This material will also made by melt metallurgy and can also be used in internally oxidized state can be used.

Die schmelzmetallurgische Verarbeitung von yttrium- und kalziumhaltigen Legierungen und die Einhaltung der notwendigen Toleranzen in der Konzentration sind nur schwer zu bewerkstelligen. Die geringe Duktilität derartiger Werkstoffe, insbesondere nach der inneren Oxidation, hat eine nur unbefriedigende Verarbeitbarkeit zu Geräten und anderen Formteilen zur Folge. Auch der Zusatz an Gold und/oder Nickel ist bei bestimmten Verwendungszwecken nicht erwünscht.The melting metallurgical processing of yttrium and calcium-containing alloys and compliance with necessary tolerances in concentration are difficult to accomplish. The low ductility of such Materials, especially after the internal oxidation an unsatisfactory processability to devices and other molded parts. Also the addition of gold and / or nickel is not for certain uses he wishes.

Es war daher Aufgabe der vorliegenden Erfindung einen warmfesten Platinwerkstoff mit einem Gehalt von mehr als 99,5 Gew.% Platin zu finden, der eine hohe Zeitstandsfestigkeit und ein geringes Kornwachstum bei hohen Temperaturen aufweist, und der leicht schmelzmetallurgisch hergestellt werden kann.It was therefore an object of the present invention heat-resistant platinum material containing more than 99.5% by weight of platinum, which is a high Creep rupture strength and low grain growth has high temperatures, and the light can be produced by melt metallurgy.

Diese Aufgabe wird erfindungsgemäß durch einen Platinwerkstoff gelöst, der neben natürlichen Verunreinigungen 0,10 bis 0,35 Gew.% Zirkonium und/oder Zirkoniumoxid und 0,002 bis 0,02 Gew.% Bor und/oder Boroxid, Rest Platin, enthält.This object is achieved by a Platinum material dissolved, in addition to natural Impurities 0.10 to 0.35% by weight of zirconium and / or Zirconium oxide and 0.002 to 0.02% by weight boron and / or Contains boron oxide, the rest of platinum.

Vorzugsweise enthält der Werkstoff 0,15 bis 0,25 Gew.% Zirkonium und/oder Zirkoniumoxid und 0,005 bis 0,01 Gew.% Bor und/oder Boroxid.The material preferably contains 0.15 to 0.25% by weight. Zirconium and / or zirconium oxide and 0.005 to 0.01% by weight Boron and / or boron oxide.

Es ist bekannt, daß Zirkoniumzusätze zu Platinlegierunge in Mengen von weniger als 0,5 Gew.% eine kornfeinende Wirkung zeigen. Dies geht einher mit deutlich höheren Festigkeiten im Vergleich zum unlegierten Platin und gilt auch für die Zeitstandsfestigkeit. Bei höheren Temperaturen ist eine Grobkornbildung durch sekundäre Rekristallisation, und als Folge davon ein frühzeitiger Ausfall durch Abgleitbruch jedoch unvermeidbar.It is known that zirconium additives to platinum alloys in Amounts of less than 0.5% by weight have a grain-refining effect demonstrate. This goes hand in hand with significantly higher strengths compared to the unalloyed platinum and also applies to the Creep resistance. At higher temperatures is one Coarse grain formation by secondary recrystallization, and as The consequence of this is an early failure due to a slip however inevitable.

Zusätze von geringsten Mengen Bor zum Zirkonium - diese liegen deutlich unter der bekannten Löslichkeitsgrenze (ca. 0,75 At.-% beziehungsweise 0,04 Gew.% Bor) - bewirken ein erheblich stabileres Feinkorngefüge mit einem mittleren Korndurchmesser von ca. 50 µm. Die Korngrenzen zeigen Säume beziehungsweise perlschnurartig angeordnete Partikel im Durchmesserbereich um 1 µm einer zweiten Phase. Mit Hilfe von Spektren der Röntgenphotoemession läßt sich zeigen, daß es sich um ZrB-Verbindungen handelt, die an den Korngrenzen angereichert sind und das Kornwachstum hemmen. Ein solches Gefüge erreicht eine viel höhere Zeitstandfestigkeit als Platin-Zirkonium-Legierungen ohne Borzusatz. Eine zusätzliche Verbesserung lässt sich erreichen, wenn vor dem Hochtemperatureinsatz durch eine Glühung an Luft diese Partikel ganz oder teilweise in ihre Oxide umgewandelt werden, wobei allerdings eine Vergröberung der Teilchen zu beobachten ist.Addition of the smallest amount of boron to the zirconium - these are well below the known solubility limit (approx. 0.75 at.% Or 0.04 wt.% Boron) - have an effect considerably more stable fine grain structure with a medium Grain diameter of approx. 50 µm. The grain boundaries show hems or pearl-like arranged particles in the Diameter range around 1 µm of a second phase. With help X-ray photoemission spectra show that it is ZrB connections that exist at the grain boundaries are enriched and inhibit grain growth. Such one Microstructure has a much higher creep rupture strength than Platinum-zirconium alloys without added boron. A additional improvement can be achieved if before High temperature use by annealing in air this Partially or partially converted into their oxides be, however, a coarsening of the particles watch is.

Überraschenderweise treten diese Verfestigungsmechanismen, verbunden mit einer starken Hemmung des Kornwachstums auch bei Platinwerkstoffen mit mehr als 99,5 Gew.% Platin auf, wenn man in den erfindungsgemäßen Zirkonium- und Borbereichen bleibt.Surprisingly, these solidification mechanisms occur combined with a strong inhibition of grain growth for platinum materials with more than 99.5% by weight of platinum, if you in the zirconium and Boron areas remains.

Zur Herstellung des Werkstoffs arbeitet man vorzugsweise mit Platin-Zirkonium- und Platin-Bor-Vorlegierungen, um die geringen Zirkonium- und Borgehalte im Werkstoff möglichst genau einstellen zu können.It is preferable to work to produce the material with platinum-zirconium and platinum-boron master alloys to achieve the low zirconium and boron content in the material if possible to be able to set exactly.

Folgende Beispiele sollen die Erfindung näher erläutern:

  • 1. 500 g reines Platin und 1,7 g einer Vorlegierung PtZr 35/65 Gew.% (eutektische Temperatur 1180° C) wurden im Vakuuminduktionsschmelzofen in einem Zirkoniumoxid-Tiegel unter Argon bei vermindertem Druck erschmolzen und zu einem kleinen Barren in eine gekühlte Kupferkokille vergossen. Daraus wurde durch Kaltwalzen ein Blech von 1 mm Dicke hergestellt (Walzgrad 90 %). Nach einer Schlußglühung (0,5 h, 1000° C) wurden die in der Tabelle angegebenen Materialkennwerte ermittelt. Die Soll-Zusammensetzung beträgt PtZr 0,22 %. PtZr0,22 ist eine konventionelle Legierung und dient zu Vergleichszwecken.
  • 2. 500 g reines Platin, 1,7 g einer Vorlegierung PtZr35/65 Gew.%, 5 g einer Vorlegierung PtB99/1 Gew.% wurden in gleicher Weise wie bei Beispiel 1 beschrieben hergestellt und zu Blech verarbeitet. Die Materialkennwerte sind ebenfalls in der Tabelle angegeben. Die Soll-Zusammensetzung beträgt PtZr0,21B0,009.
  • 3.-6. Mit jeweils variiertem B- und/oder Zr-Gehalt wurden in analoger Weise wie in Beispiel 2 Legierungen hergestellt. Wie die Tabelle zeigt, führen Zr-Gehalte <0,1 Gew.% zu deutlich niedrigeren Zugfestigkeiten (Rm) bei Raumtemperatur (RT) und auch zu verringerter Zeitstandfestigkeit (Rm) bei 1300° C, Zr-Gehalte >0,35 Gew.% erhöhen zwar die Festigkeit, schränken jedoch die Verarbeitbarkeit wegen geringerer Duktilität deutlich ein. In ähnlicher Weise ist die Wirksamkeit von Bor bei Konzentrationen von 0,005 Gew.% hinsichtlich der Zeitstandfestigkeit bereits deutlich eingeschränkt.
  • 7. Eine Legierung mit der Zusammensetzung von Beispiel 2 wird einer oxidativen Schlußglühung unterworfen, bei der die Korngrenzausscheidungen in thermisch stabilere Oxide umgewandelt werden. Dies führt zu einer Erhöhung der Zeitstandfestigkeit von 4,2 auf 5,8 Mpa. Dieser Vorteil ist allerdings verbunden mit einer geringeren Duktilität bei Raumtemperatur (10-15% anstatt 24 % Bruchdehnung).
  • 8. Dieses Beispiel dient dem Vergleich mit einem pulvermetallurgisch hergestellten Werkstoff (FKS-Platin). Kennzeichnend ist hier die wesentlich höhere Zeitstandfestigkeit mit allerdings geringeren Festigkeits- und Duktilitätswerten als bei den erfindungsgemäßen Werkstoffen. Zudem ist die aufwendige Herstellweise von PM-Werkstoffen nur gerechtfertigt bei besonderen thermomechanischen Einsatzbelastungen, während die erfindungsgemäß hergestellten Werkstoffe eine wirtschaftliche Alternative darstellen und den Einsatzbereich so deutlich vergrößern.
    Figure 00060001
  • The following examples are intended to illustrate the invention:
  • 1. 500 g of pure platinum and 1.7 g of a PtZr 35/65 wt shed. A sheet of 1 mm thickness was produced from it by cold rolling (degree of rolling 90%). After a final annealing (0.5 h, 1000 ° C), the material properties specified in the table were determined. The target composition is PtZr 0.22%. PtZr0.22 is a conventional alloy and is used for comparison purposes.
  • 2. 500 g of pure platinum, 1.7 g of a PtZr35 / 65% by weight master alloy, 5 g of a PtB99 / 1% by weight master alloy were produced in the same manner as described in Example 1 and processed into sheet metal. The material parameters are also given in the table. The target composition is PtZr0.21B0.009.
  • 3rd-6th Alloys with a varying B and / or Zr content were produced in a manner analogous to that in Example 2. As the table shows, Zr contents <0.1% by weight lead to significantly lower tensile strengths (Rm) at room temperature (RT) and also to reduced creep rupture strength (Rm) at 1300 ° C, Zr contents> 0.35%. % increase the strength, but significantly limit the processability due to the lower ductility. Similarly, the effectiveness of boron at concentrations of 0.005% by weight is already clearly limited in terms of creep rupture strength.
  • 7. An alloy with the composition of Example 2 is subjected to an oxidative final annealing, in which the grain boundary deposits are converted into more thermally stable oxides. This leads to an increase in creep rupture strength from 4.2 to 5.8 Mpa. However, this advantage is associated with a lower ductility at room temperature (10-15% instead of 24% elongation at break).
  • 8. This example is used to compare with a powder metallurgy material (FKS platinum). Characteristic here is the significantly higher creep rupture strength with, however, lower strength and ductility values than in the materials according to the invention. In addition, the complex production method of PM materials is only justified in the case of special thermomechanical application loads, while the materials produced according to the invention represent an economical alternative and thus significantly increase the area of use.
    Figure 00060001
  • Claims (2)

    1. High temperature-stable platinum-based material containing more than 99.5 wt-% platinum,
      characterised in that
      it contains, apart from naturally occurring impurities, from 0.1 to 0.35 wt-% zirconium and/or zirconium dioxide and from 0.002 to 0.02 wt-% boron and/or boron oxide, with the remainder platinum.
    2. Platinum-based material according to Claim 1,
      characterised in that
      it contains from 0.15 to 0.25 wt-% zirconium and/or zirconium oxide and from 0.005 to 0.01 wt-% boron and/or boron oxide.
    EP96109856A 1995-08-25 1996-06-19 Heat resistant platinum based material Expired - Lifetime EP0761832B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19531242 1995-08-25
    DE19531242A DE19531242C1 (en) 1995-08-25 1995-08-25 Hot strength platinum

    Publications (2)

    Publication Number Publication Date
    EP0761832A1 EP0761832A1 (en) 1997-03-12
    EP0761832B1 true EP0761832B1 (en) 1999-12-22

    Family

    ID=7770328

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP96109856A Expired - Lifetime EP0761832B1 (en) 1995-08-25 1996-06-19 Heat resistant platinum based material

    Country Status (6)

    Country Link
    US (1) US5730931A (en)
    EP (1) EP0761832B1 (en)
    JP (1) JP3894987B2 (en)
    AT (1) ATE187987T1 (en)
    BR (1) BR9603550A (en)
    DE (2) DE19531242C1 (en)

    Families Citing this family (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19714365A1 (en) * 1997-04-08 1998-10-15 Heraeus Gmbh W C Dispersion strengthening platinum material, process for its production and its use
    JP3666289B2 (en) * 1998-05-20 2005-06-29 株式会社デンソー Thermistor type temperature sensor
    JP3776296B2 (en) * 2000-06-28 2006-05-17 田中貴金属工業株式会社 Oxide dispersion strengthened platinum material and method for producing the same
    JP3778338B2 (en) * 2000-06-28 2006-05-24 田中貴金属工業株式会社 Method for producing oxide dispersion strengthened platinum material
    US6642567B1 (en) * 2000-08-31 2003-11-04 Micron Technology, Inc. Devices containing zirconium-platinum-containing materials and methods for preparing such materials and devices
    FR2820892B1 (en) * 2001-02-14 2003-05-02 Sagem PLATINUM ALLOY COMPOSITION FOR SPARK PLUG ELECTRODE FOR INTERNAL COMBUSTION ENGINE
    DE10203418C1 (en) * 2002-01-28 2003-02-27 Heraeus Gmbh W C Bath used for drawing glass fibers has side walls and a base plate with openings which open into dies on the side of the plate facing away from the inner chamber
    US7611280B2 (en) * 2003-12-16 2009-11-03 Harco Laboratories, Inc. EMF sensor with protective sheath
    DE102005038772B4 (en) * 2005-08-15 2013-04-18 Heraeus Materials Technology Gmbh & Co. Kg Wire of oxide dispersion strengthened Pt-Ir and other alloys with improved surface for spark plug electrodes
    DE102009012676A1 (en) * 2009-03-13 2010-09-16 W.C. Heraeus Gmbh Treatment of boron-containing alloys based on platinum group metals
    JP5308499B2 (en) * 2011-11-11 2013-10-09 田中貴金属工業株式会社 Platinum thermocouple

    Family Cites Families (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE670897C (en) * 1936-12-10 1939-01-27 Heraeus Gmbh W C Platinum alloys
    CH540984A (en) * 1968-01-20 1973-10-15 Degussa Process for the production of a dispersion hardened material
    US3709667A (en) * 1971-01-19 1973-01-09 Johnson Matthey Co Ltd Dispersion strengthening of platinum group metals and alloys
    US4014692A (en) * 1976-01-09 1977-03-29 Owens-Corning Fiberglas Corporation Platinum-rhodium alloys having low creep rates
    US4123263A (en) * 1977-11-02 1978-10-31 Owens-Corning Fiberglas Corporation Platinum-rhodium alloys
    FR2429264A1 (en) * 1978-06-20 1980-01-18 Louyot Comptoir Lyon Alemand PROCESS FOR THE MANUFACTURE OF A PLATINOID COMPRISING A DISPERSE PHASE OF A REFRACTORY OXIDE
    US4819859A (en) * 1987-12-18 1989-04-11 Ppg Industries, Inc. Lamination of oxide dispersion strengthened platinum and alloys
    JPH06212321A (en) * 1993-01-12 1994-08-02 Tanaka Kikinzoku Kogyo Kk Pt material excellent in high temperature characteristic

    Also Published As

    Publication number Publication date
    JPH09111366A (en) 1997-04-28
    US5730931A (en) 1998-03-24
    DE19531242C1 (en) 1996-10-31
    BR9603550A (en) 1998-05-19
    EP0761832A1 (en) 1997-03-12
    DE59603964D1 (en) 2000-01-27
    ATE187987T1 (en) 2000-01-15
    JP3894987B2 (en) 2007-03-22

    Similar Documents

    Publication Publication Date Title
    EP0870844B1 (en) Dispersion strengthened platinum alloy and a method for its production
    DE3634635C2 (en) Nickel aluminides and nickel iron aluminides for use in oxidizing environments
    DE69620998T2 (en) OXIDATION RESISTANT MOLYBENE ALLOY
    DE68915095T2 (en) Nickel-based alloy and process for its manufacture.
    DE69508319T2 (en) High-strength and highly ductile aluminum alloy and process for its production
    EP0761832B1 (en) Heat resistant platinum based material
    DE19813988C1 (en) Process for the production of a welded molded body consisting of finely divided, small particles of base metal oxide and strengthened platinum material, in particular a tube, in particular having at least one inner wall
    DE69106372T2 (en) ALLOY WITH LOW THERMAL EXPANSION COEFFICIENT AND ITEM PRODUCED FROM IT.
    DE1558622B2 (en) Alloys based on copper
    DE1483228B2 (en) ALUMINUM ALLOY WITH HIGH PERFORMANCE
    DE69017448T2 (en) ALLOY BASED ON NICKEL ALUMINUM FOR CONSTRUCTIVE APPLICATION AT HIGH TEMPERATURE.
    DE2751577A1 (en) PROCESS FOR MANUFACTURING FOLD-HARDENED COPPER ALLOYS AND THEIR USE FOR CONTACT SPRINGS
    DE202005021635U1 (en) platinum alloy
    DE2255824A1 (en) Process for the production of a zinc-based wrought alloy
    WO2000043560A1 (en) Aluminum-magnesium-silicon alloy
    EP0302255B1 (en) Use of a copper alloy for continuous-casting moulds
    EP0848070B1 (en) Heat resistant platinum material
    AT264147B (en) Machined tantalum alloy
    DE1483356A1 (en) Process for producing a tungsten-rhenium alloy
    DE102009047909B4 (en) Palladium jewelery alloy
    DE1301584B (en) Process for making an alloy from commercially pure iridium
    DE1758888C (en) Use of a creep-resistant, hardenable titanium alloy for objects with a high 0.2 limit, high-temperature strength, thermal stability, notch strength and notch impact strength
    DE1533423C (en) Niobium hafnium alloy of the mixed crystal type
    DE1533481C3 (en) Process for improving the mechanical properties of a dispersion-hardened metal or an alloy from the group consisting of copper and precious metals
    DE1483228C (en) Aluminum alloy with high creep strength

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19961216

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE FR GB IE IT LI NL

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 19990318

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: DEGUSSA-HUELS AKTIENGESELLSCHAFT

    RAP3 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: DEGUSSA-HUELS AKTIENGESELLSCHAFT

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE FR GB IE IT LI NL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 19991222

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 19991222

    REF Corresponds to:

    Ref document number: 187987

    Country of ref document: AT

    Date of ref document: 20000115

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 59603964

    Country of ref document: DE

    Date of ref document: 20000127

    ET Fr: translation filed
    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20000224

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000619

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000630

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000630

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000630

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20001116

    26N No opposition filed
    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    BERE Be: lapsed

    Owner name: DEGUSSA-HULS A.G.

    Effective date: 20000630

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20060615

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20060616

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20060619

    Year of fee payment: 11

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20070619

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20080229

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080101

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070619

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070702