EP0761832A1 - Heat resistant platinum based material - Google Patents

Heat resistant platinum based material Download PDF

Info

Publication number
EP0761832A1
EP0761832A1 EP96109856A EP96109856A EP0761832A1 EP 0761832 A1 EP0761832 A1 EP 0761832A1 EP 96109856 A EP96109856 A EP 96109856A EP 96109856 A EP96109856 A EP 96109856A EP 0761832 A1 EP0761832 A1 EP 0761832A1
Authority
EP
European Patent Office
Prior art keywords
weight
platinum
boron
zirconium
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96109856A
Other languages
German (de)
French (fr)
Other versions
EP0761832B1 (en
Inventor
Manfred Dr. Poniatowski
Ernst Dr. Drost
Stefan Zeuner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Degussa GmbH
Degussa Huels AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa GmbH, Degussa Huels AG filed Critical Degussa GmbH
Publication of EP0761832A1 publication Critical patent/EP0761832A1/en
Application granted granted Critical
Publication of EP0761832B1 publication Critical patent/EP0761832B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal

Definitions

  • the invention relates to a heat-resistant platinum material which can be used for many purposes in industry and in the laboratory, where special requirements for mechanical, thermal and chemical resistance are required.
  • Zirconium oxide and yttrium oxide are preferably used as dispersoids.
  • US Pat. No. 4,123,263 describes a platinum material for glass spinnerets which, in addition to platinum, contains 10 to 40% by weight of rhodium, 0.015 to 1.5% by weight of zirconium and / or yttrium and 0.001 to 0.5% by weight of boron contains.
  • the production is carried out by melt metallurgy with intermediate annealing during the deformation. Although this material has improved creep resistance, creep rupture strength and grain growth resistance are inadequate.
  • rhodium which is essentially responsible for the creep resistance of the material, entails considerable additional costs and is undesirable, for example, when melting optical glasses, since rhodium dissolves in small amounts in glass melts and causes a yellowing.
  • DD-PS 157 709 discloses a platinum metal alloy which, in addition to 0.5 to 5% by weight of gold and / or nickel, 0.01 to 0.5% by weight of yttrium, 0.001 to 0.5% by weight of calcium and 0.001 contains up to 0.5% by weight of boron. This material is also produced by melt metallurgy and can also be used in an internally oxidized state.
  • a platinum material which, in addition to natural impurities, contains 0.10 to 0.35% by weight of zirconium and / or zirconium oxide and 0.002 to 0.02% by weight of boron and / or boron oxide, the rest of platinum.
  • the material preferably contains 0.15 to 0.25% by weight of zirconium and / or zirconium oxide and 0.005 to 0.01% by weight of boron and / or boron oxide.
  • Platinum-zirconium and platinum-boron master alloys are preferably used to manufacture the material in order to be able to adjust the low zirconium and boron contents in the material as precisely as possible.

Abstract

A heat-resistant platinum material with more than 99.5% by weight platinum, with high long-term creep resistance and low grain growth at high temperature contains 0.1 to 0.35% by weight zirconium and/or zirconium oxide and 0.002 to 0.02% by weight boron and/or boron oxide.

Description

Die Erfindung betrifft einen warmfesten Platinwerkstoff, der für viele Verwendungszwecke in der Industrie und im Labor einsetzbar ist, wo besondere Anforderungen an mechanische, thermische und chemische Beständigkeit gefordert werden.The invention relates to a heat-resistant platinum material which can be used for many purposes in industry and in the laboratory, where special requirements for mechanical, thermal and chemical resistance are required.

Es sind verschiedene technische Lösungen bekannt geworden, um die Warmfestigkeit von Platin zu steigern. Die effizienteste Methode beruht auf der Dispersionshärtung, der gleichmäßigen Verteilung einer geringen Menge (z.B. <1 Gew.%) von thermisch stabilen, harten und im Grundmetall nicht löslichen Partikeln mit Teilchengröße < 50 nm. Dispersoide dieser Art hemmen die Versetzungsbewegung im Gitter und damit eine makroskopische Verformung über lange Zeit bei hohen Temperaturen. Sie verhindern so den vorzeitigen Materialausfall durch Kornvergröberung, Abgleiten und Bruch.Various technical solutions have been known for increasing the heat resistance of platinum. The most efficient method is based on dispersion hardening, the uniform distribution of a small amount (e.g. <1% by weight) of thermally stable, hard and insoluble particles in the base metal with particle size <50 nm Macroscopic deformation over a long period at high temperatures. In this way you prevent premature material failure due to grain coarsening, sliding and breaking.

Bei den Platinwerkstoffen werden derartige Qualitäten in zunehmendem Maße für den Hochtemperatureinsatz in der Glasindustrie, in der Petrochemie, in Laborgeräten sowie in Zündkerzen für Motoren benötigt. Als Dispersoide werden vorzugsweise Zirkoniumoxid und Yttriumoxid verwendet.In the case of platinum materials, such qualities are increasingly required for high-temperature use in the glass industry, in petrochemicals, in laboratory equipment and in spark plugs for engines. Zirconium oxide and yttrium oxide are preferably used as dispersoids.

Zur Herstellung dieser Werkstoffe werden verschiedene Varianten der Pulvermetallurgie genutzt, die jedoch grundsätzlich aufwendig sind und im Hinblick auf verschiedene Einsatzanforderungen nicht immer angewendet werden können.Various variants of powder metallurgy are used to manufacture these materials, but these are fundamentally complex and cannot always be used in view of different application requirements.

Es sind daher auch Herstellwege beschritten worden, die auf der konventionellen Schmelzmetallurgie beruhen und mit legierungstechnischen Maßnahmen versuchen, eine Korngrößenstabilisierung zu erreichen.Manufacturing routes based on conventional smelting metallurgy and therefore have also been followed Alloying measures attempt to stabilize the grain size.

So wird in der US-PS 4 123 263 ein Platinwerkstoff für Glasspinndüsen beschrieben, der neben Platin 10 bis 40 Gew.% Rhodium, 0,015 bis 1,5 Gew.% Zirkonium und/oder Yttrium und 0,001 bis 0,5 Gew.% Bor enthält. Die Herstellung erfolgt schmelzmetallurgisch mit Zwischenglühungen bei der Verformung. Dieser Werkstoff weist zwar eine verbesserte Kriechbeständigkeit auf, Zeitstandfestigkeit und die Beständigkeit gegen Kornwachstum sind jedoch unzureichend. Außerdem bringt der Rhodiumzusatz, der für die Kriechbeständigkeit des Werkstoffs wesentlich verantwortlich ist, beträchtliche Zusatzkosten und ist beispielsweise beim Schmelzen optischer Gläser unerwünscht, da Rhodium sich in Glasschmelzen in geringen Mengen löst und eine Gelbfärbung verursacht.For example, US Pat. No. 4,123,263 describes a platinum material for glass spinnerets which, in addition to platinum, contains 10 to 40% by weight of rhodium, 0.015 to 1.5% by weight of zirconium and / or yttrium and 0.001 to 0.5% by weight of boron contains. The production is carried out by melt metallurgy with intermediate annealing during the deformation. Although this material has improved creep resistance, creep rupture strength and grain growth resistance are inadequate. In addition, the addition of rhodium, which is essentially responsible for the creep resistance of the material, entails considerable additional costs and is undesirable, for example, when melting optical glasses, since rhodium dissolves in small amounts in glass melts and causes a yellowing.

Aus der DD-PS 157 709 ist eine Platinmetallegierung bekannt, die neben 0,5 bis 5 Gew.% Gold und/oder Nickel 0,01 bis 0,5 Gew.% Yttrium, 0,001 bis 0,5 Gew.% Kalzium und 0,001 bis 0,5 Gew.% Bor enthält. Dieser Werkstoff wird ebenfalls schmelzmetallurgisch hergestellt und kann auch im innnerlich oxidierten Zustand eingesetzt werden.DD-PS 157 709 discloses a platinum metal alloy which, in addition to 0.5 to 5% by weight of gold and / or nickel, 0.01 to 0.5% by weight of yttrium, 0.001 to 0.5% by weight of calcium and 0.001 contains up to 0.5% by weight of boron. This material is also produced by melt metallurgy and can also be used in an internally oxidized state.

Die schmelzmetallurgische Verarbeitung von yttrium- und kalziumhaltigen Legierungen und die Einhaltung der notwendigen Toleranzen in der Konzentration sind nur schwer zu bewerkstelligen. Die geringe Duktilität derartiger Werkstoffe, insbesondere nach der inneren Oxidation, hat eine nur unbefriedigende Verarbeitbarkeit zu Geräten und anderen Formteilen zur Folge. Auch der Zusatz an Gold und/oder Nickel ist bei bestimmten Verwendungszwecken nicht erwünscht.The melt metallurgical processing of alloys containing yttrium and calcium and compliance with the necessary tolerances in the concentration are difficult to accomplish. The low ductility of such materials, especially after internal oxidation, results in unsatisfactory processability into devices and other molded parts. The addition of gold and / or nickel is also not desirable for certain uses.

Es war daher Aufgabe der vorliegenden Erfindung einen warmfesten Platinwerkstoff mit einem Gehalt von mehr als 99,5 Gew.% Platin zu finden, der eine hohe Zeitstandsfestigkeit und ein geringes Kornwachstum bei hohen Temperaturen aufweist, und der leicht schmelzmetallurgisch hergestellt werden kann.It was therefore an object of the present invention to provide a heat-resistant platinum material with a content of more than To find 99.5% by weight of platinum, which has a high creep rupture strength and low grain growth at high temperatures, and which can easily be produced by melt metallurgy.

Diese Aufgabe wird erfindungsgemäß durch einen Platinwerkstoff gelöst, der neben natürlichen Verunreinigungen 0,10 bis 0,35 Gew.% Zirkonium und/oder Zirkoniumoxid und 0,002 bis 0,02 Gew.% Bor und/oder Boroxid, Rest Platin, enthält.This object is achieved according to the invention by a platinum material which, in addition to natural impurities, contains 0.10 to 0.35% by weight of zirconium and / or zirconium oxide and 0.002 to 0.02% by weight of boron and / or boron oxide, the rest of platinum.

Vorzugsweise enthält der Werkstoff 0,15 bis 0,25 Gew.% Zirkonium und/oder Zirkoniumoxid und 0,005 bis 0,01 Gew.% Bor und/oder Boroxid.The material preferably contains 0.15 to 0.25% by weight of zirconium and / or zirconium oxide and 0.005 to 0.01% by weight of boron and / or boron oxide.

Es ist bekannt, daß Zirkoniumzusätze zu Platinlegierunge in Mengen von weniger als 0,5 Gew.% eine kornfeinende Wirkung zeigen. Dies geht einher mit deutlich höheren Festigkeiten im Vergleich zum unlegierten Platin und gilt auch für die Zeitstandsfestigkeit. Bei höheren Temperaturen ist eine Grobkornbildung durch sekundäre Rekristallisation, und als Folge davon ein frühzeitiger Ausfall durch Abgleitbruch jedoch unvermeidbar.It is known that additions of zirconium to platinum alloys in amounts of less than 0.5% by weight show a grain-refining effect. This goes hand in hand with significantly higher strength compared to unalloyed platinum and also applies to creep rupture strength. At higher temperatures, coarse grain formation through secondary recrystallization, and as a result, premature failure due to slip fracture is unavoidable.

Zusätze von geringsten Mengen Bor zum Zirkonium - diese liegen deutlich unter der bekannten Löslichkeitsgrenze (ca. 0,75 At.-% beziehungsweise 0,04 Gew.% Bor) - bewirken ein erheblich stabileres Feinkorngefüge mit einem mittleren Korndurchmesser von ca. 50 µm. Die Korngrenzen zeigen Säume beziehungsweise perlschnurartig angeordnete Partikel im Durchmesserbereich um 1 µm einer zweiten Phase. Mit Hilfe von Spektren der Röntgenphotoemession läßt sich zeigen, daß es sich um ZrB-Verbindungen handelt, die an den Korngrenzen angereichert sind und das Kornwachstum hemmen. Ein solches Gefüge erreicht eine viel höhere Zeitstandfestigkeit als Platin-Zirkonium-Legierungen ohne Borzusatz. Eine zusätzliche Verbesserung lässt sich erreichen, wenn vor dem Hochtemperatureinsatz durch eine Glühung an Luft diese Partikel ganz oder teilweise in ihre Oxide umgewandelt werden, wobei allerdings eine Vergröberung der Teilchen zu beobachten ist.Additions of the smallest amounts of boron to the zirconium - these are well below the known solubility limit (approx. 0.75 at% or 0.04 wt.% Boron) - result in a considerably more stable fine grain structure with an average grain diameter of approx. 50 µm. The grain boundaries show hems or particles arranged in the manner of pearl strings in the diameter range around 1 µm of a second phase. With the help of spectra of the X-ray photoemession it can be shown that these are ZrB compounds that are enriched at the grain boundaries and inhibit grain growth. Such a structure achieves a much higher creep rupture strength than platinum-zirconium alloys without the addition of boron. An additional improvement can be achieved if it is annealed in air before high-temperature use Particles are wholly or partially converted into their oxides, although a coarsening of the particles can be observed.

Überraschenderweise treten diese Verfestigungsmechanismen, verbunden mit einer starken Hemmung des Kornwachstums auch bei Platinwerkstoffen mit mehr als 99,5 Gew.% Platin auf, wenn man in den erfindungsgemäßen Zirkonium- und Borbereichen bleibt.Surprisingly, these solidification mechanisms, combined with a strong inhibition of grain growth, also occur in platinum materials with more than 99.5% by weight of platinum if one stays in the zirconium and boron areas according to the invention.

Zur Herstellung des Werkstoffs arbeitet man vorzugsweise mit Platin-Zirkonium- und Platin-Bor-Vorlegierungen, um die geringen Zirkonium- und Borgehalte im Werkstoff möglichst genau einstellen zu können.Platinum-zirconium and platinum-boron master alloys are preferably used to manufacture the material in order to be able to adjust the low zirconium and boron contents in the material as precisely as possible.

Folgende Beispiele sollen die Erfindung näher erläutern:

  • 1. 500 g reines Platin und 1,7 g einer Vorlegierung PtZr 35/65 Gew.% (eutektische Temperatur 1180° C) wurden im Vakuuminduktionsschmelzofen in einem Zirkoniumoxid-Tiegel unter Argon bei vermindertem Druck erschmolzen und zu einem kleinen Barren in eine gekühlte Kupferkokille vergossen. Daraus wurde durch Kaltwalzen ein Blech von 1 mm Dicke hergestellt (Walzgrad 90 %). Nach einer Schlußglühung (0,5 h, 1000° C) wurden die in der Tabelle angegebenen Materialkennwerte ermittelt. Die Soll-Zusammensetzung beträgt PtZr 0,22 %. PtZr0,22 ist eine konventionelle Legierung und dient zu Vergleichszwecken.
  • 2. 500 g reines Platin, 1,7 g einer Vorlegierung PtZr35/65 Gew.%, 5 g einer Vorlegierung PtB99/1 Gew.% wurden in gleicher Weise wie bei Beispiel 1 beschrieben hergestellt und zu Blech verarbeitet. Die Materialkennwerte sind ebenfalls in der Tabelle angegeben. Die Soll-Zusammensetzung beträgt PtZr0,21B0,009.
  • 3.-6. Mit jeweils variiertem B- und/oder Zr-Gehalt wurden in analoger Weise wie in Beispiel 2 Legierungen hergestellt. Wie die Tabelle zeigt, führen Zr-Gehalte <0,1 Gew.% zu deutlich niedrigeren Zugfestigkeiten (Rm) bei Raumtemperatur (RT) und auch zu verringerter Zeitstandfestigkeit (Rm) bei 1300° C, Zr-Gehalte >0,35 Gew.% erhöhen zwar die Festigkeit, schränken jedoch die Verarbeitbarkeit wegen geringerer Duktilität deutlich ein. In ähnlicher Weise ist die Wirksamkeit von Bor bei Konzentrationen von 0,005 Gew.% hinsichtlich der Zeitstandfestigkeit bereits deutlich eingeschränkt.
  • 7. Eine Legierung mit der Zusammensetzung von Beispiel 2 wird einer oxidativen Schlußglühung unterworfen, bei der die Korngrenzausscheidungen in thermisch stabilere Oxide umgewandelt werden. Dies führt zu einer Erhöhung der Zeitstandfestigkeit von 4,2 auf 5,8 Mpa. Dieser Vorteil ist allerdings verbunden mit einer geringeren Duktilität bei Raumtemperatur (10-15% anstatt 24 % Bruchdehnung).
  • 8. Dieses Beispiel dient dem Vergleich mit einem pulvermetallurgisch hergestellten Werkstoff (FKS-Platin). Kennzeichnend ist hier die wesentlich höhere Zeitstandfestigkeit mit allerdings geringeren Festigkeits- und Duktilitätswerten als bei den erfindungsgemäßen Werkstoffen. Zudem ist die aufwendige Herstellweise von PM-Werkstoffen nur gerechtfertigt bei besonderen thermomechanischen Einsatzbelastungen, während die erfindungsgemäß hergestellten Werkstoffe eine wirtschaftliche Alternative darstellen und den Einsatzbereich so deutlich vergrößern.
Tabelle Beispiel Zusammensetzung (Gew.-%) Bearbeitungszustand Rm(RT) (Mpa) A (RT) (%) Rm(1300°C/100 h) (MPa) 1 PtZr0,22 1000°C/0,5 h/Ar 210 30 2,2 2 PtZr0,21B0,009 " 250 24 4,2 3 PtZr0,1B0,01 " 200 27 3,2 4 PtZr0,35B0,01 " 280 10 6,0 5 PtZr0,22B0,005 " 270 30 2,6 6 PtZr0,22B0,02 " 270 25 4,3 7 PtZr0,21B0,009 1000°C/0,5 h/Luft 260 10-15 5,7 8 FKS-Pt16 (PtZrO2) 1000°C/0,5 h/Luft 230 18 10,5 Rm = Zugfestigkeit bzw. Zeitstandfestigkeit A = Bruchdehnung
Die Zeitstanduntersuchungen bei 1300°C erfolgten mit Blechproben (0,5mm) in Luft-Atmosphäre.
The following examples are intended to illustrate the invention:
  • 1. 500 g of pure platinum and 1.7 g of a PtZr 35/65 wt shed. A sheet of 1 mm thickness was produced therefrom by cold rolling (degree of rolling 90%). After a final annealing (0.5 h, 1000 ° C), the material properties specified in the table were determined. The target composition is PtZr 0.22%. PtZr0.22 is a conventional alloy and is used for comparison purposes.
  • 2. 500 g of pure platinum, 1.7 g of a PtZr35 / 65% by weight master alloy, 5 g of a PtB99 / 1% by weight master alloy were produced in the same manner as described in Example 1 and processed into sheet metal. The material parameters are also given in the table. The target composition is PtZr0.21B0.009.
  • 3rd-6th Alloys with a varying B and / or Zr content were produced in a manner analogous to that in Example 2. As the table shows, Zr contents <0.1% by weight lead to significantly lower tensile strengths (Rm) at room temperature (RT) and also to reduced creep rupture strength (Rm) at 1300 ° C, Zr contents> 0.35%. % increase the strength, but significantly limit the processability due to the lower ductility. Similarly, the effectiveness of boron at concentrations of 0.005% by weight is already clearly limited in terms of creep rupture strength.
  • 7. An alloy with the composition of Example 2 is subjected to an oxidative final annealing, in which the grain boundary deposits are converted into more thermally stable oxides. This leads to an increase in creep rupture strength from 4.2 to 5.8 Mpa. However, this advantage is associated with a lower ductility at room temperature (10-15% instead of 24% elongation at break).
  • 8. This example is used to compare with a powder metallurgy material (FKS platinum). Characteristic here is the significantly higher creep rupture strength with, however, lower strength and ductility values than in the materials according to the invention. In addition, the complex production method of PM materials is only justified in the case of special thermomechanical application loads, while the materials produced according to the invention represent an economical alternative and thus significantly increase the area of use.
table example Composition (% by weight) Processing status R m (RT) (Mpa) A (RT) (%) R m (1300 ° C / 100 h) (MPa) 1 PtZr 0.22 1000 ° C / 0.5 h / ar 210 30th 2.2 2nd PtZr0.21B0.009 " 250 24th 4.2 3rd PtZr0.1B0.01 " 200 27 3.2 4th PtZr0.35B0.01 " 280 10th 6.0 5 PtZr0.22B0.005 " 270 30th 2.6 6 PtZr0.22B0.02 " 270 25th 4.3 7 PtZr0.21B0.009 1000 ° C / 0.5 h / air 260 10-15 5.7 8th FKS-Pt16 (PtZrO 2 ) 1000 ° C / 0.5 h / air 230 18th 10.5 R m = tensile strength or creep rupture strength A = elongation at break
The creep tests at 1300 ° C were carried out with sheet metal samples (0.5 mm) in an air atmosphere.

Claims (2)

Warmfester Platinwerkstoff mit einem Gehalt von mehr als 99,5 Gew.% Platin,
dadurch gekennzeichnet,
daß er neben natürlichen Verunreinigungen 0,1 bis 0,35 Gew.% Zirkonium und/oder Zirkoniumoxid und 0,002 bis 0,02 Gew.% Bor und/oder Boroxid, Rest Platin, enthält.
Heat-resistant platinum material with a content of more than 99.5% by weight of platinum,
characterized,
that it contains 0.1 to 0.35% by weight of zirconium and / or zirconium oxide and 0.002 to 0.02% by weight of boron and / or boron oxide, the rest of platinum, in addition to natural impurities.
Platinwerkstoff nach Anspruch 1,
dadurch gekennzeichnet,
daß er 0,15 bis 0,25 Gew.% Zirkonium und/oder Zirkoniumoxid und 0,005 bis 0,01 Gew.% Bor und/oder Boroxid enthält.
Platinum material according to claim 1,
characterized,
that it contains 0.15 to 0.25% by weight of zirconium and / or zirconium oxide and 0.005 to 0.01% by weight of boron and / or boron oxide.
EP96109856A 1995-08-25 1996-06-19 Heat resistant platinum based material Expired - Lifetime EP0761832B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19531242 1995-08-25
DE19531242A DE19531242C1 (en) 1995-08-25 1995-08-25 Hot strength platinum

Publications (2)

Publication Number Publication Date
EP0761832A1 true EP0761832A1 (en) 1997-03-12
EP0761832B1 EP0761832B1 (en) 1999-12-22

Family

ID=7770328

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96109856A Expired - Lifetime EP0761832B1 (en) 1995-08-25 1996-06-19 Heat resistant platinum based material

Country Status (6)

Country Link
US (1) US5730931A (en)
EP (1) EP0761832B1 (en)
JP (1) JP3894987B2 (en)
AT (1) ATE187987T1 (en)
BR (1) BR9603550A (en)
DE (2) DE19531242C1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19758724C2 (en) * 1997-04-08 2002-12-12 Heraeus Gmbh W C Dispersion-strengthened platinum-gold material, process for its production and its use
JP3666289B2 (en) * 1998-05-20 2005-06-29 株式会社デンソー Thermistor type temperature sensor
JP3776296B2 (en) * 2000-06-28 2006-05-17 田中貴金属工業株式会社 Oxide dispersion strengthened platinum material and method for producing the same
JP3778338B2 (en) * 2000-06-28 2006-05-24 田中貴金属工業株式会社 Method for producing oxide dispersion strengthened platinum material
US6642567B1 (en) * 2000-08-31 2003-11-04 Micron Technology, Inc. Devices containing zirconium-platinum-containing materials and methods for preparing such materials and devices
FR2820892B1 (en) * 2001-02-14 2003-05-02 Sagem PLATINUM ALLOY COMPOSITION FOR SPARK PLUG ELECTRODE FOR INTERNAL COMBUSTION ENGINE
DE10203418C1 (en) * 2002-01-28 2003-02-27 Heraeus Gmbh W C Bath used for drawing glass fibers has side walls and a base plate with openings which open into dies on the side of the plate facing away from the inner chamber
US7611280B2 (en) * 2003-12-16 2009-11-03 Harco Laboratories, Inc. EMF sensor with protective sheath
DE102005038772B4 (en) * 2005-08-15 2013-04-18 Heraeus Materials Technology Gmbh & Co. Kg Wire of oxide dispersion strengthened Pt-Ir and other alloys with improved surface for spark plug electrodes
DE102009012676A1 (en) * 2009-03-13 2010-09-16 W.C. Heraeus Gmbh Treatment of boron-containing alloys based on platinum group metals
JP5308499B2 (en) * 2011-11-11 2013-10-09 田中貴金属工業株式会社 Platinum thermocouple

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4014692A (en) * 1976-01-09 1977-03-29 Owens-Corning Fiberglas Corporation Platinum-rhodium alloys having low creep rates
US4123263A (en) * 1977-11-02 1978-10-31 Owens-Corning Fiberglas Corporation Platinum-rhodium alloys

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE670897C (en) * 1936-12-10 1939-01-27 Heraeus Gmbh W C Platinum alloys
CH540984A (en) * 1968-01-20 1973-10-15 Degussa Process for the production of a dispersion hardened material
US3709667A (en) * 1971-01-19 1973-01-09 Johnson Matthey Co Ltd Dispersion strengthening of platinum group metals and alloys
FR2429264A1 (en) * 1978-06-20 1980-01-18 Louyot Comptoir Lyon Alemand PROCESS FOR THE MANUFACTURE OF A PLATINOID COMPRISING A DISPERSE PHASE OF A REFRACTORY OXIDE
US4819859A (en) * 1987-12-18 1989-04-11 Ppg Industries, Inc. Lamination of oxide dispersion strengthened platinum and alloys
JPH06212321A (en) * 1993-01-12 1994-08-02 Tanaka Kikinzoku Kogyo Kk Pt material excellent in high temperature characteristic

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4014692A (en) * 1976-01-09 1977-03-29 Owens-Corning Fiberglas Corporation Platinum-rhodium alloys having low creep rates
US4123263A (en) * 1977-11-02 1978-10-31 Owens-Corning Fiberglas Corporation Platinum-rhodium alloys

Also Published As

Publication number Publication date
US5730931A (en) 1998-03-24
EP0761832B1 (en) 1999-12-22
DE19531242C1 (en) 1996-10-31
ATE187987T1 (en) 2000-01-15
DE59603964D1 (en) 2000-01-27
JP3894987B2 (en) 2007-03-22
JPH09111366A (en) 1997-04-28
BR9603550A (en) 1998-05-19

Similar Documents

Publication Publication Date Title
EP0870844B1 (en) Dispersion strengthened platinum alloy and a method for its production
DE3634635C2 (en) Nickel aluminides and nickel iron aluminides for use in oxidizing environments
DE3621671A1 (en) HIGH STRENGTH TI ALLOY MATERIAL WITH IMPROVED MACHINABILITY AND METHOD FOR THE PRODUCTION THEREOF
DE1935329B2 (en) Process for the production of workpieces from dispersion-reinforced metals or alloys
EP0761832B1 (en) Heat resistant platinum based material
DE3244802C2 (en) Dental alloys for crowns and prostheses
CH665222A5 (en) COPPER-NICKEL-TIN-TITANIUM ALLOY, METHOD FOR THEIR PRODUCTION AND THEIR USE.
DE2751577A1 (en) PROCESS FOR MANUFACTURING FOLD-HARDENED COPPER ALLOYS AND THEIR USE FOR CONTACT SPRINGS
EP0884397A1 (en) Use of a molybdenum and/or tungsten alloy for construction elements, in contact with molten glas and/or ceramic substances
EP0302255B1 (en) Use of a copper alloy for continuous-casting moulds
EP3971311A1 (en) Improved dispersion-hardened precious metal alloy
DE19514803C2 (en) Manufacturing process for a molded part from a copper (CU) -zirconium (Zr) -Cer (Ce) -lanthan (La) alloy by thermomechanical treatment
EP0848070B1 (en) Heat resistant platinum material
AT264147B (en) Machined tantalum alloy
DE1533481C3 (en) Process for improving the mechanical properties of a dispersion-hardened metal or an alloy from the group consisting of copper and precious metals
DE1758888C (en) Use of a creep-resistant, hardenable titanium alloy for objects with a high 0.2 limit, high-temperature strength, thermal stability, notch strength and notch impact strength
DE1301584B (en) Process for making an alloy from commercially pure iridium
DE1533423C (en) Niobium hafnium alloy of the mixed crystal type
DE2748056C3 (en) Copper based alloy
DE1608109C (en) At comparatively low temperatures, ductile, easily castable chromium alloy with high strength and high heat resistance
DE1533267B1 (en) Platinum metal alloy
DE102009047909B4 (en) Palladium jewelery alloy
DE1533423B1 (en) NIOB HAFNIUM ALLOY OF THE MIXED CRYSTAL TYPE
DE1483241B2 (en) Titanium alloy
DE3418050A1 (en) Fine-grained dental alloys for porcelain facings based on palladium

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19961216

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IE IT LI NL

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19990318

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEGUSSA-HUELS AKTIENGESELLSCHAFT

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEGUSSA-HUELS AKTIENGESELLSCHAFT

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IE IT LI NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19991222

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19991222

REF Corresponds to:

Ref document number: 187987

Country of ref document: AT

Date of ref document: 20000115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59603964

Country of ref document: DE

Date of ref document: 20000127

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000224

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000630

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001116

26N No opposition filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: DEGUSSA-HULS A.G.

Effective date: 20000630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060615

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060616

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060619

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070619

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070702