EP0756635A1 - Capteur biochimique - Google Patents

Capteur biochimique

Info

Publication number
EP0756635A1
EP0756635A1 EP96904154A EP96904154A EP0756635A1 EP 0756635 A1 EP0756635 A1 EP 0756635A1 EP 96904154 A EP96904154 A EP 96904154A EP 96904154 A EP96904154 A EP 96904154A EP 0756635 A1 EP0756635 A1 EP 0756635A1
Authority
EP
European Patent Office
Prior art keywords
yeast cells
molecules
type
biochemical sensor
biochemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96904154A
Other languages
German (de)
English (en)
Inventor
Jacques Gremillet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0756635A1 publication Critical patent/EP0756635A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/808Optical sensing apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/973Simultaneous determination of more than one analyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S436/00Chemistry: analytical and immunological testing
    • Y10S436/805Optical property
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S436/00Chemistry: analytical and immunological testing
    • Y10S436/807Apparatus included in process claim, e.g. physical support structures
    • Y10S436/809Multifield plates or multicontainer arrays

Definitions

  • the field of the invention is that of molecular sensors, capable of specifically recognizing molecules and detecting very low contents.
  • This type of sensor is particularly interesting in fields as varied as the detection and identification of combat gas, various pollution, narcotics, perfume ..., as soon as we look for the presence of molecules specific whether simple architecture or particularly sophisticated.
  • sensors are mainly the ability to recognize a type of molecule and the possibility of amplifying this molecular recognition so as to detect sufficient information to be able to be exploited.
  • sensors already exist which operate on the use of antibodies (for specific recognition) and of enzymatic amplification processes for the transmission of information.
  • certain tests for detecting molecules operate according to the following principle: A specific antibody (AC-j) of the molecule to be detected is fixed on a membrane; the whole is immersed in a solution containing molecules to be detected (J), allowing the pairing of the antibody (AC-
  • - (J) assembly can be immersed in another solution containing another specific anti-J antibody AC2 which can itself be attached to an enzyme.
  • the structure described in FIG. 1 is then obtained.
  • This molecular grouping can, via the enzyme, transform an entity S into product P at a speed dependent on the catalytic power of the enzyme.
  • the enzymatic amplification thus obtained makes it possible to produce a detectable amount of product P even when the molecules to be captured are in very low concentrations. Typically, acidity, basicity, color or any other physico-chemical phenomenon can appear.
  • a scheme consists in using an interface between the external medium and a reaction medium connected to a detector, this interface comprising different capture sites targeted molecules and the enzymatic amplification being carried out within the reaction medium.
  • the different capture sites must be able to trigger the enzymatic amplification process as soon as they have captured the molecules that we are trying to detect. They must therefore fulfill the following two functions: selectively capture a type of molecules and transmit the information from this capture to a reaction medium which generates by enzymatic amplification, a sufficient signal to the detector (transducer of chemical information into information physical).
  • transmembrane receptors integrated within a membrane made up of phospholipids. These transmembrane receptors are made up of transverse elements (type proteins organized in a helix) linked together by molecular bridges, as illustrated in FIGS. 2a and 2b. This set creates on each side of the membrane a reception site, the steric form of which depends on the molecular bridges and on the relative position of the transverse elements allowing, on the external medium side, the capture of a type of molecule (M) for which the transmembrane receptor is adapted, and transmitting the deformation associated with capture, in the reaction medium.
  • M type of molecule
  • is able to trigger within the cellular medium, a whole process of reactions via enzymes in particular, present in the medium. More specifically, it is known that certain cells see their reproduction process by mitosis (indirect division of cells, into identical cells) disturbed during the capture of certain messenger molecules. Thus when capturing molecules via transmembrane receptors, it is possible to modify the mechanisms intracellular so as to make certain proteins act at the level of genes active in matters of cell reproduction.
  • yeast cells appear to be very good candidates for producing biochemical sensors because of their low cost and their robustness compared to other living cells whose maintenance in functional state is problematic and especially thanks to the current knowledge of their genetic heritage.
  • the subject of the invention is a biochemical sensor based on yeast cells, the genetic heritage of which has been modified so that said yeast cells are able to pick up a certain type of molecule and at the end of this capture generates detectable information.
  • the invention proposes a biochemical sensor characterized in that it comprises:
  • a substrate on which yeast cells are deposited capable of capturing a type of messenger (M) and of producing, after this capture, a chemical entity (P);
  • the chemical entity produced can advantageously be an optically recognizable protein.
  • the detection means can be of the optical density measurement, fluorescence measurement, light polarization measurement, etc. type.
  • the substrate is a nourishing medium allowing the reproduction of yeast cells.
  • It can advantageously be an anhydrous gel loaded with minerals, sugar etc., on which the yeast cells are deposited, activated subsequently by humidification.
  • FIG. 1 illustrates a reaction scheme used in a screening test for molecules in solution, according to known art
  • FIG. 2 shows schematically the principle of capture sites existing in living microorganisms; * Figure 2a shows schematically a sectional view of transmembrane receiver;
  • FIG. 2b shows schematically a top view of a transmembrane receiver
  • the biochemical sensor according to the invention comprises a sensitive detection layer produced from the deposit of cells whose genetic heritage has been modified. These genetic modifications can be carried out by mutagenesis and / or by genetic engineering techniques, followed by a selection from cells obtained from cells sensitive to a given chemical compound (or to a range of compounds).
  • mutagenesis is a natural process that involves the random modification of certain genes. By heating, in particular, this natural process can be accelerated over a very large number of times in order to cause natural genetic mutations in order to obtain new transmembrane receptors adapted to the capture of targeted molecules.
  • the yeast cells used in the biochemical sensor according to the invention have not only been deceived in order to make them sensitive to different types of molecules, but they have also been so to make them capable of producing an entity. particular detectable, attesting to the capture of the targeted molecules.
  • the genome, the whole genetic heritage, of yeast cells is better and better controlled, it thus becomes possible by the identification of genes and their functions to come by genetic manipulation, to disturb this heritage in order to change some features. So we can come and insert certain elements into this genetic heritage, making it possible to adapt transmembrane receptors to different types of molecules.
  • the capture of a given type of molecule can in turn trigger a whole chain of specific chemical reactions leading to the specific appearance of a protein. especially.
  • This protein can be selected for its optical properties.
  • yeast cells are isolated, the genetic manipulation of which has led to making the yeast cell sensitive to molecules other than those which are naturally capable of being captured and has also led to the entity production
  • This experiment can be carried out and adapted to different types of molecules (M) so as to have a series of sensors based on yeast cells responding specifically to molecules (Mi) with identical or non-entity production (P) to detect.
  • the sensor according to the invention can more generally identify a whole series of molecules (M) when it results from the association of N elementary biological sensors designed to recognize each a specific type of molecules (Mi).
  • a mosaic of N elementary sensors can be produced, capable of producing the same colored protein when they capture a molecule (Mi).
  • Mi molecule

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

L'invention concerne un capteur biochimique comprenant un substrat sur lequel sont déposées des cellules de levure capables de capturer un type de molécules (M) et de produire à l'issue de la capture une entité chimique (P), il comprend également des moyens de détection de l'entité (P). Les cellules de levure utilisées sont des cellules de levure obtenues par manipulation génétique et dont les sites de capture ont été adaptés au type de molécules (M). Application: détection de polluants, de stupéfiants, de parfum, etc.

Description

CAPTEUR BIOCHIMIQUE
Le domaine de l'invention est celui des capteurs moléculaires, capables de reconnaître spécifiquement des molécules et d'en détecter des teneurs très faibles.
Ce type de capteurs s'avère particulièrement intéressant dans des domaines aussi variés que la détection et l'identification de gaz de combat, de pollution diverse, de stupéfiants, de parfum..., dès lors que l'on recherche la présence de molécules spécifiques qu'elles soient d'architecture simple ou particulièrement sophistiquée.
Les caractéristiques de tels capteurs sont principalement l'aptitude à reconnaître un type de molécule et la possibilité d'amplifier cette reconnaissance moléculaire de manière à détecter une information suffisante pour pouvoir être exploitée. II existe déjà à l'heure actuelle des capteurs fonctionnant sur l'utilisation d'anticorps (pour la reconnaissance spécifique) et de processus d'amplification enzymatique pour la transmission de l'information.
A titre d'exemple, certains tests de dépistages de molécules fonctionnent selon le principe suivant : Un anticorps spécifique (AC-j ) de la molécule à détecter est fixé sur une membrane ; on plonge l'ensemble dans une solution contenant des molécules à détecter (J), permettant l'appariement de l'anticorps (AC-|) et de la molécule (J), l'appariement s'opérant à un endroit spécifique de ladite molécule. Dans un second temps l'ensemble AC-|-(J) peut être plongé dans une autre solution contenant un autre anticorps anti J spécifique AC2 pouvant être lui-même fixé à une enzyme. On obtient alors la structure décrite à la figure 1. Ce groupement moléculaire peut via l'enzyme transformer une entité S en produit P à une vitesse dépendant du pouvoir catalytique de l'enzyme. L'amplification enzymatique ainsi obtenue permet de produire une quantité détectable de produit P même lorsque les molécules à capter sont en très faibles concentrations. On peut typiquement faire apparaître une acidité, une basicité, une coloration ou tout autre phénomène physico-chimique.
Dans ce type de procédé, deux inconvénients majeurs persistent pour les applications ciblées dans la présente demande. En effet, ce procédé est limité à la détection en solution, de plus il nécessite d'opérer en deux temps.
Pour envisager la conception de capteurs biochimiques sélectifs et capables de détecter de très faibles teneurs de molécule dans un milieu ambiant, un schéma consiste à utiliser une interface entre le milieu extérieur et un milieu réactionnel connecté à un détecteur, cette interface comprenant différents sites de capture des molécules ciblées et l'amplification enzymatique étant menée au sein du milieu réactionnel.
Les différents sites de capture doivent être en mesure de déclencher le processus d'amplification enzymatique dès lors qu'ils ont capté les molécules que l'on cherche à détecter. Ils doivent donc remplir les deux fonctions suivantes : capturer sélectivement un type de molécules et transmettre l'information de cette capture à un milieu réactionnel qui lui génère par l'amplification enzymatique, un signal suffisant au détecteur (transducteur d'une information chimique en information physique).
Pour assurer ces différentes fonctions, les milieux cellulaires vivants disposent de récepteurs transmembranaires intégrés au sein d'une membrane constituée de phospho-lipides. Ces récepteurs transmembranaires sont constitués d'éléments transversaux (type protéines organisées en hélice) reliés entre eux par des ponts moléculaires, comme illustrés en figures 2a et 2b. Cet ensemble réalise de chaque côté de la membrane un site d'accueil dont la forme stérique dépend des ponts moléculaires et de la position relative des éléments transversaux permettant, côté milieu extérieur, la capture d'un type de molécule (M) pour laquelle le récepteur transmembranaire est adapté, et transmettant la déformation associée à la capture, dans le milieu réactionnel. Cette distorsion au niveau du site s-| est en mesure de déclencher au sein du milieu cellulaire, tout un processus de réactions via des enzymes notamment, présentes dans le milieu. Plus précisément, il est connu que certaines cellules voient leur processus de reproduction par mitose (division indirecte des cellules, en cellules identiques) perturbée lors de la capture de certaines molécules messager. Ainsi lors de la capture de molécules via des récepteurs transmembranaires, il est possible de modifier les mécanismes intracellulaires de manière à faire agir certaines protéines au niveau des gênes actifs en matière de reproduction cellulaire.
D'autre part, parmi les microorganismes connus, les cellules de levure apparaissent comme de très bons candidats pour réaliser des capteurs biochimiques en raison de leur faible coût, de leur robustesse par rapport à d'autres cellules vivantes dont le maintien en état fonctionnel est problématique et surtout grâce à la connaissance actuelle de leur patrimoine génétique.
Aussi, l'invention a pour objet un capteur biochimique à base de cellules de levure, dont le patrimoine génétique a été modifié de manière à ce que lesdites cellules de levure soient en mesure de capter un certain type de molécules et à l'issue de cette capture génèrent une information détectable.
Plus précisément, l'invention propose un capteur biochimique caractérisé en ce qu'il comprend :
- un substrat sur lequel sont déposées des cellules de levure, capables de capturer un type de messager (M) et de produire à l'issue de cette capture une entité chimique (P) ;
- des moyens de détection de l'entité chimique produite. L'entité chimique produite peut avantageusement être une protéine reconnaissable optiquement. Les moyens de détection peuvent être de type mesure de densité optique, mesure de fluorescence, mesure de la polarisation de la lumière etc..
Le substrat est un milieu nourricier permettant la reproduction des cellules de levure.
Il peut s'agir avantageusement d'un gel anhydre chargé en minéraux, en sucre etc., sur lequel sont déposées les cellules de levure, activées ultérieurement par humidification.
L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description qui va suivre et grâce aux figures annexées parmi lesquelles :
- la figure 1 illustre un schéma réactionnel utilisé dans un test de dépistage de molécules en solution, selon l'art connu ;
- la figure 2 schématise le principe de sites de captures existant dans des microorganismes vivants ; * la figure 2a schématise une vue en coupe de récepteur transmembranaire ;
* la figure 2b schématise une vue de dessus d'un récepteur transmembranaire ; Le capteur biochimique selon l'invention comprend un couche sensible de détection réalisée à partir du dépôt de cellules dont on a modifié le patrimoine génétique. Ces modifications génétiques peuvent être effectuées par mutagénèse et/ou par les techniques de génie génétique, suivies d'une sélection parmi les cellules obtenues de cellules sensibles à un composé chimique donné (ou à une gamme de composés). Ainsi peut-on arriver à leurrer une cellule de levure dont la reproduction par mitose peut être arrêtée lors de la capture d'un type bien particulier de molécules, et parvenir à stopper également ce processus de reproduction via la capture d'un autre type de molécule. La mutagénèse est un processus naturel qui consiste en la modification aléatoire de certains gènes. On peut par chauffage notamment accélérer ce processus naturel et ce sur un très grand nombre de fois pour arriver à provoquer des mutations génétiques naturelles en vue d'obtenir de nouveaux récepteurs transmembranaires adaptés à la capture de molécules ciblées.
De préférence, les cellules de levure utilisées dans le capteur biochimique selon l'invention n'ont pas seulement été leurrées en vue de les rendre sensibles à différents types de molécules, mais elles l'ont également été pour les rendre capables de produire une entité particulière détectable, attestant de la capture des molécules ciblées.
A l'heure actuelle, le génome, ensemble du patrimoine génétique, des cellules de levure est de mieux en mieux maîtrisé, il devient ainsi possible par l'identification des gènes et de leurs fonctions de venir par manipulation génétique, perturber ce patrimoine pour en changer certaines caractéristiques. Ainsi peut-on venir insérer certains éléments dans ce patrimoine génétique, permettant d'adapter les récepteurs transmembranaires à différents types de molécules. La capture d'un type de molécule donnée peut à son tour déclencher toute une chaîne de réactions chimiques spécifiques conduisant à l'apparition spécifique d'une protéine notamment. Cette protéine peut être sélectionnée pour ses propriétés optiques.
Ainsi en réalisant toute une série de tests, on isole les cellules de levure dont la manipulation génétique a conduit à rendre sensible la cellule de levure à d'autres molécules que celles qui naturellement sont susceptibles d'être capturées et a conduit de plus à la production d'entité
•spécifique.
Cette expérimentation peut être effectuée et adaptée à différents types de molécules (M) de manière à disposer d'une série de capteurs à base de cellules de levures répondant spécifiquement à des molécules (Mi) avec production identique ou non d'entité (P) à détecter.
Le capteur selon l'invention peut de façon plus générale identifier toute une série de molécules (M) lorsqu'il résulte de l'association de N capteurs biologiques élémentaires conçus pour reconnaître chacun un type précis de molécules (Mi).
A titre d'exemple on peut réaliser une mosaïque de N capteurs élémentaires, capables de produire une même protéine colorée lors de leur capture d'une molécule (Mi). Ainsi en analysant l'ensemble de la réponse d'un tel capteur on peut remonter à l'identification de molécules spécifiques, présentes dans un milieu.

Claims

REVENDICATIONS
1. Capteur biochimique caractérisé en ce qu'il comprend :
- un substrat sur lequel sont déposées des cellules de levure, capables de capturer un type de molécules (M) et de produire à l'issue de cette capture une entité chimique (P) ;
- des moyens de détection de l'entité chimique produite (P).
2. Capteur biochimique selon la revendication 1, caractérisé en ce que les cellules de levure sont des cellules de levure obtenues par mutagénèse de manière à adapter les sites de captures desdites cellules au type de molécules (M).
3. Capteur biochimique selon la revendication 1 , caractérisé en ce que les cellules de levure sont des cellules de levure obtenues par manipulation génétique du patrimoine desdites cellules de manière à adapter les sites de captures desdites cellules à un type de molécules (M).
4. Capteur biochimique selon l'une des revendications 1 à 3, caractérisé en ce que le substrat est un gel chargé de sucre et de sels minéraux.
5. Capteur biochimique selon l'une des revendications 1 à 4, caractérisé en ce que le substrat chargé de cellules de levure, est activable par humidification.
6. Capteur biochimique selon l'une des revendications 1 à 5, caractérisé en ce que l'entité (P) est une protéine.
7. Capteur biochimique selon l'une des revendications 1 à 6, caractérisé en ce que les moyens de détection physique sont des moyens optiques de type : mesure de densité optique, de variation de polarisation de la lumière, de fluorescence.
8. Capteur biochimique caractérisé en ce qu'il comprend une mosaïque de capteurs biochimiques élémentaires selon l'une des revendications 1 à 7, chaque capteur élémentaire étant adapté à la détection d'un type de molécule (Mi), l'ensemble des réponses fournies par les moyens de détections (mj) de chaque capteur permettant d'identifier des molécules présentes dans le milieu.
EP96904154A 1995-02-17 1996-02-16 Capteur biochimique Withdrawn EP0756635A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9501829A FR2730812B1 (fr) 1995-02-17 1995-02-17 Capteur biochimique
FR9501829 1995-02-17
PCT/FR1996/000257 WO1996025513A1 (fr) 1995-02-17 1996-02-16 Capteur biochimique

Publications (1)

Publication Number Publication Date
EP0756635A1 true EP0756635A1 (fr) 1997-02-05

Family

ID=9476240

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96904154A Withdrawn EP0756635A1 (fr) 1995-02-17 1996-02-16 Capteur biochimique

Country Status (5)

Country Link
US (1) US5834218A (fr)
EP (1) EP0756635A1 (fr)
JP (1) JPH09512179A (fr)
FR (1) FR2730812B1 (fr)
WO (1) WO1996025513A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6117643A (en) * 1997-11-25 2000-09-12 Ut Battelle, Llc Bioluminescent bioreporter integrated circuit
US7141414B2 (en) * 2002-09-16 2006-11-28 Hewlett-Packard Development Company, L.P. Biosensor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1424482A (fr) * 1964-12-01 1966-01-14 Csf élément de circuit électrique intégré à réactance inductive
DD212052A1 (de) * 1982-10-04 1984-08-01 Inst F Tech Mikrobiologie Anwendung traegerfixierter mikroorganismen oder organellen fuer sensoren
EP0112721B1 (fr) * 1982-12-21 1988-05-18 Ares-Serono N.V. Technique d'essai
US4935345A (en) * 1987-04-07 1990-06-19 Arizona Board Of Regents Implantable microelectronic biochemical sensor incorporating thin film thermopile
IL98150A0 (en) * 1990-05-17 1992-08-18 Adeza Biomedical Corp Highly reflective biogratings and method for theirhighly reflective biogratings and method production
FR2663466A1 (fr) * 1990-06-15 1991-12-20 Thomson Csf Composant semiconducteur a jonction schottky pour amplification hyperfrequence et circuits logiques rapides, et procede de realisation d'un tel composant.
DE4301087C2 (de) * 1993-01-16 1998-05-07 Lange Gmbh Dr Bruno Vorrichtung zur Bestimmung des biochemischen Sauerstoffbedarfs

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9625513A1 *

Also Published As

Publication number Publication date
US5834218A (en) 1998-11-10
FR2730812A1 (fr) 1996-08-23
FR2730812B1 (fr) 1997-03-14
JPH09512179A (ja) 1997-12-09
WO1996025513A1 (fr) 1996-08-22

Similar Documents

Publication Publication Date Title
Vo-Dinh et al. Biosensors and biochips: advances in biological and medical diagnostics
Sharma et al. Biomolecules for development of biosensors and their applications
Vadgama et al. Biosensors: recent trends. A review
Fu et al. Application progress of microfluidics-integrated biosensing platforms in the detection of foodborne pathogens
US11448580B2 (en) Biodetector based on interference effect of thin film with ordered porous nanostructures and method for using same to detect biomolecules
FR2805826A1 (fr) Nouvelles puces a adn
FR2962445A1 (fr) Procede de detection et d'identification directe d'un microorganisme dans un echantillon biologique dilue dans un bouillon d'enrichissement
EP0333560B1 (fr) Procédé de détermination quantitative de micro-organismes
EP0756635A1 (fr) Capteur biochimique
EP1216411B1 (fr) Procede de detection d'une reaction de reconnaissance moleculaire
EP1706509B1 (fr) Puce d'analyse avec gamme etalon, trousses et procedes d'analyse
Schultz Sensitivity and dynamics of bioreceptor-based biosensors
Vo-Dinh Biosensors and biochips
FR2760024A1 (fr) Procede de caracterisation de duplex d'acide nucleique
EP1200630B1 (fr) System capteur biochimique a sensibilite accrue par amplification moleculaire du signal
EP2689012B1 (fr) Procédé de criblage haut débit de gouttes par échange osmotique et variation de densité
CN1603832A (zh) 致病性细菌免疫检测芯片及其制备方法
EP0586649B1 (fr) Capteur moléculaire
Killard et al. Biosensors
Andrei Selective and direct detection of bacteria by surface enhanced Raman spectroscopy
Walt et al. Optical Fiber Microarrays for Chemical and Biological Measurements
Crooks Bio/chemical sensing using thin film recognition elements
Wingard Jr et al. Concepts, biological components, and scope of biosensors
McCormack Development of an optical immunosensor based on the evanescent wave technique
van Dijk Analytical Biotechnology

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960610

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE GB LI NL SE

17Q First examination report despatched

Effective date: 20000509

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20000901