EP0752732A1 - Microwave filter - Google Patents

Microwave filter Download PDF

Info

Publication number
EP0752732A1
EP0752732A1 EP96106998A EP96106998A EP0752732A1 EP 0752732 A1 EP0752732 A1 EP 0752732A1 EP 96106998 A EP96106998 A EP 96106998A EP 96106998 A EP96106998 A EP 96106998A EP 0752732 A1 EP0752732 A1 EP 0752732A1
Authority
EP
European Patent Office
Prior art keywords
resonators
cavity resonators
cavity
filter
coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96106998A
Other languages
German (de)
French (fr)
Other versions
EP0752732B1 (en
Inventor
Uwe Dipl.-Ing. Rosenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0752732A1 publication Critical patent/EP0752732A1/en
Application granted granted Critical
Publication of EP0752732B1 publication Critical patent/EP0752732B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure

Definitions

  • the present invention relates to a microwave filter consisting of a plurality of rectangular cavity resonators arranged in one plane, which are coupled to one another via inductive diaphragms, at least one coupling being present between two cavity resonators belonging to a main coupling path but not adjacent therein.
  • a prerequisite for the implementation of filter characteristics with damping poles on both sides of the transmission range is the insertion of overcouplings between electrically non-adjacent resonant circuits; that is, there are alongside the signal path in the main coupling path signal components which are coupled between electrically non-adjacent resonant circuits.
  • the invention has for its object to provide a microwave filter with a planar structure and inductive couplings of the type mentioned, which offers a variety of options for the implementation of filter characteristics.
  • the invention is based on a filter in which all the cavity resonators are arranged in one plane. With such a planar filter, all cavities can be of one Be milled out of one block. The cavities are then closed with a cover carrying the tuning elements or a second half-shell. In terms of production technology, it is also particularly inexpensive if only inductive couplings are provided, which can be implemented through openings in the side walls of the cavity resonators.
  • the phase position of an overcoupling, in which this H10m or Hm01 cavity resonator is not involved, can be adjusted so that the filter characteristic has damping poles below and above the useful frequency band.
  • the nomenclature of the resonators R1 .... R4 corresponds to the main coupling path of the filter.
  • the magnetic field lines of the wave modes existing therein are indicated by dashed lines in all cavity resonators R1 ... R4.
  • Diaphragm openings Ki1 and K4o are present between the input and output waveguides I and O and the resonators R1, R4.
  • the aperture K12 is arranged in the side wall between the cavity resonators R1 and R2, the aperture K231 in the side wall between the cavity resonators R2 and R3 and the aperture K34 in the side walls between the cavity resonators R3 and R4.
  • Another aperture K14 is located between the electrically non-adjacent resonators R1 and R4, which allows a portion of the signal energy to be coupled from the cavity resonator R1 to the cavity resonator R4. All couplings are inductive in this planar filter structure.
  • phase positions (signs) of the couplings between cavity resonators which belong to an over-coupled filter section, are decisive for the implementation of a wide variety of filter characteristics.
  • it is the phase positions of the couplings between the cavity resonators R1 and R2, R2 and R3, R3 and R4.
  • a cavity resonator in the main coupling path represents a resonant circuit and an ideal transformer with the transmission ratio -1. This means physically that the Direction of rotation of the field components involved in a main coupling of two resonators is opposite.
  • the transmission ratio for the overcouplings in such a planar structure results from the direction of rotation of the magnetic field components involved in the corresponding overcoupling. Accordingly, for the coupling between the cavity resonators R1 and R4 via the diaphragm aperture K14, a transmission ratio of -1 results due to the opposite direction of rotation of the magnetic field components in the two cavity resonators R1 and R4 and thus a negative coupling value.
  • the filter structure set out above can be described by the coupling scheme shown in FIG. This enables a filter characteristic with a constant group delay in the useful frequency band to be implemented.
  • H102 or H201 resonator R2 in relation to the phase position (sign) of the overcoupling K14 between the resonators R1 and R4 is explained using the exemplary embodiment shown in FIG. 2. What is important here is the position of the coupling opening K23c, which, in contrast to the coupling opening K231 in FIG. 1, couples the magnetic field component of the right half-wave of the H102 wave mode in the cavity resonator R2 to the fundamental wave mode of the cavity resonator R3.
  • a comparison of the magnetic fields in FIGS. 1 and 2 shows, however, that due to the different position of the diaphragm opening K231 and K23c, the direction of rotation of the magnetic field components in the cavity resonators R3 and R4 transformed, that is, reversed.
  • no transformation takes place between the cavity resonators R1 and R3 in FIG. 1 because the magnetic field lines have the same direction of rotation.
  • the cavity resonator R2 effects a transformation in the filter according to FIG. 2, but not in the filter according to FIG.
  • the transformation by the cavity resonator R2 is particularly important for the overcoupling K14, since in the filter structure shown in FIG. 2 there is a positive overcoupling in contrast to FIG. 1.
  • the diaphragm openings for the inductive couplings between the individual cavity resonators R5 ... R8 and the input and output waveguides I, O are labeled Ki5, K56, K67, K78, K58 and K8o.
  • the sign of the coupling between the cavity resonators R5 and R8 (aperture opening K58) can be reversed by changing the coupling of the cavity resonator R7 to the adjacent cavity resonators R6 and R8.
  • the overcoupling is positive in the filter of FIG. 3, which creates a Cauer filter characteristic with damping poles above and below the transmission range.
  • cavity resonators for H10m, Hm01 (m> 1) wave modes opens up a multitude of different coupling variants in order to realize positive and negative coupling.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

The microwave filter consists of a several rectangular wave guide resonators (R1-R4) organised on the same plane, and are coupled together by inductive elements (K11,K12,K23C,K34,K40). A coupling for the two main paths is provided by a bridging element (K14) between electrically non adjacent resonators (R1,R4). The phase value of the bridging element determines if the damping poles of the filter characteristic are above or below the transmission range.

Description

Stand der TechnikState of the art

Die vorliegende Erfindung betrifft ein Mikrowellenfilter, bestehend aus mehreren in einer Ebene angeordneten rechteckigen Hohlraumresonatoren, die über induktive Blenden miteinander gekoppelt sind, wobei mindestens eine Überkopplung zwischen zwei zu einem Hauptkoppelweg gehörenden, darin aber nicht benachbarten Hohlraumresonatoren vorhanden ist.The present invention relates to a microwave filter consisting of a plurality of rectangular cavity resonators arranged in one plane, which are coupled to one another via inductive diaphragms, at least one coupling being present between two cavity resonators belonging to a main coupling path but not adjacent therein.

Es ist bekannt, daß mit Filtern, bei denen nur Kopplungen zwischen elektrisch benachbarten Resonanzkreisen bestehen (das heißt, es gibt nur einen Hauptkoppelweg), allenfalls Tschebyscheff- oder Potenzfiltercharakteristika mit relativ geringer Sperrwirkung realisiert werden können.
Cauer-Filter, welche unterhalb und oberhalb des Filter-Transmissionsbereichs Dämpfungspole aufweisen und deshalb eine hohe Sperrwirkung haben, bieten den Vorteil, daß sie mit einem niedrigen Filtergrad (Zahl der Resonanzkreise) realisiert werden können im Vergleich zu den obengenannten ausschließlich sequentiell gekoppelten Filtern. Voraussetzung für die Realisierung von Filtercharakteristika mit Dämpfungspolen zu beiden Seiten des Transmissionsbereichs ist das Einfügen von Überkopplungen zwischen elektrisch nicht benachbarten Resonanzkreisen; das heißt, es gibt neben dem Signalpfad im Hauptkoppelweg Signalanteile, die zwischen elektrisch nicht benachbarten Resonanzkreisen überkoppelt werden.
It is known that with filters in which there are only couplings between electrically adjacent resonant circuits (that is, there is only one main coupling path), at most Chebyshev or power filter characteristics with a relatively low blocking effect can be achieved.
Cauer filters, which have damping poles below and above the filter transmission range and therefore have a high blocking effect, offer the advantage that they can be implemented with a low degree of filtering (number of resonant circuits) compared to the above-mentioned filters which are only coupled sequentially. A prerequisite for the implementation of filter characteristics with damping poles on both sides of the transmission range is the insertion of overcouplings between electrically non-adjacent resonant circuits; that is, there are alongside the signal path in the main coupling path signal components which are coupled between electrically non-adjacent resonant circuits.

Die Realisierung eines einleitend dargelegten Mikrowellenfilters ist aus IEEE Transactions on Microwave Theory and Techniques, Januar 1996, Band MTT-14, S. 46, 47 bekannt. Bei diesem Filter sind jedoch nur gewisse Überkopplungen zwischen elektrisch nicht benachbarten Hohlraumresonatoren realisierbar, womit nur ein Dämpfungspol oberhalb des Nutzfrequenzbandes erzeugt werden kann. Gemäß der DE 36 21 298 sind Hohlraumresonatoranordnungen nach Art einer dichtesten Zylinderpackung bekannt, bei denen Überkopplungen zwischen zylindrischen Hohlraumresonatoren realisiert sind, die im Hauptkoppelweg nicht benachbart sind. Dadurch, daß die Resonatoren, welche direkt an einer Überkopplung beteiligt sind, sowohl gleich als auch entgegengesetzt gerichtete Feldkomponenten aufweisen, können je nach dem positive oder negative Überkopplungen realisiert werden.The implementation of an introductory microwave filter is known from IEEE Transactions on Microwave Theory and Techniques, January 1996, Volume MTT-14, pp. 46, 47. With this filter, however, only certain overcouplings between electrically non-adjacent cavity resonators can be implemented, so that only one attenuation pole above the useful frequency band can be generated. According to DE 36 21 298, cavity resonator arrangements in the manner of the densest cylinder packing are known, in which overcouplings are realized between cylindrical cavity resonators that are not adjacent in the main coupling path. Due to the fact that the resonators, which are directly involved in a coupling, have both the same and opposite field components, depending on the positive or negative coupling.

Der Erfindung liegt die Aufgabe zugrunde, ein Mikrowellenfilter mit planarer Struktur und induktiven Kopplungen der eingangs genannten Art anzugeben, das vielfältige Möglichkeiten für die Realisierung von Filtercharakteristika bietet.The invention has for its object to provide a microwave filter with a planar structure and inductive couplings of the type mentioned, which offers a variety of options for the implementation of filter characteristics.

Vorteile der ErfindungAdvantages of the invention

Erfindungsgemäß wird diese Aufgabe durch die Merkmale des Anspruchs 1 gelöst. Vorteilhafte Ausführungen gehen aus den Unteransprüchen hervor.According to the invention, this object is achieved by the features of claim 1. Advantageous designs emerge from the subclaims.

Die Erfindung geht von einem Filter aus, bei dem alle Hohlraumresonatoren in einer Ebene angeordnet sind. Bei einem solchen planaren Filter können alle Hohlräume von einer Seite her aus einem Block gefräst werden. Die Hohlräume werden dann mit einem die Abstimmelemente tragenden Deckel oder einer zweiten Halbschale verschlossen. Fertigungstechnisch ist es zudem besonders wenig aufwendig, wenn ausschließlich induktive Kopplungen vorgesehen werden, die durch Öffnungen in den Seitenwänden der Hohlraumresonatoren realisierbar sind. Durch den Einsatz von mindestens einem H10m- oder Hm01- (m>1) Hohlraumresonator innerhalb des Hauptkoppelwegs einer planaren Filterkonfiguration kann indirekt die Phasenlage einer Überkopplung, an der dieser H10m- oder Hm01-Hohlraumresonator nicht beteiligt ist, so eingestellt werden, daß die Filtercharakteristik unterhalb und oberhalb des Nutzfrequenzbandes Dämpfungspole aufweist.The invention is based on a filter in which all the cavity resonators are arranged in one plane. With such a planar filter, all cavities can be of one Be milled out of one block. The cavities are then closed with a cover carrying the tuning elements or a second half-shell. In terms of production technology, it is also particularly inexpensive if only inductive couplings are provided, which can be implemented through openings in the side walls of the cavity resonators. By using at least one H10m or Hm01 (m> 1) cavity resonator within the main coupling path of a planar filter configuration, the phase position of an overcoupling, in which this H10m or Hm01 cavity resonator is not involved, can be adjusted so that the filter characteristic has damping poles below and above the useful frequency band.

Beschreibung von AusführungsbeispielenDescription of exemplary embodiments

Anhand mehrerer in der Zeichnung dargestellter Ausführungsbeispiele wird nachfolgend die Erfindung näher erläutert. Es zeigen:

  • Figur 1 eine planare Filterstruktur, bestehend aus drei H101-Hohlraumresonatoren und einem H201-Hohlraumresonator, und das entsprechende Koppelschema zur Realisierung einer Filtercharakteristik mit konstanter Gruppenlaufzeit,
  • Figur 2 eine planare Filterstruktur, bestehend aus drei H101-Hohlraumresonatoren und einem H201-Hohlraumresonator, und das entsprechende Koppelschema zur Realisierung einer Cauer-Filtercharakteristik und
  • Figur 3 eine planare Filterstruktur zur Realisierung einer Cauer-Charakteristik betehend aus vier
    H201-Hohlraumresonatoren.
The invention is explained in more detail below with the aid of several exemplary embodiments shown in the drawing. Show it:
  • FIG. 1 shows a planar filter structure, consisting of three H101 cavity resonators and one H201 cavity resonator, and the corresponding coupling scheme for realizing a filter characteristic with a constant group delay,
  • FIG. 2 shows a planar filter structure, consisting of three H101 cavity resonators and one H201 cavity resonator, and the corresponding coupling scheme for realizing a Cauer filter characteristic and
  • Figure 3 is a planar filter structure for realizing a Cauer characteristic consisting of four
    H201 cavity resonators.

Das in Figur 1 gezeigte Mikrowellenfilter besteht aus vier nebeneinander angeordneten rechteckigen Hohlraumresonatoren R1, R2, R3 und R4, von denen die Hohlraumresonatoren R1, R3 und R4 so dimensioniert sind, daß darin der Grundwellentyp H101 existiert, und der Resonator R2 ist so dimensioniert, daß darin ein H10m oder Hm01-Wellenmode mit m = 2 existiert. Die Nomenklatur der Resonatoren R1 .... R4 entspricht dem Hauptkoppelweg des Filters.The microwave filter shown in FIG. 1 consists of four rectangular cavity resonators R1, R2, R3 and R4 arranged next to one another, of which the cavity resonators R1, R3 and R4 are dimensioned such that the fundamental wave type H101 exists therein, and the resonator R2 is dimensioned such that an H10m or Hm01 wave mode with m = 2 exists therein. The nomenclature of the resonators R1 .... R4 corresponds to the main coupling path of the filter.

In der Zeichnung sind in allen Hohlraumresonatoren R1 ... R4 die magnetischen Feldlinien der darin existierenden Wellenmoden durch strichlierte Linien angedeutet. Zwischen den Ein- und Ausgangshohlleitern I und O und den Resonatoren R1, R4 sind Blendenöffnungen Ki1, bzw. K4o vorhanden. Zudem befinden sich Blendenöffnungen zur Realisierung der Hauptkopplungen zwischen den Resonatoren R1 ... R4 im sequentiellen Signalpfad. Und zwar ist die Blendenöffnung K12 in der Seitenwand zwischen den Hohlraumresonatoren R1 und R2, die Blendenöffnung K231 in der Seitenwand zwischen den Hohlraumresonatoren R2 und R3 und die Blendenöffnung K34 in den Seitenwänden zwischen den Hohlraumresonatoren R3 und R4 angeordnet. Eine weitere Blendenöffnung K14 befindet sich zwischen den elektrisch nicht benachbarten Resonatoren R1 und R4, welche die Überkopplung eines Teils der Signalenergie vom Hohlraumresonator R1 zum Hohlraumresonator R4 erlaubt. Alle Kopplungen sind in dieser planaren Filterstruktur induktiv.In the drawing, the magnetic field lines of the wave modes existing therein are indicated by dashed lines in all cavity resonators R1 ... R4. Diaphragm openings Ki1 and K4o are present between the input and output waveguides I and O and the resonators R1, R4. In addition, there are apertures for realizing the main couplings between the resonators R1 ... R4 in the sequential signal path. Namely, the aperture K12 is arranged in the side wall between the cavity resonators R1 and R2, the aperture K231 in the side wall between the cavity resonators R2 and R3 and the aperture K34 in the side walls between the cavity resonators R3 and R4. Another aperture K14 is located between the electrically non-adjacent resonators R1 and R4, which allows a portion of the signal energy to be coupled from the cavity resonator R1 to the cavity resonator R4. All couplings are inductive in this planar filter structure.

Für die Realisierung verschiedenster Filtercharakteristika sind die Phasenlagen (Vorzeichen) der Kopplungen zwischen Hohlraumresonatoren entscheidend, die zu einer überkoppelten Filtersektion gehören. Bei dem in Figur 1 dargestellten Ausführungsbeispiel sind es die Phasenlagen der Kopplungen zwischen den Hohlraumresonatoren R1 und R2, R2 und R3, R3 und R4. Ein Hohlraumresonator im Hauptkoppelweg stellt einen Resonanzkreis und einen idealen Übertrager mit dem Übertragungsverhältnis -1 dar. Dies bedeutet physikalisch, daß die Drehrichtung der an einer Hauptkopplung beteiligten Feldkomponenten zweier Resonatoren entgegengesetzt ist.The phase positions (signs) of the couplings between cavity resonators, which belong to an over-coupled filter section, are decisive for the implementation of a wide variety of filter characteristics. In the exemplary embodiment shown in FIG. 1, it is the phase positions of the couplings between the cavity resonators R1 and R2, R2 and R3, R3 and R4. A cavity resonator in the main coupling path represents a resonant circuit and an ideal transformer with the transmission ratio -1. This means physically that the Direction of rotation of the field components involved in a main coupling of two resonators is opposite.

Das Übertragungsverhältnis für die Überkopplungen in einer solchen planaren Struktur ergibt sich aus dem Drehsinn der an der entsprechenden Überkopplung beteiligten magnetischen Feldkomponenten. Demnach ergibt sich für die Kopplung zwischen den Hohlraumresonatoren R1 und R4 über die Blendenöffnung K14 ein Übersetzungsverhältnis von -1 aufgrund des ebenfalls entgegengesetzten Drehsinns der magnetischen Feldkomponenten in den beiden Hohlraumresonatoren R1 und R4 und damit ein negativer Koppelwert.The transmission ratio for the overcouplings in such a planar structure results from the direction of rotation of the magnetic field components involved in the corresponding overcoupling. Accordingly, for the coupling between the cavity resonators R1 and R4 via the diaphragm aperture K14, a transmission ratio of -1 results due to the opposite direction of rotation of the magnetic field components in the two cavity resonators R1 and R4 and thus a negative coupling value.

Die vorangehend dargelegte Filterstruktur läßt sich durch das in Figur 1 gezeigte Koppelschema beschreiben. Damit ist eine Filtercharakteristik mit konstanter Gruppenlaufzeit im Nutzfrequenzband realisierbar.The filter structure set out above can be described by the coupling scheme shown in FIG. This enables a filter characteristic with a constant group delay in the useful frequency band to be implemented.

An dem in Figur 2 dargestellten Ausführungsbeispiel wird nun erläutert, welche Bedeutung dem H102- bzw. H201-Resonator R2 in Bezug auf die Phasenlage (Vorzeichen) der Überkopplung K14 zwischen den Resonatoren R1 und R4 zukommt. Wesentlich hierbei ist die Lage der Koppelöffnung K23c, die im Gegensatz zu der Koppelöffnung K231 in Figur 1 die magnetische Feldkomponente der rechten Halbwelle des H102-Wellenmodes im Hohlraumresonator R2 mit dem Grundwellenmode des Hohlraumresonators R3 koppelt.The significance of the H102 or H201 resonator R2 in relation to the phase position (sign) of the overcoupling K14 between the resonators R1 and R4 is explained using the exemplary embodiment shown in FIG. 2. What is important here is the position of the coupling opening K23c, which, in contrast to the coupling opening K231 in FIG. 1, couples the magnetic field component of the right half-wave of the H102 wave mode in the cavity resonator R2 to the fundamental wave mode of the cavity resonator R3.

Die an der Kopplung beteiligten magnetischen Feldkomponenten in den Hohlraumresonatoren R2 und R3 weisen, wie auch in Figur 1 einen entgegengesetzten Drehsinn auf, weshalb auch hier die Kopplung K23c negativ ist. Ein Vergleich der magnetischen Felder in Figur 1 und 2 zeigt jedoch, daß durch die unterschiedliche Lage der Blendenöffnung K231 bzw. K23c der Drehsinn der magnetischen Feldkomponenten in den Hohlraumresonatoren R3 und R4 transformiert, das heißt umgekehrt wird. Man spricht also von einer Transformation, wenn durch eine Kopplung die magnetischen Feldlinien in zwei Hohlraumresonatoren eine entgegengesetzte Drehrichtung erhalten, so wie das bei den Hohlraumresonatoren R1 und R3 in Figur 2 der Fall ist. Dagegen findet zwischen den Hohlraumresonatoren R1 und R3 der Figur 1 keine Transformation statt, weil die magnetischen Feldlinien dieselbe Drehrichtung haben. Also bewirkt der Hohlraumresonator R2 beim Filter gemäß Figur 2 eine Transformation, beim Filter gemäß Figur 1 jedoch nicht.The magnetic field components involved in the coupling in the cavity resonators R2 and R3, as in FIG. 1, have an opposite direction of rotation, which is why the coupling K23c is also negative here. A comparison of the magnetic fields in FIGS. 1 and 2 shows, however, that due to the different position of the diaphragm opening K231 and K23c, the direction of rotation of the magnetic field components in the cavity resonators R3 and R4 transformed, that is, reversed. One speaks of a transformation if the magnetic field lines in two cavity resonators receive an opposite direction of rotation by coupling, as is the case with the cavity resonators R1 and R3 in FIG. 2. In contrast, no transformation takes place between the cavity resonators R1 and R3 in FIG. 1 because the magnetic field lines have the same direction of rotation. Thus the cavity resonator R2 effects a transformation in the filter according to FIG. 2, but not in the filter according to FIG.

Die Transformation durch den Hohlraumresonator R2 ist insbesondere für die Überkopplung K14 von Bedeutung, da sich in der in Figur 2 dargestellten Filterstruktur eine positive Überkopplung im Gegensatz zur Figur 1 ergibt. Die in Figur 2 dargestellte Filterkonfiguration, welche im Gegensatz zu der Filterkonfiguration der Figur 1 eine positive Überkopplung hat, das heißt die magnetischen Feldlinien der Hohlraumresonatoren R1 und R4 haben dieselbe Drehrichtung, erzeugt z.B. eine Cauer-Charakteristik, die sowohl oberhalb als auch unterhalb des Filter-Transmissionsbereichs einen oder mehrere Dämpfungspole besitzt. Bei einem vierkreisigen Filter entsteht z.B. eine solche Cauer-Filtercharakteristik entsteht, wenn der erste Hohlraumresonator R1 und der vierte Hohlraumresonator R4 gekoppelt (d.h. die Hohlraumresonatoren R2 und R3 sind überkoppelt)sind und wenn für alle Kopplungen gilt: (K12 * K34) / (K23 * K14) < 0

Figure imgb0001
. Filtercharakteristika mit Dämpfungspolen unterhalb und oberhalb des Transmissionsbereichs lassen sich auch mit mehr als vier Hohlraumresonatoren verwirklichen. Entscheidend dabei ist die Phasenlage einer oder mehrerer Überkopplungen, die aber auf einfache Weise, wie vorangehend beschrieben, durch entsprechende Ankopplung eines Hm01- bzw. H10m- (m > 1) Resonators einstellbar ist.The transformation by the cavity resonator R2 is particularly important for the overcoupling K14, since in the filter structure shown in FIG. 2 there is a positive overcoupling in contrast to FIG. 1. The filter configuration shown in Figure 2, which, in contrast to the filter configuration of Figure 1, has a positive coupling, that is, the magnetic field lines of the cavity resonators R1 and R4 have the same direction of rotation, for example produces a Cauer characteristic, both above and below the filter Transmission area has one or more damping poles. In the case of a four-circuit filter, for example, such a Cauer filter characteristic arises if the first cavity resonator R1 and the fourth cavity resonator R4 are coupled (ie the cavity resonators R2 and R3 are coupled) and if the following applies to all couplings: (K12 * K34) / (K23 * K14) <0
Figure imgb0001
. Filter characteristics with damping poles below and above the transmission range can also be achieved with more than four cavity resonators. The decisive factor here is the phase position of one or more overcouplings, which, however, can be adjusted in a simple manner, as described above, by appropriately coupling an Hm01 or H10m (m> 1) resonator.

In der Figur 3 ist eine Filterstruktur dargestellt, die ausschließlich aus Hohlraumresonatoren R5, R6, R7 und R8 besteht, in denen H10m oder Hm01 Wellenmoden existent sind, wobei in dem gezeigten Ausführungsbeispiel m = 2 ist. Die Blendenöffnungen für die induktiven Kopplungen zwischen den einzelnen Hohlraumresonatoren R5 ... R8 und den Ein- und Ausgangshohlleitern I, O sind mit Ki5, K56, K67, K78, K58 und K8o bezeichnet. Auch bei diesem Filter kann durch Ändern der Ankopplung des Hohlraumresonators R7 an die benachbarten Hohlraumresonatoren R6 und R8 das Vorzeichen der Überkopplung zwischen den Hohlraumresonatoren R5 und R8 (Blendenöffnung K58) umgekehrt werden. So ist beim Filter der Figur 3 die Überkopplung positiv, womit eine Cauer-Filtercharakteristik mit Dämpfungspolen oberhalb und unterhalb des Transmissionsbereichs entsteht.FIG. 3 shows a filter structure which consists exclusively of cavity resonators R5, R6, R7 and R8 in which H10m or Hm01 wave modes exist, with m = 2 in the exemplary embodiment shown. The diaphragm openings for the inductive couplings between the individual cavity resonators R5 ... R8 and the input and output waveguides I, O are labeled Ki5, K56, K67, K78, K58 and K8o. With this filter too, the sign of the coupling between the cavity resonators R5 and R8 (aperture opening K58) can be reversed by changing the coupling of the cavity resonator R7 to the adjacent cavity resonators R6 and R8. Thus, the overcoupling is positive in the filter of FIG. 3, which creates a Cauer filter characteristic with damping poles above and below the transmission range.

Die Verwendung von Hohlraumresonatoren für H10m-, Hm01- (m > 1) Wellenmoden eröffnet eine Vielzahl von verschiedenen Kopplungsvarianten, um positive wie negative Überkopplungen zu verwirklichen.The use of cavity resonators for H10m, Hm01 (m> 1) wave modes opens up a multitude of different coupling variants in order to realize positive and negative coupling.

Claims (3)

Mikrowellenfilter, bestehend aus mehreren in einer Ebene angeordneten rechteckigen Hohlraumresonatoren, die über induktive Blenden miteinander gekoppelt sind, wobei mindestens eine Überkopplung zwischen zwei zu einem Hauptkoppelweg gehörenden, darin aber elektrisch nicht benachbarten Hohlraumresonatoren vorhanden ist, dadurch gekennzeichnet, daß mindestens einer der im Hauptkoppelweg liegenden Hohlraumresonatoren (R1 ... R8) ein H10m- bzw. Hm01- (m > 1) Wellenmoderesonator (R2, R7) ist und daß die Blenden (K12, K23l, K23c, K67, K78) für die Ankopplung des H10m- bzw. Hm01-Hohlraumresonators (R2, R7) an seine beiden im Hauptkoppelweg direkt benachbarten Hohlraumresonatoren (R1, R3, R6, R8) im Bereich derjenigen Teilwelle(n) des H10m- bzw. Hm01-Wellenmodes plaziert sind, daß die Überkopplung eine solche Phasenlage erhält, daß eine Filtercharakteristik entsteht, die unterhalb und oberhalb des Filter-Transmissionsbereichs mindestens einen Dämpfungspol aufweist.Microwave filter, consisting of a plurality of rectangular cavity resonators arranged in one plane, which are coupled to one another via inductive diaphragms, at least one overcoupling being present between two cavity resonators belonging to a main coupling path but not electrically adjacent therein, characterized in that at least one of them lies in the main coupling path Cavity resonators (R1 ... R8) is a H10m or Hm01- (m> 1) wave mode resonator (R2, R7) and that the screens (K12, K23l, K23c, K67, K78) for coupling the H10m or Hm01 cavity resonators (R2, R7) are placed on its two cavity resonators (R1, R3, R6, R8) which are directly adjacent in the main coupling path in the region of that partial wave (s) of the H10m or Hm01 wave mode that the coupling receives such a phase position that a filter characteristic is created which has at least one damping pole below and above the filter transmission range. Mikrowellenfilter nach Anspruch 1, dadurch gekennzeichnet, daß alle im Hauptkoppelweg liegenden Hohlraumresonatoren außer dem (den) die Phasenlage der Überkopplung bestimmenden Hohlraumresonator(en) (R2) H101-Wellenmoderesonatoren (R1, R3, R4) sind.Microwave filter according to Claim 1, characterized in that all the cavity resonators located in the main coupling path, apart from the cavity resonator (s) (R2) determining the phase position of the coupling, are H101 wave mode resonators (R1, R3, R4). Mikrowellenfilter nach Anspruch 1, dadurch gekennzeichnet, daß alle im Hauptkoppelweg liegenden Hohlraumresonatoren (R5 ... R8) H10m- bzw. Hm01-(m > 1) Wellenmoderesonatoren sind.Microwave filter according to Claim 1, characterized in that all the cavity resonators (R5 ... R8) lying in the main coupling path are H10m or Hm01- (m> 1) wave mode resonators.
EP96106998A 1995-07-04 1996-05-03 Microwave filter Expired - Lifetime EP0752732B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19524263 1995-07-04
DE19524263A DE19524263C1 (en) 1995-07-04 1995-07-04 Planar microwave filter with several waveguide resonators

Publications (2)

Publication Number Publication Date
EP0752732A1 true EP0752732A1 (en) 1997-01-08
EP0752732B1 EP0752732B1 (en) 2001-05-30

Family

ID=7765934

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96106998A Expired - Lifetime EP0752732B1 (en) 1995-07-04 1996-05-03 Microwave filter

Country Status (2)

Country Link
EP (1) EP0752732B1 (en)
DE (2) DE19524263C1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009111633A (en) * 2007-10-29 2009-05-21 Shimada Phys & Chem Ind Co Ltd Polarized band-pass filter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10123318A1 (en) * 2001-05-14 2002-12-05 Marconi Comm Gmbh microwave filters

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0250858A2 (en) * 1986-06-25 1988-01-07 ANT Nachrichtentechnik GmbH Microwave filter with multiple coupled cavity resonators

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0250858A2 (en) * 1986-06-25 1988-01-07 ANT Nachrichtentechnik GmbH Microwave filter with multiple coupled cavity resonators

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A.E. WILLIAMS: "An odd order elliptic function narrow-bandpass microwave filter", 8TH EUROPEAN MICROWAVE CONFERENCE-PROCEEDINGS, 4 September 1978 (1978-09-04) - 8 September 1978 (1978-09-08), PARIS (FR), pages 329 - 333, XP002014111 *
PATENT ABSTRACTS OF JAPAN vol. 8, no. 198 (E - 265)<1635> 11 September 1984 (1984-09-11) *
U. ROSENBERG ET AL.: "Consideration of parasitic bypass couplings in overmoded cavity filter designs", IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, vol. 42, no. 7, July 1994 (1994-07-01), NEW YORK US, pages 1301 - 1306, XP000457496 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009111633A (en) * 2007-10-29 2009-05-21 Shimada Phys & Chem Ind Co Ltd Polarized band-pass filter

Also Published As

Publication number Publication date
DE19524263C1 (en) 1996-10-17
DE59606982D1 (en) 2001-07-05
EP0752732B1 (en) 2001-05-30

Similar Documents

Publication Publication Date Title
DE2122337C2 (en) Cavity resonator filter
EP0052847B1 (en) Method and circuit for converting the sampling frequency of a series of samples avoiding conversion into a continuous signal
DE3213436C2 (en)
DE69631571T2 (en) Dielectric filter
DE2510854A1 (en) BANDPASS FILTER FOR MICROWAVES
DE1108823B (en) Bandpass filter with high slope
DE2654283C2 (en) Filter for very short electromagnetic waves
DE60006724T2 (en) QUASI-TWO MODE RESONATORS
DE2643094A1 (en) GENERALIZED WAVE GUIDE BANDPASS FILTER
EP0751579B1 (en) Microwavefilter
EP0250857B1 (en) Microwave filter
EP0752732B1 (en) Microwave filter
DE2657649A1 (en) FILTER FOR VERY SHORT ELECTROMAGNETIC WAVES
DE2001433B2 (en) Band pass filter
DE2640210C3 (en) Filter for very short electromagnetic waves
DE2056528C3 (en) Filter for very short electromagnetic waves
DE2511800C3 (en) Microwave filters with cavity resonators operated in dual mode and additional overcouplings
DE19623144A1 (en) Microwave filter, consisting of several coaxial resonators
DE4319346C2 (en) Line resonator
DE3708964C2 (en)
DE10123318A1 (en) microwave filters
DE19818947C1 (en) Bandpass filter
DE2738613B2 (en) Filter circuit consisting of concentrated switching elements for the range of meter and decimeter waves
DE4131319C2 (en) Filter arrangement with at least one pole in the damping area of the filter arrangement
DE3147222A1 (en) Electrical device for generating frequencies

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR IT LI SE

17P Request for examination filed

Effective date: 19970708

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20001016

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR IT LI SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENTANWAELTE

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59606982

Country of ref document: DE

Date of ref document: 20010705

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020517

Year of fee payment: 7

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20040506

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040510

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040513

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051201

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060131