EP0752088A1 - Heat exchanger tube for heating boilers - Google Patents

Heat exchanger tube for heating boilers

Info

Publication number
EP0752088A1
EP0752088A1 EP95913118A EP95913118A EP0752088A1 EP 0752088 A1 EP0752088 A1 EP 0752088A1 EP 95913118 A EP95913118 A EP 95913118A EP 95913118 A EP95913118 A EP 95913118A EP 0752088 A1 EP0752088 A1 EP 0752088A1
Authority
EP
European Patent Office
Prior art keywords
outer tube
shells
tube
ribs
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95913118A
Other languages
German (de)
French (fr)
Other versions
EP0752088B1 (en
Inventor
Wolfgang Kunkel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoval Interliz AG
Original Assignee
Hoval Interliz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoval Interliz AG filed Critical Hoval Interliz AG
Publication of EP0752088A1 publication Critical patent/EP0752088A1/en
Application granted granted Critical
Publication of EP0752088B1 publication Critical patent/EP0752088B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • F24H9/001Guiding means
    • F24H9/0026Guiding means in combustion gas channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/082Heat exchange elements made from metals or metal alloys from steel or ferrous alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/16Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes extruded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/14Fastening; Joining by using form fitting connection, e.g. with tongue and groove

Definitions

  • the invention relates to a heat exchanger tube for boilers, in particular for gas condensing boilers, according to the preamble of claim 1.
  • condensing boilers In, which mainly occur in boilers operated with gas firing, the combustion gases are cooled until the exhaust gas moisture condenses, in order to To exploit the heat of condensation.
  • the prerequisite for this is that the boiler is operated with a boiler temperature that is lower than the dew point temperature of the combustion gases at the end of the combustion gas path through the boiler.
  • the aim is to take the combustion gases through the water-cooled heat exchanger tubes of the boiler in a way that is as short as possible to reduce the combustion gases from the high inlet temperature, which can be around 850 ° C.
  • heat exchanger tubes which consist of a cylindrical, smooth-walled outer tube made of steel which is acid-corrosion-resistant against the exhaust gas condensate and an aluminum insert which is inserted into the outer tube and has a star-shaped cross section.
  • the outer tube must be made of steel in order to be able to weld at its ends into tube sheets or tube plates which separate the boiler water space surrounding the heat exchanger tubes on the one hand from the combustion chamber and on the other hand from the flue gas collector of the boiler .
  • the composite pipe made of steel outer pipe and aluminum Professional Lei nsatz can be acted upon with high gas inlet temperatures, since aluminum has a larger expansion coefficient than steel, so that the profile insert at its contact points with the outer tube with an increasing pressure with the outer tube in increasing temperature remains in contact with heat.
  • the heat transfer from the star-shaped aluminum profile insert to the steel outer tube is determined and limited by the fact that the profile insert only fits the outer tube on the comb surfaces of the radial arms of the profile insert touched, then the cross-section i are relatively thin-walled, a sufficient clearance Q uer plinth.
  • the invention has for its object to provide a heat exchanger tube of the type mentioned at the outset which enables an even greater heat transfer capacity from the combustion gases to the boiler and can be easily manufactured and further processed when installed in a boiler.
  • This object is achieved by the invention in the form of the heat exchanger tube obtained as a composite tube made of steel outer tubes and aluminum alloy profiles with the characterizing features of claim 1.
  • the tubular-shaped profile insert of the heat exchanger tube according to the invention can, on the one hand, be formed with a very large inner surface that absorbs heat from the combustion gases, preferably with ribs arranged in a comb-like manner on the inside of the two half-shells, and is above all in comparison to the known Sternprofi len with a much larger outer surface on the inside of the water-cooled steel outer tube, whereby the heat transfer performance from the combustion gases to the boiler water is significantly increased.
  • the shortness of the heat exchanger tube leads to the further essential advantage that the condensing boiler overall can be made shorter and thus space-saving when the heat exchanger tube is arranged vertically lower or when the heat exchanger tube is arranged horizontally.
  • the tubular body-shaped profile insert is divided into two half-shells and due to the formation of each half-shell with its ribs as one-sided open Profile easy and inexpensive to manufacture. For the production by extrusion, no so-called flying cores are required in the drawing die, which is therefore cheap and durable.
  • a particular advantage for the pus processing of the heat exchanger tube according to the invention or for its installation in a boiler has been found to be that when the outer tube is welded into a tube plate, thanks to the extremely large heat transfer contact surface and wr eable ability of Prof lmbies no destruction of the aluminum profile insert occurs when psychiatrist the end of the pro l ⁇ insert flush up to the tube plate in the ⁇ zoom ranges welded end of the outer tube.
  • the heat exchanger tube ⁇ therefore does not have with respect to the outer pipe ends bac staggered professional lmonenden herge ⁇ is to be, but can be used for installation in a boiler with a simple straight cut in the required length of manufactured long meter be separated.
  • the heat exchanger tube can be produced in a simple manner in such a way that the tube body has an outer diameter which is essentially corresponds to the inner diameter of the outer tube and is only so slightly smaller that the tube body can be easily pushed into the outer tube, and that the outer tube is then shaped by a permanent compression of the entire outer tube circumference, for example by a rolling or drawing process , is pressed radially and pressed against the aluminum mini-profi lei nsat z.
  • FIG. 1 shows an embodiment of the heat exchanger tube with an aluminum profile insert lying directly against the steel outer tube
  • FIG. 2 shows an embodiment for the type of FIG. 1 with a simple additional measure for enlarging the inner surface
  • FIG. 3 shows an embodiment with a profile insert which bears indirectly on the outer tube via an intermediate profile, in the manner of FIG. 1.
  • the heat exchanger tube shown in FIG. 1 consists of a cylindrical, smooth-walled outer tube 1 made of a corrosion-resistant chrome steel and a professional insert 2 made of aluminum.
  • the profile insert 2 is formed by a tubular body which is divided into two half-shells 3, 4 in a dividing plane running through the outer tube longitudinal axis.
  • the two half-shells 3, arcs 4 Trained with ribs 5 which extend in the longitudinal direction of the outer tube 1, and so in the clear Q uer4.000 of the tubular body protrude, that each Halb ⁇ cup 3, 4 with their ribs 5 open on one side Profiles so that the half-shells with their caps can be easily and cheaply produced with an extrusion tool or a drawing die without a so-called flying core.
  • the ribs 5, as the embodiment of FIG. 1 shows are arranged in a comb-like manner and perpendicular to the dividing plane on the inside of the two half-shells 3, 4, the ribs 5 of the two half-shells 3, 4 face each other in pairs and extend up to or at least close to the parting plane.
  • the two half-shells 3, 4 are formed with groove-shaped depressions 7 and rib-like projections 8, which are perpendicular to the parting plane and which the longitudinal edges in the Interlock like a labyrinth seal.
  • the sealing of the two joints between the half-shell longitudinal edges is important so that no gap arises, through which the exhaust gas or condensate penetrates between the tubular body of the professional insert 2 and the outer tube 1 and there leads to crevice corrosion.
  • the two half-shells, as illustrated in FIG. 1 are formed on one longitudinal edge with a groove-shaped depression and on the other longitudinal edge with a rib-like projection, the two half-shells can be of the same extruded profile in the required length be separated and fits one half shell rotated 180 ° in the longitudinal axis on the other half shell.
  • Figure 1 shows the heat exchanger tube for the sake of clarity in a not yet finalized state.
  • the longitudinal edges of the two half-shells interlocking with the recesses and projections are pressed together in such a gap-free manner and absolutely tightly against exhaust gas or condensate that a seam between the longitudinal edges of the half-shells cannot even be determined in a micro section of the cross section of the finished heat exchanger tube.
  • the gap-free compression of the outer tube and the profile insert on the contacting peripheral surfaces also prevents exhaust gas or condensate from penetrating between the outer tube and the profile insert on the end face of the heat exchanger tube installed in a boiler.
  • the extremely high heat transfer capability of the heat exchanger tube between the profile insert and the outer tube also has a surprisingly advantageous effect for the reverse heat flow when the heat exchanger tube ends are welded into tube sheets or tube plates of a boiler.
  • Welding tests have shown that even with a flush end face of the aluminum profile insert with the chrome steel outer tube, the aluminum is surprisingly not damaged or melted away, although the chrome outer tube with liquid welding material fuses with the tube plate of the boiler must be connected.
  • the exchanger tube can therefore be separated from the finished fabric of the exchanger tube in the lengths required for a boiler with a simple straight cut or saw cut or the like.
  • FIG. 2 shows an exemplary embodiment similar to FIG. 1, in which the tips of the ribs 5 arranged in a comb-like manner are at such a distance from one another Comply with the fact that a flat aluminum profile 9 can be inserted between the tips.
  • the rib length is so dimensioned that are pressed when joining the half-shells 3, 4 to the raw RK ⁇ rpe rförmi gen pro l ⁇ insert the comb tips with their the rib cross-section satisfied respective end faces and without a gap L of the low-profile 9, a reliable heat conductive contact between the flat profile and the ribs.
  • the contacting longitudinal edges of the two half-shells can also be designed such that they enclose the longitudinal edges of the flat profile and are clamped between them in a heat-conducting manner on the finished heat exchanger.
  • the heat-absorbing inner surface of the profile insert 2 can be enlarged again in a simple and cheap manner by a considerable amount in the order of 10% or more.
  • FIG. 3 shows an exemplary embodiment in which the aluminum professional insert 2 of the type of FIG. 1 does not directly touch the inside of the outer tube 1 with its outer side, but rather has an outer diameter which is significantly less than the inner diameter of the outer tube 1.
  • An annular cylindrical intermediate profile 10 made of aluminum is arranged in the annular space thus formed between the outer tube 1 and the profile insert 2.
  • This intermediate profile 10 consists of a tube wall, the entire outer circumference of which lies flush against the entire inner surface of the outer tube 1, and a number of ribs 11 arranged radially on the inside of the tube body, which extend to the outside of the profile Reach oil insert 2 and touch the outside of the profile insert flat and heat-conducting.
  • the intermediate profile 10 is similar to the inner profile insert 2 in a dividing plane running through the longitudinal axis of the outer tube and divided into two half-open profile profiles. parts, which can therefore also be produced with a simple drawing die without a flying core by extrusion of aluminum.
  • the intermediate professional 10 is designed in a similar way to the professional insert 2 described with reference to FIG. 1 with sealingly contacting or engaging longitudinal edges of the two intermediate professionals Ihten Iften.
  • the embodiment in FIG. 3 allows the total internal surface of the heat exchanger tube that can be touched and absorbed by the combustion gases to be increased by a good 100%. be increased.
  • the length of the heat exchanger tube can be shortened even further, in order to bring the combustion gases in a condensing boiler from an inlet temperature of, for example, 850 ° C. to an outlet temperature which is clearly below the dew point limit of the combustion gases cool down from, for example, 48 ° C.

Abstract

The heat exchanger tube consists of a cylindrical, smooth-walled steel outer tube (1) into which is inserted an aluminium insert section (2). The insert section takes the form of two half-shells (3, 4) engaging with each other along their longitudinal edges by means of groove-like recesses (7) and rib-like projections (8). Both half-shells (3, 4) have longitudinal ribs (5) on their inner sides which are oriented in such a way that each half-shell with its ribs forms a section open on one side.

Description

Wärmetauscherrohr für Heizkessel Heat exchanger tube for boilers
Besch re ibung :Description :
Die Erfindung betrifft ein ärmetauscherrohr für Heiz¬ kessel, insbesondere für Gas-Brennwertkessel, gemäß dem Oberbegriff des Anspruchs 1. Bei Brennwertkesse In, die hauptsächlich bei mit einer Gasfeuerung betriebenen Heizkesseln vorkommen, werden die Verbrennungsgase bis zur Kondensation der Abgasfeuchtigkeit abgekühlt, um auch die Kondensations¬ wärme auszunutzen. Voraussetzung dafür st, daß der Heizkessel mit einer Kes se l assertempe ratur betrieben wird, die am Ende des Verbrennungsgasweges durch den Heizkessel niedriger ist als die Taupunkt empe ratur der Verbrennungsgase. Man ist bestrebt, auf einem mög¬ lichst kurzen Weg der Verbrennungsgase durch die wasser- gekühlten Wärmetauscherrohre des Heizkessels die Ver¬ brennungsgase von der hohen Eintrittstemperatur, die bei neuzeitlichen Gasbrennern bei etwa 850 °C liegen kann, auf die zwischen der Taupunkt temperatur und der am Heizwasserrücklauf des Heizkessels mit z. B. 30 °C herrschenden niedrigsten Kesse lwassertemperatur abzu¬ kühlen. Bekannt sind dazu Wärmetauscherrohre, die aus einem zylindrischen glattwandigen Außenroh.r aus einem gegen das Abgaskondensat säurekorrosionsbeständigem Stahl und einem in das Außenrohr eingeschobenen, im Querschnitt sternförmigen Profi leinsatz aus Aluminium bestehen. Für Heizkessel der meist gebräuchlichen Bau¬ weise muß das Außenrohr aus Stahl bestehen, um an seinen Enden in Rohrböden bzw. Rohrplatten eingeschweißt werden zu können, die den die Wärmetauscherro re umgebenden Kesselwasserraum einerseits von der Brennkammer und andererseits von dem Abgassammler des Heizkessels tren¬ nen. Das Verbundrohr aus Stahl-Außenrohr und Aluminium- Profi Lei nsatz kann mit hohen Gaseintrittstemperaturen beaufschlagt werden, we l Alu inium einen größeren Ausdehnungskoeffizienten hat a ls Stahl, so daß der Pro¬ fi leinsatz an seinen Berührungsstellen mit dem Außenrohr mit einem bei steigender Temperatur sogar stärker wer¬ denden Druck mi dem Außenrohr in wärmeleitendem Kontakt bleibt. Bei dem bekannten Verbundrohr ist der Wärmeüber¬ gang von dem sternför gen Aluminium-Profi leinsatz an das Stahl-Außenrohr dadurch bestimmt und begrenzt, daß der Pro i le nsatz das Außenrohr nur an den Kammflächen der strahlenförmigen Arme des Prof i le i nsa t zes berührt, die i Querschnitt verhältnismäßig dünnwandig sind, um einen ausreichenden lichten Querschnitt im Außenrohr für die Ve rbrennungsgas s t römung freizulassen. Es hat sich ferner für das Einschweißen des S tah l-Außenro res in die Rohrplatten als notwendig gezeigt, daß an den Enden des Außenrohres die Enden des sternförmigen Alumi- niu -Profi leinsatzes ausreichend zurückversetzt sein müssen, um zu verhindern, daß die strahlenförmigen Arme des Aluminium-Profi leinsatzes durch die an den Außen- rohrenden entstehende Schweißhitze zerstört werden.The invention relates to a heat exchanger tube for boilers, in particular for gas condensing boilers, according to the preamble of claim 1. In condensing boilers In, which mainly occur in boilers operated with gas firing, the combustion gases are cooled until the exhaust gas moisture condenses, in order to To exploit the heat of condensation. The prerequisite for this is that the boiler is operated with a boiler temperature that is lower than the dew point temperature of the combustion gases at the end of the combustion gas path through the boiler. The aim is to take the combustion gases through the water-cooled heat exchanger tubes of the boiler in a way that is as short as possible to reduce the combustion gases from the high inlet temperature, which can be around 850 ° C. in modern gas burners, to that between the dew point temperature and the at the heating water return of the boiler with z. B. 30 ° C prevailing lowest boiler water temperature to cool down. For this purpose, heat exchanger tubes are known which consist of a cylindrical, smooth-walled outer tube made of steel which is acid-corrosion-resistant against the exhaust gas condensate and an aluminum insert which is inserted into the outer tube and has a star-shaped cross section. For boilers of the most common type of construction, the outer tube must be made of steel in order to be able to weld at its ends into tube sheets or tube plates which separate the boiler water space surrounding the heat exchanger tubes on the one hand from the combustion chamber and on the other hand from the flue gas collector of the boiler . The composite pipe made of steel outer pipe and aluminum Professional Lei nsatz can be acted upon with high gas inlet temperatures, since aluminum has a larger expansion coefficient than steel, so that the profile insert at its contact points with the outer tube with an increasing pressure with the outer tube in increasing temperature remains in contact with heat. In the known composite pipe, the heat transfer from the star-shaped aluminum profile insert to the steel outer tube is determined and limited by the fact that the profile insert only fits the outer tube on the comb surfaces of the radial arms of the profile insert touched, then the cross-section i are relatively thin-walled, a sufficient clearance Q uerschnitt in the outer tube for packing rbrennungsgas st release römung. It has also been found necessary for the welding of the steel outer tube into the tube plates that at the ends of the outer tube the ends of the star-shaped aluminum profile insert have to be set back sufficiently to prevent the radial arms from being removed of the aluminum profile insert can be destroyed by the welding heat generated on the outer pipe ends.
Die Erfindung hat zur Aufgabe, ein Wärmetauscher¬ rohr der eingangs genannten Art zu schaffen, das eine noch größere ärmeübertragungsleistung von den Verbren¬ nungsgasen an das Kessel asser ermöglicht und dabei ein¬ fach hergestellt sowie beim Einbau in einen Heizkessel weiterverarbeitet werden kann. D ese Aufgabe löst die Erfindung durch die Ausbi ldung des als Verbundrohr aus Stah l-Außen roh r und A lumi ni um-Prof i l e i nsat z beschaffenen Wärmetauscherrohres mit den kennzeichnenden Merkmalen des Anspruchs 1.The invention has for its object to provide a heat exchanger tube of the type mentioned at the outset which enables an even greater heat transfer capacity from the combustion gases to the boiler and can be easily manufactured and further processed when installed in a boiler. This object is achieved by the invention in the form of the heat exchanger tube obtained as a composite tube made of steel outer tubes and aluminum alloy profiles with the characterizing features of claim 1.
Der rohrkörperförmige Profi leinsatz des erfindungs¬ gemä en Wärmetauscherrohres kann einerseits mit einer sehr großen, von den Ve rb rennungsga sen wärmeaufnehmen¬ den Innenoberfläche ausgebi ldet erden, vorzugsweise mit innenseitig an den beiden Halbschalen kammartig angeord¬ neten Rippen, und liegt vor allem im Vergleich zu den bekannten Sternprofi len mit einer wesentlich größeren Außenoberfläche an der Innenseite des wassergekühlten Stahl-Außenrohres an, wodurch die Wärmeübertragungs¬ leistung von den Verbrennungsgasen an das Kesselwasser bedeutend gesteigert wi rd. Es wurde in Versuchen festge¬ stellt, daß bei einem B rennwertkesse l, bei dem das Rück¬ laufhe i zwa sse r beim Eintritt in den Heizkessel eine Was¬ sertemperatur von etwa 30 °C hat, mit einer Rohrlänge des erfindungsgemäßen Wä rmetaus ehe r rohres von nur 50 cm erreicht werden kann, daß die mit einer Temperatur von etwa 850 °C in das ärmetauscherrohr eintretenden Ver¬ brennungsgase in dem erfindungsgemäßen Wärmetauscherrohr auf eine nur noch wenig über der Rücklaufwassertempera¬ tur liegende Austrittstemperatur von etwa 48 °C herun- tergekühlt werden können. Dieses hervorragende Ergebnis ist mit keinem bisher bekannten und für Brennwert kes se l tauglichen Wärmetauscherrohr erreichbar gewesen. Die Kürze des Wärmetauscher roh re s führt zu dem weiteren we¬ sentlichen Vortei l, daß der Brennwertkessel insgesamt bei vertikaler Anordnung der Wä rmetauscher roh re niedri¬ ger bzw. bei horizontaler Anordnung der Wärmetauscher¬ rohre kürzer und damit raumsparender ausgebi ldet werden kann. Trotz der Ausbi ldung des Profi leinsatzes mit einer großen Berü rungsoberfläche zum Außenrohr und mit einer großen Heiz l chendichte im Innern ist der rohrkörper- för ige Profi leinsatz durch die Unterteilung in zwei Halbschalen und durch die Ausbi ldung jeder Halbschale mit ihren Rippen als einseitig offenes Profi l einfach und preisgünstig herstellbar. Für die Herstellung durch Strangpressen werden keine sogenannten fliegenden Kerne in der Ziehmatrize benötigt, die daher bi llig und auch dauerhaltbar wird. Als besonderer Vortei l hat sich für die eiterverarbeitung des erfindungsgemäßen rme¬ tauscherrohres bzw. für seinen Einbau in einen Heiz- kessel herausgestellt, daß beim Einschweißen des Außen¬ rohres in eine Rohrplatte dank der extrem großen Wär¬ meübergangs-Kontaktf läc he und W r eable tfähigkei t des Prof leinsatzes keine Zerstörung des Aluminium- Profileinsatzes eintritt, wenn das Ende des Profi l¬ einsatzes bündig bis an das in die Rohrplatte einzu¬ schweißende Ende des Außenrohres heranreicht. Das Wärme¬ tauscherrohr braucht also nicht mit gegenüber den Außen- rohrenden zurüc versetzten Profi leinsatzenden herge¬ stellt zu werden, sondern kann für den Einbau in einen Heizkessel mit einem einfachen geraden Schnitt in der benötigten Länge von hergestellter langer Meterware abgetrennt werden. Die Ausbildung der sich berührenden Längsränder der beiden Halbschalen mit einer aus nutför- igen Vertiefungen und rippenartigen Vorsprüngen beste¬ henden Art Labyrinthdichtung wird eine Spaltbi ldung verhindert, durch die Abgas oder Kondensat zwischen den Aluminium-Profi leinsatz und das Stahl-Außenrohr eindringen und zu einer Spa 11 korros i on führen könnte. Wenn der Profi leinsatz in der einfachsten Ausgestal¬ tungsform des erfindungsgemäßen Wärmetauscherrohres unmittelbar auf der gesamten Umfangsf lache des Rohr¬ körpers am Außenrohr anliegt, kann die Herstellung des Wärmetauscherrohres in einfacher Weise so erfol¬ gen, daß der Rohrkörper einen Außendurchmesser hat, der im wesentlichen dem Innendurchmesser des Außen¬ rohres entspricht und nur so geringfügig kleiner ist, daß der Rohrkörper mühelos in das Außenrohr eingescho¬ ben werden kann, und daß danach das Außenrohr durch eine bleibende Zusammendrückungsve r formung des gesamten Außenrohrumfanges, zum Beispiel durch einen Walz- oder Ziehvorgang, radial zusammengedrückt und gegen den Alu¬ mini um-Prof i Lei nsat z angedrückt wird. Hierdurch werden die sich berührenden Längsränder der beiden Halbschalen sowie der Rohrkörper und das Außenrohr dermaßen dicht zusammengepreßt, daß keinerlei Spalt vorhanden ist. Dies ist auch wichtig für die Stirnsei en der durch die Rohrplatten h i ndu rch ragenden Enden des Wärmetau¬ scherrohres, damit auch dort kein Abgas oder Kondensat zwischen den Rohrkörper des Aluminium-Profi leinsatzes und das St a h l-Außen roh r eindringen kann.The tubular-shaped profile insert of the heat exchanger tube according to the invention can, on the one hand, be formed with a very large inner surface that absorbs heat from the combustion gases, preferably with ribs arranged in a comb-like manner on the inside of the two half-shells, and is above all in comparison to the known Sternprofi len with a much larger outer surface on the inside of the water-cooled steel outer tube, whereby the heat transfer performance from the combustion gases to the boiler water is significantly increased. It has been prepared in attempts Festge ¬ that in a B race value kesse l, wherein a What water temperature ¬ from about 30 ° C has return ¬ laufhe i zwa te r on entry into the heating boiler, with a pipe length of Wä invention rmetaus before r tube of only 50 cm can be achieved that the combustion gases entering the arm exchanger tube at a temperature of about 850 ° C. are cooled down in the heat exchanger tube according to the invention to an outlet temperature of about 48 ° C. which is only slightly above the return water temperature can be. This excellent result has not been achievable with any previously known heat exchanger tube suitable for condensing boiler. The shortness of the heat exchanger tube leads to the further essential advantage that the condensing boiler overall can be made shorter and thus space-saving when the heat exchanger tube is arranged vertically lower or when the heat exchanger tube is arranged horizontally. Despite the design of the profile insert with a large contact surface to the outer tube and with a large heating density inside, the tubular body-shaped profile insert is divided into two half-shells and due to the formation of each half-shell with its ribs as one-sided open Profile easy and inexpensive to manufacture. For the production by extrusion, no so-called flying cores are required in the drawing die, which is therefore cheap and durable. A particular advantage for the pus processing of the heat exchanger tube according to the invention or for its installation in a boiler has been found to be that when the outer tube is welded into a tube plate, thanks to the extremely large heat transfer contact surface and wr eable ability of Prof leinsatzes no destruction of the aluminum profile insert occurs when einzu the end of the pro l ¬ insert flush up to the tube plate in the ¬ zoom ranges welded end of the outer tube. The heat exchanger tube ¬ therefore does not have with respect to the outer pipe ends bac staggered professional leinsatzenden herge¬ is to be, but can be used for installation in a boiler with a simple straight cut in the required length of manufactured long meter be separated. The formation of the contacting longitudinal edges of the two half-shells with a type of labyrinth seal consisting of groove-shaped depressions and rib-like projections prevents a gap formation, through which exhaust gas or condensate penetrate between the aluminum profile insert and the steel outer tube and become one Spa 11 corrosion could result. If, in the simplest embodiment of the heat exchanger tube according to the invention, the professional insert is in direct contact with the outer tube over the entire circumferential surface of the tube body, the heat exchanger tube can be produced in a simple manner in such a way that the tube body has an outer diameter which is essentially corresponds to the inner diameter of the outer tube and is only so slightly smaller that the tube body can be easily pushed into the outer tube, and that the outer tube is then shaped by a permanent compression of the entire outer tube circumference, for example by a rolling or drawing process , is pressed radially and pressed against the aluminum mini-profi lei nsat z. As a result, the touching longitudinal edges of the two half-shells and the tubular body and the outer tube are pressed together so tightly that there is no gap. This is also important for the end faces of the ends of the heat exchanger tube protruding through the tube plates, so that there is no exhaust gas or condensate between the tube body of the aluminum profile insert and can penetrate the outside of the tube.
In den Unteransprüchen sind vortei lhafte Weiter¬ bi ldungen des erfindungsgemäßen W rme taus ehe r roh re s gekennzeichnet. In der Zeichnung sind verschiedene Ausfüh rungsbe i - spiele des erfindungsgemäßen Wärmetauscherrohres dar¬ gestellt. Es zeigtIn the dependent claims are ADVANTAGES lhafte Next ¬ bi ldungen of the invention W rme toff before r raw re s in. Various embodiments of the heat exchanger tube according to the invention are shown in the drawing. It shows
Figur 1 eine Aus füh rungs form des Wärmetauscher¬ rohres mit einem unmittelbar am Stahl-Außenrohr anlie- genden Aluminium-Profi leinsatz;FIG. 1 shows an embodiment of the heat exchanger tube with an aluminum profile insert lying directly against the steel outer tube;
Figur 2 eine Ausfüh rungs for nach Art der Figur 1 mit einer einfachen zusätzlichen Maßnahme zur Vergröße¬ rung der Innenoberfläche;FIG. 2 shows an embodiment for the type of FIG. 1 with a simple additional measure for enlarging the inner surface;
Figur 3 eine Ausfüh rungsform mit einem mittelbar über ein Zwischenprofi l an dem Außenrohr anliegenden Profi leinsatz nach Art der Figur 1.FIG. 3 shows an embodiment with a profile insert which bears indirectly on the outer tube via an intermediate profile, in the manner of FIG. 1.
Das in Figur 1 dargestellte Wärmetauscherrohr besteht aus einem zylindrischen glattwandigen Außen¬ rohr 1 aus einem korrosionsfesten Chromstahl und einem rofi leinsatz 2 aus Aluminium. Der Profi leinsatz 2 wird von einem Rohrkörper gebi ldet, der in einer durch die Außenroh r l ängsa chse verlaufenden Te i lungs ebene in zwei Halbschalen 3, 4 untertei lt ist. Auf ihrer Schaleninnenseite sind die beiden Halbschalen 3, 4 mit Rippen 5 ausgebi ldet, die sich in Längsrichtung des Außenrohres 1 erstrecken und so in den lichten Querschnitt des Rohrkörpers hineinragen, daß jede Halb¬ schale 3, 4 mit ihren Rippen 5 ein einseitig offenes Profi l bi ldet, so daß die Halbschalen mit ihren R ppen mit einem Strangpreßwerkzeug bzw. einer Ziehmatrize ohne einen sogenannten fliegenden Kern einfach und bi llig hergestellt werden können. In besonders vortei lhafter Weise sind die Rippen 5, wie das Ausführungsbeispiel der Figur 1 zeigt, kammartig und senkrecht zu der Tei- lungsebene stehend an der Innenseite der beiden Halb¬ schalen 3, 4 angeordnet, wobei die Rippen 5 der beiden Halbschalen 3, 4 paarweise einander gegenüberliegen und sich bis zur oder wenigstens bis in die N he der Tei lungsebene erstrecken. Insbesondere bei dieser kamm¬ artigen Anordnung der Rippen 5 können die Rippen bei der Strangpreßherstellung der Halbschalen mit einer in Längsrichtung des Außenrohres 1 bzw. der Halbschalen 3, 4 verlaufenden r i ffe l a rt i gen Obe r f lachenprof i l i erung versehen werden, die eine sehr irksame Vergrößerung der von den Verbrennungsgasen beaufschlagten wärme¬ aufnehmenden Innenoberfläche des Profi leinsatzes 2 ergibt. An ihren in der Tei lungsebene sich berührenden Längsrändern 6 sind die beiden Halbschalen 3, 4 mit nutförmigen Vertiefungen 7 und rippenartigen Vorsprün¬ gen 8 ausgebi ldet, die senkrecht zur Tei lungsebene i ne i nande rste ckba r sind und mit denen die Längsränder in der Art einer Labyrinthdichtung ineinandergreifen. Die Abdichtung der beiden Stoßstellen zwischen den Halbschalenlängsrändern ist wichtig, damit kein Spalt entsteht, durch den Abgas oder Kondensat zwischen den Rohrkörper des Profi leinsatzes 2 und das Außenrohr 1 eindringt und dort zu einer Spaltkorrosion führt. Wenn die beiden Halbschalen, wie die Figur 1 veranschaulicht, an dem einen Längsrand mit einer nutförmigen Vertiefung und an dem anderen Längsrand mit einem rippenartigen Vorsprung ausgebi ldet sind, können die beiden Halbscha¬ len von dem gleichen durch Strangpressen hergestellten Profi lstrang in der benötigten Länge abgetrennt werden und paßt die eine Halbschale um 180° in der Längsachse herumgedreht auf die andere Halbschale. Die* Figur 1 zeigt das ärmetauscherrohr der Deutlichkeit halber in noch nicht endgültig fertiggestelltem Zustand. Der aus den beiden Halbschalen 3, 4 zusammengefügte Rohrkör¬ per, der bei dem Ausführungsbeispiel der Figur 1 unmit¬ telbar auf seiner gesamten Umfangs f l äche am Außenrohr 1 anliegt, ist mit einem Außendurchmesser hergestellt, der geringfügig kleiner ist als der Innendurchmesser des Außenrohres, damit der Rohrkörper bzw. der Profi l¬ einsatz 2 sich problemlos in das Außenrohr einschieben läßt. Danach wird das Außenrohr durch einen alz- oder Ziehvorgang auf seinem gesamten Umfang einer radialen bleibenden Zusammendrüc kungsve r formung unterzogen, um das Außenrohr und den Profi leinsatz zu einem für die Wärmeübertragung wichtigen intensiven Kontakt der gesamten Außenrohrinn'enfläche und gesamten Profi lein¬ satzaußenfläche aneinanderzudrücken. Hierdurch werden auch die mit den Vertiefungen und Vorsprüngen ineinan¬ dergreifenden Längsränder der beiden Halbschalen derart spaltfrei und gegen Abgas oder Kondensat absolut dicht zusammengepreßt, daß nicht einmal in einem Mikroschliff des Querschnitts des fertigen Wärmetauscherrohres eine Naht zwischen den Längsrändern der Halbschalen festzu¬ stellen ist. Die spaltfreie Zusammendrückung von Außen¬ rohr und Profi leinsatz an den sich berührenden Umfangs- flächen verhindert ferner, daß an der Stirnseite des in einen Heizkessel eingebauten Wärmetauscherrohres Abgas oder Kondensat zwischen Außenrohr und Profi lein¬ satz eindringen kann. Die extrem hohe ärmeübertragungs¬ fähigkeit des Wärmetauscherrohres zwischen Profi leinsatz und Außenrohr wirkt sich auch für den umgekehrten Wärme¬ fluß beim Einschweißen der Wärmetauscherrohrenden in Rohrböden bzw. Rohrplatten eines Heizkessels überra¬ schend vortei lhaft aus. Einschweißversuche haben ge¬ zeigt, daß auch bei bündiger Stirnseite des Aluminium- Profi leinsatzes mit dem Chromstahl-Außenrohr das Alumi¬ nium erstaunlicherweise nicht beschädigt wird oder wegschmi lzt, obwohl das Chroms ahlaußenrohr mit flüssi¬ ger Schwei ßwerks tof f schme Ize mit der Rohrplatte des Heizkessels verbunden werden muß. Das rmetauscherrohr kann deshalb in den für einen Heizkessel benötigten Längen mit einem einfachen geraden Trenn- oder Säge¬ schnitt oder dergleichen von fertig hergestellter Meter¬ ware des ärmetauscherrohres abgetrennt werden.The heat exchanger tube shown in FIG. 1 consists of a cylindrical, smooth-walled outer tube 1 made of a corrosion-resistant chrome steel and a professional insert 2 made of aluminum. The profile insert 2 is formed by a tubular body which is divided into two half-shells 3, 4 in a dividing plane running through the outer tube longitudinal axis. On their shell inner side, the two half-shells 3, arcs 4 Trained with ribs 5 which extend in the longitudinal direction of the outer tube 1, and so in the clear Q uerschnitt of the tubular body protrude, that each Halb¬ cup 3, 4 with their ribs 5 open on one side Profiles so that the half-shells with their caps can be easily and cheaply produced with an extrusion tool or a drawing die without a so-called flying core. In a particularly advantageous manner, the ribs 5, as the embodiment of FIG. 1 shows, are arranged in a comb-like manner and perpendicular to the dividing plane on the inside of the two half-shells 3, 4, the ribs 5 of the two half-shells 3, 4 face each other in pairs and extend up to or at least close to the parting plane. In particular, in this ¬ like arrangement crest of the ribs 5, the ribs at the Strangpreßherstellung the half-shells provided with a plane extending in the longitudinal direction of the outer tube 1 or of the half-shells 3, 4 ri ffe la rt i gen Obe rf laughing prof ili augmentation, the very one Irregular enlargement of the heat-absorbing inner surface of the profile insert 2, which is affected by the combustion gases, results. At their longitudinal edges 6 touching in the parting plane, the two half-shells 3, 4 are formed with groove-shaped depressions 7 and rib-like projections 8, which are perpendicular to the parting plane and which the longitudinal edges in the Interlock like a labyrinth seal. The sealing of the two joints between the half-shell longitudinal edges is important so that no gap arises, through which the exhaust gas or condensate penetrates between the tubular body of the professional insert 2 and the outer tube 1 and there leads to crevice corrosion. If the two half-shells, as illustrated in FIG. 1, are formed on one longitudinal edge with a groove-shaped depression and on the other longitudinal edge with a rib-like projection, the two half-shells can be of the same extruded profile in the required length be separated and fits one half shell rotated 180 ° in the longitudinal axis on the other half shell. * Figure 1 shows the heat exchanger tube for the sake of clarity in a not yet finalized state. The tube body assembled from the two half-shells 3, 4, which in the embodiment of FIG. 1 lies directly on its entire circumferential surface against the outer tube 1, is produced with an outer diameter that is slightly smaller than the inner diameter of the outer tube, so that the tubular body or the professional insert 2 can be easily inserted into the outer tube leaves. Thereafter, the outer tube is subjected by a alz- or drawing operation on its entire circumference a radial permanent Zusammendrüc kungsve r deformation to the outer tube and the professional leinsatz an important for heat transfer intensive contact of the entire Außenrohrinn 'enfläche and entire professional lein¬ set outside surface together compress . As a result, the longitudinal edges of the two half-shells interlocking with the recesses and projections are pressed together in such a gap-free manner and absolutely tightly against exhaust gas or condensate that a seam between the longitudinal edges of the half-shells cannot even be determined in a micro section of the cross section of the finished heat exchanger tube. The gap-free compression of the outer tube and the profile insert on the contacting peripheral surfaces also prevents exhaust gas or condensate from penetrating between the outer tube and the profile insert on the end face of the heat exchanger tube installed in a boiler. The extremely high heat transfer capability of the heat exchanger tube between the profile insert and the outer tube also has a surprisingly advantageous effect for the reverse heat flow when the heat exchanger tube ends are welded into tube sheets or tube plates of a boiler. Welding tests have shown that even with a flush end face of the aluminum profile insert with the chrome steel outer tube, the aluminum is surprisingly not damaged or melted away, although the chrome outer tube with liquid welding material fuses with the tube plate of the boiler must be connected. The exchanger tube can therefore be separated from the finished fabric of the exchanger tube in the lengths required for a boiler with a simple straight cut or saw cut or the like.
Die Figur 2 zeigt ein der Figur 1 ähnliches Ausfüh¬ rungsbeispiel, bei dem die Spitzen der kammartig ange¬ ordneten Rippen 5 einen solchen Abstand voneinander einhalten, daß zwischen die Spitzen ein p la11enförmi ges Flachprofi l 9 aus Aluminium eingelegt werden kann. Die Rippenlänge ist so bemessen, daß beim Zusammenfügen der Halbschalen 3, 4 zu dem roh rkö rpe rförmi gen Profi l¬ einsatz die Kammspitzen mit ihren dem Rippenquerschnitt entsprechenden Stirnflächen satt und spaltfrei an das Flachprofi l 9 angepreßt werden, um eine zuverlässig wärmeleitende Berührung zwischen dem Flachprofi l und den Rippen zu erzeugen. Außerdem können auch die sich berührenden Längsränder der beiden Halbschalen so ausge¬ bi ldet sein, daß sie die Längsränder des Flachprofi ls einfassen und am fertig hergestellten Wä rmetausche r roh r gut wärmeleitend zwischen sich einklemmen. Mit Hi lfe des zwischen die Halbschalen eingelegten Flachprofi ls kann die wärmeaufnehmende Innenoberfläche des Profi l¬ einsatzes 2 nochmals in einfacher und bi lliger Weise um einen erheblichen Betrag in der Größenordnung von 10 % oder mehr vergrößert werden.FIG. 2 shows an exemplary embodiment similar to FIG. 1, in which the tips of the ribs 5 arranged in a comb-like manner are at such a distance from one another Comply with the fact that a flat aluminum profile 9 can be inserted between the tips. The rib length is so dimensioned that are pressed when joining the half-shells 3, 4 to the raw RKÖ rpe rförmi gen pro l ¬ insert the comb tips with their the rib cross-section satisfied respective end faces and without a gap L of the low-profile 9, a reliable heat conductive contact between the flat profile and the ribs. In addition, the contacting longitudinal edges of the two half-shells can also be designed such that they enclose the longitudinal edges of the flat profile and are clamped between them in a heat-conducting manner on the finished heat exchanger. With the help of the flat profile inserted between the half-shells, the heat-absorbing inner surface of the profile insert 2 can be enlarged again in a simple and cheap manner by a considerable amount in the order of 10% or more.
Die Figur 3 zeigt ein Ausführungsbeispiel, bei dem der Aluminium-Profi leinsatz 2 nach Art der Figur 1 nicht unmittelbar mit seiner Außenseite die Innenseite des Außenrohres 1 berührt, sondern einen den Innendurch¬ messer des Außenrohres 1 wesentlich unterschreitenden Außendurchmesser aufweist. In dem dadurch gebi ldeten Ringraum zwischen Außenrohr 1 und Profi leinsatz 2 ist ein ringzylindrisches Zwischenprofi l 10 aus Aluminium angeordnet. Dieses Zwischenprofi l 10 besteht aus einer Rohrwand, die mit ihrer gesamten äußeren Umfangs f l ehe an der gesamten Innenfläche des Außenrohres 1 wärmelei¬ tend anliegt, und einer ehrzahl von radial an der Innenseite des Rohrkörpers angeordneten Rippen 11, die bis an die Außenseite des Profi leinsatzes 2 heran¬ reichen und die Außenseite des Profi leinsatzes flächig und wärmeleitend berühren. Das Zwischenprofi l 10 ist ähnlich wie der innere Profi leinsatz 2 in einer durch die Außenrohrlängsachse verlaufenden Tei lungsebene in zwei einseitig offene Z ischenprofi Ihälften unter- . teilt, die also auch mit einer einfachen Ziehmatrize ohne fliegenden Kern durch Strangpressen von Aluminium hergestellt werden können. Das Zwischenprofi l 10 ist ähnlich wie der anhand der Figur 1 beschriebene Profi l¬ einsatz 2 mit abdichtend sich berührenden beziehungs ei¬ se ineinandergreifenden Längsrändern der beiden Zwi¬ schenprofi Ihä Iften ausgebi ldet. Gegenüber der Ausfüh¬ rungsform der Figur 1 kann mit der Ausführungsform der Figur 3 die von den Verbrennungsgasen berührbare und rmeaufnehmende innere Gesamtoberfläche des Wärmetauscherrohres um gut 100 '/. gesteigert werden. Dadurch läßt sich die Länge des ärmetauscherrohres noch weiter wesentlich verkürzen, um in einem Brenn¬ wertkessel die Verbrennungsgase von einer Ei nt ri tt s tem- peratur von zum Beispiel 850 °C auf eine deutlich unter der Taupunktgrenze der Verbrennungsgase liegende Aus¬ tritt stempe ratur von zum Beispiel 48 °C abzukühlen. FIG. 3 shows an exemplary embodiment in which the aluminum professional insert 2 of the type of FIG. 1 does not directly touch the inside of the outer tube 1 with its outer side, but rather has an outer diameter which is significantly less than the inner diameter of the outer tube 1. An annular cylindrical intermediate profile 10 made of aluminum is arranged in the annular space thus formed between the outer tube 1 and the profile insert 2. This intermediate profile 10 consists of a tube wall, the entire outer circumference of which lies flush against the entire inner surface of the outer tube 1, and a number of ribs 11 arranged radially on the inside of the tube body, which extend to the outside of the profile Reach oil insert 2 and touch the outside of the profile insert flat and heat-conducting. The intermediate profile 10 is similar to the inner profile insert 2 in a dividing plane running through the longitudinal axis of the outer tube and divided into two half-open profile profiles. parts, which can therefore also be produced with a simple drawing die without a flying core by extrusion of aluminum. The intermediate professional 10 is designed in a similar way to the professional insert 2 described with reference to FIG. 1 with sealingly contacting or engaging longitudinal edges of the two intermediate professionals Ihten Iften. Compared to the embodiment in FIG. 1, the embodiment in FIG. 3 allows the total internal surface of the heat exchanger tube that can be touched and absorbed by the combustion gases to be increased by a good 100%. be increased. As a result, the length of the heat exchanger tube can be shortened even further, in order to bring the combustion gases in a condensing boiler from an inlet temperature of, for example, 850 ° C. to an outlet temperature which is clearly below the dew point limit of the combustion gases cool down from, for example, 48 ° C.

Claims

Schutzansprüche Protection claims
1. rmetauscherrohr für Heizkessel, insbesondere für Ga s-Brennwe rtkesse l , bestehend aus einem zylindri¬ schen glattwandigen Außenrohr (1) aus Stahl, das von den Abgasen der Heizkesselfeuerung durchströmt wird und außenseitig vom Heizkesselwasser umgeben ist, und einem in das Außenrohr eingeschobenen Profi leinsatz (2) aus Aluminium, der zur Vergrößerung der inneren Oberfläche des Außenrohres in dessen Längsrichtung verlaufende Rippen (5) aufweist und mit dem Außenrohr in wärmeleitender Berührung steht, dadurch gekennzeichnet, daß der Profi leinsatz (2) aus einem Rohrkörper besteht, der in einer durch die Außenrohr längsa ch se verlaufenden Tei lungsebene in zwei Halbschalen (3,4) untertei lt ist, daß die beiden Halbschalen an ihren sich berührenden Längs¬ rändern (6) mit nutförmigen Vertiefungen (7) und rippenartigen Vorsprüngen (8) ausgebi ldet sind und damit senkrecht zur Tei lungsebene dichtungsartig ineinandergreifen, und daß beide Halbschalen (3,4) auf ihrer Schaleninnenseite in einer solchen Weise mit in den lichten Querschnitt des Rohrkörpers hi¬ neinragenden, in L ngsrichtung des Außenrohres sich erstreckenden Rippen (5) ausgebi ldet sind, daß jede Halbschale mit ihren Rippen ein einseitig offenes Profi l bi Idet.1. exchanger tube for boilers, in particular for gas fired boiler l, consisting of a cylindrical smooth-walled outer tube (1) made of steel, through which the flue gases from the boiler firing flow and which is surrounded on the outside by the boiler water, and one inserted into the outer tube Profile insert (2) made of aluminum, which has ribs ( 5) extending in the longitudinal direction to enlarge the inner surface of the outer tube and is in heat-conducting contact with the outer tube, characterized in that the profile insert (2) consists of a tubular body which is divided into two half-shells (3, 4) in a dividing plane running longitudinally through the outer tube that the two half-shells have groove-shaped depressions (7) and rib-like projections (8) at their contacting longitudinal edges (6) ldet are and thus mesh perpendicular to the parting plane gasket-like, and that both half-shells (3,4) a uf their shell inner side in such a manner with uerschnitt in the clear Q of the tubular body hi¬ neinragenden, in L of the outer pipe longitudinal direction extending ribs (5) are Trained arcs that each half shell with its ribs open on one side professional l bi Idet.
2. Wä rmetausche r roh r nach Anspruch 1, dadurch gekenn- zeichnet, daß die beiden Halbschalen (3,4) innen¬ seitig mit kammartig angeordneten Rippen (5) aus¬ gebi ldet sind, die senkrecht zu der Tei lungsebene stehen und paarweise einander gegenüberliegend sich bis zur Tei lungsebene erstrecken.2. Heat exchanger tube r according to claim 1, characterized in that the two half-shells (3, 4) are formed on the inside with comb-like ribs (5) which are perpendicular to the parting plane and in pairs opposite to each other extend to the parting plane.
3. Wärmetauscherrohr nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die beiden Halbschalen (6) je- wei ls an einem Längsrand mit einer Abdichtungsnut (7) und am anderen Längsrand (6) mit einer der Nut¬ form angepaßten Abdichtungsrippe (8) ausgebi ldet sind.3. Heat exchanger tube according to claim 1 or 2, characterized in that the two half-shells (6) each wei are ls Trained arcs at one longitudinal edge with a sealing groove (7) and at the other longitudinal edge (6) having a shape adapted to the groove ¬ sealing rib (8).
Wärmetauscherrohr nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Rippen (5) mit einer in der Längsrichtung des Außenrohres beziehungsweise der Halbschalen verlaufenden riffelartigen Oberflä¬ chenprofi lierung versehen sind.Heat exchanger tube according to one of claims 1 to 3, characterized in that the ribs (5) are provided with a corrugated surface profile running in the longitudinal direction of the outer tube or the half-shells.
5. W rmetauscherrohr nach Anspruch 1, dadurch gekenn¬ zeichnet, daß der aus den beiden Halbschalen (3,4) zusammengefügte Profi leinsatz (2) einen im wesent¬ lichen dem Innendurchmesser des Außenrohres (1) entsprechenden Außendurchmesser hat und auf seiner gesamten Umfangs f lache unmittelbar am Außenrohr anliegt und daß der Profi leinsatz (2) durch eine radiale bleibende Zusammendrüc kungsVerformung des gesamten Außenroh rumfanges mit dem Außenrohr (1) zusammengepreßt ist.5. heat exchanger tube according to claim 1, characterized gekenn¬ characterized in that the two half-shells (3, 4) assembled professional oil insert (2) has a substantially the inner diameter of the outer tube (1) corresponding outer diameter and on its entire circumference f surface lies directly against the outer tube and that the professional insert (2) is pressed together with the outer tube (1) by a radial, permanent compression deformation of the entire outer tube circumference.
6. Wärmetauscherrohr nach Anspruch 2, dadurch gekenn¬ zeichnet, daß zwischen die Spitzen der kammartigen Rippen (5) der beiden Halbschalen (3,4) ein platten- förmiges Flachprofi l (9) aus Aluminium eingelegt ist und die Rippenlänge so bemessen ist, daß beim Zusammenfügen der Halbschalen zu dem Pro i leinsatz (2) die Kammspitzen wärmeleitend an das Flachprofi l angedrückt sind.6. Heat exchanger tube according to claim 2, characterized gekenn¬ characterized in that between the tips of the comb-like ribs (5) of the two half-shells (3,4) a plate-shaped Flachprofi l (9) is inserted from aluminum and the rib length is dimensioned so that when the half-shells are joined to form the profile insert (2), the comb tips are pressed onto the flat profile in a heat-conducting manner.
7. ärmetauscherrohr nach Anspruch 2, dadurch gekenn¬ zeichnet, daß der aus Halbschalen (3,4) mit kammar¬ tigen Rippen (5) bestehende Profi leinsatz (2) einen den Innendurchmesser des Außenrohres (1) wesentlich unterschreitenden Außendurchmesser aufweist und daß in dem Ringraum zwischen dem Profi leinsatz (2) und dem Außenrohr (1) ein Zwischenprofi l (10) aus Aluminium angeordnet ist, welches aus einer an dem Außenrohr (1) anliegenden Rohrwand und mehreren von der Rohrwand ausgehend radial bis an den Pro¬ fi leinsatz (2) heranreichenden Rippen (11) besteht und ebenfalls in einer durch die Außenrohrlängsachse verlaufenden Tei lungsebene in zwei einseitig offene Zwischenprofi Ihälften untertei lt ist, die an den Längsrändern ihrer Rohrwand dichtungsartig ausge¬ bi ldet sind und aneinander liegen, wobei das Zwi¬ schenprofi l (10) durch eine radiale bleibende Zusam- mendrückungsve rfo rmung des Außenrohres (1) mit diesem sowie mit dem inneren Profi leinsatz (2) wärmeleitend zusammengepreßt ist. 7. arm exchanger tube according to claim 2, characterized gekenn¬ characterized in that the half-shells (3,4) with kammar¬ ribs (5) existing professional oil insert (2) has an inner diameter of the outer tube (1) significantly below the outer diameter and that in the annular space between the profile insert (2) and an intermediate profile (10) made of aluminum is arranged on the outer tube (1), which consists of a tube wall bearing against the outer tube (1) and a plurality of ribs (11) extending radially from the tube wall up to the profile insert (2) exists and is also divided in a dividing plane running through the longitudinal axis of the outer pipe into two intermediate sections which are open on one side and which are formed in a seal-like manner on the longitudinal edges of their pipe wall and lie against one another, the intermediate section (10) being a radial one Compression of the outer tube (1) with this and with the inner profile insert (2) is pressed in a heat-conducting manner.
EP95913118A 1994-03-24 1995-03-15 Heat exchanger tube for heating boilers Expired - Lifetime EP0752088B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE9405062U 1994-03-24
DE9405062U DE9405062U1 (en) 1994-03-24 1994-03-24 Heat exchanger tube for boilers
PCT/EP1995/000957 WO1995025937A1 (en) 1994-03-24 1995-03-15 Heat exchanger tube for heating boilers

Publications (2)

Publication Number Publication Date
EP0752088A1 true EP0752088A1 (en) 1997-01-08
EP0752088B1 EP0752088B1 (en) 1997-11-26

Family

ID=6906491

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95913118A Expired - Lifetime EP0752088B1 (en) 1994-03-24 1995-03-15 Heat exchanger tube for heating boilers

Country Status (26)

Country Link
US (1) US6070657A (en)
EP (1) EP0752088B1 (en)
JP (1) JP3016866B2 (en)
KR (1) KR100217265B1 (en)
CN (1) CN1120347C (en)
AT (1) ATE160628T1 (en)
AU (1) AU678713B2 (en)
CA (1) CA2186270C (en)
CZ (1) CZ286145B6 (en)
DE (2) DE9405062U1 (en)
DK (1) DK0752088T3 (en)
EE (1) EE03318B1 (en)
ES (1) ES2112055T3 (en)
FI (1) FI107835B (en)
GR (1) GR3026039T3 (en)
HR (1) HRP950131B1 (en)
HU (1) HU220435B (en)
LV (1) LV12025B (en)
NO (1) NO303151B1 (en)
NZ (1) NZ282800A (en)
PL (1) PL178916B1 (en)
RU (1) RU2125219C1 (en)
SK (1) SK281996B6 (en)
TR (1) TR28643A (en)
UA (1) UA26941C2 (en)
WO (1) WO1995025937A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2781873A4 (en) * 2011-11-14 2015-10-07 Sung-Hwan Choi Heat exchange pipe and manufacturing method thereof
EP3040638A1 (en) 2015-07-23 2016-07-06 Hoval Aktiengesellschaft Heat transfer pipe and boiler comprising one such heat transfer pipe
EP1617139B1 (en) 2004-07-13 2016-08-31 UNICAL AG S.p.A. Pipe in a fire tube boiler

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT409794B (en) * 1998-11-30 2002-11-25 Vaillant Gmbh Heat Exchanger
DE10053000A1 (en) * 2000-10-25 2002-05-08 Eaton Fluid Power Gmbh Air conditioning system with internal heat exchanger and heat exchanger tube for one
EP1505360A4 (en) * 2002-05-10 2011-10-05 Usui Kokusai Sangyo Kk Heat transfer pipe and heat exchange incorporating such heat transfer pipe
EP1872080A1 (en) * 2005-04-18 2008-01-02 UNICAL AG S.p.A. Protected carbon steel pipe for fire tube heat exchange devices, particularly boilers
CN100392318C (en) * 2005-05-20 2008-06-04 应连根 Energy-saving boiler
DE102006012219B4 (en) * 2006-03-16 2018-04-05 Pierburg Gmbh Heat transfer unit with a closable fluid part inlet
ES2263399B1 (en) * 2006-04-28 2007-11-16 Dayco Ensa S.L. ALUMINUM HEAT EXCHANGER FOR AN "EGR" SYSTEM.
US20090260586A1 (en) * 2006-09-19 2009-10-22 Behr Gmbh & Co. Kg Heat exchanger for an internal combustion engine
ITMN20060071A1 (en) * 2006-12-13 2008-06-14 Unical Ag Spa CARBON STEEL PIPE PROTECTED FOR THE CONVEYANCE OF FUMES IN HEAT EXCHANGE APPLIANCE.
DE102007005389A1 (en) * 2007-02-03 2008-08-07 Behr Gmbh & Co. Kg Heat exchanger
DE102008030423B4 (en) 2007-12-05 2016-03-03 GIB - Gesellschaft für Innovation im Bauwesen mbH Pipe with a surface profile-modified outer surface by pimples
US8267162B1 (en) * 2008-09-16 2012-09-18 Standard Motor Products Bi-directional pressure relief valve for a plate fin heat exchanger
US8894367B2 (en) * 2009-08-06 2014-11-25 Siemens Energy, Inc. Compound cooling flow turbulator for turbine component
US8844472B2 (en) 2009-12-22 2014-09-30 Lochinvar, Llc Fire tube heater
IT1401296B1 (en) * 2010-06-16 2013-07-18 Unical Ag Spa TUBE IN BOILER WITH SMOKE PIPES.
CN102331085B (en) * 2011-09-21 2014-01-15 西安交通大学 Integral condensing boiler
CN102435087A (en) * 2011-09-21 2012-05-02 西安交通大学 E-shaped axially-symmetrical strengthened heat-exchanging element
KR101504394B1 (en) * 2012-01-19 2015-03-19 최성환 Hot water storage type condensing boiler having multistage structure
CN102914200A (en) * 2012-08-23 2013-02-06 上海青盛工程设备安装有限公司 Heat exchange tube of furnace fume waste heat recycling composite material
US20140131021A1 (en) * 2012-11-15 2014-05-15 Sung-hwan Choi Heat exchanger pipe and manufacturing method therefor
CN103017328A (en) * 2012-12-31 2013-04-03 宁波鸿图工业设计有限公司 Combustion and heat exchange system of heating equipment
KR101427045B1 (en) * 2013-04-30 2014-08-05 최성환 Heat exchanging fin having two of half shell connected with each other and Heat exchanging pipe having the same
DE102013226742A1 (en) * 2013-12-19 2015-06-25 Mahle International Gmbh flow machine
KR20150108581A (en) * 2014-03-18 2015-09-30 그랜드 홀 엔터프라이즈 컴파니 리미티드 Heat exchanger tube
EP2944910B1 (en) * 2014-05-13 2016-05-25 Grand Hall Enterprise Co., Ltd. Heat exchanger tube
CN103968700B (en) * 2014-05-26 2016-08-24 赵耀华 A kind of high efficient heat exchanging water pipe and heat pipe radiant heating/refrigeration system
TWI560423B (en) * 2014-06-04 2016-12-01 Grand Hall Entpr Co Ltd Heat exchanger tube
JP2016070543A (en) * 2014-09-29 2016-05-09 關中股▲分▼有限公司 Heat exchange tube
US20160177806A1 (en) * 2014-12-23 2016-06-23 Caterpillar Inc. Exhaust Outlet Elbow Center Divider Connection
CN104613805A (en) * 2015-01-26 2015-05-13 西安交通大学 Axisymmetric comb-shaped inner fin structure and fin tube thereof
CN104613646B (en) * 2015-01-27 2017-05-10 佛山市沃克曼普电气有限公司 Heat exchange sheet
WO2016204767A1 (en) 2015-06-18 2016-12-22 Cleaver-Brooks, Inc. Reduced size fire tube boiler system
EP3141828B1 (en) * 2015-07-14 2020-10-28 Eco Factory Co. Ltd. Air conditioning device and air conditioning system
GB201513415D0 (en) * 2015-07-30 2015-09-16 Senior Uk Ltd Finned coaxial cooler
CN106482568B (en) * 2015-08-25 2019-03-12 丹佛斯微通道换热器(嘉兴)有限公司 Heat exchanger tube, heat exchanger and its assembly method for heat exchanger
CN105444602A (en) * 2015-12-04 2016-03-30 安阳方快锅炉有限公司 Novel inner finned pipe for boiler
CN105499430A (en) * 2015-12-08 2016-04-20 安阳方快锅炉有限公司 Processing method of inner finned tube of boiler
US20180202724A1 (en) * 2017-01-19 2018-07-19 Dong Yong Hot Water System Inc. Conductive structure of heat exchange pipe
US10377407B2 (en) 2017-02-08 2019-08-13 Toyota Motor Engineering & Manufacturing North America, Inc. Cooling systems for vehicle interior surfaces
US20200217588A1 (en) * 2017-08-03 2020-07-09 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus
KR101962352B1 (en) * 2017-10-16 2019-03-26 최영환 Boiler with heating blower
US11391523B2 (en) * 2018-03-23 2022-07-19 Raytheon Technologies Corporation Asymmetric application of cooling features for a cast plate heat exchanger
WO2021011627A1 (en) * 2019-07-16 2021-01-21 Bradford White Corporation Heat exchanger baffles and methods for manufacturing the same
DE102020112163A1 (en) 2020-05-06 2021-11-11 Martin Hofmeir Heating device for use in a container with an explosive atmosphere, in particular for pest control and / or drying out, and method for producing a heat exchanger body of a heating device
US11774194B2 (en) * 2021-02-01 2023-10-03 The Government of the United States of America, as represented by the Secretary of Homeland Security Thermoacoustic 3D printed stack and heat exchanger
CN114087909B (en) * 2021-11-19 2022-10-25 西安交通大学 Self-vibration inserted bending deflection type fin composite smoke tube
DE102022108336A1 (en) 2022-04-06 2023-10-12 Lisa Dräxlmaier GmbH CONDUCT RAIL WITH PASSIVE COOLING
DE102022108335A1 (en) 2022-04-06 2023-10-12 Lisa Dräxlmaier GmbH POWER RAIL WITH ACTIVE COOLING

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD81875A (en) *
CH20606A (en) * 1899-12-26 1901-02-28 Albert Schmitz Finned tube
US813918A (en) * 1899-12-29 1906-02-27 Albert Schmitz Tubes, single or compound, with longitudinal ribs.
GB190207886A (en) * 1902-04-04 1903-03-05 Wallace Mcguffin Greaves Improvements in Tubes for Steam Boilers
GB190217909A (en) * 1902-08-14 1903-06-04 Edgard De Porto-Riche Improvements relating to Steam Generators.
US1350073A (en) * 1919-05-10 1920-08-17 Llewellyn D Edminster Pipe structure
US1692529A (en) * 1926-01-29 1928-11-20 American Luigi Corp Machine for making hollow tubes or conductors
FR993977A (en) * 1944-11-29 1951-11-09 Stein Et Roubaix Soc Metal heater
DE821777C (en) * 1950-01-18 1951-11-19 Luise Benofsky Geb Herberger Outlet tap aerator
US2618738A (en) * 1950-06-22 1952-11-18 Gen Electric Air cooled light projector
US2779972A (en) * 1952-09-10 1957-02-05 Kins Georg Heinrich Pressure vessel
FR1422003A (en) * 1959-01-29 1965-12-24 New tube exchangers with internal fins and their applications
BE653792A (en) * 1963-09-30
US3267564A (en) * 1964-04-23 1966-08-23 Calumet & Hecla Method of producing duplex internally finned tube unit
BE795314A (en) * 1972-02-10 1973-05-29 Raufoss Ammunisjonsfabrikker HEAT EXCHANGER DUCT
DE2227955A1 (en) * 1972-06-08 1974-01-03 Wieland Werke Ag Surface condenser tube - of composite material
DE2920057C2 (en) * 1979-05-18 1982-09-16 Kurt 7520 Bruchsal Heim Inner finned tube for pressurized gas or pressurized oil-fired boilers
DE3310098A1 (en) * 1983-03-21 1984-10-04 Hans Dr.h.c. 3559 Battenberg Vießmann Heating boiler
DE3334894A1 (en) * 1983-09-27 1985-04-11 Vießmann, Hans, Dr.h.c., 3559 Battenberg Heating gas flue pipes
DE3338642C1 (en) * 1983-10-25 1984-06-20 Hans Dr.h.c. 3559 Battenberg Vießmann Internally finned insert for heating boiler
IT1209532B (en) * 1984-04-20 1989-08-30 Snam Progetti PROCESS FOR THE SYNTHESIS OF UREA AND MATERIAL USED IN ITSELF.
JPS6396493A (en) * 1986-10-07 1988-04-27 Isuzu Motors Ltd Heat exchanger
SU1462076A1 (en) * 1987-01-20 1989-02-28 Запорожский автомобильный завод "Коммунар" Heat-exchanging tube
US5152339A (en) * 1990-04-03 1992-10-06 Thermal Components, Inc. Manifold assembly for a parallel flow heat exchanger
DE9309771U1 (en) * 1993-07-01 1993-08-26 Viessmann Werke Kg Hot gas flue

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9525937A1 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1617139B1 (en) 2004-07-13 2016-08-31 UNICAL AG S.p.A. Pipe in a fire tube boiler
EP2781873A4 (en) * 2011-11-14 2015-10-07 Sung-Hwan Choi Heat exchange pipe and manufacturing method thereof
EP3040638A1 (en) 2015-07-23 2016-07-06 Hoval Aktiengesellschaft Heat transfer pipe and boiler comprising one such heat transfer pipe
EP3301378A1 (en) 2015-07-23 2018-04-04 Hoval Aktiengesellschaft Heat exchanger tube and heating boiler having such a heat exchanger tube
EP3040638B1 (en) * 2015-07-23 2018-05-09 Hoval Aktiengesellschaft Heat transfer pipe and boiler comprising one such heat transfer pipe

Also Published As

Publication number Publication date
NO303151B1 (en) 1998-06-02
JPH09507708A (en) 1997-08-05
SK116596A3 (en) 1998-10-07
KR100217265B1 (en) 1999-09-01
JP3016866B2 (en) 2000-03-06
RU2125219C1 (en) 1999-01-20
LV12025B (en) 1998-07-20
FI107835B (en) 2001-10-15
ATE160628T1 (en) 1997-12-15
HUP9774653A2 (en) 1997-01-28
SK281996B6 (en) 2001-10-08
EE03318B1 (en) 2000-12-15
HU9602608D0 (en) 1996-11-28
CZ261396A3 (en) 1996-12-11
EP0752088B1 (en) 1997-11-26
ES2112055T3 (en) 1998-03-16
CN1144558A (en) 1997-03-05
PL316389A1 (en) 1997-01-06
NO963993D0 (en) 1996-09-23
HRP950131B1 (en) 2000-10-31
FI963772A (en) 1996-09-23
DE9405062U1 (en) 1994-05-26
WO1995025937A1 (en) 1995-09-28
CN1120347C (en) 2003-09-03
NO963993L (en) 1996-09-23
HRP950131A2 (en) 1997-02-28
CA2186270A1 (en) 1995-09-28
NZ282800A (en) 1997-03-24
PL178916B1 (en) 2000-06-30
AU2070895A (en) 1995-10-09
FI963772A0 (en) 1996-09-23
US6070657A (en) 2000-06-06
HU220435B (en) 2002-01-28
CZ286145B6 (en) 2000-01-12
LV12025A (en) 1998-04-20
DE59501046D1 (en) 1998-01-08
GR3026039T3 (en) 1998-04-30
KR970701851A (en) 1997-04-12
CA2186270C (en) 2000-06-13
TR28643A (en) 1996-12-16
DK0752088T3 (en) 1998-08-10
UA26941C2 (en) 1999-12-29
AU678713B2 (en) 1997-06-05

Similar Documents

Publication Publication Date Title
EP0752088A1 (en) Heat exchanger tube for heating boilers
EP1202016B1 (en) Air-conditioning system with internal heat exchanger and heat exchanger tube for same
DE102005058204B4 (en) Cooling device for an internal combustion engine
EP0845647B1 (en) Flat tube heat exchanger with twisted tube ends
EP0218930A1 (en) Cooler
EP3040638B1 (en) Heat transfer pipe and boiler comprising one such heat transfer pipe
EP1687583A1 (en) Heat exchanger, especially charge air cooler for motor vehicles
DE3133665A1 (en) ARRANGEMENT FOR CONNECTING TUBES OF A HEAT EXCHANGER BLOCK TO A CONNECTION BOX, IN PARTICULAR FOR AN EVAPORATOR
EP2705319B1 (en) Heat exchanger, in particular intercooler
WO2004088234A2 (en) Heat exchanger
DE10219867A1 (en) Heat exchangers, in particular intercoolers
DE19543234C2 (en) Finned heat exchanger
DE102010021334B4 (en) Method for producing a heat exchanger and heat exchanger
DE3532930C1 (en) Cooler, especially an oil cooler
DE19524052A1 (en) Heat-exchanger with parallel flat tubes
DE3834822A1 (en) Heat exchanger
EP2096372A2 (en) Heating device
DE3701614C2 (en) Pipe heat exchanger
WO2009109486A1 (en) Cast-iron or aluminium sectional boiler
DE19541121C2 (en) Finned heat exchanger
EP1623173B1 (en) Heat exchanger unit for motor vehicles
EP1114975A2 (en) Spiral heat exchanger
WO2004042292A1 (en) Collecting tank, heat exchanger and coolant circuit
DE2630808A1 (en) HEAT EXCHANGER
DE4409136C2 (en) Coupling device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960905

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19970220

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

REF Corresponds to:

Ref document number: 160628

Country of ref document: AT

Date of ref document: 19971215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59501046

Country of ref document: DE

Date of ref document: 19980108

ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980202

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2112055

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19980217

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20140319

Year of fee payment: 20

Ref country code: SE

Payment date: 20140319

Year of fee payment: 20

Ref country code: DE

Payment date: 20140331

Year of fee payment: 20

Ref country code: IE

Payment date: 20140325

Year of fee payment: 20

Ref country code: LU

Payment date: 20140326

Year of fee payment: 20

Ref country code: NL

Payment date: 20140319

Year of fee payment: 20

Ref country code: DK

Payment date: 20140319

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140319

Year of fee payment: 20

Ref country code: GR

Payment date: 20140314

Year of fee payment: 20

Ref country code: AT

Payment date: 20140312

Year of fee payment: 20

Ref country code: IT

Payment date: 20140326

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140319

Year of fee payment: 20

Ref country code: PT

Payment date: 20140317

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20140319

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59501046

Country of ref document: DE

Ref country code: DK

Ref legal event code: EUP

Effective date: 20150315

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: MAXIMUM VALIDITY LIMIT REACHED

Effective date: 20150315

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20150315

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20150314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20150324

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: IE

Ref legal event code: MK9A

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 160628

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150315

REG Reference to a national code

Ref country code: GR

Ref legal event code: MA

Ref document number: 980400207

Country of ref document: GR

Effective date: 20150316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20150314

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20150315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20150316

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20140331

Year of fee payment: 20