EP0752020B1 - Process and device for cooling melt-extruded filaments - Google Patents

Process and device for cooling melt-extruded filaments Download PDF

Info

Publication number
EP0752020B1
EP0752020B1 EP96900839A EP96900839A EP0752020B1 EP 0752020 B1 EP0752020 B1 EP 0752020B1 EP 96900839 A EP96900839 A EP 96900839A EP 96900839 A EP96900839 A EP 96900839A EP 0752020 B1 EP0752020 B1 EP 0752020B1
Authority
EP
European Patent Office
Prior art keywords
foam
filaments
vessel
liquid
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96900839A
Other languages
German (de)
French (fr)
Other versions
EP0752020A1 (en
Inventor
Ronald Mears
Erich Chase
Willi Kretzschmar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rieter Automatik GmbH
Original Assignee
Rieter Automatik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rieter Automatik GmbH filed Critical Rieter Automatik GmbH
Publication of EP0752020A1 publication Critical patent/EP0752020A1/en
Application granted granted Critical
Publication of EP0752020B1 publication Critical patent/EP0752020B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes

Definitions

  • the invention relates to a method for cooling melt-spun Filaments made of thread-forming polymers and a Device for performing the method.
  • Filament yarns and staple fibers made of thread-forming polymers such as Polyesters, polyamides or polyolefins are commonly used produced by the melt spinning process.
  • a polymer melt is fed to a spinning pump, which melt through the spinnerets in the so-called spinning beam promotes.
  • Those from the nozzles in the form of liquid filaments escaping melt solidifies in a cooling shaft.
  • a preparation is carried out at the same time, i.e. Humidification and anti-static treatment and the like before the filaments go through another process be fed.
  • the cooling of those emerging from the spinneret liquid filaments is of great influence the titer uniformity (Uster value) and the textile technology Properties of fibers and threads in the end product.
  • Air cooling has the advantage that the air is low Exerts friction on the emerging filaments and therefore no unwanted stretching occurs.
  • the disadvantage is, however low cooling effect of the air, so that a long cooling distance is required.
  • a long cooling section also means a slow cooling.
  • a slow cooling favors the crystallite formation in the thread, which is the result of the subsequent stretching Causing problems.
  • a high throughput (g / min / hole) or thicker single filaments require one especially long cooling distance, because the cooling speed is low. Thus, as already mentioned above, there is this Spun material particularly the risk of crystallite formation.
  • the cooling usually takes place by blowing the filaments crosswise.
  • the air flow must be low in turbulence and the same Have speed across the chute width so every filament experiences exactly the same cooling in time and place.
  • Perforated sheets or screen mesh in connection with honeycomb rectifiers are used to meet the required flow conditions to create. Also can be about the height of the cooling shaft if necessary, a speed profile can be provided. Despite this partly elaborate measures will be taken at high Number of filaments per surface no uniform cooling of all Single filaments guaranteed. From filament to filament arises a transverse temperature gradient, so that the number of rows of holes arranged one behind the other in the air flow is limited.
  • the object of the present invention is to provide a method create, which the cooling of the emerging from the nozzles Spinning melt improved by means of foam and thus also that Spinning thicker filaments at high speed allows without crystallite formation in these filaments comes, which adversely affects the subsequent stretching / texturing process influenced.
  • This task is characterized by the features of the claim 1 and the device claim 10 solved.
  • Spinning nozzles 2 from which the filaments F emerge, are arranged on a spinning beam 1.
  • these filaments F Before these filaments F, which leave the nozzles 2 in liquid form, can be fed to any further processing, they have to be solidified by cooling, for example to wind them up into bobbins or to deposit them in bundles in cans. They therefore pass through a so-called cooling section SK, on which the threads are guided freely without touching themselves or other objects and are cooled from the usual melting temperature of approximately 300 ° C. to a limit temperature t g , which is approximately 70 ° C. . Only when this limit temperature t g is reached or fallen below, the filaments F may have contact. 3 shows the temperature t of the spinning material in ° C.
  • the line t g indicates the temperature to which the spinning material must have cooled at least before each contact (limit temperature).
  • the cooling conditions are shown, for example, for a polyester POY monofilament with a titer of 22-35 dtex by curve A. The cooling takes place as usual with air, which has an intrinsic temperature corresponding to the room temperature of about 20 ° C. The course of the cooling shows that with this type of cooling and a production speed of 3600 m / min, the limit temperature of approximately 70 ° C. is only reached after a cooling section SA of approximately 3.5 m. Only at this distance from the nozzle have the filaments achieved such strength through cooling that they may be in contact with each other or with thread guide elements or the like.
  • Curves B and C show the cooling conditions for foam with different volume fractions of liquid. It follows that in the case of a foam with a liquid volume fraction of 5% under the same conditions as for curve A, the cooling distance is shortened to approximately 1.1 to 1.2 m in order to reach the limit temperature t g . If the volume fraction is higher, the cooling distance is further shortened, since the heat transfer also increases greatly depending on the volume fraction of liquid in the foam. For example, curve C shows the cooling process for a foam with about 10% liquid volume. The cooling section SK is reduced to the section SC, which is less than 1 m, in order to reach the limit temperature.
  • FIG. 3 shows the entire cooling process from the exit from the spinnerets to the preparation for the next treatment process.
  • the air gap S between the nozzle plate 2 and the foam container 3 a relatively flat course of the temperature decrease can be seen first.
  • the cooling curve is considerably steeper than if the cooling were only carried out by air and thus reaches the limit temperature t g after a short distance.
  • the distance S can be very small be, e.g. only 1 - 2 cm. Its size depends on the Filament thickness and production speed. After the Filaments F emerge in liquid form from the nozzles 3 some solidification is necessary before going into the foam immerse yourself. This solidification occurs with fine filaments much faster than with coarser titles, where this Distance from the foam depending on the production speed can be up to 1.5 m.
  • the foam container 3 is supported by a frame 32 and has a wide inlet opening 31 at its upper end so that the filaments F cannot touch the walls of the foam container 3, while a narrow opening 35 is provided at its lower end through which the Filaments F leave the foam container. Due to the widening cross section of the foam container 3, the flow rate of the foam is reduced and the regression and separation of the liquid is promoted and the spinning material passed through the foam in countercurrent is wetted and cooled intensively. Since the filaments F largely fill this narrow opening 35 and thus contact contacts occur, the limit temperature t g must be reached with certainty up to this point. As can be seen from Figure 3, this also determines the overall height of the foam container 3.
  • the air supply 51 At the lower end, close to the outlet opening 35, there is a Foam generator 5 arranged, the air supply 51 and has a liquid supply 52 and the foam immediately supplies in the lower part of the foam container 3. While the foam by the continuous foam generation upwards increases, the filaments F countercurrently from top to bottom passed down through the foam container 3 and occur at the Exit opening 35 from the foam container 3 to then to be sent to another processing process.
  • the rising foam is controlled by a sensor 4, which, if necessary, the fill level via Level controller 41 regulates.
  • the edge of the upper entry opening 35 of the foam container 3 is designed as an overflow, so that re-forming liquid, if necessary, over the Edge can run off.
  • the overflowing liquid as well as in Foam container 3 resulting from regression and down draining liquid is collected in a drip pan 33 and returned to the circulation pump 7 via drain lines 36.
  • the foam generator 5 is continuously fed by the Circulation pump 7, which is also the circuit of the returned liquid caused by the foam container 3.
  • the metering pump 72 water is added to this cycle to the extent that foam generation and cooling of the filaments F liquid is consumed.
  • a second pump 71 removes the liquid Preparation oil added.
  • the circulation pump then does both 7 pumped through a mixer 6 and thereby to the Prepared liquid that the foam generator 5 on the Line 52 is supplied.
  • In the foam generator 5 is by Feed 51 air added to the liquid and so the foam generated, which is delivered in the lower part of the foam container 3 becomes.
  • the foam container 3 When piecing, the foam container 3 is initially empty. From the filaments F emerging from the nozzle 2 fall down into the Foam container 3 and are inserted into the outlet opening 35. For this purpose, a flap 34 is used, which covers the lower part of the Foam container 3 makes accessible. After filament insertion F the flap 34 is closed again and foam is added.
  • the sensor 4 controls the rising foam and regulates the motor 42, which controls the metering pump, via a controller 41 72 drives for the water supply. Through the over the Sensor 4 controlled level in the foam container 3 is thus also determines the cooling section SK, which the filaments at Need to go through the foam.
  • the bubble bath is used at the same time to Apply the preparation solution to the filaments F.
  • the system therefore also includes the required one Preparation device. Below the foam container 3, the emerging filaments through two electrodes 8 scanned. With a resistance measurement the constancy of the preparation pad is measured and if necessary through a target / actual value comparison in the concentration controller 81 and a frequency converter 82, the motor 83 for drives the metering pump 71 for the preparation oil.
  • the foam container is something designed differently than in Figure 1.
  • the foam container 30 is as rectangular or cylindrical shaft formed on the itself in continuation of its external form, but separated through a joint 38, the foam generator 50, 50 ', connects.
  • the narrow outlet opening 35 of the foam container 3 is here in the foam generator 50, 50 ', so that the foam container 3 open at the parting line 38 in full cross section is.
  • the foam generator consists of two half-shells 50, 50 ' are movable apart in the horizontal direction along the Parting line 38. This makes the lower part for piecing of the foam container 30 accessible so that the falling Filaments F captured and in yarn guides for further processing can be inserted. If this has happened, they will the two half-shells 50, 50 'of the foam generator are reassembled, so that they enclose the filaments F and the Foam container 30 is closed except for the outlet opening 35 for filaments F.
  • Each of the two half-shells 50, 50 ' is independent Foam generator designed and both to an air supply 51st as well as connected to a liquid supply 52.
  • This Supply lines are expediently elastic to the two half-shells 50, 50 'to be able to move apart.
  • sintered metal candles 53 through which the air is fed into the liquid.
  • the sintered metal candles 53 can also for the air supply over a plate or some other form of sintered metal manufactured body are supplied.
  • a plate or some other form of sintered metal manufactured body are supplied.
  • sintered material By using sintered material an exceptionally good treatment of the liquid with gas, preferably air to foam.
  • you can other fine-pored elements for the gas supply in the Liquid can be used, such as strainers, nozzle plates and Like ..
  • the liquid level 54 in the foam generator 50, 50 ' is controlled by a level limiter 37 to a to guarantee even foam production.
  • the easiest The type of such a sensor 37 is shown in FIG represented an overflow. Instead of the overflow 37 a probe can also be provided which monitors the fluid supply controls each.
  • the foam generated in this way increases up into the foam container 30, while the filaments F in Counter current flow through the foam container 30 and through the Leave outlet opening 35.
  • the upper part of the foam container 30 is in the same way designed as in the described embodiment according to the figure 1.
  • the edge of the opening 31 is designed as an overflow, so that regressive liquid collect and over can drain this edge to catch again and the Circuit to be fed again for foam generation.
  • the sensor 4 regulates the level of the foam within of container 30, however, additional may be required Take measures to ensure that the foam level is even and thus all filaments F through the same cooling section SB go through the foam.
  • a device for smoothing the foam level can also have a device for smoothing the foam level be provided.
  • a suction channel 21 is provided, which is such a foam mountain transported away or the formation of such a foam mountain prevented by a slight air flow.
  • the distance S to the nozzle plate 2 is much smaller here shown as in Figure 1. As mentioned above, this is Distance depending on the filament speed and the titer the filaments F. However, a certain distance S must be maintained as the foam should not touch the nozzle plate 2, to undesirably cool the foam avoid. Such a device 21 for smoothing the Foam level makes a certain distance from the nozzle plate required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

PCT No. PCT/DE96/00089 Sec. 371 Date Dec. 2, 1996 Sec. 102(e) Date Dec. 2, 1996 PCT Filed Jan. 17, 1996 PCT Pub. No. WO96/22409 PCT Pub. Date Jul. 25, 1996For the cooling of melt-extruded filaments of fiber-forming polymers spun from nozzle in molten form, said filaments are exposed to a medium prepared in foam form. The filaments emerging from the spinning nozzle are taken to the cooling area through said foam before passing on to a further process. The cooling medium, consisting of a liquid, is prepared by the addition of a gas.

Description

Die Erfindung betrifft ein Verfahren zum Abkühlen schmelzgesponnener Filamente aus fadenbildenden Polymeren sowie eine Vorrichtung zur Durchführung des Verfahrens.The invention relates to a method for cooling melt-spun Filaments made of thread-forming polymers and a Device for performing the method.

Filamentgarne und Spinnfasern aus fadenbildenden Polymeren wie Polyester, Polyamiden oder Polyolefinen, werden üblicherweise nach dem Schmelzspinnverfahren hergestellt. Bei diesem Verfahren wird eine Polymerschmelze einer Spinnpumpe zugeführt, die die Schmelze durch die Spinndüsen im sogenannten Spinnbalken fördert. Die aus den Düsen in Form flüssiger Filamente austretende Schmelze erstarrt nach dem Austritt in einem Abkühlschacht. Anschließend erfolgt gleichzeitig noch eine Präparierung, d.h. Befeuchtung und Ausrüstung mit Antistatikum und dergleichen, bevor die Filamente einem weiteren Prozeß zugeführt werden. Die Abkühlung der aus der Spinndüse austretenden flüssigen Filamente ist dabei von großem Einfluß auf die Titergleichmäßigkeit (Usterwert) und auf die textiltechnologischen Eigenschaften von Fasern und Fäden im Endprodukt. In manchen Anwendungsfällen, z.B. bei hohen Einzeltitern, sinkt bei Erhöhung der Produktionsgeschwindigkeit (g/min/Loch) die Garnfestigkeit ab (US PS 4 973 236). Ursache ist u.a. eine ungenügende Abkühlung des aus dem Düsenloch austretenden Schmelzstromes.Filament yarns and staple fibers made of thread-forming polymers such as Polyesters, polyamides or polyolefins are commonly used produced by the melt spinning process. With this procedure a polymer melt is fed to a spinning pump, which melt through the spinnerets in the so-called spinning beam promotes. Those from the nozzles in the form of liquid filaments escaping melt solidifies in a cooling shaft. Then a preparation is carried out at the same time, i.e. Humidification and anti-static treatment and the like before the filaments go through another process be fed. The cooling of those emerging from the spinneret liquid filaments is of great influence the titer uniformity (Uster value) and the textile technology Properties of fibers and threads in the end product. In some applications, e.g. with high single titers, decreases with increasing production speed (g / min / hole) the yarn strength from (US PS 4 973 236). The cause is insufficient cooling of the exiting from the nozzle hole Melt flow.

Als Kühlmedien werden in der Regel Luft, aber auch Wasser verwendet. Air, but also water, are generally used as cooling media.

Die Luftkühlung hat den Vorteil, daß die Luft eine geringe Reibung auf die austretenden Filamente ausübt und dadurch kein unerwünschtes Verstrecken erfolgt. Nachteilig ist jedoch die geringe Kühlwirkung der Luft, so daß eine lange Kühlstrecke erforderlich ist. Eine lange Kühlstrecke bedeutet jedoch auch eine langsame Abkühlung. Eine langsame Abkühlung begünstigt die Kristallitbildung im Faden, was beim nachfolgenden Verstrecken Probleme verursacht. Eine hohe Durchsatzleistung (g/min/Loch) oder auch dickere Einzelfilamente erfordern eine besonders lange Abkühlstrecke, da die Abkühlgeschwindigkeit gering ist. Damit besteht, wie oben bereits erwähnt, bei diesem Spinngut besonders die Gefahr der Kristallitbildung.Air cooling has the advantage that the air is low Exerts friction on the emerging filaments and therefore no unwanted stretching occurs. The disadvantage is, however low cooling effect of the air, so that a long cooling distance is required. However, a long cooling section also means a slow cooling. A slow cooling favors the crystallite formation in the thread, which is the result of the subsequent stretching Causing problems. A high throughput (g / min / hole) or thicker single filaments require one especially long cooling distance, because the cooling speed is low. Thus, as already mentioned above, there is this Spun material particularly the risk of crystallite formation.

Das Abkühlen erfolgt meist durch ein Queranblasen der Filamente. Die Luftströmung muß dabei turbulenzarm sein und gleiche Geschwindigkeit über die Schachtbreite haben, damit jedes Filament zeitlich und örtlich genau die gleiche Abkühlung erfährt. Lochbleche oder Siebgewebe in Verbindung mit Wabengleichrichtern werden verwendet, um die erforderlichen Strömungsbedingungen zu erzeugen. Auch kann über die Höhe des Abkühlschachtes ggf. ein Geschwindigkeitsprofil vorgesehen werden. Trotz dieser z.T. aufwendigen Maßnahmen wird bei hoher Filamentzahl pro Fläche keine gleichmäßige Abkühlung aller Einzelfilamente gewährleistet. Von Filament zu Filament entsteht bei der Queranblasung ein Temeperaturgradient, so daß die Anzahl der hintereinander im Luftstrom angeordneten Lochreihen begrenzt ist.The cooling usually takes place by blowing the filaments crosswise. The air flow must be low in turbulence and the same Have speed across the chute width so every filament experiences exactly the same cooling in time and place. Perforated sheets or screen mesh in connection with honeycomb rectifiers are used to meet the required flow conditions to create. Also can be about the height of the cooling shaft if necessary, a speed profile can be provided. Despite this partly elaborate measures will be taken at high Number of filaments per surface no uniform cooling of all Single filaments guaranteed. From filament to filament arises a transverse temperature gradient, so that the number of rows of holes arranged one behind the other in the air flow is limited.

Durch die US-PS 4 425 293 ist es auch bekannt, Wasser als Kühlmedium zu verwenden. Der Vorteil der Wasserkühlung ist eine schnelle Abführung der Wärme und dadurch die Vermeidung von Spinnkristallisation. Nachteilig bei der Wasserkühlung ist jedoch eine hohe Wasser/Filamentreibung. Dadurch kann es zu unerwünschten Verstreckungen der Filamente kommen. Allerdings ist auch schon versucht worden, die unerwünschte Verstreckung bei Wasserkühlung so zu berechnen und zu gestalten, daß eine erwünschte Verstreckung erfolgt (US 5 268 133 und WO 91/181 133). Jedoch haben sich derartige Maßnahmen als kompliziert und nicht unproblematisch erwiesen.Through U.S. Patent 4,425,293 it is also known to be water Use coolant. The advantage of water cooling is a quick dissipation of heat and thereby avoidance of spin crystallization. A disadvantage of water cooling is however, high water / filament friction. This can cause it to unwanted stretching of the filaments. Indeed has also been tried, the unwanted stretching to calculate and design for water cooling that a Desired stretching takes place (US 5 268 133 and WO 91/181 133). However, such measures have been complicated and proved to be not without problems.

Durch die SU-PS 386 034 ist es bekannt, Schaum zum Kühlen der aus der Spinndüse austretenden Filamente zu verwenden, wobei der Schaum mittels Durchblasen von Luft durch eine Wasserlösung mit oberflächenaktivem Material erzeugt wird. Damit soll eine Erhöhung der Gleichmäßigkeit der physikalisch-mechanischen Eigenschaften der Fasern und eine Intensivierung des Prozesses der Abkühlung erreicht werden.From SU-PS 386 034 it is known to cool the foam to use filaments emerging from the spinneret, whereby the foam by blowing air through a water solution is generated with surface-active material. With that an increase in the uniformity of the physical-mechanical Properties of the fibers and an intensification of the Process of cooling can be achieved.

Es hat sich nun gezeigt, daß die Verwendung von Schaum anstelle von Wasser als Kühlmedium nicht die erwarteten Vorteile gebracht hat. Zwar ist die Handhabung des Schaumes einfacher als die von Wasser beim Durchleiten der aus den Düsen austretenden Spinnschmelze, jedoch kommt es auch hier immer wieder zu Fehlverzügen oder auch Spinnkristallisation.It has now been shown that the use of foam instead of water as a cooling medium did not bring the expected benefits Has. The handling of the foam is easier than that of water passing through the nozzles Spinning melt, but here too there are repeated delays or also spin crystallization.

Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zu schaffen, welches das Abkühlen der aus den Düsen austretenden Spinnschmelze mittels Schaum verbessert und damit auch das Erspinnen stärkerer Filamente mit hoher Geschwindigkeit ermöglicht, ohne daß es in diesen Filamenten zu Kristallitbildung kommt, die den nachfolgenden Streck/Texturierprozeß nachteilig beeinflußt. Diese Aufgabe wird durch die Merkmale des Anspruchs 1 sowie des Vorrichtungsanspruchs 10 gelöst. The object of the present invention is to provide a method create, which the cooling of the emerging from the nozzles Spinning melt improved by means of foam and thus also that Spinning thicker filaments at high speed allows without crystallite formation in these filaments comes, which adversely affects the subsequent stretching / texturing process influenced. This task is characterized by the features of the claim 1 and the device claim 10 solved.

Es hat sich gezeigt, daß durch die Verwendung von Schaum überraschenderweise die Kühlwirkung erheblich erhöht wird, ohne die von Wasser bekannte große hydrodynamische Reibkraft der Filamente zu erzeugen. Durch die Ausbildung eines Flüssigkeitsfilmes an der Filamentoberfläche wird jedoch annähernd die Kühlwirkung des Wassers erreicht. Die Nachteile der Queranblasung werden ebenfalls durch das erfindungsgemäße Verfahren vermieden. Weitere Vorteile der Erfindung ergeben sich daraus, daß wegen der drastisch reduzierten Kühlstrecke die Ausführung von Spinnanlagen mit sehr niedriger Bauhöhe möglich wird. Dies führt zu erheblichen Kosteneinsparungen. Weitere Einzelheiten der Erfindung werden anhand der Figuren beschrieben.It has been shown that, surprisingly, by using foam the cooling effect is increased significantly without the great hydrodynamic friction force known from water To produce filaments. By forming a liquid film on the filament surface, however, approximates achieved the cooling effect of the water. The disadvantages of cross-blowing are also by the inventive method avoided. Further advantages of the invention result from the fact that because of the drastically reduced cooling section Execution of spinning systems with a very low overall height possible becomes. This leads to considerable cost savings. Further Details of the invention are described with reference to the figures.

Es zeigen:

Figur 1 -
schematisch eine Anlage zum Spinnen von schmelzgesponnenen Filamenten aus fadenbildenden Polymeren, wobei die Teile der Anlage, die für die Erfindung unwesentlich sind, weggelassen wurden.
Figur 2 -
eine andere Ausführungsform der Schaumanlage
Figur 3 -
eine graphische Darstellung des Abkühlungsvorganges gemäß dem Stand der Technik und gemäß der Erfindung
Show it:
Figure 1 -
schematically a plant for spinning melt-spun filaments from thread-forming polymers, the parts of the plant which are not essential to the invention have been omitted.
Figure 2 -
another embodiment of the foam system
Figure 3 -
a graphic representation of the cooling process according to the prior art and according to the invention

An einem Spinnbalken 1 sind Spinndüsen 2 angeordnet, aus denen die Filamente F austreten. Bevor diese Filamente F, die die Düsen 2 in flüssiger Form verlassen, irgendeinem weiteren Verarbeitungsprozeß zugeführt werden können, müssen diese durch Abkühlen verfestigt werden, um sie beispielsweise zu Spulen aufzuwinden oder als Fadenbündel in Kannen abzulegen. Sie durchlaufen deshalb eine sogenannte Kühlstrecke SK, auf der die Fäden frei, ohne sich oder andere Gegenstände zu berühren, geführt werden und von der üblichen Schmelztemperatur von etwa 300°C auf eine Grenztemperatur tg, die etwa bei 70°C liegt, abgekühlt werden. Erst wenn diese Grenztemperatur tg erreicht oder unterschritten ist, dürfen die Filamente F Kontakt haben. In Figur 3 ist die Temperatur t des Spinngutes in °C über der Strecke SK in m aufgetragen, die das Spinngut durchlaufen muß, bis es auf eine bestimmte Temperatur abgekühlt ist. Durch die Linie tg ist die Temperatur angegeben,auf die das Spinngut mindestens vor jeder Kontaktnahme abgekühlt sein muß (Grenztemperatur). Die Abkühlungsverhältnisse sind beispielsweise für ein Polyester POY Monofilament vom Titer 22 - 35 dtex durch die Kurve A dargestellt. Dabei findet die Abkühlung wie üblich mit Luft statt, die eine Eigentemperatur entsprechend der Raumtemperatur von etwa 20 °C aufweist. Der Verlauf der Abkühlung zeigt, daß bei dieser Art der Abkühlung und einer Produktionsgeschwindigkeit von 3600 m/min die Grenztemperatur von etwa 70 °C erst nach einer Kühlstrecke SA von etwa 3,5 m erreicht wird. Erst in dieser Entfernung von der Düse haben die Filamente eine solche Festigkeit durch die Abkühlung erreicht, daß sie untereinander oder auch mit Fadenleitelementen oder dgl. Kontakt haben dürfen.Spinning nozzles 2, from which the filaments F emerge, are arranged on a spinning beam 1. Before these filaments F, which leave the nozzles 2 in liquid form, can be fed to any further processing, they have to be solidified by cooling, for example to wind them up into bobbins or to deposit them in bundles in cans. They therefore pass through a so-called cooling section SK, on which the threads are guided freely without touching themselves or other objects and are cooled from the usual melting temperature of approximately 300 ° C. to a limit temperature t g , which is approximately 70 ° C. . Only when this limit temperature t g is reached or fallen below, the filaments F may have contact. 3 shows the temperature t of the spinning material in ° C. over the distance SK in m, which the spinning material has to pass through until it has cooled to a certain temperature. The line t g indicates the temperature to which the spinning material must have cooled at least before each contact (limit temperature). The cooling conditions are shown, for example, for a polyester POY monofilament with a titer of 22-35 dtex by curve A. The cooling takes place as usual with air, which has an intrinsic temperature corresponding to the room temperature of about 20 ° C. The course of the cooling shows that with this type of cooling and a production speed of 3600 m / min, the limit temperature of approximately 70 ° C. is only reached after a cooling section SA of approximately 3.5 m. Only at this distance from the nozzle have the filaments achieved such strength through cooling that they may be in contact with each other or with thread guide elements or the like.

Wird nun die Produktionsgeschwindigkeit erhöht oder ein noch stärkerer Titer versponnen, so wird eine noch größere Kühlstrecke SK benötigt, die bis zu 5 oder auch 6 m betragen kann. Die Nachteile einer solchen langen Kühlstrecke wurden eingangs bereits erwähnt. Nachdem ein erster Kontakt der Filamente F erst in dieser Entfernung nach den Düsen folgen darf, bedeutet dies, daß die ganze Anlage eine große Bauhöhe erreicht. Durch diese Dimensionen wird die Anlage somit aufwendig und teuer, abgesehen davon, daß die Filamente F auf der Kühlstrecke auch unkontrollierten Einflüssen ausgesetzt sind.Is the production speed increased or one more stronger titer spun, so an even larger cooling section SK required, which can be up to 5 or 6 m. The disadvantages of such a long cooling section have already been mentioned already mentioned. After a first contact of the filaments F may only follow the nozzles at this distance this means that the whole plant reaches a great height. By these dimensions make the system complex and expensive, apart from the fact that the filaments F on the cooling section too are exposed to uncontrolled influences.

Die Verwendung von Wasser würde die Kühlstrecke mit Sicherheit wegen des guten Wärmeüberganges am stärksten verkürzen. Jedoch treten große Nachteile durch die starke Reibung Wasser/Filament auf. Überraschenderweise hat sich nun gezeigt, daß durch Schaum eine ähnlich starke Abkühlung erreicht werden kann, wie bei Wasser. Es tritt jedoch nicht die schädliche Reibung zwischen Filament und Schaum wie bei Wasser auf.The use of water would certainly cool the cooling section shorten the most because of the good heat transfer. However There are major disadvantages due to the strong friction between water and filament on. Surprisingly, it has now been shown that through Foam a similarly strong cooling can be achieved as with water. However, the harmful friction does not occur between Filament and foam like with water.

In den Kurven B und C sind die Abkühlungsverhältnisse für Schaum mit verschiedenen Volumenanteilen Flüssigkeit dargestellt. Daraus geht hervor, daß bei einem Schaum mit einem Flüssigkeitsvolumenanteil von 5 % unter denselben Bedingungen wie für die Kurve A, die Kühlstrecke auf etwa 1,1 bis 1,2 m verkürzt wird, um die Grenztemperatur tg zu erreichen. Bei einem höheren Volumenanteil wird die Kühlstrecke weiter verkürzt, da in Abhängigkeit von dem Flüssigkeitsvolumenanteil im Schaum auch der Wärmeübergang stark zunimmt. So zeigt beispielsweise die Kurve C den Abkühlungsverlauf für einen Schaum mit etwa 10 % Flüssigkeitsvolumenanteil. Dabei reduziert sich die Kühlstrecke SK zum Erreichen der Grenztemperatur auf die Strecke SC, die weniger als 1 m beträgt.Curves B and C show the cooling conditions for foam with different volume fractions of liquid. It follows that in the case of a foam with a liquid volume fraction of 5% under the same conditions as for curve A, the cooling distance is shortened to approximately 1.1 to 1.2 m in order to reach the limit temperature t g . If the volume fraction is higher, the cooling distance is further shortened, since the heat transfer also increases greatly depending on the volume fraction of liquid in the foam. For example, curve C shows the cooling process for a foam with about 10% liquid volume. The cooling section SK is reduced to the section SC, which is less than 1 m, in order to reach the limit temperature.

In Figur 3 ist der gesamte Abkühlungsverlauf vom Austritt aus den Spinndüsen bis zur Aufbereitung für den nächsten Behandlungsprozeß gezeigt. In dem Luftspalt S zwischen Düsenplatte 2 und dem Schaumbehälter 3 ist zunächst ein relativ flacher Verlauf des Temperaturrückgangs zu erkennen. Mit dem Eintritt in den Schaum verläuft die Abkühlungskurve erheblich steiler, als wenn die Abkühlung nur durch Luft erfolgen würde und erreicht somit nach einer kurzen Strecke die Grenztemperatur tg.FIG. 3 shows the entire cooling process from the exit from the spinnerets to the preparation for the next treatment process. In the air gap S between the nozzle plate 2 and the foam container 3, a relatively flat course of the temperature decrease can be seen first. With the entry into the foam, the cooling curve is considerably steeper than if the cooling were only carried out by air and thus reaches the limit temperature t g after a short distance.

Es braucht nicht näher ausgeführt werden, daß diese erhebliche Verkürzung der Kühlstrecke SK nicht nur die technologischen Eigenschaften und Produktionsbedingungen für starke Titer erheblich verbessert, sondern es werden auch erheblich geringere Dimensionen der Spinnanlage erreicht. Die Bauhöhen können glatt auf die Hälfte bis ein Drittel vermindert werden, was bei der Installation derartiger Anlagen zu erheblichen Kosteneinsparungen führt.Needless to say that this is significant Shortening the cooling section SK not only the technological Properties and production conditions for strong titers considerably improved, but it will also be significantly lower Dimensions of the spinning system reached. The heights can smoothly be reduced to half to a third of what when installing such systems to significant cost savings leads.

Wie aus den Figuren 1 und 2 hervorgeht, ist unter dem Spinnbalken 1 und der Düsenplatte 2 in einem Abstand S ein Schaumbehälter 3 bzw. 30 angeordnet. Der Abstand S kann sehr klein sein, z.B. nur 1 - 2 cm. Seine Größe richtet sich nach der Filamentstärke und Produktionsgeschwindigkeit. Nachdem die Filamente F in flüssiger Form aus den Düsen 3 austreten, ist eine gewisse Erstarrung notwendig, bevor sie in den Schaum eintauchen. Diese Erstarrung erfolgt bei feinen Filamenten wesentlich schneller als bei gröberen Titern, bei denen dieser Abstand vom Schaum in Abhängigkeit von der Produktionsgeschwindigkeit bis zu 1,5 m betragen kann.As can be seen from Figures 1 and 2, is under the spinning beam 1 and the nozzle plate 2 at a distance S a foam container 3 or 30 arranged. The distance S can be very small be, e.g. only 1 - 2 cm. Its size depends on the Filament thickness and production speed. after the Filaments F emerge in liquid form from the nozzles 3 some solidification is necessary before going into the foam immerse yourself. This solidification occurs with fine filaments much faster than with coarser titles, where this Distance from the foam depending on the production speed can be up to 1.5 m.

Der Schaumbehälter 3 wird durch ein Gestell 32 getragen und weist an seinem oberen Ende eine weite Eintrittsöffnung 31 auf, so daß die Filamente F die Wandungen des Schaumbehälters 3 nicht berühren können, während an seinem unteren Ende eine enge Öffnung 35 vorgesehen ist, durch die die Filamente F den Schaumbehälter verlassen. Durch den sich erweiternden Querschnitt des Schaumbehälters 3 wird die Strömungsgeschwindigkeit des Schaumes geringer und die Rückbildung und Aussonderung der Flüssigkeit begünstigt und das im Gegenstrom durch den Schaum geführte Spinngut intensiv benetzt und abgekühlt. Da die Filamente F diese enge Öffnung 35 weitgehend ausfüllen und damit Berührungskontakte auftreten, muß bis zu diesem Punkt die Grenztemperatur tg mit Sicherheit erreicht sein. Wie aus Figur 3 zu entnehmen ist, wird dadurch auch die Bauhöhe des Schaumbehälters 3 bestimmt.The foam container 3 is supported by a frame 32 and has a wide inlet opening 31 at its upper end so that the filaments F cannot touch the walls of the foam container 3, while a narrow opening 35 is provided at its lower end through which the Filaments F leave the foam container. Due to the widening cross section of the foam container 3, the flow rate of the foam is reduced and the regression and separation of the liquid is promoted and the spinning material passed through the foam in countercurrent is wetted and cooled intensively. Since the filaments F largely fill this narrow opening 35 and thus contact contacts occur, the limit temperature t g must be reached with certainty up to this point. As can be seen from Figure 3, this also determines the overall height of the foam container 3.

Am unteren Ende, dicht neben der Austrittsöffnung 35, ist ein Schaumerzeuger 5 angeordnet, der eine Luftzuführung 51 und eine Flüssigkeitszuführung 52 besitzt und den Schaum unmittelbar in den unteren Teil des Schaumbehälters 3 liefert. Während der Schaum durch die kontinuierliche Schaumerzeugung nach oben steigt, werden die Filamente F im Gegenstrom von oben nach unten durch den Schaumbehälter 3 geführt und treten an der Austrittsöffnung 35 aus dem Schaumbehälter 3 aus, um anschließend einem weiteren Verarbeitungsprozeß zugeführt zu werden. Der nach oben steigende Schaum wird durch einen Fühler 4 kontrolliert, der das Füllstandsniveau gegebenenfalls über einen Füllstandsregler 41 reguliert. Der Rand der oberen Eintrittsöffnung 35 des Schaumbehälters 3 ist als Überlauf ausgebildet, so daß sich rückbildende Flüssigkeit gegebenenfalls über den Rand ablaufen kann. Die überlaufende Flüssigkeit sowie im Schaumbehälter 3 durch Rückbildung entstehende und nach unten ablaufende Flüssigkeit wird in einer Auffangwanne 33 gesammelt und über Ablaufleitungen 36 zur Umwälzpumpe 7 rückgeführt.At the lower end, close to the outlet opening 35, there is a Foam generator 5 arranged, the air supply 51 and has a liquid supply 52 and the foam immediately supplies in the lower part of the foam container 3. While the foam by the continuous foam generation upwards increases, the filaments F countercurrently from top to bottom passed down through the foam container 3 and occur at the Exit opening 35 from the foam container 3 to then to be sent to another processing process. The rising foam is controlled by a sensor 4, which, if necessary, the fill level via Level controller 41 regulates. The edge of the upper entry opening 35 of the foam container 3 is designed as an overflow, so that re-forming liquid, if necessary, over the Edge can run off. The overflowing liquid as well as in Foam container 3 resulting from regression and down draining liquid is collected in a drip pan 33 and returned to the circulation pump 7 via drain lines 36.

Der Schaumerzeuger 5 wird kontinuierlich gespeist durch die Umwälzpumpe 7, die auch den Kreislauf der rückgeführten Flüssigkeit vom Schaumbehälter 3 bewirkt. Durch die Dosierpumpe 72 wird diesem Kreislauf Wasser zugeführt in dem Maße, wie durch die Schaumerzeugung und Kühlung der Filamente F Flüssigkeit verbraucht wird. Durch eine zweite Pumpe 71 wird der Flüssigkeit Präparieröl zugefügt. Beides wird dann durch die Umwälzpumpe 7 durch einen Mischer 6 gepumpt und dadurch zu der Flüssigkeit aufbereitet, die dem Schaumerzeuger 5 über die Leitung 52 zugeführt wird. Im Schaumerzeuger 5 wird durch die Zuführung 51 Luft der Flüssigkeit beigegeben und so der Schaum erzeugt, der in den unteren Teil des Schaumbehälters 3 abgeliefert wird.The foam generator 5 is continuously fed by the Circulation pump 7, which is also the circuit of the returned liquid caused by the foam container 3. By the metering pump 72 water is added to this cycle to the extent that foam generation and cooling of the filaments F liquid is consumed. A second pump 71 removes the liquid Preparation oil added. The circulation pump then does both 7 pumped through a mixer 6 and thereby to the Prepared liquid that the foam generator 5 on the Line 52 is supplied. In the foam generator 5 is by Feed 51 air added to the liquid and so the foam generated, which is delivered in the lower part of the foam container 3 becomes.

Beim Anspinnen ist der Schaumbehälter 3 zunächst leer. Die aus der Düse 2 austretenden Filamente F fallen nach unten in den Schaumbehälter 3 und werden in die Austrittsöffnung 35 eingeführt. Dazu dient eine Klappe 34, die den unteren Teil des Schaumbehälters 3 zugänglich macht. Nach Einführung des Filamente F wird die Klappe 34 wieder geschlossen und Schaum zugeführt. Der Fühler 4 kontrolliert den aufsteigenden Schaum und reguliert über einen Regler 41 den Motor 42, der die Dosierpumpe 72 für die Wasserzufuhr antreibt. Durch den über den Fühler 4 kontrollierten Füllstand im Schaumbehälter 3 wird somit auch die Kühlstrecke SK bestimmt, die die Filamente beim Durchlaufen des Schaumes benötigen.When piecing, the foam container 3 is initially empty. From the filaments F emerging from the nozzle 2 fall down into the Foam container 3 and are inserted into the outlet opening 35. For this purpose, a flap 34 is used, which covers the lower part of the Foam container 3 makes accessible. After filament insertion F the flap 34 is closed again and foam is added. The sensor 4 controls the rising foam and regulates the motor 42, which controls the metering pump, via a controller 41 72 drives for the water supply. Through the over the Sensor 4 controlled level in the foam container 3 is thus also determines the cooling section SK, which the filaments at Need to go through the foam.

Bei dem erfindungsgemäßen Verfahren der Filamentabkühlung durch Schaum wird das Schaumbad gleichzeitig benutzt, um die Präparationslösung auf die Filamente F aufzutragen. Die erfindungsgemäße Anlage beinhaltet somit gleichzeitig auch die erforderliche Präparationsvorrichtung. Unterhalb des Schaumbehälters 3 werden die austretenden Filamente durch zwei Elektroden 8 abgetastet. Über eine Widerstandsmessung wird damit die Konstanz der Präparationsauflage gemessen und gegebenenfalls durch einen Soll/Istwert-Vergleich im Konzentrationsregler 81 sowie einen Frequenzwandler 82, der den Motor 83 für die Dosierpumpe 71 für das Präparationsöl antreibt. In the filament cooling process according to the invention due to foam, the bubble bath is used at the same time to Apply the preparation solution to the filaments F. The invention The system therefore also includes the required one Preparation device. Below the foam container 3, the emerging filaments through two electrodes 8 scanned. With a resistance measurement the constancy of the preparation pad is measured and if necessary through a target / actual value comparison in the concentration controller 81 and a frequency converter 82, the motor 83 for drives the metering pump 71 for the preparation oil.

Bei der Ausführung nach Figur 2 ist der Schaumbehälter etwas anders gestaltet als in Figur 1. Der Schaumbehälter 30 ist als rechteckiger oder zylindrischer Schacht ausgebildet, an den sich in Fortsetzung seiner äußeren Form, jedoch abgetrennt durch eine Fuge 38, der Schaumerzeuger 50, 50', anschließt. Die enge Austrittsöffnung 35 des Schaumbehälters 3 ist hier in den Schaumerzeuger 50, 50', miteinbezogen, so daß der Schaumbehälter 3 an der Trennfuge 38 im vollen Querschnitt offen ist.In the embodiment according to Figure 2, the foam container is something designed differently than in Figure 1. The foam container 30 is as rectangular or cylindrical shaft formed on the itself in continuation of its external form, but separated through a joint 38, the foam generator 50, 50 ', connects. The narrow outlet opening 35 of the foam container 3 is here in the foam generator 50, 50 ', so that the foam container 3 open at the parting line 38 in full cross section is.

Der Schaumerzeuger besteht aus zwei Halbschalen 50, 50', die in horizontaler Richtung auseinanderbewegbar sind längs der Trennfuge 38. Dadurch wird für das Anspinnen der untere Teil des Schaumbehälters 30 zugänglich, so daß die herabfallenden Filamente F erfaßt und in Garnführungen zur Weiterverarbeitung eingelegt werden können. Ist dies geschehen, so werden die beiden Halbschalen 50, 50' des Schaumerzeugers wieder zusammengefügt, so daß diese die Filamente F umschließen und der Schaumbehälter 30 geschlossen ist bis auf die Austrittsöffnung 35 für die Filamente F.The foam generator consists of two half-shells 50, 50 ' are movable apart in the horizontal direction along the Parting line 38. This makes the lower part for piecing of the foam container 30 accessible so that the falling Filaments F captured and in yarn guides for further processing can be inserted. If this has happened, they will the two half-shells 50, 50 'of the foam generator are reassembled, so that they enclose the filaments F and the Foam container 30 is closed except for the outlet opening 35 for filaments F.

Jede der beiden Halbschalen 50, 50' ist als selbständiger Schaumerzeuger ausgebildet und sowohl an eine Luftzufuhr 51 als auch an eine Flüssigkeitszufuhr 52 angeschlossen. Diese Zuleitungen sind zweckmäßig elastisch, um die beiden Halbschalen 50, 50' auseinanderbewegen zu können. Die beiden Halbschalen 50, 50' sind hierfür zweckmäßigerweise auf einer Achse senkrecht zu der Trennfuge 38 an ihrem einen Ende gelagert, so daß die Halbschalen 50, 50' auseinandergeklappt werden können für das Einlegen der Filamente F. In jeder der Halbschalen 50, 50' sind Sintermetallkerzen 53 angeordnet, durch die die Luft in die Flüssigkeit zugeführt wird. Anstelle durch die Sintermetallkerzen 53 kann für die Luftzufuhr auch über eine Platte oder irgendeine andere Form eines aus Sintermetall hergestellten Körpers zugeführt werden. Vorzugsweise werden jedoch handelsübliche Sintermetallkerzen für die Luftzufuhr verwendet. Durch die Verwendung von Sintermaterial erfolgt eine außerordentlich gute Aufbereitung der Flüssigkeit mit Gas, vorzugsweise Luft zu Schaum. Selbstverständlich können auch andere feinporige Elemente für die Gaszufuhr in die Flüssigkeit verwendet werden, wie Siebe, Düsenplatten und dgl..Each of the two half-shells 50, 50 'is independent Foam generator designed and both to an air supply 51st as well as connected to a liquid supply 52. This Supply lines are expediently elastic to the two half-shells 50, 50 'to be able to move apart. The two Half-shells 50, 50 'are expediently on one for this Axis mounted perpendicular to the parting line 38 at one end, so that the half-shells 50, 50 'unfolded can be used for inserting the filaments F. In each of the Half shells 50, 50 'are arranged sintered metal candles 53, through which the air is fed into the liquid. Instead of through the sintered metal candles 53 can also for the air supply over a plate or some other form of sintered metal manufactured body are supplied. Preferably however, are commercially available sintered metal candles for the air supply used. By using sintered material an exceptionally good treatment of the liquid with gas, preferably air to foam. Of course you can other fine-pored elements for the gas supply in the Liquid can be used, such as strainers, nozzle plates and Like ..

Der Flüssigkeitsspiegel 54 im Schaumerzeuger 50, 50' wird durch einen Fühlstandsbegrenzer 37 kontrolliert, um eine gleichmäßige Schaumherstellung zu garantieren. Die einfachste Art eines solchen Fühlstandsbegrenzers 37 ist in Figur 2 durch einen Überlauf dargestellt. Anstelle des Überlaufs 37 kann auch eine Sonde vorgesehen sein, die die Flüssigkeitszufuhr jeweils steuert. Der auf diese Weise erzeugte Schaum steigt nach oben in den Schaumbehälter 30, während die Filamente F im Gegenstrom den Schaumbehälter 30 durchlaufen und durch die Austrittsöffnung 35 verlassen.The liquid level 54 in the foam generator 50, 50 'is controlled by a level limiter 37 to a to guarantee even foam production. The easiest The type of such a sensor 37 is shown in FIG represented an overflow. Instead of the overflow 37 a probe can also be provided which monitors the fluid supply controls each. The foam generated in this way increases up into the foam container 30, while the filaments F in Counter current flow through the foam container 30 and through the Leave outlet opening 35.

Der obere Teil des Schaumbehälters 30 ist in gleicher Weise ausgebildet wie bei der beschriebenen Ausführung gemäß Figur 1. Auch hier ist der Rand der Öffnung 31 als Überlauf gestaltet, so daß sich rückbildende Flüssigkeit sammeln und über diesen Rand abtropfen kann, um wieder aufgefangen und dem Kreislauf erneut zur Schaumerzeugung zugeführt zu werden.The upper part of the foam container 30 is in the same way designed as in the described embodiment according to the figure 1. Here too, the edge of the opening 31 is designed as an overflow, so that regressive liquid collect and over can drain this edge to catch again and the Circuit to be fed again for foam generation.

Der Fühler 4 reguliert zwar die Höhe des Schaumniveaus innerhalb des Behälters 30, jedoch kann es erforderlich sein, weitere Maßnahmen zu treffen, damit der Schaumspiegel eben ist und somit alle Filamente F die gleiche Kühlstrecke SB durch den Schaum durchlaufen. Um zu vermeiden, daß sich an der Eintrittsöffnung 31 des Schaumbehälters 30 ein Schaumberg bildet, kann zusätzlich eine Vorrichtung zur Glättung des Schaumspiegels vorgesehen werden. Bei dem gezeigten Ausführungsbeispiel ist ein Absaugkanal 21 vorgesehen, der einen solchen Schaumberg abtransportiert bzw. die Bildung eines solchen Schaumberges durch eine leichte Luftströmung verhindert. The sensor 4 regulates the level of the foam within of container 30, however, additional may be required Take measures to ensure that the foam level is even and thus all filaments F through the same cooling section SB go through the foam. To avoid being at the entry opening 31 of the foam container 30 forms a foam mountain, can also have a device for smoothing the foam level be provided. In the embodiment shown a suction channel 21 is provided, which is such a foam mountain transported away or the formation of such a foam mountain prevented by a slight air flow.

Der Abstand S zur Düsenplatte 2 ist hier wesentlich geringer gezeigt als in Figur 1. Wie oben schon erwähnt, ist dieser Abstand abhängig von der Filamentgeschwindigkeit und dem Titer der Filamente F. Ein gewisser Abstand S muß jedoch eingehalten werden, da der Schaum die Düsenplatte 2 nicht berühren sollte, um eine unerwünschte Kühlung derselben durch den Schaum zu vermeiden. Auch eine solche Vorrichtung 21 zum Glätten des Schaumspiegels macht einen gewissen Abstand von der Düsenplatte erforderlich. The distance S to the nozzle plate 2 is much smaller here shown as in Figure 1. As mentioned above, this is Distance depending on the filament speed and the titer the filaments F. However, a certain distance S must be maintained as the foam should not touch the nozzle plate 2, to undesirably cool the foam avoid. Such a device 21 for smoothing the Foam level makes a certain distance from the nozzle plate required.

BezugszeichenlisteReference list

SpinnbalkenSpinning beam
11
DüsenplatteNozzle plate
22nd
LuftkanalAir duct
2121
SchaumbehälterFoam container
3, 303, 30
EintrittsöffnungEntrance opening
3131
Gestellframe
3232
AuffangwanneDrip pan
3333
Klappeflap
3434
AustrittsöffnungOutlet opening
3535
Ablaufprocedure
3636
FüllstandsbegrenzerLevel limiter
3737
TrennfugeParting line
3838
FüllstandsfühlerLevel sensor
44th
SchaumerzeugerFoam generator
5; 50, 50'5; 50, 50 '
LuftzufuhrAir supply
5151
KühlflüssigkeitszufuhrCoolant supply
5252
SinterkerzenSintered candles
5353
FlüssigkeitsspiegelLiquid level
5454
Mischermixer
66
UmwälzpumpeCirculation pump
77
Dosierpumpe Präp.ÖlDosing pump prep. Oil
7171
Dosierpumpe WasserDosing pump water
7272
AntriebsmotorenDrive motors
42, 8342, 83
ElektrodenElectrodes
88th
KonzentrationsreglerConcentration regulator
8181
FrequenzwandlerFrequency converter
R2R2
KühlstreckeCooling section
SKSK
LuftspaltAir gap
SS
GrenztemperaturLimit temperature
tG t G
Kühlstrecken zum Erreichen GrenztemperaturCooling sections to reach Limit temperature
SA, SB, SCSA, SB, SC
FilamenteFilaments
FF

Claims (24)

  1. A process to cool down melt-spun filaments made from thread-forming polymers where the melt, in the form of liquid filaments, exits from spinnerets and said filaments are then fed to a zone in which the spun material is subjected to a medium prepared as a foam for quenching and the spun material exiting from said spinnerets (2) is passed countercurrently through said foam in the quenching zone before the spun material is passed on to undergo another process, characterized in that the spun material (F) exiting from the spinneret (2) is contacted with the foam after its passage through a free distance (S) which is as short as possible to cause the spun material (F) to reach a certain set before entering the foam.
  2. The process according to claim 1, characterized in that said foam is prepared in a foam generator (5; 50, 50') and is led directly from it to a vessel (3) through which the spun material (F) is passed.
  3. The process according to one of claims 1 or 2, characterized in that the foam vessel (3) is kept to a certain filling level.
  4. The process according to one or more of claims 1 to 3, characterized in that the foam level undergoes smoothing.
  5. The process according to claim 4, characterized in that smoothing is performed by means of an air stream passed over the foam level.
  6. The process according to claim 5, characterized in that a suction air stream is passed over the foam level.
  7. The process according to one or more of claims 1 to 6, characterized in that foam generation is continuos and the liquid produced during foam disintegration is collected and recycled for foam generation.
  8. The process according to one or more of claims 1 to 7, characterized in that the speed of the foam flow is reduced towards the point of filament entry into the vessel.
  9. The process according to one or more of claims 1 to 8, characterized in that the foam is prepared preferably from about 5 to 10 per cent by volume of liquid.
  10. Device to cool down melt-spun filaments using a bath of foam where a melt of polymers exits, in the form of liquid filaments (F), from spinnerets (2) mounted in a spinning manifold (1) and is passed through a quenching zone before said filaments (F) are passed on to undergo another process, and a foam vessel (3) is disposed in the quenching zone through which said filaments (F) are passed for a cool-down, characterized in that means are provided to maintain a free distance (S) which is as short as possible between the spinnerets (2) and the foam level in the foam vessel (3) to cause the spun material (F) to reach a certain set before entering the foam.
  11. The device according to claim 10, characterized in that a foam generator (5, 50, 50') is directly associated with the foam vessel (3).
  12. The device according to claim 11, characterized in that the foam generator (5, 50, 50') is disposed at the lower end of the foam vessel (3).
  13. The device according to claim 12, characterized in that the foam generator (5, 50, 50') opens directly into the foam vessel (3).
  14. The device according to one or more of claims 11 to 13, characterized in that the foam generator (5, 50, 50'), in continuation of the foam vessel (3), is disposed at the lower end thereof.
  15. The device according to one or more of claims 11 to 14, characterized in that the foam generator (5, 50, 50') is connected to a liquid supply (52) and an air supply (51).
  16. The device according to claim 14, characterized in that the foam generator (5, 50, 50') comprises two cup halves (50, 50'), which may be swivelled apart in a radial direction so as to release the filaments (F) enclosed by the cup halves (50, 50') which then exit from the foam vessel (3).
  17. The device according to claim 16, characterized in that the cup halves (50, 50') each comprise a self-contained liquid vessel in which air feed members (53) are disposed.
  18. The device according to one or more of claims 11 to 17, characterized in that the air feed members (53) are made up of sintered metal.
  19. The device according to claim 18, characterized in that the air feed members (53) are formed as sintered metal candles.
  20. The device according to one or more of claims 11 to 19, characterized in that the foam generator (50, 50') includes a level limiter (37) for the liquid.
  21. The device according to claim 20, characterized in that the level limiter (37) is formed as an overflow.
  22. The device according to one or more of claims 11 to 21, characterized in that the foam vessel (3) includes a wide inlet port (31) at is upper end for the filaments (F) to prevent the filaments from touching the walls of the foam vessel (3), and includes a narrow outlet port (35) at its lower end, which is largely filled by the filaments, and that the cross-section of the foam vessel widens in the direction of foam flow.
  23. The device according to one or more of claims 11 to 22, characterized in that a device to smooth the foam level is disposed at the inlet side (31) of the foam vessel (3).
  24. The device according to claim 23, characterized in that the device to smooth the foam level comprises a suction duct (21).
EP96900839A 1995-01-21 1996-01-17 Process and device for cooling melt-extruded filaments Expired - Lifetime EP0752020B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19501826A DE19501826A1 (en) 1995-01-21 1995-01-21 Method and device for cooling melt-spun filaments
DE19501826 1995-01-21
PCT/DE1996/000089 WO1996022409A1 (en) 1995-01-21 1996-01-17 Process and device for cooling melt-extruded filaments

Publications (2)

Publication Number Publication Date
EP0752020A1 EP0752020A1 (en) 1997-01-08
EP0752020B1 true EP0752020B1 (en) 2000-05-24

Family

ID=7752034

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96900839A Expired - Lifetime EP0752020B1 (en) 1995-01-21 1996-01-17 Process and device for cooling melt-extruded filaments

Country Status (6)

Country Link
US (1) US5766533A (en)
EP (1) EP0752020B1 (en)
JP (1) JPH10501589A (en)
AT (1) ATE193338T1 (en)
DE (2) DE19501826A1 (en)
WO (1) WO1996022409A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7517494B2 (en) * 2003-04-30 2009-04-14 Hewlett-Packard Development Company, L.P. Test tray and test system for determining response of a biological sample
US7329723B2 (en) * 2003-09-18 2008-02-12 Eastman Chemical Company Thermal crystallization of polyester pellets in liquid
CA2482056A1 (en) * 2003-10-10 2005-04-10 Eastman Chemical Company Thermal crystallization of a molten polyester polymer in a fluid
US8079158B2 (en) * 2004-09-02 2011-12-20 Grupo Petrotemex, S.A. De C.V. Process for separating and drying thermoplastic particles under high pressure
US20060047102A1 (en) * 2004-09-02 2006-03-02 Stephen Weinhold Spheroidal polyester polymer particles
US7875184B2 (en) * 2005-09-22 2011-01-25 Eastman Chemical Company Crystallized pellet/liquid separator

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU386034A1 (en) * 1971-04-23 1973-06-14 METHOD OF OBTAINING THERMOPLASTIC FIBERS
US4425293A (en) * 1982-03-18 1984-01-10 E. I. Du Pont De Nemours And Company Preparation of amorphous ultra-high-speed-spun polyethylene terephthalate yarn for texturing
JPS60134011A (en) * 1983-12-22 1985-07-17 Toray Ind Inc Method and apparatus for melt-spinning of thermoplastic polymer
DE3409450A1 (en) * 1984-03-15 1985-09-26 Bayer Ag, 5090 Leverkusen Process and apparatus for deflecting monofilaments in a cooling bath
DE3623748A1 (en) * 1986-07-14 1988-02-18 Groebe Anneliese Dr High speed spun polyethylene terephthalate filaments having a novel property profile, production thereof and use thereof
DE3901518A1 (en) * 1989-01-20 1990-07-26 Fleissner Maschf Ag Method for the cooling of filaments emerging from spinnerets
US5268133A (en) * 1990-05-18 1993-12-07 North Carolina State University Melt spinning of ultra-oriented crystalline filaments
JPH06330403A (en) * 1993-05-25 1994-11-29 Teijin Ltd Method for applying lubricant oil

Also Published As

Publication number Publication date
EP0752020A1 (en) 1997-01-08
ATE193338T1 (en) 2000-06-15
DE59605282D1 (en) 2000-06-29
US5766533A (en) 1998-06-16
DE19501826A1 (en) 1996-07-25
WO1996022409A1 (en) 1996-07-25
JPH10501589A (en) 1998-02-10

Similar Documents

Publication Publication Date Title
DE69303711T2 (en) PLANT AND METHOD FOR PRODUCING FLEECE FROM THERMOPLASTIC FILAMENTS
EP1192301B1 (en) Method and device for the production of an essentially continuous fine thread
EP0671492B1 (en) Use of a spinneret for the manufacture of cellulose filaments
DE69637297T2 (en) METHOD AND DEVICE FOR THE MOLECULE PRODUCTION
DE3781313T3 (en) Method and device.
DE4040242A1 (en) METHOD AND DEVICE FOR PRODUCING FINE FIBERS FROM THERMOPLASTIC POLYMERS
EP0817873B1 (en) Method of producing cellulose fibres
DE1940621A1 (en) Method and apparatus for melt spinning fibers
DE102010019910A1 (en) Spinneret for spinning threads, spinner for spinning threads and method for spinning threads
DE4219658C2 (en) Process for the production of cellulose fiber filaments and foils by the dry-wet extrusion process
EP0871805A1 (en) Process and device for the formation of monofilaments produced by melt-spinning
DE19954152A1 (en) Extrusion spinning of filaments of cellulose or cellulose mixtures uses watery amine oxide solvent with structured inflow vols at spinneret and set dimensions of air gap and precipitation bath length without coolant air flows
DE1760938C3 (en) Process for making oriented filaments from synthetic polymers
DE1959034B2 (en) PLANT FOR THE CONTINUOUS MANUFACTURING AND WINDING OF ENDLESS SYNETHETIC FEDES
EP0455897B1 (en) Apparatus for the preparation of very fine fibres
DE2532900A1 (en) METHOD FOR PRODUCING SPINNED FIBERS
DE3406346C2 (en) Melt spinning device for producing a group of filament threads
EP0752020B1 (en) Process and device for cooling melt-extruded filaments
EP1280946B1 (en) Method and device for conveying continuous shaped bodies without tensile stress
WO1997024476A1 (en) Method for the production of cellulose fibres and device for carrying out the method
DE1914556A1 (en) Method and device for producing a synthetic multifilament continuous yarn of uniform consistency
DE2735186A1 (en) METHOD AND APPARATUS FOR FORMING GLASS FIBERS THROUGH DRAWING
DE60105768T2 (en) ANNEX SPECIFIC FOR THE MANUFACTURE OF THERMOPLASTIC CUT FIBERS
DE102012023002A1 (en) Device for melt spinning and cooling several synthetic threads, has guide sheet and preparation device that are arranged together at vertically adjustable carrier wall of thread shaft through blow box held to spinning beam
DE60216617T2 (en) Precipitation bath, and process using this precipitation bath

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE GB IT LI

17P Request for examination filed

Effective date: 19970115

17Q First examination report despatched

Effective date: 19980701

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE GB IT LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20000524

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000524

REF Corresponds to:

Ref document number: 193338

Country of ref document: AT

Date of ref document: 20000615

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59605282

Country of ref document: DE

Date of ref document: 20000629

EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20000524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010131

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: RIETER AUTOMATIK G.M.B.H.

Effective date: 20010131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011101