EP0747495A1 - Niobium containing hot rolled steel sheet with high strength and good deep-drawing properties, and process for its manufacture - Google Patents

Niobium containing hot rolled steel sheet with high strength and good deep-drawing properties, and process for its manufacture Download PDF

Info

Publication number
EP0747495A1
EP0747495A1 EP96401007A EP96401007A EP0747495A1 EP 0747495 A1 EP0747495 A1 EP 0747495A1 EP 96401007 A EP96401007 A EP 96401007A EP 96401007 A EP96401007 A EP 96401007A EP 0747495 A1 EP0747495 A1 EP 0747495A1
Authority
EP
European Patent Office
Prior art keywords
sheet
temperature
hot
point
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96401007A
Other languages
German (de)
French (fr)
Other versions
EP0747495B1 (en
Inventor
Pascal Teracher
Jean-Pierre Porcet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sollac SA
Original Assignee
Sollac SA
Lorraine de Laminage Continu SA SOLLAC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9479730&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0747495(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sollac SA, Lorraine de Laminage Continu SA SOLLAC filed Critical Sollac SA
Publication of EP0747495A1 publication Critical patent/EP0747495A1/en
Application granted granted Critical
Publication of EP0747495B1 publication Critical patent/EP0747495B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling

Definitions

  • the invention relates to the steel industry. More specifically, it relates to the field of hot-rolled steel sheets which must have high strength and stampability properties, intended in particular for the automotive industry to form parts of vehicle structures.
  • HLE steels are steels microalloyed with niobium, titanium or vanadium. They have a high elastic limit, the minimum according to the grade can range from approximately 300 MPa to approximately 700 MPa, obtained thanks to a refinement of the ferritic grain and a fine hardening precipitation. However, their formability is limited, especially for the highest grades. They have a high elastic limit / tensile strength (R e / R m ) ratio.
  • the so-called “double phase” or “dual phase” steels have a microstructure composed of ferrite and martensite. Ferritic transformation is favored by rapid cooling of the sheet, from the end of the hot rolling, to a temperature below Ar 3 , followed by slow cooling in air. The martensitic transformation is then obtained by rapid cooling to a temperature below M s . For a given resistance level, these steels have excellent formability, but this degrades for resistances greater than 650 MPa, due to the large proportion of martensite that they contain.
  • the so-called "very low carbon bainitic structure"("ULCB) steels have an extremely fine low carbon bainite microstructure composed of ferrite in the form of slats and carbides. To obtain it, the ferritic transformation is inhibited by a micro-addition of boron, or even niobium. These steels make it possible to achieve very high strengths, greater than 750 MPa, but with fairly low formability and ductility.
  • TRIP transformation Induced Plasticity steels have a microstructure composed of ferrite, bainite and residual austenite. They allow very high resistances to be reached, but their weldability is very low due to their high carbon content.
  • hot-rolled sheet steels whose structure essentially contains ferrite hardened by precipitates of titanium carbide and / or niobium and martensite, or even residual austenite. These steels have the composition, expressed in weight percentages: C ⁇ 0.18%; 0.5 ⁇ If ⁇ 2.5%; 0.5 ⁇ Mn ⁇ 2.5%; P ⁇ 0.05%; S ⁇ 0.02%; 0.01 ⁇ Al ⁇ 0.1%; 0.02 ⁇ Ti ⁇ 0.5% and / or 0.03 ⁇ Nb ⁇ 1%, with C% ⁇ 0.05 + Ti / 4 + Nb / 8.
  • the object of the invention is to provide users of hot-rolled steel sheets with products which offer a very good compromise between high resistance levels, satisfactory formability and good weldability, as well as an integrity surface appearance.
  • the invention also relates to methods of manufacturing such sheets.
  • the sheets according to the invention are distinguished from those known hitherto for the same uses by their substantially lower silicon content, their ranges of niobium and titanium contents significantly tightened, and more stringent requirements on the distribution of the different phases of the structure. And obtaining the structure, therefore the desired properties for the sheet, implies special conditions during the heat treatment which immediately follows the hot rolling.
  • Their composition and manufacturing method mean that these steels represent, in several respects, a combination of HLE steels and double phase steels.
  • FIG. 1 shows a micrograph of a sheet according to the invention.
  • a steel comprising (all the percentages are percentages by weight) a carbon content of less than or equal to 0, 12%, a manganese content between 0.5 and 1.5%, a silicon content less than or equal to 0.3%, a phosphorus content less than or equal to 0.1%, a lower sulfur content or equal to 0.05%, an aluminum content between 0.01 and 0.1%, a chromium content less than or equal to 1%, a niobium content between 0.01 and 0.10%, and a effective titanium content (we will explain below what this term means) between 0 and 0.05%.
  • the slab is then hot rolled on a strip train to form a sheet a few mm thick.
  • the sheet undergoes a heat treatment which makes it possible to give it a microstructure composed at least of 75% ferrite and at least 10% martensite.
  • the ferrite is hardened by precipitation of niobium carbides or carbonitrides, and also of titanium carbides or carbonitrides if this element is present significantly.
  • the microstructure may optionally also include bainite and residual austenite.
  • the limited carbon content makes it possible to maintain good weldability of the steel, and to obtain the desired proportion of martensite.
  • Silicon is an alpha-element, which therefore promotes ferritic transformation. It is also hardening in solid solution.
  • the invention is based, among other things, on a very significant drop in the silicon content of the steel compared to the prior art illustrated by document EP 0 548 950.
  • the advantage of a significant drop in the content of silicon is that the surface appearance problems encountered on steels of the prior art arise, in fact, from an appearance on the surface of the slab, in the reheating furnace, of oxide Fe 2 SiO 4 which forms with FeO oxide a low melting eutectic. This eutectic penetrates into the grain boundaries and promotes the anchoring of the scale, which can therefore only be imperfectly removed during pickling.
  • Another advantage of this lowering of the silicon content is the improvement in the weldability of the steel.
  • the steels of the invention provided that the other specifications on their composition and method of manufacture are respected, tolerate having only low, or even very low, silicon contents.
  • phosphorus is alphagene and hardens. But its content should be limited to 0.1%, and may be as low as possible. Indeed, it would be likely, at high content, to form a mid-thickness segregation which could cause delamination. Furthermore, it can segregate at grain boundaries, which increases fragility.
  • Niobium and titanium are micro-alloying elements that form precipitates of carbide and carbonitride hardening ferrite. Their addition, which for titanium is only optional, aims to obtain, thanks to this hardening, a high level of resistance.
  • niobium increases the temperature of non-recrystallization of the steel, which results in a strong hardening of the austenite, and can cause a heterogeneity of grain size.
  • the precipitation of niobium carbides and carbonitrides slows down ferritic transformation. This is why, in order to obtain in the presence of niobium a sufficient formation of suitably hardened equiaxed ferrite, it is imperative to comply with one of the cooling schemes for hot-rolled sheet which will be described.
  • the hardening effect of the ferrite it provides is however only obtained if the titanium has the possibility of combining with carbon.
  • account must therefore be taken of the possibilities of titanium oxides, nitrides and sulfides.
  • the significant formation of oxides can be easily avoided by adding aluminum during the deoxidation of the liquid steel.
  • the quantities of nitrides and sulphides formed they depend on the nitrogen and sulfur contents of the liquid steel.
  • titanium If it is not possible, during production and casting, to drastically limit these nitrogen and sulfur contents, a sufficient amount of titanium must be added to the metal bath so that in the solidified metal, after precipitation nitrides and sulfides, the titanium content not in the form of nitrides, sulfides or oxides (and therefore available to form carbides and carbonitrides) is at most 0.05%. It is this content which is called “effective titanium content” and which is shortened to "Ti eff %".
  • Ti eff % Ti total % - 3.4 x N% - 1.5 x S%.
  • the sheet can be wound, either immediately or after a stay in the air.
  • the sheet metal can then be wound, again with or without a prior stay in the air.
  • the fixing of a minimum duration for the slow air cooling step of operation 3) of the two operating modes that have just been described is no longer imperative, the niobium not being sufficiently present to very significantly slow down the ferritic transformation.
  • Grade B considered during these two tests is particularly sensitive to this factor because its silicon content is not very high, and its phosphorus content is low, and this does not promote ferritic transformation, therefore the formation of martensite.
  • the hard phase is then formed of bainite and / or perlite.
  • the micrograph in FIG. 1 shows the structure of a steel corresponding to grade B with 0.050% niobium and 0.010% titanium.
  • the cooling of the sheet after hot rolling was carried out according to procedure No. 2.
  • the clear areas are of equiaxed ferrite and represent 85% of the structure.
  • the dark areas are martensite, and represent almost the entire rest of the structure.
  • the steels according to the invention can be used in particular to constitute parts of motor vehicle structures, such as chassis elements, wheel sails, suspension arms, as well as all stamped parts that must be highly resistant to mechanical stresses.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Steel sheet comprises 0.5-1.5wt.% Mn, 0.01-0.10, pref. 0.010-0.020% Nb, 0.01-0.1% Al and up to 0.12% C, 0.3% Si, 0.1% P, 0.05% S, 1% Cr, also up to 0.05% of Ti not in the form of nitrides, sulphides or oxides. The structure comprises at least 75% of ferrite hardened by precipitation of carbides or carbonitrides of Nb or of Nb and Ti, the remainder comprising at least 10% martensite and possibly bainite and austenite. Also claimed are methods of making the steel sheet by hot-rolling followed by controlled cooling.

Description

L'invention concerne la sidérurgie. Plus précisément, elle concerne le domaine des tôles d'acier laminées à chaud devant présenter des propriétés élevées de résistance et d'emboutissabilité, destinées notamment à l'industrie automobile pour former des pièces de structures de véhicules.The invention relates to the steel industry. More specifically, it relates to the field of hot-rolled steel sheets which must have high strength and stampability properties, intended in particular for the automotive industry to form parts of vehicle structures.

Dans la gamme des produits plats laminés à chaud dont les propriétés mécaniques sont obtenues par laminage contrôlé sur le train à bandes, il existe diverses catégories d'aciers qui possèdent, à des degrés divers, des caractéristiques mécaniques pouvant être qualifiées d'élevées.In the range of hot-rolled flat products whose mechanical properties are obtained by controlled rolling on the belt train, there are various categories of steels which have, to varying degrees, mechanical characteristics which can be described as high.

Les aciers à haute limite élastique (dits "aciers HLE" ou "HSLA") sont des aciers microalliés au niobium, au titane ou au vanadium. Ils présentent une limite d'élasticité élevée, dont le minimum suivant le grade peut aller de 300 MPa environ à 700 MPa environ, obtenue grâce à un affinement du grain ferritique et une fine précipitation durcissante. Toutefois, leur aptitude au formage est limitée, surtout pour les plus hauts grades. Ils présentent un rapport limite élastique/résistance à la traction (Re/Rm) élevé.Steels with high elastic limit (so-called "HLE steels" or "HSLA") are steels microalloyed with niobium, titanium or vanadium. They have a high elastic limit, the minimum according to the grade can range from approximately 300 MPa to approximately 700 MPa, obtained thanks to a refinement of the ferritic grain and a fine hardening precipitation. However, their formability is limited, especially for the highest grades. They have a high elastic limit / tensile strength (R e / R m ) ratio.

Les aciers dits "double phase", ou "dual phase", ont une microstructure composée de ferrite et de martensite. La transformation ferritique est favorisée par un refroidissement rapide de la tôle, dès la fin du laminage à chaud, jusqu'à une température inférieure à Ar3, suivi par un refroidissement lent à l'air. La transformation martensitique est ensuite obtenue par un refroidissement rapide à une température inférieure à Ms. Pour un niveau de résistance donné, ces aciers ont une excellente formabilité, mais celle-ci se dégrade pour les résistances supérieures à 650 MPa, en raison de l'importante proportion de martensite qu'ils renferment.The so-called "double phase" or "dual phase" steels have a microstructure composed of ferrite and martensite. Ferritic transformation is favored by rapid cooling of the sheet, from the end of the hot rolling, to a temperature below Ar 3 , followed by slow cooling in air. The martensitic transformation is then obtained by rapid cooling to a temperature below M s . For a given resistance level, these steels have excellent formability, but this degrades for resistances greater than 650 MPa, due to the large proportion of martensite that they contain.

Les aciers dits "à haute résistance" ("HR") ont une microstructure composée de ferrite et de bainite. Leur formabilité est intermédiaire entre celle des aciers à haute limite élastique et celle des aciers double phase, mais leur soudabilité est inférieure à celles de ces deux types d'aciers. Leur résistance est limitée au grade Rm = 600 MPa, car sinon leur formabilité décroît très vite.The so-called "high strength"("HR") steels have a microstructure composed of ferrite and bainite. Their formability is intermediate between that of steels with high elastic limit and that of double-phase steels, but their weldability is lower than those of these two types of steels. Their resistance is limited to grade R m = 600 MPa, because otherwise their formability decreases very quickly.

Les aciers dits "à structure bainitique à très bas carbone" ("ULCB") ont une microstructure extrêmement fine de bainite à bas carbone composée de ferrite sous forme de lattes et de carbures. Pour l'obtenir, on inhibe la transformation ferritique par une micro-addition de bore, voire également de niobium. Ces aciers permettent d'atteindre des résistances très élevées, supérieures à 750 MPa, mais avec une formabilité et une ductilité assez faibles.The so-called "very low carbon bainitic structure"("ULCB") steels have an extremely fine low carbon bainite microstructure composed of ferrite in the form of slats and carbides. To obtain it, the ferritic transformation is inhibited by a micro-addition of boron, or even niobium. These steels make it possible to achieve very high strengths, greater than 750 MPa, but with fairly low formability and ductility.

Enfin, les aciers TRIP (TRansformation Induced Plasticity) ont une microstructure composée de ferrite, de bainite et d'austénite résiduelle. Ils permettent d'atteindre des résistances très élevées, mais leur soudabilité est très faible du fait de leur teneur élevée en carbone.Finally, TRIP (TRansformation Induced Plasticity) steels have a microstructure composed of ferrite, bainite and residual austenite. They allow very high resistances to be reached, but their weldability is very low due to their high carbon content.

Afin d'obtenir le meilleur compromis possible entre résistance, formabilité et également soudabilité, on a mis au point (voir le document EP 0 548 950) des aciers pour tôles laminées à chaud dont la structure contient essentiellement de la ferrite durcie par des précipités de carbure de titane et/ou de niobium et de la martensite, voire également de l'austénite résiduelle. Ces aciers ont la composition, exprimée en pourcentages pondéraux:
C ≤ 0,18 %; 0,5 ≤ Si ≤ 2,5 %; 0,5 ≤ Mn ≤2,5 %; P ≤ 0,05 %; S ≤ 0,02 %; 0,01 ≤ Al ≤ 0,1%; 0,02≤Ti≤0,5% et/ou 0,03≤Nb≤1%, avec C%≥0,05 + Ti/4 + Nb/8.
In order to obtain the best possible compromise between strength, formability and also weldability, we have developed (see document EP 0 548 950) hot-rolled sheet steels whose structure essentially contains ferrite hardened by precipitates of titanium carbide and / or niobium and martensite, or even residual austenite. These steels have the composition, expressed in weight percentages:
C ≤ 0.18%; 0.5 ≤ If ≤ 2.5%; 0.5 ≤ Mn ≤2.5%; P ≤ 0.05%; S ≤ 0.02%; 0.01 ≤ Al ≤ 0.1%; 0.02≤Ti≤0.5% and / or 0.03≤Nb≤1%, with C% ≥0.05 + Ti / 4 + Nb / 8.

Ces aciers ont effectivement des résistances élevées (Rm est de l'ordre de 700 MPa) et une bonne formabilité (Re/Rm est de l'ordre de 0,65). Toutefois, leur soudabilité n'est pas aussi bonne que ce que l'on souhaiterait. De plus, leur aspect de surface n'est pas satisfaisant: on constate la présence d'une catégorie de défauts appelée "tigrage" (ou "tiger stripes"). Il s'agit d'incrustations de calamine que le décapage ne permet pas d'éliminer. Ces défauts restreignent les possibilités d'utiliser les tôles pour fabriquer des pièces destinées à demeurer visibles.These steels do indeed have high strengths (R m is around 700 MPa) and good formability (R e / R m is around 0.65). However, their weldability is not as good as one would like. In addition, their surface appearance is not satisfactory: there is the presence of a category of defects called "tigrage" (or "tiger stripes"). These are scale encrustations that cannot be removed by stripping. These faults restrict the possibilities of using the sheets to manufacture parts intended to remain visible.

Le but de l'invention est de fournir aux utilisateurs de tôles d'acier laminées à chaud des produits présentant un très bon compromis entre des niveaux de résistance élevés, une formabilité satisfaisante et une bonne soudabilité, ainsi qu'un aspect de surface irréprochable.The object of the invention is to provide users of hot-rolled steel sheets with products which offer a very good compromise between high resistance levels, satisfactory formability and good weldability, as well as an impeccable surface appearance.

A cet effet, l'invention a pour objet une tôle d'acier laminée à chaud à haute résistance et haute emboutissabilité, caractérisée en ce que sa composition, exprimée en pourcentages pondéraux, est:

  • C ≤ 0,12 %;
  • 0,5 ≤ Mn ≤ 1,5 %;
  • 0 ≤ Si ≤ 0,3 %;
  • 0 ≤ P ≤ 0,1%;
  • 0 ≤ S ≤ 0,05 %;
  • 0,01 ≤ Al ≤ 0,1 %;
  • 0 ≤ Cr ≤ 1%;
  • 0,01 ≤ Nb ≤ 0,1 %
  • 0 ≤ Tieff ≤ 0,05 %, Tieff étant la teneur en titane non sous forme de nitrures, de sulfures ou d'oxydes;
et en ce que sa structure comprend au moins 75 % de ferrite durcie par précipitation de carbures ou de carbonitrures de niobium ou de niobium et de titane, le reste de la structure comprenant au moins 10 % de martensite et éventuellement de la bainite et de l'austénite résiduelle.To this end, the subject of the invention is a hot-rolled steel sheet of high strength and high drawability, characterized in that its composition, expressed in weight percentages, is:
  • C ≤ 0.12%;
  • 0.5 ≤ Mn ≤ 1.5%;
  • 0 ≤ If ≤ 0.3%;
  • 0 ≤ P ≤ 0.1%;
  • 0 ≤ S ≤ 0.05%;
  • 0.01 ≤ Al ≤ 0.1%;
  • 0 ≤ Cr ≤ 1%;
  • 0.01 ≤ Nb ≤ 0.1%
  • 0 ≤ Ti eff ≤ 0.05%, Ti eff being the titanium content not in the form of nitrides, sulphides or oxides;
and in that its structure comprises at least 75% of ferrite hardened by precipitation of carbides or carbonitrides of niobium or niobium and titanium, the rest of the structure comprising at least 10% martensite and optionally bainite and residual austenite.

L'invention a également pour objets des procédés de fabrication de telles tôles.The invention also relates to methods of manufacturing such sheets.

Comme on l'aura compris, les tôles selon l'invention se distinguent de celles connues jusqu'ici pour les mêmes usages par leur teneur sensiblement inférieure en silicium, leurs fourchettes de teneurs en niobium et titane notablement resserrées, et des exigences plus strictes sur la répartition des différentes phases de la structure. Et l'obtention de la structure, donc des propriétés recherchées pour la tôle, implique des conditions particulières lors du traitement thermique qui suit immédiatement le laminage à chaud. Leur composition et leur mode de fabrication font que ces aciers représentent, à plusieurs égards, une combinaison d'aciers HLE et d'aciers double phase.As will be understood, the sheets according to the invention are distinguished from those known hitherto for the same uses by their substantially lower silicon content, their ranges of niobium and titanium contents significantly tightened, and more stringent requirements on the distribution of the different phases of the structure. And obtaining the structure, therefore the desired properties for the sheet, implies special conditions during the heat treatment which immediately follows the hot rolling. Their composition and manufacturing method mean that these steels represent, in several respects, a combination of HLE steels and double phase steels.

L'invention sera mieux comprise à la lecture de la description qui suit, illustrée par la figure 1 qui montre une micrographie d'une tôle selon l'invention.The invention will be better understood on reading the description which follows, illustrated by FIG. 1 which shows a micrograph of a sheet according to the invention.

Pour obtenir des tôles laminées à chaud selon l'invention, il faut d'abord élaborer, puis couler sous forme d'une brame, un acier comportant (tous les pourcentages sont des pourcentages pondéraux) une teneur en carbone inférieure ou égale à 0,12 %, une teneur en manganèse comprise entre 0,5 et 1,5 %, une teneur en silicium inférieure ou égale à 0,3 %, une teneur en phosphore inférieure ou égale à 0,1%, une teneur en soufre inférieure ou égale à 0,05 %, une teneur en aluminium comprise entre 0,01 et 0,1 %, une teneur en chrome inférieure ou égale à 1 %, une teneur en niobium comprise entre 0,01 et 0,10 %, et une teneur en titane efficace (on exposera plus loin ce que signifie ce terme) comprise entre 0 et 0,05 %.In order to obtain hot-rolled sheets according to the invention, it is first necessary to prepare, then pour in the form of a slab, a steel comprising (all the percentages are percentages by weight) a carbon content of less than or equal to 0, 12%, a manganese content between 0.5 and 1.5%, a silicon content less than or equal to 0.3%, a phosphorus content less than or equal to 0.1%, a lower sulfur content or equal to 0.05%, an aluminum content between 0.01 and 0.1%, a chromium content less than or equal to 1%, a niobium content between 0.01 and 0.10%, and a effective titanium content (we will explain below what this term means) between 0 and 0.05%.

La brame est ensuite laminée à chaud sur un train à bandes pour former une tôle de quelques mm d'épaisseur. A sa sortie du train à bandes, la tôle subit un traitement thermique qui permet de lui conférer une microstructure composée au moins à 75 % de ferrite et au moins à 10 % de martensite. La ferrite est durcie par une précipitation de carbures ou de carbonitrures de niobium, et également de carbures ou de carbonitrures de titane si cet élément est présent de manière significative. La microstructure peut éventuellement comporter aussi de la bainite et de l'austénite résiduelle.The slab is then hot rolled on a strip train to form a sheet a few mm thick. On leaving the strip train, the sheet undergoes a heat treatment which makes it possible to give it a microstructure composed at least of 75% ferrite and at least 10% martensite. The ferrite is hardened by precipitation of niobium carbides or carbonitrides, and also of titanium carbides or carbonitrides if this element is present significantly. The microstructure may optionally also include bainite and residual austenite.

La teneur en carbone limitée permet de conserver à l'acier une bonne soudabilité, et d'obtenir la proportion de martensite désirée.The limited carbon content makes it possible to maintain good weldability of the steel, and to obtain the desired proportion of martensite.

Le manganèse joue un rôle durcissant, car:

  • il se place en solution solide;
  • en abaissant le point Ar3, il permet d'abaisser la température de fin de laminage et d'obtenir un grain ferritique fin;
  • c'est un élément trempant.
Manganese plays a hardening role because:
  • it is placed in solid solution;
  • by lowering the point Ar 3 , it makes it possible to lower the end of rolling temperature and to obtain a fine ferritic grain;
  • it is a soaking element.

Cependant, aux fortes teneurs, il provoque la formation d'une structure en bandes et conduit à la dégradation des performances de fatigue et/ou de formabilité. Il faut donc limiter sa présence à la teneur maximale spécifiée de 1,5 %.However, at high contents, it causes the formation of a band structure and leads to the degradation of fatigue performance and / or formability. Its presence must therefore be limited to the maximum specified content of 1.5%.

Le silicium est un élément alphagène, qui favorise donc la transformation ferritique. Il est aussi durcissant en solution solide. Toutefois, l'invention repose entre autres sur une baisse très sensible de la teneur en silicium de l'acier par rapport à l'art antérieur illustré par le document EP 0 548 950. L'intérêt d'une baisse notable de la teneur en silicium est que les problèmes d'aspect de surface rencontrés sur les aciers de l'art antérieur proviennent, en fait, d'une apparition à la surface de la brame, dans le four de réchauffage, d'oxyde Fe2SiO4 qui forme avec l'oxyde FeO un eutectique à bas point de fusion. Cet eutectique pénètre dans les joints de grain et favorise l'ancrage de la calamine, qui ne peut donc être qu'imparfaitement éliminée au décapage. Un autre intérêt de cet abaissement de la teneur en silicium est l'amélioration de la soudabilité de l'acier. Les aciers de l'invention, à condition que les autres spécifications sur leur composition et leur mode de fabrication soient respectées, tolèrent de n'avoir que de faibles, voire très faibles teneurs en silicium.Silicon is an alpha-element, which therefore promotes ferritic transformation. It is also hardening in solid solution. However, the invention is based, among other things, on a very significant drop in the silicon content of the steel compared to the prior art illustrated by document EP 0 548 950. The advantage of a significant drop in the content of silicon is that the surface appearance problems encountered on steels of the prior art arise, in fact, from an appearance on the surface of the slab, in the reheating furnace, of oxide Fe 2 SiO 4 which forms with FeO oxide a low melting eutectic. This eutectic penetrates into the grain boundaries and promotes the anchoring of the scale, which can therefore only be imperfectly removed during pickling. Another advantage of this lowering of the silicon content is the improvement in the weldability of the steel. The steels of the invention, provided that the other specifications on their composition and method of manufacture are respected, tolerate having only low, or even very low, silicon contents.

Comme le silicium, le phosphore est alphagène et durcissant. Mais sa teneur doit être limitée à 0,1 %, et peut être aussi faible que possible. En effet, il serait susceptible, à forte teneur, de former une ségrégation à mi-épaisseur qui pourrait provoquer un délaminage. Par ailleurs, il peut ségréger aux joints de grains, ce qui augmente la fragilité.Like silicon, phosphorus is alphagene and hardens. But its content should be limited to 0.1%, and may be as low as possible. Indeed, it would be likely, at high content, to form a mid-thickness segregation which could cause delamination. Furthermore, it can segregate at grain boundaries, which increases fragility.

Quoique non nécessaire à proprement parler, une addition de chrome (limitée à 1 %) est recommandable, car il favorise la formation de martensite et la transformation ferritique.Although not strictly speaking necessary, an addition of chromium (limited to 1%) is advisable, since it promotes the formation of martensite and ferritic transformation.

Le niobium et le titane sont des éléments de micro-alliage qui forment des précipités de carbure et de carbonitrure durcissant la ferrite. Leur addition, qui pour le titane n'est qu'optionnelle, a pour but d'obtenir, grâce à ce durcissement, un niveau de résistance élevé.Niobium and titanium are micro-alloying elements that form precipitates of carbide and carbonitride hardening ferrite. Their addition, which for titanium is only optional, aims to obtain, thanks to this hardening, a high level of resistance.

Une grande particularité de la composition des aciers selon l'invention est la présence de niobium, alors que cet élément n'est pas habituellement ajouté lorsqu'on désire obtenir une structure de type double phase ferrite-martensite. En effet, le niobium augmente la température de non-recristallisation de l'acier, ce qui se traduit par un fort écrouissage de l'austénite, et peut entraîner une hétérogénéité de taille de grains. De plus, la précipitation des carbures et carbonitrures de niobium ralentit la transformation ferritique. C'est pourquoi, pour obtenir en présence de niobium une formation suffisante de ferrite équiaxe convenablement durcie, il est impératif de respecter l'un des schémas de refroidissement de la tôle laminée à chaud qui vont être décrits.A great feature of the composition of the steels according to the invention is the presence of niobium, whereas this element is not usually added when it is desired to obtain a structure of the ferrite-martensite double phase type. Indeed, niobium increases the temperature of non-recrystallization of the steel, which results in a strong hardening of the austenite, and can cause a heterogeneity of grain size. In addition, the precipitation of niobium carbides and carbonitrides slows down ferritic transformation. This is why, in order to obtain in the presence of niobium a sufficient formation of suitably hardened equiaxed ferrite, it is imperative to comply with one of the cooling schemes for hot-rolled sheet which will be described.

Concernant l'addition optionnelle de titane, l'effet de durcissement de la ferrite qu'elle procure n'est cependant obtenu que si le titane a la possibilité de se combiner au carbone. Il faut donc tenir compte, lors de l'addition de titane au bain d'acier liquide, des possibilités de formation d'oxydes, de nitrures et de sulfures de titane. La formation significative d'oxydes peut être aisément évitée par une addition d'aluminium lors de la désoxydation de l'acier liquide. Quant aux quantités de nitrures et de sulfures formées, elles dépendent des teneurs de l'acier liquide en azote et en soufre. S'il n'est pas possible, lors de l'élaboration et de la coulée, de limiter drastiquement ces teneurs en azote et en soufre, il faut ajouter au bain métallique une quantité de titane suffisante pour que dans le métal solidifié, après précipitation des nitrures et sulfures, la teneur en titane non sous forme de nitrures, de sulfures ou d'oxydes (et donc disponible pour former des carbures et carbonitrures) soit au maximum de 0,05 %. C'est cette teneur que l'on appelle "teneur en titane efficace" et que l'on abrège en "Tieff %". Lorsque l'acier est désoxydé à l'aluminium, compte tenu des équilibres thermodynamiques qui s'établissent dans le métal en cours de solidification, on peut estimer que, si Titotal % désigne la teneur totale de l'acier en titane, Ti eff %= Ti total % - 3,4 x N % - 1,5 x S %.

Figure imgb0001
Regarding the optional addition of titanium, the hardening effect of the ferrite it provides is however only obtained if the titanium has the possibility of combining with carbon. When adding titanium to the liquid steel bath, account must therefore be taken of the possibilities of titanium oxides, nitrides and sulfides. The significant formation of oxides can be easily avoided by adding aluminum during the deoxidation of the liquid steel. As for the quantities of nitrides and sulphides formed, they depend on the nitrogen and sulfur contents of the liquid steel. If it is not possible, during production and casting, to drastically limit these nitrogen and sulfur contents, a sufficient amount of titanium must be added to the metal bath so that in the solidified metal, after precipitation nitrides and sulfides, the titanium content not in the form of nitrides, sulfides or oxides (and therefore available to form carbides and carbonitrides) is at most 0.05%. It is this content which is called "effective titanium content" and which is shortened to "Ti eff %". When the steel is deoxidized with aluminum, taking into account the thermodynamic equilibria which are established in the metal in the course of solidification, it can be estimated that, if total Ti% indicates the total content of titanium steel, Ti eff % = Ti total % - 3.4 x N% - 1.5 x S%.
Figure imgb0001

Cette addition de titane peut avantageusement compléter l'addition de niobium pour atteindre des niveaux de résistance encore plus élevés. Mais ajouter du niobium et du titane au-delà des quantités prescrites est inutile, car on assisterait alors à une saturation de l'effet durcissant.This addition of titanium can advantageously complement the addition of niobium to reach even higher resistance levels. However, adding niobium and titanium beyond the prescribed amounts is unnecessary, as there would then be a saturation of the hardening effect.

Pour fabriquer les tôles selon l'invention, différents modes opératoires peuvent être envisagés, en fonction du niveau de performances recherché et de la composition du métal.To manufacture the sheets according to the invention, different operating methods can be envisaged, depending on the level of performance sought and the composition of the metal.

Selon un premier mode opératoire (N° 1), applicable de manière standardisée à tous les aciers de l'invention, et plus particulièrement à ceux dont la teneur en niobium est comprise entre 0,02 et 0,1 %, la succession des opérations est la suivante:

  • 1) on élabore, et on coule sous forme de brame un acier dont la composition en pourcentages pondéraux est:
    • C ≤ 0,12 %;
    • 0,5 ≤ Mn ≤ 1,5 %;
    • 0 ≤ Si ≤ 0,3 %;
    • 0 ≤ P ≤ 0,1%;
    • 0 ≤ S ≤ 0,05 %;
    • 0,01 ≤ Al ≤ 0,1 %;
    • 0 ≤ Cr ≤ 1 %;
    • 0,01 ≤ Nb ≤ 0,1 %
    • 0 ≤ Tieff ≤ 0,05 %, Tieff étant la teneur en titane non sous forme de nitrures, de sulfures ou d'oxydes;
  • 2) on lamine à chaud ladite brame sur un train à bandes, avec une température de fin de laminage (TFL) située entre le point Ar3 de la nuance coulée et 950 °C;
  • 3) à la sortie du train à bandes, on effectue un refroidissement du produit en deux étapes:
    • étape 1: refroidissement lent, à l'air, à une vitesse de 2 à 15 °C/s, effectué enttre TFL et une température dite "température de début de trempe" (TDT) située entre 730 °C et le point Ar1 de la nuance coulée; c'est au cours de ce refroidissement qu'a lieu la transformation ferritique; sa durée ne doit pas, dans le cas général, être inférieure à 8 s pour laisser à la transformation ferritique (dont on rappelle qu'elle est retardée par la présence des carbures et carbonitrures de niobium) de s'effectuer de manière correcte; ce refroidissement ne doit pas, non plus, durer plus de 40 s pour ne pas aboutir à des précipités de trop forte taille qui détérioreraient la résistance à la traction de la tôle;
    • étape 2: refroidissement rapide, effectué par exemple par aspersion à l'eau, à une vitesse de 20 à 150 °C/s entre TDT et une température dite "température de fin de refroidissement" (TFR) qui est inférieure ou égale à 300 °C.
According to a first operating mode (No. 1), applicable in a standardized manner to all the steels of the invention, and more particularly to those whose niobium content is between 0.02 and 0.1%, the succession of operations is the following:
  • 1) a steel is produced and poured in the form of a slab, the composition in percentages by weight of which is:
    • C ≤ 0.12%;
    • 0.5 ≤ Mn ≤ 1.5%;
    • 0 ≤ If ≤ 0.3%;
    • 0 ≤ P ≤ 0.1%;
    • 0 ≤ S ≤ 0.05%;
    • 0.01 ≤ Al ≤ 0.1%;
    • 0 ≤ Cr ≤ 1%;
    • 0.01 ≤ Nb ≤ 0.1%
    • 0 ≤ Ti eff ≤ 0.05%, Ti eff being the titanium content not in the form of nitrides, sulphides or oxides;
  • 2) said slab is hot rolled on a strip train, with an end of rolling temperature (TFL) situated between the point Ar 3 of the casting grade and 950 ° C;
  • 3) at the exit of the band train, the product is cooled in two stages:
    • step 1: slow cooling, in air, at a speed of 2 to 15 ° C / s, carried out between TFL and a temperature called "tempering start temperature" (TDT) located between 730 ° C and point Ar 1 casting shade; it is during this cooling that the ferritic transformation takes place; its duration must not, in the general case, be less than 8 s to allow the ferritic transformation (which it is recalled that it is delayed by the presence of carbides and carbonitrides of niobium) to be carried out correctly; this cooling must also not last more than 40 s so as not to result in precipitates of too large a size which would deteriorate the tensile strength of the sheet;
    • step 2: rapid cooling, carried out for example by spraying with water, at a speed of 20 to 150 ° C / s between TDT and a temperature called "end of cooling temperature" (TFR) which is less than or equal to 300 ° C.

Une fois ces opérations réalisées, la tôle peut être bobinée, soit immédiatement, soit après un séjour à l'air.Once these operations have been carried out, the sheet can be wound, either immediately or after a stay in the air.

Selon un deuxième mode opératoire (N° 2), applicable également à tous les aciers de l'invention de manière standardisée, et particulièremnt à ceux dont la teneur en niobium est comprise entre 0,02 et 0,1 %, les opérations 1) et 2) sont les mêmes que précédemment. En revanche, l'opération 3) comporte non plus deux, mais trois étapes de refroidissement, selon:

  • étape 1: refroidissement rapide, à l'eau, à une vitesse de 20 à 150°C/s, commençant moins de 10 s après la fin du laminage à chaud, entre TFL et une température intermédiaire (Tinter) inférieure au point Ar3 de la nuance; pendant cette opération, l'acier reste dans le domaine austénitique;
  • étape 2: refroidissement lent, à l'air, à une vitesse de 2 à 15 °C/s, d'une durée supérieure à 5 s et inférieure à 40 s, entre Tinter et TDT, qui est comprise entre le point Ar1 de la nuance et 730 °C; la transformation ferritique a lieu au cours de cette étape, et là encore la fixation d'une durée minimale pour le refroidissement a pour but d'assurer le bon déroulement de cette transformation malgré la présence de niobium;
  • étape 3: refroidissement rapide, à l'eau, à une vitesse de 20 à 150 °C/s, entre TDT et TFR, cette dernière température étant inférieure ou égale à 300 °C.
According to a second operating mode (No. 2), also applicable to all the steels of the invention in a standardized manner, and in particular to those whose niobium content is between 0.02 and 0.1%, operations 1) and 2) are the same as before. On the other hand, operation 3) no longer comprises two, but three stages of cooling, according to:
  • step 1: rapid cooling, with water, at a speed of 20 to 150 ° C / s, starting less than 10 s after the end of the hot rolling, between TFL and an intermediate temperature (T inter ) lower than the point Ar 3 of the shade; during this operation, the steel remains in the austenitic domain;
  • step 2: slow air cooling at a speed of 2 to 15 ° C / s, lasting longer than 5 s and less than 40 s, between T inter and TDT, which is between point Ar 1 of the grade and 730 ° C; the ferritic transformation takes place during this stage, and here again the fixing of a minimum duration for the cooling has the aim of ensuring the good progress of this transformation despite the presence of niobium;
  • step 3: rapid cooling, with water, at a speed of 20 to 150 ° C / s, between TDT and TFR, the latter temperature being less than or equal to 300 ° C.

Le bobinage de la tôle peut ensuite être effectué, là encore avec ou sans un séjour préalable à l'air.The sheet metal can then be wound, again with or without a prior stay in the air.

Dans ce dernier mode opératoire, le refroidissement à l'eau de l'étape 1 de l'opération 3) a pour fonction d'amener rapidement la tôle dans le domaine de transformation ferritique. Cette dernière commence alors immédiatement après l'arrêt du refroidissement à l'eau. Elle se fait donc plus vite et à plus basse température que dans le mode opératoire à deux étapes. Cela se traduit par:

  • une transformation plus rapide, donc plus complète pour une durée donnée du refroidissement à l'air, qui elle-même peut être limitée par la longueur de la table de refroidissement;
  • une taille de grain ferritique plus faible;
  • une précipitation de carbures et de carbonitrures de niobium et titane plus fine et durcissante.
In this latter operating mode, the water cooling of step 1 of operation 3) has the function of rapidly bringing the sheet into the ferritic transformation domain. The latter then begins immediately after the water cooling has stopped. It therefore takes place faster and at a lower temperature than in the two-stage operating mode. This is explained by:
  • faster transformation, therefore more complete for a given duration of air cooling, which itself can be limited by the length of the cooling table;
  • a smaller ferritic grain size;
  • a finer and hardening precipitation of niobium and titanium carbides and carbonitrides.

Dans le cas où l'acier comporte une teneur en niobium relativement faible, c'est à dire comprise entre 0,01 et 0,02 %,la fixation d'une durée minimale pour l'étape de refroidissement lent à l'air de l'opération 3) des deux modes opératoires que l'on vient de décrire n'est plus impérative, le niobium n'étant pas suffisamment présent pour ralentir très notablement la transformation ferritique.In the case where the steel has a relatively low niobium content, that is to say between 0.01 and 0.02%, the fixing of a minimum duration for the slow air cooling step of operation 3) of the two operating modes that have just been described is no longer imperative, the niobium not being sufficiently present to very significantly slow down the ferritic transformation.

On peut ainsi produire une tôle dont la résistance minimale garantie peut s'ajuster entre 650 et 750 MPa, avec un rapport Re/Rm inférieur à 0,8, un coefficient d'écrouissage d'au moins 0,13, et un allongement total d'au moins 15 %. La courbe de traction ne présente pas de palier de limite d'élasticité, ce qui améliore le comportement à l'emboutissage. Enfin, l'aspect de surface du produit décapé ne présente pas de "tigrage". Les buts assignés à l'invention sont donc atteints.It is thus possible to produce a sheet whose guaranteed minimum resistance can be adjusted between 650 and 750 MPa, with a ratio R e / R m of less than 0.8, a work hardening coefficient of at least 0.13, and a total elongation of at least 15%. The tensile curve does not have an elastic limit plateau, which improves the stamping behavior. Finally, the surface appearance of the pickled product does not show "tigrage". The aims assigned to the invention are therefore achieved.

A titre d'exemple, des expérimentations de l'invention ont été effectuées sur les nuances d'acier citées dans le tableau 1 (les teneurs en titane sont des teneurs totales; les teneurs en titane efficace doivent être calculées comme on l'a exposé): Tableau 1: nuances d'acier testées Nuance C % Mn % P % Si % Cr % N % S % Nb % Ti % A (référence) 0,072 0,982 0,040 0,190 0,750 0,0059 0,0021 - - B 0,079 1,210 0,015 0,180 0,021 0,0048 0,0027 0,050 0,010 C 0,080 0,990 0,040 0,200 0,750 0,0051 0,0020 0,080 0,061 By way of example, experiments of the invention were carried out on the steel grades cited in Table 1 (the titanium contents are total contents; the effective titanium contents must be calculated as described ): Table 1: steel grades tested Shade VS % Mn% P% Yes % Cr% NOT % S% Nb% Ti% A (reference) 0.072 0.982 0.040 0.190 0.750 0.0059 0.0021 - - B 0.079 1.210 0.015 0.180 0.021 0.0048 0.0027 0.050 0.010 VS 0.080 0.990 0.040 0.200 0.750 0.0051 0.0020 0.080 0.061

Ces expérimentations ont donné les résultats consignés dans le tableau 2, où t désigne la durée de l'étape de refroidissement à l'air pendant laquelle a lieu la transformation ferritique, Rp0,2 désigne la limite conventionnelle d'élasticité à 0,2 % d'allongement rémanent et n le coefficient d'écrouissage, et où la colonne "mode de refroidissement" se réfère aux deux principaux modes opératoires décrits précédemment: Tableau 2: Résultats expérimentaux Nuance Mode de refroidissement TDT (°C) t (s) Rp0,2 (MPa) Rm (MPa) Rp0,2/Rm n A (référence) N° 2 720 15 319 590 0,54 0,20 A (référence) N° 2 650 15 308 570 0,54 0,20 B N° 1 630 18 439 675 0,65 0,16 B N° 2 700 15 449 680 0,66 0,16 B N° 2 630 15 445 675 0,66 0,16 C N° 2 720 15 515 765 0,67 0,14 C N° 2 630 15 490 720 0,68 0,15 B N° 1 730 6 550 590 0,93 0,12 B N° 2 720 3 550 620 0,89 0,12 These experiments gave the results recorded in Table 2, where t denotes the duration of the air cooling step during which the ferritic transformation takes place, R p0.2 denotes the conventional elastic limit at 0.2 % of residual elongation and n the work hardening coefficient, and where the column "mode of cooling "refers to the two main operating modes described above: Table 2: Experimental results Shade Cooling mode TDT (° C) t (s) R p0.2 (MPa) R m (MPa) R p0.2 / R m not A (reference) # 2 720 15 319 590 0.54 0.20 A (reference) # 2 650 15 308 570 0.54 0.20 B # 1 630 18 439 675 0.65 0.16 B # 2 700 15 449 680 0.66 0.16 B # 2 630 15 445 675 0.66 0.16 VS # 2 720 15 515 765 0.67 0.14 VS # 2 630 15 490 720 0.68 0.15 B # 1 730 6 550 590 0.93 0.12 B # 2 720 3 550 620 0.89 0.12

D'après ces résultats, on voit que l'addition de niobium et de titane à l'acier A de référence dans les nuances B et C permet d'augmenter très sensiblement la résistance de cet acier, en particulier lorsque le mode opératoire N° 2 comportant un refroidissement en trois étapes est utilisé, tout en maintenant un rapport Rp0,2/Rm convenable. On remarque également, d'après les deux derniers essais mentionnés, que l'addition de niobium est inopérante lorsqu'on impose à la tôle un refroidissement à l'air trop bref pour que la transformation ferritique puisse s'effectuer de façon satisfaisante: la résistance n'est pas améliorée par rapport à la référence, alors que le rapport Rp0,2/Rm est même sensiblement détérioré. La nuance B considérée lors de ces deux essais est particulièrement sensible à ce facteur car sa teneur en silicium n'est pas très élevée, et sa teneur en phosphore est basse, et cela ne favorise pas la transformation ferritique, donc la formation de martensite. La phase dure est alors formée de bainite et/ou de perlite.From these results, it can be seen that the addition of niobium and titanium to the reference steel A in grades B and C makes it possible to very significantly increase the resistance of this steel, in particular when the operating mode No. 2 comprising three-stage cooling is used, while maintaining a suitable R p0.2 / R m ratio. It is also noted, according to the last two tests mentioned, that the addition of niobium is ineffective when the sheet is forced to cool in air too short for the ferritic transformation to be able to be carried out satisfactorily: resistance is not improved compared to the reference, while the ratio R p0.2 / R m is even significantly deteriorated. Grade B considered during these two tests is particularly sensitive to this factor because its silicon content is not very high, and its phosphorus content is low, and this does not promote ferritic transformation, therefore the formation of martensite. The hard phase is then formed of bainite and / or perlite.

La micrographie de la figure 1 montre la structure d'un acier correspondant à la nuance B à 0,050 % de niobium et 0,010 % de titane. Le refroidissement de la tôle après laminage à chaud a été conduit selon le mode opératoire N° 2. Les plages claires sont de la ferrite equiaxe et représentent 85 % de la structure. Les plages sombres sont de la martensite, et représentent pratiquement l'intégralité du restant de la structure.The micrograph in FIG. 1 shows the structure of a steel corresponding to grade B with 0.050% niobium and 0.010% titanium. The cooling of the sheet after hot rolling was carried out according to procedure No. 2. The clear areas are of equiaxed ferrite and represent 85% of the structure. The dark areas are martensite, and represent almost the entire rest of the structure.

Les aciers selon l'invention peuvent être employés notamment pour constituer des pièces de structures de véhicules automobiles, telles que des éléments de châssis, des voiles de roue, des bras de suspension, ainsi que toutes pièces embouties devant présenter une grande résistance aux sollicitations mécaniques.The steels according to the invention can be used in particular to constitute parts of motor vehicle structures, such as chassis elements, wheel sails, suspension arms, as well as all stamped parts that must be highly resistant to mechanical stresses.

Claims (6)

Tôle d'acier laminée à chaud à haute résistance et haute emboutissabilité, caractérisée en ce que sa composition, exprimée en pourcentages pondéraux, est: - C ≤ 0,12 %; - 0,5 ≤ Mn ≤ 1,5 %; - 0 ≤ Si ≤ 0,3 %; - 0 ≤ P ≤ 0,1%, - 0 ≤ S ≤ 0,05 %; - 0,01 ≤ Al ≤ 0,1%; - 0 ≤ Cr ≤ 1 %; - 0,01 ≤ Nb ≤ 0,10 % - 0 ≤ Tieff ≤ 0,05 %, Tieff étant la teneur en titane non sous forme de nitrures, de sulfures ou d'oxydes; et en ce que sa structure comprend au moins 75 % de ferrite durcie par précipitation de carbures ou de carbonitrures de Nb ou de Nb et de Ti, le reste de la structure comprenant au moins 10 % de martensite et éventuellement de la bainite et de l'austénite résiduelle.Hot-rolled steel sheet with high resistance and high drawability, characterized in that its composition, expressed in weight percentages, is: - C ≤ 0.12%; - 0.5 ≤ Mn ≤ 1.5%; - 0 ≤ If ≤ 0.3%; - 0 ≤ P ≤ 0.1%, - 0 ≤ S ≤ 0.05%; - 0.01 ≤ Al ≤ 0.1%; - 0 ≤ Cr ≤ 1%; - 0.01 ≤ Nb ≤ 0.10% - 0 ≤ Ti eff ≤ 0.05%, Ti eff being the titanium content not in the form of nitrides, sulphides or oxides; and in that its structure comprises at least 75% of ferrite hardened by precipitation of carbides or carbonitrides of Nb or Nb and Ti, the rest of the structure comprising at least 10% of martensite and optionally bainite and l residual austenite. Tôle d'acier selon la revendication 1, caractérisée en ce que sa teneur en Nb est comprise entre 0,010 et 0,020 %.Steel sheet according to claim 1, characterized in that its Nb content is between 0.010 and 0.020%. Procédé de fabrication d'une tôle d'acier laminée à chaud à haute résistance et haute emboutissabilité, caractérisé en ce que: - on élabore et on coule sous forme de brame un acier dont la composition est conforme à celle de la tôle selon la revendication 1; - puis on lamine à chaud ladite brame sous forme de tôle en achevant le laminage à une température comprise entre le point Ar3 et 950 °C; - puis on applique à ladite tôle un refroidissement lent à une vitesse de 2 à 15 °C/s pendant une durée comprise entre 8 et 40 s, jusqu'à une température comprise entre le point Ar1 et 730 °C; - puis on applique à ladite tôle un refroidissement rapide à une vitesse de 20 à 150 °C/s jusqu'à une température inférieure ou égale à 300 °C. Method for manufacturing a hot-rolled steel sheet of high strength and high drawability, characterized in that: - A steel is produced and poured in the form of a slab, the composition of which conforms to that of the sheet according to claim 1; - Then hot rolled said slab in the form of sheet metal by completing the rolling at a temperature between point Ar 3 and 950 ° C; - Then slow cooling is applied to said sheet at a speed of 2 to 15 ° C / s for a period of between 8 and 40 s, to a temperature between point Ar 1 and 730 ° C; - Then rapid cooling is applied to said sheet at a speed of 20 to 150 ° C / s to a temperature less than or equal to 300 ° C. Procédé de fabrication d'une tôle d'acier laminée à chaud à haute résistance et haute emboutissabilité, caractérisé en ce que: - on élabore et on coule sous forme de brame un acier dont la composition est conforme à celle de la tôle selon la revendication 1; - puis on lamine à chaud ladite brame sous forme de tôle en achevant le laminage à une température comprise entre le point Ar3 et 950 °C; - puis on applique à ladite tôle, moins de 10 s après la fin du laminage à chaud, un refroidissement rapide à une vitesse de 20 à 150 °C/s jusqu'à une température inférieure au point Ar3; - puis on applique à ladite tôle un refroidissement lent à une vitesse de 2 à 15 °C/s pendant une durée comprise entre 5 et 40 s, jusqu'à une température comprise entre le point Ar1 et 730 °C; - puis on applique à ladite tôle un refroidissement rapide à une vitesse de 20 à 150 °C/s jusqu'à une température inférieure ou égale à 300 °C. Method for manufacturing a hot-rolled steel sheet of high strength and high drawability, characterized in that: - A steel is produced and poured in the form of a slab, the composition of which conforms to that of the sheet according to claim 1; - Then hot rolled said slab in the form of sheet metal by completing the rolling at a temperature between point Ar 3 and 950 ° C; - Then applied to said sheet, less than 10 s after the end of hot rolling, rapid cooling at a speed of 20 to 150 ° C / s to a temperature below the point Ar 3 ; - Then slow cooling is applied to said sheet at a speed of 2 to 15 ° C / s for a period of between 5 and 40 s, to a temperature between point Ar 1 and 730 ° C; - Then rapid cooling is applied to said sheet at a speed of 20 to 150 ° C / s to a temperature less than or equal to 300 ° C. Procédé de fabrication d'une tôle d'acier laminée à chaud à haute résistance et haute emboutissabilité, caractérisé en ce que: - on élabore et on coule sous forme de brame un acier dont la composition est conforme à celle de la tôle selon la revendication 2; - puis on lamine à chaud ladite brame sous forme de tôle en achevant le laminage à une température comprise entre le point Ar3 et 950 °C; - puis on applique à ladite tôle un refroidissement lent à une vitesse de 2 à 15 °C/s pendant une durée inférieure à 40 s, jusqu'à une température comprise entre le point Ar1 et 730 °C; - puis on applique à ladite tôle un refroidissement rapide à une vitesse de 20 à 150 "C/s jusclu'à une température inférieure ou égale à 300 °C. Method for manufacturing a hot-rolled steel sheet of high strength and high drawability, characterized in that: - A steel is produced and poured in the form of a slab, the composition of which conforms to that of the sheet according to claim 2; - Then hot rolled said slab in the form of sheet metal by completing the rolling at a temperature between point Ar 3 and 950 ° C; - Then slow cooling is applied to said sheet at a speed of 2 to 15 ° C / s for a period of less than 40 s, to a temperature between point Ar 1 and 730 ° C; - Then a rapid cooling is applied to said sheet at a speed of 20 to 150 "C / s until a temperature less than or equal to 300 ° C. Procédé de fabrication d'une tôle d'acier laminée à chaud à haute résistance et haute emboutissabilité, caractérisé en ce que: - on élabore et on coule sous forme de brame un acier dont la composition est conforme à celle de la tôle selon la revendication 2; - puis on lamine à chaud ladite brame sous forme de tôle en achevant le laminage à une température comprise entre le point Ar3 et 950 °C; - puis on applique à ladite tôle, moins de 10 s après la fin du laminage à chaud, un refroidissement rapide à une vitesse de 20 à 150 °C/s jusqu'à une température inférieure au point Ar3; - puis on applique à ladite tôle un refroidissement lent à une vitesse de 2 à 15 °C/s pendant une durée inférieure à 40 s, jusqu'à une température comprise entre le point Ar1 et 730 °C; - puis on applique à ladite tôle un refroidissement rapide à une vitesse de 20 à 150 °C/s jusqu'à une température inférieure ou égale à 300 °C. Method for manufacturing a hot-rolled steel sheet of high strength and high drawability, characterized in that: - A steel is produced and poured in the form of a slab, the composition of which conforms to that of the sheet according to claim 2; - Then hot rolled said slab in the form of sheet metal by completing the rolling at a temperature between point Ar 3 and 950 ° C; - Then applied to said sheet, less than 10 s after the end of hot rolling, rapid cooling at a speed of 20 to 150 ° C / s to a temperature below the point Ar 3 ; - Then slow cooling is applied to said sheet at a speed of 2 to 15 ° C / s for a period of less than 40 s, to a temperature between point Ar 1 and 730 ° C; - Then rapid cooling is applied to said sheet at a speed of 20 to 150 ° C / s to a temperature less than or equal to 300 ° C.
EP96401007A 1995-06-08 1996-05-10 Niobium containing hot rolled steel sheet with high strength and good deep-drawing properties, and process for its manufacture Revoked EP0747495B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9506746A FR2735148B1 (en) 1995-06-08 1995-06-08 HIGH-STRENGTH, HIGH-STRENGTH HOT-ROLLED STEEL SHEET CONTAINING NIOBIUM, AND METHODS OF MAKING SAME.
FR9506746 1995-06-08

Publications (2)

Publication Number Publication Date
EP0747495A1 true EP0747495A1 (en) 1996-12-11
EP0747495B1 EP0747495B1 (en) 2000-01-19

Family

ID=9479730

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96401007A Revoked EP0747495B1 (en) 1995-06-08 1996-05-10 Niobium containing hot rolled steel sheet with high strength and good deep-drawing properties, and process for its manufacture

Country Status (9)

Country Link
US (1) US5817196A (en)
EP (1) EP0747495B1 (en)
JP (1) JPH093609A (en)
AT (1) ATE189007T1 (en)
BR (1) BR9602713A (en)
CA (1) CA2178306A1 (en)
DE (1) DE69606226T2 (en)
ES (1) ES2143726T3 (en)
FR (1) FR2735148B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000005422A1 (en) * 1998-07-24 2000-02-03 Sms Schloemann-Siemag Aktiengesellschaft Method and installation for producing dual-phase steel
EP1002884A1 (en) * 1998-04-27 2000-05-24 Nkk Corporation Cold rolled steel plate of excellent moldability, panel shape characteristics and denting resistance, molten zinc plated steel plate, and method of manufacturing these steel plates
NL1016042C2 (en) * 2000-08-29 2001-07-24 Corus Technology B V Hot rolled dual phase steel band for, e.g., automotive parts contains vanadium in place of chromium
WO2001071047A1 (en) * 2000-03-22 2001-09-27 Centre De Recherches Metallurgiques, Association Sans But Lucratif Method for making a multiphase hot-rolled steel strip
WO2004111279A2 (en) * 2003-06-18 2004-12-23 Sms Demag Aktiengesellschaft Method and installation for the production of hot-rolled strip having a dual-phase structure
EP3658692B1 (en) 2017-07-25 2021-11-10 Tata Steel IJmuiden B.V. Steel strip, sheet or blank for producing a hot formed part, part, and method for hot forming a blank into a part

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0952233B1 (en) * 1998-04-21 2003-03-19 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. Steel wire rod or bar with good cold deformability and machine parts made thereof
JP3524790B2 (en) * 1998-09-30 2004-05-10 株式会社神戸製鋼所 Coating steel excellent in coating film durability and method for producing the same
DE19910582A1 (en) 1999-03-10 2000-09-28 Mahle Gmbh Built piston
EP1662014B1 (en) * 2003-06-12 2018-03-07 JFE Steel Corporation Steel plate and welded steel tube exhibiting low yield ratio, high strength and high toughness and method for production thereof
KR101619786B1 (en) * 2010-01-08 2016-05-13 삼성디스플레이 주식회사 Method for fabricating Bottom chassis, bottom chassis fabricated by the same, method for fabricating liquid crystal display and liquid crystal display fabricated by the same
DE112015005690T8 (en) * 2014-12-19 2018-04-19 Nucor Corporation Hot rolled martensitic lightweight sheet steel and method of making the same
JP6460258B2 (en) * 2015-11-19 2019-01-30 新日鐵住金株式会社 High strength hot-rolled steel sheet and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2037350A1 (en) * 1969-07-30 1971-02-11 Armco Steel Corp , Middletown, Ohio (VStA) Process for improving the toughness and weldability of high-strength, low-alloy steel heavy plate
DE2362658A1 (en) * 1972-12-23 1974-07-18 Nippon Steel Corp STEEL SHEET WITH EXCELLENT PRESS FORMABILITY AND METHOD FOR MANUFACTURING IT
FR2240960A1 (en) * 1973-08-13 1975-03-14 Albright & Wilson Low carbon steel containing niobium - coated with chromium to give good corrosion resistance
US4141761A (en) * 1976-09-27 1979-02-27 Republic Steel Corporation High strength low alloy steel containing columbium and titanium
EP0228756A1 (en) * 1984-07-17 1987-07-15 Kawasaki Steel Corporation Extra low carbon steel sheets
JPH05179397A (en) * 1991-12-31 1993-07-20 Sumitomo Metal Ind Ltd Hot rolled steel sheet excellent in fatigue strength and production thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE236258C (en) *
US4033789A (en) * 1976-03-19 1977-07-05 Jones & Laughlin Steel Corporation Method of producing a high strength steel having uniform elongation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2037350A1 (en) * 1969-07-30 1971-02-11 Armco Steel Corp , Middletown, Ohio (VStA) Process for improving the toughness and weldability of high-strength, low-alloy steel heavy plate
DE2362658A1 (en) * 1972-12-23 1974-07-18 Nippon Steel Corp STEEL SHEET WITH EXCELLENT PRESS FORMABILITY AND METHOD FOR MANUFACTURING IT
FR2240960A1 (en) * 1973-08-13 1975-03-14 Albright & Wilson Low carbon steel containing niobium - coated with chromium to give good corrosion resistance
US4141761A (en) * 1976-09-27 1979-02-27 Republic Steel Corporation High strength low alloy steel containing columbium and titanium
EP0228756A1 (en) * 1984-07-17 1987-07-15 Kawasaki Steel Corporation Extra low carbon steel sheets
JPH05179397A (en) * 1991-12-31 1993-07-20 Sumitomo Metal Ind Ltd Hot rolled steel sheet excellent in fatigue strength and production thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 17, no. 597 (C - 1127) 2 November 1993 (1993-11-02) *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1002884A1 (en) * 1998-04-27 2000-05-24 Nkk Corporation Cold rolled steel plate of excellent moldability, panel shape characteristics and denting resistance, molten zinc plated steel plate, and method of manufacturing these steel plates
EP1002884A4 (en) * 1998-04-27 2006-04-05 Nippon Kokan Kk Cold rolled steel plate of excellent moldability, panel shape characteristics and denting resistance, molten zinc plated steel plate, and method of manufacturing these steel plates
WO2000005422A1 (en) * 1998-07-24 2000-02-03 Sms Schloemann-Siemag Aktiengesellschaft Method and installation for producing dual-phase steel
KR100578823B1 (en) * 1998-07-24 2006-05-11 에스엠에스 데마그 악티엔게젤샤프트 Method and installation for producing dual-phase steel
WO2001071047A1 (en) * 2000-03-22 2001-09-27 Centre De Recherches Metallurgiques, Association Sans But Lucratif Method for making a multiphase hot-rolled steel strip
BE1013359A3 (en) * 2000-03-22 2001-12-04 Centre Rech Metallurgique Method for manufacturing a multi-band steel hot rolled.
US6821364B2 (en) 2000-03-22 2004-11-23 Centre De Recherches Metallurgiques A.S.B.L. Method of making a multiphase hot-rolled steel strip
NL1016042C2 (en) * 2000-08-29 2001-07-24 Corus Technology B V Hot rolled dual phase steel band for, e.g., automotive parts contains vanadium in place of chromium
WO2004111279A2 (en) * 2003-06-18 2004-12-23 Sms Demag Aktiengesellschaft Method and installation for the production of hot-rolled strip having a dual-phase structure
WO2004111279A3 (en) * 2003-06-18 2005-05-06 Sms Demag Ag Method and installation for the production of hot-rolled strip having a dual-phase structure
CN100381588C (en) * 2003-06-18 2008-04-16 Sms迪马格股份公司 Method and installation for the production of hot-rolled strip having a dual-phase structure
EP3658692B1 (en) 2017-07-25 2021-11-10 Tata Steel IJmuiden B.V. Steel strip, sheet or blank for producing a hot formed part, part, and method for hot forming a blank into a part

Also Published As

Publication number Publication date
EP0747495B1 (en) 2000-01-19
JPH093609A (en) 1997-01-07
ATE189007T1 (en) 2000-02-15
FR2735148B1 (en) 1997-07-11
CA2178306A1 (en) 1996-12-09
DE69606226T2 (en) 2000-09-07
ES2143726T3 (en) 2000-05-16
US5817196A (en) 1998-10-06
BR9602713A (en) 1998-04-22
FR2735148A1 (en) 1996-12-13
DE69606226D1 (en) 2000-02-24

Similar Documents

Publication Publication Date Title
EP1913169B1 (en) Manufacture of steel sheets having high resistance and excellent ductility, products thereof
EP1649069B1 (en) Method of producing austenitic iron/carbon/manganese steel sheets having a high strength and excellent toughness and being suitable for cold forming, and sheets thus produced
EP1929053B1 (en) Method for making a steel part of multiphase microstructure
JP5864619B2 (en) Hot rolled flat steel product manufactured from composite phase steel and method for manufacturing the same
JP3358135B2 (en) High strength steel excellent in sulfide stress cracking resistance and method of manufacturing the same
EP0747495B1 (en) Niobium containing hot rolled steel sheet with high strength and good deep-drawing properties, and process for its manufacture
JP5503195B2 (en) Steel for machine structure suitable for friction welding, manufacturing method thereof, friction welding component
EP3704280B1 (en) Martensitic stainless steel and method for producing same
JP4696570B2 (en) Manufacturing method of high-tensile steel material with excellent hydrogen embrittlement resistance
EP0747496B1 (en) Hot rolled steel sheet with high strength and good deep-drawing properties, containing titanium and process for its manufacturing
CN110088331B (en) Hot-rolled steel sheet for electric resistance welded steel pipe having excellent weldability and method for producing same
EP1563109B1 (en) Weldable structural steel component and method for making same
FR2583778A1 (en) HIGH STRENGTH STAINLESS STEEL
JP2000178688A (en) Resistance welded tube for hollow stabilizer, excellent in fatigue endurance
JP2009191330A (en) Electric resistance steel tube
EP1099769B1 (en) Process for manufacturing high tensile strength hot rolled steel sheet for forming and especially for deep drawing
EP1885900B1 (en) Steel for submarine hulls with improved weldability
EP1138796B1 (en) High strength hot rolled steel with high yield strength for use in the car industry
JPH07150235A (en) Production of rail having high strength, high ductility, and high toughness
JP3858647B2 (en) High strength steel excellent in low temperature joint toughness and SSC resistance and method for producing the same
JP3869754B2 (en) Steel plate for carburizing and quenching with less variation at the time of burring and method for producing the same
JPH05179344A (en) Production of high tensile steel having excellent low-temperature toughness of multilayer weld zone
JP3815354B2 (en) Bearing member with excellent rolling fatigue characteristics and workability in high-frequency heat-treated parts
JP2626421B2 (en) Manufacturing method of high strength steel with excellent weldability
BE1011557A4 (en) Steel with a high elasticity limit showing good ductility and a method of manufacturing this steel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FI FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19970104

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19990623

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FI FR GB IT LU NL SE

REF Corresponds to:

Ref document number: 189007

Country of ref document: AT

Date of ref document: 20000215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 69606226

Country of ref document: DE

Date of ref document: 20000224

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000329

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2143726

Country of ref document: ES

Kind code of ref document: T3

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: CORUS STAAL BV

Effective date: 20001019

Opponent name: THYSSEN KRUPP STAHL GMBH

Effective date: 20001019

NLR1 Nl: opposition has been filed with the epo

Opponent name: CORUS STAAL BV

Opponent name: THYSSEN KRUPP STAHL GMBH

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010509

Year of fee payment: 6

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020430

Year of fee payment: 7

Ref country code: LU

Payment date: 20020430

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020502

Year of fee payment: 7

Ref country code: GB

Payment date: 20020502

Year of fee payment: 7

Ref country code: AT

Payment date: 20020502

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20020503

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020513

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20020516

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20020527

Year of fee payment: 7

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20020312

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 20020312

NLR2 Nl: decision of opposition
PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO