EP0743891B1 - Procede et appareil pour corriger la conicite d'une piece usinee cylindrique - Google Patents

Procede et appareil pour corriger la conicite d'une piece usinee cylindrique Download PDF

Info

Publication number
EP0743891B1
EP0743891B1 EP94910107A EP94910107A EP0743891B1 EP 0743891 B1 EP0743891 B1 EP 0743891B1 EP 94910107 A EP94910107 A EP 94910107A EP 94910107 A EP94910107 A EP 94910107A EP 0743891 B1 EP0743891 B1 EP 0743891B1
Authority
EP
European Patent Office
Prior art keywords
taper
journal surfaces
abrasive
workpiece
finishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94910107A
Other languages
German (de)
English (en)
Other versions
EP0743891A1 (fr
EP0743891A4 (fr
Inventor
Kenneth A. Ii Barton
Rolf O. Bochsler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority claimed from PCT/US1994/001454 external-priority patent/WO1995021728A1/fr
Publication of EP0743891A1 publication Critical patent/EP0743891A1/fr
Publication of EP0743891A4 publication Critical patent/EP0743891A4/fr
Application granted granted Critical
Publication of EP0743891B1 publication Critical patent/EP0743891B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B5/00Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor
    • B24B5/36Single-purpose machines or devices
    • B24B5/42Single-purpose machines or devices for grinding crankshafts or crankpins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/02Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
    • B24B49/04Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent involving measurement of the workpiece at the place of grinding during grinding operation

Definitions

  • This invention relates generally to a diametrical taper correction system, and specifically to a machine and machine arm assembly utilizing in-process gauging to correct diametrical taper on a workpiece journal surface.
  • This invention relates to a method and apparatus for correcting diametrical taper formed on workpiece journal surfaces, which were previously ground in a large scale manufacturing grinding machine.
  • Taper as known in the art, is a condition in which the diameter of a bearing surface is not constant along the axial length of the surface. This condition occurs when grinding machines used to grind the workpieces are improperly maintained or when the various abrading means used to remove material from the workpiece are inadequately dressed during operation.
  • in-process gauging is a method of controlling a grinding or finishing operation in a machine wherein engagement of the grinding or abrading means with the workpiece is controlled in real-time by a measurement signal generated from a gauge that is likewise in contact with the workpiece surface.
  • the grinding process can then be varied and different results achieved by modifying various controls within the grinding process in relation to the gauging signals.
  • in-process gauging was used to correct taper existing on a plurality of diameters on a workpiece by altering the grinding angle of the grinding wheel in relation to the workpiece during the grinding process.
  • An example of this method is disclosed in U.S. Reissue Patent No. 28,082 to Price, reissued July 23, 1974.
  • the Price patent discloses a multiple or wide wheel grinding machine with a means provided to vary the relative grinding angle between the surfaces of a workpiece to be ground and the grinding wheel.
  • a pair of electrical size gauges are disposed alongside the workpiece on separate axially spaced bearing surfaces. These size gauges generate electrical signals as the workpiece is being rotated about its longitudinal axis during the grinding cycle. The two signals are compared directly and a third signal is generated when the difference between the signals exceeds a predetermined value. The third signal actuates a means for deflecting the grinding wheel and varying the angle of the grinding contact point in response to the third signal, correcting the taper previously existing on the part while it is in the overall grinding process.
  • U.S. Patent No. 3,271,910 to Aisch discloses a method for correcting the size and angular relation between a workpiece to be ground and the grinding wheel.
  • two size gauges are axially spaced from each other on two different bearing surfaces of a workpiece such as a automotive crankshaft.
  • the two gauge signals measure the diameters at the extreme ends of the workpiece.
  • a servo motor is engaged to displace the tail stock, thereby changing the angle that the grinding wheel contacts the workpiece surfaces being ground. This displacement continues until deviations from the master diameter are compensated for (i.e. until there is no longer differences between the diameters measured and the master diameter).
  • journal surfaces on internal combustion engine components and related machine components will continue to be machined to closer and closer tolerances.
  • Increased bearing loads, higher operating speeds and greater durability requirements in today's internal combustion engine manufacturers also further the need for precision finishing of journal bearing surfaces. Included with the requirement for more precision finishing is the need to reduce diametrical taper existing on bearing surfaces.
  • taper correction was generally utilized as part of the ongoing grinding process and not as an independent operation used to generate higher quality parts.
  • Prior art methods utilized a modification in angular relation between the longitudinal axis of the workpiece being ground and the longitudinal axis of the grinding tool or wheel. Taper conditions were measured by taking individual diameter readings from two different bearing surfaces spaced axially apart. As disclosed in the prior art patents, the gauge points were generally spaced apart as far as possible by placing one gauge point on the bearing surface closest to one end of the workpiece and one gauge point on the bearing surface closest to the opposite end of the workpiece.
  • the relative positioning of these gauges is useful in determining whether there is a difference in diameter between the two surfaces being gauged but fails to measure any of the bearing surface configurations spaced axially between the two gauged surfaces on the workpiece.
  • there are numerous variables in the grinding process such as grinding means dress intervals, grinding means dress quality and the overall general maintenance of the grinding machine.
  • utilizing in-process gauging to determine the diameters of the bearing surfaces at two axially spaced positions does not give an accurate indication of the diametrical taper conditions that may exist on bearing surfaces spaced between the two engaging positions.
  • the Judge et al patent further discloses the use of an abrasive backed tape to remove material upon the journal surface upon rotation of the workpiece.
  • a microfinishing shoe is used for pressing the abrasive coated film against a portion of a circumference of a journal surface.
  • the microfinishing shoe disclosed is configured as a one-piece, solid, construction capable of applying only grinding forces transferred from the scissor type action of the grinding arm the shoe is affixed to.
  • US-A-5 148 636 which is also assigned to Judge et al., discloses the nearest prior art and describes a microfinishing machine comprising means enabling enhanced control over journal configurations to control journal geometry deviations such as tapering.
  • a taper correcting microfinishing arm assembly for reducing taper on selected journal surfaces of a workpiece.
  • the assembly includes a means for applying a variable abrading pressure to a selected journal surface at predetermined locations.
  • At least two diameter gauges are disposed along the surface during rotation of a workpiece and generate gauging signals representing the diameter of the surface at two axially spaced locations along the surface.
  • a means for comparing the gauging signals and generating a control signal for applying a variable abrading pressure to correct the taper is included.
  • Another object of the present invention is to provide a taper correcting microfinishing arm that reduces taper on selected journal bearing surfaces of a workpiece by utilizing in-process gauging at selected bearing surfaces to be finished along the axial length of a workpiece.
  • a more specific object of the present invention is to provide a taper correcting microfinishing machine for reducing taper on a selected rotatable bearing journal surface of a workpiece including a means for rotating the surface of the workpiece past a predetermined location and a means for applying a variable abrading pressure to the selected bearing journal surface at that predetermined location.
  • the microfinishing machine includes a means for gauging the selected surface at space points during rotation generating gauging signals that represent a diameter of the selected bearing journal surface and a means for comparing the gauging signals to generate a controlling signal for applying variable pressure to correct taper.
  • Microfinishing arm assembly 10 is shown in use adjacent a crankshaft 12 having a bearing journal surface 14 which requires taper correction.
  • Taper correction fixture 16 is attached to microfinishing arm assembly 10 and is disposed directly adjacent bearing journal surface 14.
  • Figure 2 shows an enlarged view of a bearing journal surface 14 in contact with taper correction fixture 16 and a greatly exaggerated depiction of diametrical taper existing on the bearing journal surface.
  • Actual diametrical taper from the high side to the low side existing on various workpieces range anywhere from 1 (one) to 2 (two) thousandths of an inch.
  • this diametrical taper is generally induced in the prior grinding processes due to numerous variables including improperly dressed grinding materials, improperly maintained grinding machines, and material variations in different grinding processes.
  • Microfinishing back-up shoes 18 and 20 are disposed immediately adjacent each other and mounted upon first finishing arm 22. It should be understood that back-up shoe 20 is identical to back-up shoe 18 and both operate in an identical manner with identical mechanical components. Backup shoe 20 is not shown in Figure 1. Backup shoe 18 is affixed to first finishing arm 22 by mounting members 38 and 40. Mounting members 38 and 40 have threaded portions 42 and 44 which fit into tapped mounting holes 46 and 48 within backup shoe 18.
  • Mounting members 38 and 40 are also positioned within finishing arm mounting holes 50 and 52. Positioning dowels 34 and 36 are permanently affixed to backup shoe 18 and are positioned in slip fit engagement to corresponding dowel pin holes within first finishing arm 22 as shown in Figure 1. In this arrangement, backup shoe 18 is affixed to first finishing arm 22 and is capable of vertical movement subject to preestablished limits corresponding to mounting members 38 and 40.
  • First finishing arm 22 has an elongated bore 26 and a corresponding reciprocating piston 28.
  • Elongated bore 26 can be configured in various shapes and sizes depending upon the fluid compressor means utilized.
  • Reciprocating piston 28 is positioned inside elongated bore 26 and backup shoe engaging portion 56 is in direct contact with first backup shoe 18.
  • O-rings 30 and 32 are disposed as shown in Figure 1 for bore sealing purposes.
  • Fluid inlet 24 is in direct fluid communication with cylinder bore 26.
  • Figure 1 shows abrasive inserts 58 used as an abrasive means for removing material from the bearing journal surface 14.
  • Abrasive inserts 58 are affixed within backup shoe 18 such that compressive contact of the abrasive inserts 58 with rotating bearing surface 14 removes material from bearing surface 14.
  • a second finishing arm 22 is shown in phantom in Figure 1 located below and opposite first finishing arm 22.
  • Second finishing arm 21 includes an abrasive means (i.e. abrasive insert or abrasive coated tape) for finishing bearing surface 14 as discussed previously with respect to the abrasive means of finishing arm 22.
  • the second finishing arm 21 is not necessary for the preferred embodiment of the present invention but may be utilized to aid in removing material from bearing surface 14.
  • Electromechanical gauges 60 and 62 are partially shown and disposed diametrically opposite each other on bearing journal surface 14. A second set of electromechanical gauges are not shown but are spaced axially apart from the first set of electromechanical gauges. All four electromechanical gauges lie in a plane parallel to the central axis of rotation of said workpiece.
  • FIG. 3 is a schematic representation of the principle features and method of using the present invention.
  • Bearing journal surface 14 is rotated about a longitudinal axis "C" while a first set of gauge points 64 and 66 are disposed diametrically opposite each other adjacent the bearing journal surface 14.
  • a second set of gauge points 68 and 70 are disposed diametrically opposite each other along bearing journal surface 14 and are also spaced apart and adjacent the first set of gauge points.
  • gauge points represent either electromechanical gauges, optical gauges, or air jet gauges.
  • the type of gauge chosen will depend upon the number of workpieces the manufacturer intends to pass through the machine and the maintenance schedule the manufacturer intends to apply to the machine.
  • air jet gauges possess characteristics more conducive to heavy finishing or grinding operations because they require fewer cleaning intervals than other gauges. This characteristic is inherent in air gauges because of the constant flux of clean air which the gauge utilizes in operation.
  • electromechanical gauges and optical gauges can also be utilized in this invention depending upon the various uses the assembly is subject to.
  • gauges located at gauge points 64, 66, 68 and 70 comprise a measuring means for gauging the bearing journal surface at spaced points upon the surface. These gauges generate a plurality of gauging signals which are transferred to a processor for calculating the diameters according to the gauging signals.
  • This processor or means for calculating diameter is designated as reference numeral 72 in Figure 3.
  • Commercial processors are available to process the gauging signals to generate signals representing a diameter of the bearing journal surface at two planes on the bearing journal surface shown in Figure 3 as diameters D 1 and D 2 . The processor then transfers these signals representing diameters to a comparator 74. The output diameter signals are compared and used to establish whether a diametrical taper exists between the two diameter locations.
  • Comparator 74 is programmed with instructions for determining if a taper exists on the journal surface as shown in Figure 3. Output signals received from the processor represent diameters D 1 and D 2 . If the difference between D 1 and D 2 reaches a predetermined value V o , a correctable taper is determined to be present on the part and the comparator sends a signal to the taper correction fixture for reducing taper. Predetermined constant V o is determined by the user and is programmable into the comparator. This predetermined constant can be as low as .0002 of an inch.
  • Processing apparatus for comparing the diameters is commercially available and known in the prior art as a programmable controller system capable of producing a series of control signals.
  • the comparator sends control signals to a taper correction means that applies a variable pressure to a fluid compressor 54.
  • the backup shoes 18 and 20 are aligned above and adjacent the bearing journal surface 14. The control of the reciprocating piston thus controls the finishing pressure applied to the backup shoes.
  • the pressure applied to the backup shoes is in turn transferred to the abrasive means located between the backup shoes and the bearing journal surface.
  • the backup shoes 18 and 20 are identical and have surface configurations corresponding to the shape of the bearing journal surface.
  • the fluid compressor reacts correspondingly to signals sent by the comparator and can apply pressures as small as 10 (ten) pounds to the backup shoes.
  • Fluid compressor 54 induces fluid either air or liquid, into elongated bore 26 through fluid inlet 24.
  • the variable pressure that can be induced by the fluid compressor reciprocates piston 28 vertically inside cylinder 26.
  • Piston 28 has an engaging portion 56 which is located directly above backup shoe 18 as shown in Figure 1.
  • an abrading means for removing material on the bearing journal surface can be an abrasive coated tape 60 as shown in Figure 3 or a hard abrasive insert 58 as shown in Figure 1.
  • the conventional abrasive coated tape is disposed between shoes 18 and 20 and bearing surface 14.
  • any conventional abrasive coated tape feed device may be affixed to fixture 16 to feed abrasive tape between the shoes 18 and 20 and the bearing surface 14.
  • Hard abrasive inserts can be found in various compositions such as diamond honing stones, garnet honing stones or other like materials. Different compositions remove material at different rates and produce different surface finishes.
  • the exaggerated taper shown in Fig. 2 is reduced by the following procedure.
  • the control signals received from comparator 74 are sent to fluid compressor 54 which activates and brings either backup shoe 18 or 20 or both down into compressive contact with journal bearing surface 14 depending upon the amount and direction of taper existing on the workpiece.
  • Figure 2 shows an exaggerated taper existing on the bearing journal surface with the high side of the taper below backup shoe 18 and the low side below backup shoe 20. If a taper exists on the journal bearing surface as shown in Fig. 2, backup shoe 18 and 20 are brought down simultaneously at pressures corresponding to signals received from the comparator. These signals will force backup shoes 18 and 20 down into compressive contact with an abrading means for removing material on the bearing journal surface. This variable pressure will continue until the amount of material removed from the surface brings the differences between diameters D 1 and D 2 below predetermined constant V o .
  • Figure 4 shows seven taper correction microfinishing arm assemblies used in conjunction with a means for rotating a workpiece about a longitudinal axis.
  • the means for rotating, head stock 76 and tail stock 78 is shown in Figure 4.
  • the microfinishing machine of the present invention can be configured to accommodate as many microfinishing arm assemblies as needed for each individual journal bearing surface included on a workpiece.
  • Figure 4 shows a crankshaft having seven journal surfaces and seven corresponding taper correction arm assemblies.
  • Four taper correction microfinishing arm assemblies 82, 84, 86, 88 are disposed adjacent four main bearing journal surfaces 90, 92, 94, 96.
  • Three taper correction microfinishing arm assemblies 98, 100, 102 are disposed adjacent three pin bearing journal surfaces 104, 106, 108.
  • Machine base 80 is used to mount head stock 76, tail stock 78 and microfinishing arm assemblies according to the present invention.
  • the workpiece, in this example a crankshaft can be rotated by various methods such as power roller or between centers as shown in Figure 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Claims (15)

  1. Machine de microfinition comprenant un système de bras de microfinition (10) destiné à réduire la conicité sur des surfaces sélectionnées (14) de tourillons d'un pièces usinée (12) qui peut tourner autour d'un axe longitudinal (C), passé des endroits prédéterminés, le système de bras (10) comprenant:
    un bras de finition primaire (22) ;
    un mécanisme de correction de conicité (16, 54) destiné à appliquer des pressions de meulage indépendantes et variables aux surfaces choisies de tourillon (14) en des endroits prédéterminés, le mécanisme de correction de conicité (16, 54) étant monté sur le bras de finition primaire (22) ;
    un dispositif abrasif primaire (58, 61) destiner à la finition des surfaces de tourillon (14), le dispositif abrasif primaire (58, 61) coopérant avec le mécanisme de correction de conicité (16, 54) pour enlever de la matière des surfaces de tourillon choisies (14) pour réduire leur conicité ;
    un mécanisme de mesures (60, 62 ; 64, 66, 68, 70) destiné à mesurer chacune des surfaces de tourillon choisies (14) en une pluralité de points espacés pendant la rotation de la pièce usinée (12) afin d'engendrer une pluralité de signaux de mesure ;
    une processeur 72) en contact électrique avec le mécanisme de mesure (60, 62 ; 64, 66, 68, 70) destiné à recevoir les signaux de mesure pour calculer les diamètres (D1, D2) des surfaces choisies de tourillon (14) en des points espacés et pour engendrer une pluralité de signaux de sortie correspondants aux diamètres (D1, D2) des surfaces choisies de tourillon (14) en des points espacés ; et
    un comparateur (74) en contact électrique avec le processeur (72) destiné à comparer les signaux de sortie afin de déterminer la conicité des surfaces de tourillon choisies (14) et à commander jusqu'à quel point le mécanisme de correction de conicité (16, 54) applique la pression de meulage variable aux surfaces choisies (14) pour corriger la conicité.
  2. Machine de microfinition destinée à réduire la conicité sur des surfaces choisies de tourillon (14) d'une pièce usinée (12), comprenant :
    une base de machine (80) ;
    un bras de finition primaire (22) qui peut être fixé sur la base (80) ;
    une mécanisme de rotation (76, 78) destiné à faire tourner la pièce usinée (12) autour d'une axe longitudinal (C) faisant ainsi tourner les sts (14) au-delà d'endroits prédéterminés, le mécanisme de rotation (76, 78) pouvant être fixé à la base (80) ;
    un mécanisme de correction de conicité (16, 54) destiné à appliquer des pressions de meulage indépendantes et variables aux surfaces choisies de tourillon (14) en des endroits prédéterminés, le mécanisme de correction de conicité (16, 54) étant monté sur le bras de finition primaire (22) ;
    un dispositif abrasif primaire (58, 61) destiner à la finition des surfaces choisies de tourillon (14), le dispositif abrasif primaire (58, 61) coopérant avec le mécanisme de correction de conicité (16, 54) pour enlever de la matière des surfaces de tourillon choisies (14) pour réduire leur conicité ;
    un mécanisme de mesures (60, 62 ; 64, 66, 68, 70) destiné à mesurer chacune des surfaces de tourillon choisies (14) en une pluralité de points espacés pendant la rotation de la pièce usinée (12) afin d'engendrer une pluralité de signaux de mesure ;
    une processeur 72) en contact électrique avec le mécanisme de mesure (60, 62 ; 64, 66, 68, 70) destiné à recevoir les signaux de mesure pour calculer les diamètres (D1, D2) des surfaces choisies de tourillon (14) en des points espacés et pour engendrer une pluralité de signaux de sortie correspondants aux diamètres (D1, D2) des surfaces choisies de tourillon (14) en des points espacés ; et
    un comparateur (74) en contact électrique avec le processeur (72) destiné à comparer les signaux de sortie afin de déterminer la conicité des surfaces de tourillon choisies (14) et à commander jusqu'à quel point le mécanisme de correction de conicité (16, 54) applique la pression de meulage variable aux surfaces choisies (14) pour corriger la conicité.
  3. Machine de microfinition suivant la revendication 1 ou 2, dans laquelle le mécanisme de correction de conicité (16, 54) comprend une pluralité de sabots de recul (18, 20) pouvant être fixés sur un bras de finition (22) et un actionneur (28) destiné à appliquer une pression variable et indépendante aux sabots (18, 20).
  4. Machine de microfinition suivant la revendication 3, dans laquelle le l'actionneur (28) comprend :
    un trou cylindrique (26) situé dans le bras de finition (22) ;
    un piston alternatif (28) prévu dans le trou cylindrique (26) ;
    une entrée de fluide (24) prévue dans le bras primaire de finition (22) ; et
    une source de pression variable (54) adaptée pour être utilisée en coopération avec le bras primaire de finition (22),
    dans lequel le trou (26), le piston (28) et l'entrée de fluide (24) sont chacun en communication fluidique avec la source de pression variable (54) pour faire entrer un fluide sous pression dans l'entrée de fluide (24) pour appliquer une pression variable aux sabots de recul (18, 20).
  5. Machine de microfinition suivant la revendication 4, dans laquelle la source pression variable (54) comporte un compresseur de fluide.
  6. Machine de microfinition suivant la revendication 3, dans laquelle le dispositif abrasif primaire (58) comprend un insert abrasif pouvant être fixé sur les sabots de recul (18).
  7. Machine de microfinition suivant l'une quelconque des revendications précédentes, dans laquelle le dispositif abrasif primaire (61) comprend un ruban revêtu d'abrasif.
  8. Machine de microfinition suivant l'une des revendications précédentes, dans laquelle le mécanisme de mesure comprend une première paire de jauges (64, 66), diamétralement opposées, voisines des surfaces choisies de tourillon (14), et une seconde paires de jauges (68, 70), diamétralement opposées, voisines des surfaces choisies de tourillon (14),les première et seconde paires de jauges (64, 66 ; 68, 70) étant sélectivement espacées l'une de l'autre et situées dans un plan perpendiculaire à l'axe longitudinal (C) de rotation.
  9. Machine de microfinition suivant la revendication 8, dans laquelle les première et seconde paires de jauges (64, 66 ; 68, 70) sont des jauges à jet d'air.
  10. Machine de microfinition suivant la revendication 8, dans laquelle les première et seconde paires de jauges (64, 66 ; 68, 70) sont des jauges optiques.
  11. Machine de microfinition suivant la revendication 8, dans laquelle les première et seconde paires de jauges (64, 66 ; 68, 70) sont des jauges électromécaniques.
  12. Machine de microfinition suivant l'une des revendications précédentes, comprenant encore :
    un bras secondaire de finition (21) comportant un sabot de recul unitaire (18) adapté pour se situer dessous et directement en face du bras primaire de finition (22) ; et
    un dispositif abrasif secondaire (58) pour la finition des surfaces de tourillon (14), le dispositif abrasif secondaire étant monté sur le bras secondaire de finition (21) et prévu pour être utilisé en coopération avec le mécanisme de correction de conicité (16).
  13. Machine de microfinition suivant la revendication 12, dans laquelle le dispositif abrasif secondaire comprend un insert abrasif (58) pouvant être fixé sur le sabot de recul unitaire (18).
  14. Machine de microfinition suivant la revendication 12, dans laquelle le dispositif abrasif secondaire comprend un ruban revêtu d'abrasif (61).
  15. Méthode destinée à réduire la conicité de surfaces sélectionnées (4) de tourillons d'une pièce usinée (12) qui tourne autour d'un axe longitudinal (C) au-delà d'endroits prédéterminés, consistant à:
    prévoir un bras de finition (21, 22) ayant un moyen abrasif (58, 61) monté sur lui pour finir les surfaces sélectionnées (14) de tourillons ;
    prévoir un moyen de mesure (60, 62 ; 64, 66, 68, 70) monté sur le bras de finition (21, 22) ;
    mesurer les surfaces sélectionnées (14) de tourillons en une pluralité de points espacés dessus pendant la rotation de la pièce usinée (12);
    engendrer une pluralité de signaux de jauges en accord avec les mesures de surface de tourillon ;
    analyser les signaux de jauge et de calculer les diamètres (D1, D2) des surfaces sélectionnées (4) de tourillons aux points espacés ;
    engendrer une pluralité de signaux de sortie correspondant aux diamètres (D1, D2) des surfaces sélectionnées (4) de tourillons aux points espacés ;
    prévoir un moyen comparateur (74) pour comparer les signaux de sortie pour déterminer la conicité des surfaces sélectionnées (4) de tourillons et d'engendre des signaux de commande correspondants ;
    prévoir un moyen de correction de conicité (16, 54) en contact électrique avec ledit moyen comparateur pour recevoir lesdits signaux de commande, ledit moyen de correction de conicité (1, 54) étant monté sur le bras de finition (21, 22) ; et
    appliquer une pression variable de meulage aux surfaces sélectionnées (4) de tourillons en accord avec les signaux de commande pour corriger la conicité.
EP94910107A 1994-02-09 1994-02-09 Procede et appareil pour corriger la conicite d'une piece usinee cylindrique Expired - Lifetime EP0743891B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1994/001454 WO1995021728A1 (fr) 1992-05-20 1994-02-09 Procede et appareil pour corriger la conicite d'une piece usinee cylindrique

Publications (3)

Publication Number Publication Date
EP0743891A1 EP0743891A1 (fr) 1996-11-27
EP0743891A4 EP0743891A4 (fr) 1997-10-29
EP0743891B1 true EP0743891B1 (fr) 1999-11-17

Family

ID=22242263

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94910107A Expired - Lifetime EP0743891B1 (fr) 1994-02-09 1994-02-09 Procede et appareil pour corriger la conicite d'une piece usinee cylindrique

Country Status (3)

Country Link
EP (1) EP0743891B1 (fr)
CA (1) CA2182953C (fr)
DE (1) DE69421722T2 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10220562B4 (de) * 2002-05-03 2005-11-10 Nagel Maschinen- Und Werkzeugfabrik Gmbh Verfahren zur Ausrichtung eines in einer Honspindel einspannbaren Honwerkzeugs und einer Bohrung eines Werkstücks zueinander sowie Honmaschine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4682444A (en) * 1984-05-07 1987-07-28 Industrial Metal Products Corporation Microfinishing apparatus and method
US4637144A (en) * 1984-07-03 1987-01-20 Schaudt Maschinenbau Gmbh Apparatus for monitoring the diameters of crankpins during treatment in grinding machines
DE3813484A1 (de) * 1988-04-21 1989-11-02 Ford Werke Ag Vorrichtung zur feinbearbeitung der hubzapfen von kurbelwellen
US5148636A (en) * 1989-02-07 1992-09-22 Industrial Metal Products Corporation Size control shoe for microfinishing machine

Also Published As

Publication number Publication date
CA2182953C (fr) 2000-12-12
DE69421722D1 (de) 1999-12-23
EP0743891A1 (fr) 1996-11-27
EP0743891A4 (fr) 1997-10-29
DE69421722T2 (de) 2000-07-06
CA2182953A1 (fr) 1995-08-17

Similar Documents

Publication Publication Date Title
US5951377A (en) Microfinishing machine
JP2768524B2 (ja) マイクロ仕上げ機械
US5117081A (en) Roll roundness measuring and machining apparatus and method
KR100820985B1 (ko) 크랭크샤프트의 중심 베어링 연삭방법과 장치
US5531631A (en) Microfinishing tool with axially variable machining effect
US6616508B1 (en) Internal grinding method and internal grinding machine
US3090171A (en) Surface measurement apparatus and control
US6955583B2 (en) Apparatus for the diameter checking of eccentric portions of a mechanical piece in the course of the machining in a grinding machine
US5311704A (en) Method and apparatus for correcting diametrical taper on a workpiece
JP6689275B2 (ja) ワーク中心領域の支持および測定用の定寸・振れ止め装置、このような定寸・振れ止め装置を備えた研削盤、ならびにワーク中心領域の支持および測定方法
EP0800439B1 (fr) Appareil de controle d'une machine-outil de superfinition
EP0743891B1 (fr) Procede et appareil pour corriger la conicite d'une piece usinee cylindrique
WO1995021728A1 (fr) Procede et appareil pour corriger la conicite d'une piece usinee cylindrique
JP2001062718A (ja) 両頭研削装置及び砥石位置修正方法
US6852015B2 (en) Method and apparatus for grinding workpiece surfaces to super-finish surface with micro oil pockets
JP4427750B2 (ja) 微細凹部加工装置及び微細凹部加工方法
JPS59192457A (ja) 位置決め装置
WO1999026755A2 (fr) Dispositif de centrage actif possedant un capteur de charge de cisaillement et un organe de commande encastres
US3426483A (en) Grinding machines
JPS5822659A (ja) 円筒研削盤の定寸方法
JPH04105870A (ja) 加工寸法の間接検測装置
JPS62292206A (ja) オンラインロ−ル研削装置の零位置調整方法
WO2000064632A1 (fr) Procede et appareil de commande d'un support de pieces
JPS59169763A (ja) 仕上げ加工方法
JPH0332561A (ja) 研削加工方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960906

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

A4 Supplementary search report drawn up and despatched

Effective date: 19970908

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): DE FR GB IT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19990312

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 69421722

Country of ref document: DE

Date of ref document: 19991223

ITF It: translation for a ep patent filed
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010202

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010226

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010228

Year of fee payment: 8

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020903

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050209