EP0743586B1 - Integrated circuit in which some components have to work with the same operating characteristic - Google Patents

Integrated circuit in which some components have to work with the same operating characteristic Download PDF

Info

Publication number
EP0743586B1
EP0743586B1 EP96401074A EP96401074A EP0743586B1 EP 0743586 B1 EP0743586 B1 EP 0743586B1 EP 96401074 A EP96401074 A EP 96401074A EP 96401074 A EP96401074 A EP 96401074A EP 0743586 B1 EP0743586 B1 EP 0743586B1
Authority
EP
European Patent Office
Prior art keywords
integrated circuit
ref
current
transistors
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96401074A
Other languages
German (de)
French (fr)
Other versions
EP0743586A1 (en
Inventor
Michel Alain Chevroulet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre Suisse dElectronique et Microtechnique SA CSEM
Original Assignee
Centre Suisse dElectronique et Microtechnique SA CSEM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre Suisse dElectronique et Microtechnique SA CSEM filed Critical Centre Suisse dElectronique et Microtechnique SA CSEM
Publication of EP0743586A1 publication Critical patent/EP0743586A1/en
Application granted granted Critical
Publication of EP0743586B1 publication Critical patent/EP0743586B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/24Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only
    • G05F3/242Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only with compensation for device parameters, e.g. channel width modulation, threshold voltage, processing, or external variations, e.g. temperature, loading, supply voltage
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/262Current mirrors using field-effect transistors only

Definitions

  • the present invention relates to integrated circuits in which some or all of the components or groups of functional components must work in the same conditions to ensure the proper functioning of the circuit in general.
  • a technique currently used to impose identical operating characteristics to transistors distant from an integrated circuit consists of their impose a parameter (for example a current) and we set a quantity determining the characteristic (for example the grid voltage).
  • This method has the disadvantage that the control current cannot be used simultaneously by the two transistors and then you have to order alternately. Therefore the transistors do not are available to perform their function assigned in the circuit only when they are not in regulatory regime.
  • the number of transistors that we can thus work under the same conditions is necessarily limited, because otherwise the frequency with which control current is distributed sequentially will become too high vis-à-vis that of the useful signal to treat.
  • the invention aims to provide an integrated circuit comprising means for imposing on a plurality of its components or groups of components the same characteristic of operation, this circuit being devoid of disadvantages of the prior art briefly described above.
  • FIG. 1 a general diagram is shown very simplified of an integrated circuit comprising a system according to the invention.
  • the integrated circuit symbolized by rectangle 1 has a plurality of functional units 2-1 to 2-n distributed on the integrated circuit and which one supposes that they must all work with the same characteristic of operation.
  • any functional assembly which may include one or more chips, the functional units being able to be components or groups of components of any kind such as transistors, diodes, groups of transistors, diode groups, circuit parts composed of assemblies of such components etc.
  • Figure 1 shows a distribution of its functional units, this is not a limiting element of the concept of the invention, these units can be installed in the circuit only in according to the specific needs and tasks that the integrated circuit must accomplish.
  • the integrated circuit includes a central setpoint generator 3 located at a location suitable for this circuit and intended to develop a signal setpoint according to which the characteristic of functioning of the functional units will be developed.
  • This generator has n outputs connected to as many lines 4-1 to 4-n which are respectively connected to cells adjustment local 5-1 to 5-n. These cells are respectively associated with functional units 2-1 to 2-n by being placed near their respective unit.
  • the setpoint information generated in the generator central 3 can be applied simultaneously to cells adjustment 5-1 to 5-n, but according to a characteristic particular of the invention, it can also be sent sequentially to these cells, in which case the central generator 3 includes a sequencer 6 shown in dotted in the rectangle which symbolizes the generator instruction 3.
  • This variant of the invention is especially useful when the setpoint information cannot be used without be altered by several adjustment cells at the same time.
  • threshold voltages of the transistors of an MOS integrated circuit are not the same throughout the circuit.
  • the first example described therefore aims to impose on all the transistors of the circuit the same so-called threshold voltage "related".
  • the characteristic to be imposed on the transistors of the circuit is this apparent threshold voltage.
  • the adjustment of the tensions of threshold of all the transistors at the same value allows simplified exchange of analog information between different parts of the integrated circuit, this information thus being interpreted in the same way all over the circuit.
  • I D k (( V G - V YOUR ) 2 in which I D is the drain current of the transistor, V G its gate voltage and V TA its apparent threshold voltage as long as V G >> V TA , that is to say when the transistor works in strong inversion .
  • C D is the depletion capacity of the transistor and C i its oxide capacity.
  • this figure does not represent that the setpoint generator 3, as well as a single transistor useful 2-n with its associated local 5-n adjustment cell.
  • the setpoint generator 3 shown in FIG. 2 is intended for n-type transistors. It comprises two transistors MG1 and MG2, the sources of which are connected to a negative supply conductor of voltage V GM . Their drains are connected to their respective grids, and to the drains of two respective transistors MG3 and MG4 mounted in current mirror. The boxes of the transistors MG1 and MG2 are connected to a supply terminal V GW . The gates of the transistors MG3 and MG4 are connected to a bias voltage terminal V GI , while their sources are connected to a positive supply voltage V GP .
  • the voltages V G1 and V G2 can constitute setpoint information which can be used in the local adjustment cell 5-n to determine, for the useful transistor 2-n which is associated with it, an apparent threshold voltage V Identical TA using the box voltage V W as an adjustment parameter, the actual threshold voltages of all the useful transistors being able to be different from one cell to another.
  • the local adjustment cell 5-n comprises a current mirror formed by the transistors MC3 and MC4 whose widths are in a ratio K M. This is relatively easy to achieve even if the distance separating the setpoint generator 3 from this local cell is relatively large.
  • the sources of these transistors MC3 and MC4 are connected to a supply voltage V UP , while their drains are respectively connected to the drains of two transistors MC1 and MC2, the sources of which are connected to a voltage V UM .
  • the gate of transistor MC3 is connected to its drain.
  • the gates of the transistors MC1 and MC2 are connected respectively to the voltages V G1 and V G2 coming from the setpoint generator 3.
  • the common point of the transistors MC2 and MC4 is connected at the input of an amplifier A and at a terminal of a capacitor C.
  • the output of amplifier A is connected to the boxes of transistors MC1, MC2 and MU.
  • the transistors MC1 and MC2 operate in strong inversion and generate respective currents determined by relation (1) above.
  • the current mirror formed by the transistors MC3 and MC4 makes a copy of the current generated by the transistor MC1 by multiplying it by the constant K M.
  • the capacitor C integrates the difference between the current passing through the transistor MC4 and the current passing through MC2.
  • the amplifier transmits the corresponding value on the wells of the transistors MC1 and MC2 and also on that of the useful transistor MU. The regime stabilizes when the difference in these currents is zero. Under these conditions, the transistor MU has an apparent threshold voltage which is identical to that of the transistors MG1 and MG2 of the reference generator.
  • FIG. 3 a central reference generator 3A has been shown which, in this case, produces a reference voltage V ref and a reference current I ref as a reference. As it is a question here of transmitting a current setpoint, it is necessary to distribute this reference current I ref sequentially.
  • the setpoint generator 3A comprises a voltage source ST which is connected to the gate of a transistor MG5 and to an output of the generator delivering the reference voltage V ref .
  • the drain of transistor MG5 is connected to a current mirror formed by transistors MG6 and MG7, the latter delivering the reference current I ref .
  • the local adjustment cell 5A-n comprises a transistor MC5 whose gate receives the voltage V ref . Its drain is connected to two switches S1 and S2 controlled by the sequencer 6.
  • the switch S1 receives the reference current I ref from the reference generator 3A.
  • Switch S2 is connected to the common point of an AC capacitor and an AA amplifier. The output of the latter is connected to the wells of the transistors MC5 and MU (2A-n).
  • the transistor useful can continue to function whether it is in operation adjustment or not.
  • the useful components do not are not transistors, but diodes or photodiodes, the latter being, for example, part a network of detectors or the like. It can then be important that all these diodes have the same current of flight. However, we know that the leakage current of a diode is strongly dependent on temperature.
  • the central reference generator 3B generates, for example by means of the assembly shown in FIG. 3 at 3A, a reference current I ref which is distributed to the local adjustment cells such as cell 5B-n, by means of the sequencer 6 .
  • the local adjustment cell 5B-n comprises a diode P1 which is connected to the switches S1 and S2, these being closed in adjustment mode.
  • Switch S2 is also connected to the common point of a capacitor CB and the input of an amplifier AB.
  • the output of the latter is connected to a heat dissipation resistor RT placed near the diode P1 and the useful diode P2 (2B-n).
  • a current I C is therefore sent as an adjustment value in this dissipating resistor RT.
  • Diode P2 (and possibly other diodes located nearby) will thus receive (have) a caloric intake which determines the same leakage current for all the diodes.
  • the current flows through the dissipating resistor RT as long as the current in the diode P1 is not equal to the reference current I ref .
  • the sequencer 6 makes it possible to serve other similar heating assemblies distributed in the array of photodiodes.
  • the local adjustment units must be thermally isolated from each other.
  • the CB capacitor acts as memory and retains the setpoint between two addresses made by the sequencer 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

La présente invention concerne les circuits intégrés dans lesquels certains ou tous les composants ou groupes de composants fonctionnels doivent travailler dans les mêmes conditions pour assurer le bon fonctionnement du circuit dans son ensemble.The present invention relates to integrated circuits in which some or all of the components or groups of functional components must work in the same conditions to ensure the proper functioning of the circuit in general.

Lorsque dans un circuit intégré tel qu'un circuit MOS, deux composants, par exemple deux transistors, se trouvent à proximité l'un de l'autre, ii est relativement facile de leur donner les mêmes conditions de fonctionnement, par exemple la même courbe caractéristique du courant de drain ID en fonction de la tension de grille Vg.When in an integrated circuit such as an MOS circuit, two components, for example two transistors, are located close to each other, it is relatively easy to give them the same operating conditions, for example the same curve characteristic of the drain current I D as a function of the gate voltage V g .

En revanche, lorsque les composants sont éloignés l'un de l'autre dans le circuit, ou à fortiori, lorsque de nombreux composants doivent travailler dans les mêmes conditions, les paramètres des composants seront alors tributaires de leur éloignement topographique dans le circuit, celui-ci ne pouvant pratiquement pas être fabriqué avec l'uniformité nécessaire. D'ailleurs d'autres facteurs, tels que des différences de température d'un endroit à l'autre d'un circuit, peuvent induire une non-uniformité des paramètres de fonctionnement des composants.On the other hand, when the components are distant one on the other in the circuit, or a fortiori, when many components have to work in the same conditions, the parameters of the components will then be dependent on their topographic distance in the circuit, which can practically not be manufactured with the necessary uniformity. Besides other factors, such as temperature differences from place to place the other of a circuit, can induce a non-uniformity of component operating parameters.

Une technique actuellement utilisée pour imposer des caractéristiques de fonctionnement identiques à des transistors éloignés d'un circuit intégré consiste à leur imposer un paramètre (par exemple un courant) et on règle une grandeur déterminant la caractéristique (par exemple la tension de grille). Cette méthode présente l'inconvénient que le courant de commande ne peut pas être exploité simultanément par les deux transistors et il faut alors les commander alternativement. De ce fait les transistors ne sont disponibles pour effectuer la fonction qui leur est assignée dans le circuit que lorsqu'ils ne sont pas en régime de régulation. En outre, le nombre de transistors que l'on peut ainsi faire travailler dans les mêmes conditions est forcément limité, car sinon la fréquence avec laquelle le courant de commande est distribué séquentiellement deviendra trop élevée vis-à-vis de celle du signal utile à traiter.A technique currently used to impose identical operating characteristics to transistors distant from an integrated circuit consists of their impose a parameter (for example a current) and we set a quantity determining the characteristic (for example the grid voltage). This method has the disadvantage that the control current cannot be used simultaneously by the two transistors and then you have to order alternately. Therefore the transistors do not are available to perform their function assigned in the circuit only when they are not in regulatory regime. In addition, the number of transistors that we can thus work under the same conditions is necessarily limited, because otherwise the frequency with which control current is distributed sequentially will become too high vis-à-vis that of the useful signal to treat.

Cette méthode connue présente donc des inconvénients certains.This known method therefore has drawbacks some.

L'invention a pour but de fournir un circuit intégré comportant des moyens pour imposer à une pluralité de ses composants ou groupes de composants une même caractéristique de fonctionnement, ce circuit étant dépourvu des inconvénients de la technique antérieure décrite brièvement ci-dessus.The invention aims to provide an integrated circuit comprising means for imposing on a plurality of its components or groups of components the same characteristic of operation, this circuit being devoid of disadvantages of the prior art briefly described above.

L'invention a donc pour objet un circuit intégré caractérisé en ce qu'il comprend:

  • des moyens formant un générateur de référence central destiné à élaborer au moins une information de consigne qui détermine la caractéristique de fonctionnement devant être commune à tous les composants fonctionnels du circuit;
  • des moyens pour distribuer l'information de consigne parmi une pluralité d'unités du circuit comprenant chacune au moins un desdits composants fonctionnels;
  • chacune desdites unités comprenant des moyens locaux d'ajustement connectés pour recevoir ladite information de consigne et pour élaborer une valeur d'ajustement;
  • des moyens de correction dans chaque unité pour ajuster la caractéristique de fonctionnement d'un dispositif prévu dans lesdits moyens locaux d'ajustement, en fonction de ladite valeur d'ajustement, ledit dispositif étant placé à proximité du ou des composant(s) fonctionnel(s) et configuré de telle sorte que la caractéristique de fonctionnement qui lui est ainsi imposée, s'impose également au(x)dit(s) composant(s) fonctionnel(s);
  • des moyens de correction dans chaque unité pour ajuster la caractéristique de fonctionnement de son ou ses composant(s) fonctionnel(s) en fonction de ladite valeur d'ajustement.
The subject of the invention is therefore an integrated circuit characterized in that it comprises:
  • means forming a central reference generator intended to generate at least setpoint information which determines the operating characteristic to be common to all the functional components of the circuit;
  • means for distributing the setpoint information among a plurality of circuit units each comprising at least one of said functional components;
  • each of said units comprising local adjustment means connected to receive said setpoint information and to develop an adjustment value;
  • correction means in each unit for adjusting the operating characteristic of a device provided in said local adjustment means, as a function of said adjustment value, said device being placed near the functional component (s) ( s) and configured in such a way that the operating characteristic which is thus imposed on it, is also imposed on the said functional component (s);
  • correction means in each unit for adjusting the operating characteristic of its functional component (s) as a function of said adjustment value.

D'autres caractéristiques et avantages de l'invention apparaítront au cours de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés sur lesquels:

  • la figure 1 est un schéma très simplifié d'un circuit intégré pour mettre en évidence les caractéristiques essentielles de l'invention; et
  • les figures 2 à 4 montrent trois exemples d'application de l'invention.
Other characteristics and advantages of the invention will become apparent during the description which follows, given solely by way of example and made with reference to the appended drawings in which:
  • Figure 1 is a very simplified diagram of an integrated circuit to highlight the essential characteristics of the invention; and
  • Figures 2 to 4 show three examples of application of the invention.

Sur la figure 1, on a représenté un schéma général très simplifié d'un circuit intégré comportant un système selon l'invention.In FIG. 1, a general diagram is shown very simplified of an integrated circuit comprising a system according to the invention.

Le circuit intégré symbolisé par le rectangle 1, comporte une pluralité d'unités fonctionnelles 2-1 à 2-n réparties sur le circuit intégré et dont on suppose qu'elles doivent toutes travailler avec une même caractéristique de fonctionnement.The integrated circuit symbolized by rectangle 1, has a plurality of functional units 2-1 to 2-n distributed on the integrated circuit and which one supposes that they must all work with the same characteristic of operation.

Dans ce contexte, il faut noter que l'on entend par circuit intégré tout ensemble fonctionnel pouvant comprendre une ou plusieurs puces, les unités fonctionnelles pouvant être des composants ou groupes de composants de toute nature tels que des transistors, des diodes, des groupes de transistors, des groupes de diodes, des parties de circuit composées d'assemblages de tels composants etc. Par ailleurs, bien que la figure 1 montre une répartition régulière de ses unités fonctionnelles, ceci n'est pas un élément limitatif du concept de l'invention, ces unités pouvant être implantées dans le circuit uniquement en fonction des besoins et des tâches spécifiques que le circuit intégré doit accomplir. In this context, it should be noted that by integrated circuit any functional assembly which may include one or more chips, the functional units being able to be components or groups of components of any kind such as transistors, diodes, groups of transistors, diode groups, circuit parts composed of assemblies of such components etc. Through elsewhere, although Figure 1 shows a distribution of its functional units, this is not a limiting element of the concept of the invention, these units can be installed in the circuit only in according to the specific needs and tasks that the integrated circuit must accomplish.

Selon l'invention, le circuit intégré comporte un générateur de consigne central 3 implanté à un endroit approprié de ce circuit et destiné à élaborer un signal de consigne en fonction duquel la caractéristique de fonctionnement des unités fonctionnelles va être élaborée. Ce générateur comporte n sorties reliées à autant de lignes 4-1 à 4-n qui sont respectivement connectées à des cellules locales d'ajustement 5-1 à 5-n. Ces cellules sont respectivement associées aux unités fonctionnelles 2-1 à 2-n en étant placées près de leur unité respective.According to the invention, the integrated circuit includes a central setpoint generator 3 located at a location suitable for this circuit and intended to develop a signal setpoint according to which the characteristic of functioning of the functional units will be developed. This generator has n outputs connected to as many lines 4-1 to 4-n which are respectively connected to cells adjustment local 5-1 to 5-n. These cells are respectively associated with functional units 2-1 to 2-n by being placed near their respective unit.

L'information de consigne élaborée dans le générateur central 3 peut être appliquée simultanément aux cellules d'ajustement 5-1 à 5-n, mais selon une caractéristique particulière de l'invention, elle peut également être envoyée séquentiellement à ces cellules, cas dans lequel le générateur central 3 comporte un séquenceur 6 représenté en pointillés dans le rectangle qui symbolise le générateur de consigne 3. Cette variante de l'invention est surtout utile lorsque l'information de consigne ne peut être utilisée sans être altérée par plusieurs cellules d'ajustement à la fois.The setpoint information generated in the generator central 3 can be applied simultaneously to cells adjustment 5-1 to 5-n, but according to a characteristic particular of the invention, it can also be sent sequentially to these cells, in which case the central generator 3 includes a sequencer 6 shown in dotted in the rectangle which symbolizes the generator instruction 3. This variant of the invention is especially useful when the setpoint information cannot be used without be altered by several adjustment cells at the same time.

Il est à noter que dans un circuit intégré comprenant un système selon l'invention, les unités fonctionnelles restent opérationnelles en permanence, même si l'information de consigne ne parvient que séquentiellement à leur cellule d'ajustement associée.It should be noted that in an integrated circuit comprising a system according to the invention, the functional units remain operational at all times, even if the information only reaches their cell sequentially associated adjustment.

On va maintenant décrire plusieurs exemples d'application du concept selon l'invention.We will now describe several examples application of the concept according to the invention.

Concernant un premier de ces exemples, on remarquera que souvent, du fait de certains aléas technologiques, les tensions de seuil des transistors d'un circuit intégré MOS ne sont pas les mêmes sur toute l'étendue du circuit. Le premier exemple décrit vise par conséquent à imposer à tous les transistors du circuit une même tension de seuil dite "apparente". Dans ce premier exemple, on suppose ainsi que la caractéristique devant être imposée aux transistors du circuit (qui sont ici les unités fonctionnelles) est cette tension de seuil apparente. L'ajustement des tensions de seuil de tous les transistors à une même valeur, permet l'échange simplifié d'informations analogiques entre différentes parties du circuit intégré, ces informations étant ainsi interprétées de la même façon partout dans le circuit.Concerning a first of these examples, we will note that often, due to certain technological hazards, threshold voltages of the transistors of an MOS integrated circuit are not the same throughout the circuit. The first example described therefore aims to impose on all the transistors of the circuit the same so-called threshold voltage "related". In this first example, we assume that the characteristic to be imposed on the transistors of the circuit (which are the functional units here) is this apparent threshold voltage. The adjustment of the tensions of threshold of all the transistors at the same value, allows simplified exchange of analog information between different parts of the integrated circuit, this information thus being interpreted in the same way all over the circuit.

On sait qu'un transistor MOS de type n fonctionnant en forte inversion laisse passer un courant de drain ID qui présente la relation suivante: ID = k(VG -VTA )2 dans laquelle ID est le courant de drain du transistor, VG sa tension de grille et VTA sa tension de seuil apparente pour autant que VG>>VTA, c'est-à-dire lorsque le transistor travaille en forte inversion.We know that an n-type MOS transistor operating in strong inversion lets through a drain current I D which has the following relation: I D = k (( V G - V YOUR ) 2 in which I D is the drain current of the transistor, V G its gate voltage and V TA its apparent threshold voltage as long as V G >> V TA , that is to say when the transistor works in strong inversion .

On sait également que la tension de seuil apparente VTA d'un transistor MOS est définie par la relation suivante: VTA = VT + nVS -(n-1)VW dans laquelle VT est la tension de seuil "physique" du transistor, VS sa tension de source, VW la tension de caisson et n le coefficient de couplage défini comme suit: n = 1+ CD Ci We also know that the apparent threshold voltage V TA of a MOS transistor is defined by the following relation: V YOUR = V T + nV S - ( not -1) V W in which V T is the "physical" threshold voltage of the transistor, V S its source voltage, V W the box voltage and n the coupling coefficient defined as follows: not = 1+ VS D VS i

Dans la relation (3), CD est la capacité de déplétion du transistor et Ci sa capacité d'oxyde.In equation (3), C D is the depletion capacity of the transistor and C i its oxide capacity.

Il est à noter que l'on peut écrire les mêmes relations, mutatis mutandis, pour un transistor de type p. Note that we can write the same relations, mutatis mutandis, for a p-type transistor.

Il résulte de la relation (2) ci-dessus, que la tension de seuil apparente VTA de tous les transistors du circuit peut être déterminée en ajustant la tension de caisson VW.It follows from relation (2) above, that the apparent threshold voltage V TA of all the transistors of the circuit can be determined by adjusting the box voltage V W.

Dans le premier exemple d'application de l'invention décrit, c'est cette propriété qui est exploitée pour ajuster la tension de seuil de tous les transistors utiles du circuit intégré et à cet effet on utilise le circuit qui va maintenant être décrit en référence à la figure 2.In the first example of application of the invention described, this property is used to adjust the threshold voltage of all the useful transistors of the integrated circuit and for this purpose we use the circuit that goes now be described with reference to Figure 2.

Par souci de simplification, cette figure ne représente que le générateur de consigne 3, ainsi qu'un seul transistor utile 2-n avec sa cellule locale d'ajustement 5-n associée.For the sake of simplification, this figure does not represent that the setpoint generator 3, as well as a single transistor useful 2-n with its associated local 5-n adjustment cell.

Le générateur de consigne 3 représenté sur la figure 2 est destiné à des transistors de type n. Il comporte deux transistors MG1 et MG2 dont les sources sont reliées à un conducteur d'alimentation négative de tension VGM. Leurs drains sont reliés à leurs grilles respectives, et aux drains de deux transistors respectifs MG3 et MG4 montés en miroir de courant. Les caissons des transistors MG1 et MG2 sont reliés à une borne d'alimentation VGW. Les grilles des transistors MG3 et MG4 sont connectées à une borne de tension de polarisation VGI, tandis que leurs sources sont reliées à une tension d'alimentation positive VGP.The setpoint generator 3 shown in FIG. 2 is intended for n-type transistors. It comprises two transistors MG1 and MG2, the sources of which are connected to a negative supply conductor of voltage V GM . Their drains are connected to their respective grids, and to the drains of two respective transistors MG3 and MG4 mounted in current mirror. The boxes of the transistors MG1 and MG2 are connected to a supply terminal V GW . The gates of the transistors MG3 and MG4 are connected to a bias voltage terminal V GI , while their sources are connected to a positive supply voltage V GP .

Comme les transistors MG1 à MG4 sont placés très près l'un de l'autre sur le circuit intégré, leurs tensions de seuil apparentes sont identiques deux à deux.As the transistors MG1 to MG4 are placed very close each other on the integrated circuit, their voltages apparent thresholds are identical two by two.

Par ailleurs, les transistors ayant un rapport de largeur déterminé, ils conduisent des courants IMG3 et IMG4 ayant ce rapport: Km = I MG4 I MG3 Furthermore, the transistors having a determined width ratio, they conduct currents I MG3 and I MG4 having this ratio: K m = I MG 4 I MG 3

Les transistors MG1 et MG2 conduiront des courants IMG3 et IMG4 qui déterminent les tensions de grille VG1 et VG2 respectifs. En effet, il résulte des équations (1) et (2) ci-dessus que ces tensions sont liées en régime de forte inversion par la relation: KM = VG 1-VT -nVS +(n-1)VW VG 2-VT -nVS +(n-1)VW 2 The transistors MG1 and MG2 will conduct currents I MG3 and I MG4 which determine the gate voltages V G1 and V G2 respectively. Indeed, it follows from equations (1) and (2) above that these tensions are linked in a regime of strong inversion by the relation: K M = V G 1 - V T - nV S + ( not -1) V W V G 2 - V T - nV S + ( not -1) V W 2

Ainsi, les tensions VG1 et VG2 peuvent constituer une information de consigne qui peut être exploitée dans la cellule locale d'ajustement 5-n pour déterminer, pour le transistor utile 2-n qui y est associé, une tension de seuil apparente VTA identique en utilisant la tension de caisson VW comme paramètre d'ajustement, les tensions de seuil réelles de tous les transistors utiles pouvant être différentes d'une cellule à l'autre.Thus, the voltages V G1 and V G2 can constitute setpoint information which can be used in the local adjustment cell 5-n to determine, for the useful transistor 2-n which is associated with it, an apparent threshold voltage V Identical TA using the box voltage V W as an adjustment parameter, the actual threshold voltages of all the useful transistors being able to be different from one cell to another.

La cellule locale d'ajustement 5-n comporte un miroir de courant formé des transistors MC3 et MC4 dont les largeurs sont dans un rapport KM. Ceci est relativement facile à réaliser même si la distance qui sépare le générateur de consigne 3 de cette cellule locale est relativement grande.The local adjustment cell 5-n comprises a current mirror formed by the transistors MC3 and MC4 whose widths are in a ratio K M. This is relatively easy to achieve even if the distance separating the setpoint generator 3 from this local cell is relatively large.

Les sources de ces transistors MC3 et MC4 sont reliées à une tension d'alimentation VUP, tandis que leurs drains sont reliés respectivement aux drains de deux transistors MC1 et MC2 dont les sources sont reliées à une tension VUM. La grille du transistor MC3 est connectée à son drain. Les grilles des transistors MC1 et MC2 sont connectées respectivement aux tensions VG1 et VG2 provenant du générateur de consigne 3.The sources of these transistors MC3 and MC4 are connected to a supply voltage V UP , while their drains are respectively connected to the drains of two transistors MC1 and MC2, the sources of which are connected to a voltage V UM . The gate of transistor MC3 is connected to its drain. The gates of the transistors MC1 and MC2 are connected respectively to the voltages V G1 and V G2 coming from the setpoint generator 3.

Le point commun des transistors MC2 et MC4 est raccordé à l'entrée d'un amplificateur A et à une borne d'un condensateur C. La sortie de l'amplificateur A est reliée aux caissons des transistors MC1, MC2 et MU. The common point of the transistors MC2 and MC4 is connected at the input of an amplifier A and at a terminal of a capacitor C. The output of amplifier A is connected to the boxes of transistors MC1, MC2 and MU.

Dans cette cellule d'ajustement 5-n, les transistors MC1 et MC2 fonctionnent en forte inversion et engendrent des courants respectifs déterminés par la relation (1) ci-dessus. Le miroir de courant formé par les transistors MC3 et MC4 fait une copie du courant engendré par le transistor MC1 en le multipliant par la constante KM. En régime d'ajustement, le condensateur C intègre la différence entre le courant traversant le transistor MC4 et le courant traversant MC2. L'amplificateur transmet la valeur correspondant sur les caissons des transistors MC1 et MC2 et également sur celui du transistor utile MU. Le régime se stabilise lorsque la différence de ces courants est nulle. Dans ces conditions, le transistor MU présente une tension de seuil apparente qui est identique à celle des transistors MG1 et MG2 du générateur de consigne.In this 5-n adjustment cell, the transistors MC1 and MC2 operate in strong inversion and generate respective currents determined by relation (1) above. The current mirror formed by the transistors MC3 and MC4 makes a copy of the current generated by the transistor MC1 by multiplying it by the constant K M. In adjustment mode, the capacitor C integrates the difference between the current passing through the transistor MC4 and the current passing through MC2. The amplifier transmits the corresponding value on the wells of the transistors MC1 and MC2 and also on that of the useful transistor MU. The regime stabilizes when the difference in these currents is zero. Under these conditions, the transistor MU has an apparent threshold voltage which is identical to that of the transistors MG1 and MG2 of the reference generator.

Ainsi en associant à chaque transistor utile ou à chaque groupe de transistors utiles se trouvant à proximité l'un de l'autre une cellule d'ajustement telle que la cellule 5-n, on peut leur donner la même tension de seuil dont la valeur est imposée par le générateur central de consigne 3.So by associating with each useful transistor or each group of useful transistors located nearby from each other an adjustment cell such as the cell 5-n, we can give them the same threshold voltage whose value is imposed by the central generator of instruction 3.

On remarquera que, dans ce premier exemple d'application de l'invention, tous les transistors utiles 2-1 à 2-n peuvent travailler en permanence et ne sont pas perturbés par l'ajustement de la tension de leur caisson.Note that in this first example application of the invention, all useful transistors 2-1 to 2-n can work continuously and are not disturbed by the adjustment of the tension of their box.

Dans un second exemple d'application de l'invention, on suppose qu'il soit souhaitable de faire fonctionner un certain nombre de transistors d'un circuit intégré sur un même point de travail en dépit des disparités de leurs courbes caractéristiques Idrain/Vgrille en fonction des emplacements des transistors dans le circuit intégré.In a second example of application of the invention, it is assumed that it is desirable to operate a certain number of transistors of an integrated circuit on the same work point despite the disparities in their characteristic curves I drain / V grid according to the locations of the transistors in the integrated circuit.

Sur la figure 3, on a représenté un générateur central de consigne 3A qui élabore dans ce cas en tant que consigne, une tension de référence Vref et un courant de référence Iref. Comme il s'agit ici de transmettre une consigne de courant, il est nécessaire de distribuer ce courant de référence Iref de façon séquentielle.In FIG. 3, a central reference generator 3A has been shown which, in this case, produces a reference voltage V ref and a reference current I ref as a reference. As it is a question here of transmitting a current setpoint, it is necessary to distribute this reference current I ref sequentially.

Le générateur de consigne 3A comprend une source de tension ST qui est reliée à la grille d'un transistor MG5 et à une sortie du générateur délivrant la tension de référence Vref. Le drain du transistor MG5 est connecté à un miroir de courant formé des transistors MG6 et MG7, ce dernier délivrant le courant de référence Iref.The setpoint generator 3A comprises a voltage source ST which is connected to the gate of a transistor MG5 and to an output of the generator delivering the reference voltage V ref . The drain of transistor MG5 is connected to a current mirror formed by transistors MG6 and MG7, the latter delivering the reference current I ref .

La cellule locale d'ajustement 5A-n comporte un transistor MC5 dont la grille reçoit la tension Vref. Son drain est raccordé à deux interrupteurs S1 et S2 commandés par le séquenceur 6. L'interrupteur S1 reçoit le courant de référence Iref du générateur de consigne 3A. L'interrupteur S2 est connecté au point commun d'un condensateur CA et d'un amplificateur AA. La sortie de ce dernier est reliée aux caissons des transistors MC5 et MU (2A-n).The local adjustment cell 5A-n comprises a transistor MC5 whose gate receives the voltage V ref . Its drain is connected to two switches S1 and S2 controlled by the sequencer 6. The switch S1 receives the reference current I ref from the reference generator 3A. Switch S2 is connected to the common point of an AC capacitor and an AA amplifier. The output of the latter is connected to the wells of the transistors MC5 and MU (2A-n).

Lorsque la cellule 5A-n est en phase d'ajustement, ces interrupteurs S1 et S2 étant alors fermés par le séquenceur 6, le courant Iref peut parvenir au condensateur CA et à l'entrée de l'amplificateur AA. La tension sur le condensateur CA se stabilise, lorsque le courant qui traverse le transistor MC5 est égal au courant de référence Iref. Les interrupteurs S1 et S2 peuvent alors de nouveau être ouverts, le condensateur CA mémorisant la tension d'ajustement à l'entrée de l'amplificateur AA. Le courant de référence Iref peut alors être envoyé à une autre cellule locale d'ajustement du circuit intégré.When the cell 5A-n is in the adjustment phase, these switches S1 and S2 then being closed by the sequencer 6, the current I ref can reach the capacitor AC and the input of the amplifier AA. The voltage on the capacitor AC stabilizes when the current flowing through the transistor MC5 is equal to the reference current I ref . The switches S1 and S2 can then be opened again, the capacitor CA memorizing the adjustment voltage at the input of the amplifier AA. The reference current I ref can then be sent to another local adjustment cell of the integrated circuit.

On voit donc que, dans ce cas également, le transistor utile peut continuer à fonctionner qu'il soit en régime d'ajustement ou non.So we see that, in this case too, the transistor useful can continue to function whether it is in operation adjustment or not.

Le troisième exemple d'application de l'invention est représenté sur la figure 4. Ici, les composants utiles ne sont pas des transistors, mais des diodes ou des photodiodes, ces dernières pouvant, par exemple faire partie d'un réseau de détecteurs ou analogue. Il peut alors être important que toutes ces diodes aient le même courant de fuite. Or, on sait que le courant de fuite d'une diode est fortement dépendant de la température.The third example of application of the invention is shown in Figure 4. Here, the useful components do not are not transistors, but diodes or photodiodes, the latter being, for example, part a network of detectors or the like. It can then be important that all these diodes have the same current of flight. However, we know that the leakage current of a diode is strongly dependent on temperature.

Le générateur central de consigne 3B engendre, par exemple au moyen du montage représenté sur la figure 3 en 3A, un courant de référence Iref qui est distribué aux cellules locales d'ajustement telles que la cellule 5B-n, au moyen du séquenceur 6.The central reference generator 3B generates, for example by means of the assembly shown in FIG. 3 at 3A, a reference current I ref which is distributed to the local adjustment cells such as cell 5B-n, by means of the sequencer 6 .

La cellule locale d'ajustement 5B-n comporte une diode P1 qui est connectée aux interrupteurs S1 et S2, ceux-ci étant fermés en régime d'ajustement. L'interrupteur S2 est connecté également au point commun d'un condensateur CB et de l'entrée d'un amplificateur AB. La sortie de ce dernier est reliée à une résistance de dissipation de chaleur RT placée près de la diode P1 et de la diode utile P2 (2B-n). Un courant IC est donc envoyé en tant que valeur d'ajustement dans cette résistance dissipatrice RT. La diode P2 (et éventuellement d'autres diodes se trouvant à proximité) recevra(ont) ainsi un apport calorique qui détermine un même courant de fuite pour toutes les diodes.The local adjustment cell 5B-n comprises a diode P1 which is connected to the switches S1 and S2, these being closed in adjustment mode. Switch S2 is also connected to the common point of a capacitor CB and the input of an amplifier AB. The output of the latter is connected to a heat dissipation resistor RT placed near the diode P1 and the useful diode P2 (2B-n). A current I C is therefore sent as an adjustment value in this dissipating resistor RT. Diode P2 (and possibly other diodes located nearby) will thus receive (have) a caloric intake which determines the same leakage current for all the diodes.

Le courant passe dans la résistance dissipatrice RT tant que le courant dans la diode P1 n'est pas égal au courant de référence Iref. Le séquenceur 6 permet de desservir d'autres montages de chauffage analogue répartis dans le réseau de photodiodes.The current flows through the dissipating resistor RT as long as the current in the diode P1 is not equal to the reference current I ref . The sequencer 6 makes it possible to serve other similar heating assemblies distributed in the array of photodiodes.

Il est à noter que si les diodes P1 et P2 sont identiques (elles se trouvent à proximité l'une de l'autre) et si seulement la photodiode P2 est exposée à la lumière, ce montage permet en outre de commander le courant "noir" de la photodiode P2.It should be noted that if the diodes P1 and P2 are identical (they are located close to each other) and if only the photodiode P2 is exposed to light, this assembly also makes it possible to control the "black" current of the photodiode P2.

Par ailleurs, les cellules locales d'ajustement doivent être isolées thermiquement l'une de l'autre. In addition, the local adjustment units must be thermally isolated from each other.

Il est à noter que dans ce cas également, le condensateur CB joue le rôle de mémoire et conserve la valeur de consigne entre deux adressages effectués par le séquenceur 6.It should be noted that in this case also, the CB capacitor acts as memory and retains the setpoint between two addresses made by the sequencer 6.

Claims (12)

  1. An integrated circuit which comprises:
    means forming a central reference generator (3, 3A, 3B) intended to generate at least one setpoint item (VG1, VG2; Iref, Vref; Iref) which determines the operating characteristic required to be common to at least a plurality of functional components of the circuit;
    means (4-1 to 4-n; 6) for distributing the setpoint item among at least a plurality of units of the circuit, each unit comprising at least one of said functional components (2-n; 2A-n; 2B-n);
    each of said units comprising local adjustment means (5-n; 5A-n; 5B-n) connected to receive said setpoint item (VG1, VG2; Iref, Vref; Iref) and to generate an adjustment value (VW, IC);
    correction means (C, A; CA, AA; CB, AB) in each unit in order to adjust the operating characteristic of a device (MC1, MC2; MC5; P1), provided for in said local adjustment means (5-n; 5A-n; 5B-n), as a function of said adjustment value, said device being placed in proximity to the functional component(s) and configured in such a way that the operating characteristic which is thus imposed on it is also imposed on the functional component(s) (2-n; 2A-n; 2B-n).
  2. The integrated circuit as claimed in claim 1, including MOS transistors, wherein said operating characteristic is the apparent threshold voltage (VTA) of at least some of its MOS transistors (2-1 to 2-n; Figure 2).
  3. The integrated circuit as claimed in claim 1, including MOS transistors, wherein said operating characteristic is a predetermined working point on the drain current/gate voltage curve of at least some of these MOS transistors (2A-n; Figure 3).
  4. The integrated circuit as claimed in claim 2, including diodes or photodiodes, wherein said operating characteristic is the leakage current of said diodes (P2; Figure 4).
  5. The integrated circuit as claimed in either one of claims 2 and 3 taken together, wherein said adjustment value is the well voltage (VW) of at least some of said MOS transistors (2-1 to 2-n).
  6. The integrated circuit as claimed in claims 2 and 5 taken together, wherein said central reference generator (3) includes means (MG2, MG4) for establishing a first ratio of two currents (KM) which represents the value of said desired apparent threshold voltage (VTA) and means (MG1, MG2) for converting, as a function of a predetermined well voltage value (VGW), this first ratio of currents into a pair of voltages (VG1, VG2) forming said setpoint item, and wherein said local adjustment means (5-1 to 5-n) comprise means (MC3, MC4) for locally establishing a second ratio of currents and means (MC1, MC2, C, A) for producing, as a function of said setpoint item, a signal for modifying the well voltage (VUW) of said functional component or components (2-1 to 2-n) associated with the relevant local adjustment means (5-1 to 5-n), in order to adjust said second ratio of currents to said first ratio of currents.
  7. The integrated circuit as claimed in claim 6, wherein
    said central reference generator (3) includes a current mirror formed from two MOS transistors (MG3, MG4) whose widths have said first ratio of currents and two other MOS transistors (MC1, MC2) mounted respectively in series with the transistors of the current mirror and whose well voltage (VGW) exhibits said predetermined well voltage value, said two other transistors (MG1, MG2) being arranged in order to operate under strong inversion and to yield said setpoint item (VG1, VG2) on their gates, and wherein
    said local adjustment means (5-1 to 5-n) comprise a setup identical to that of said central reference generator (3), the junction point between one (MC4) of the transistors of their current mirror and said corresponding other transistor (MC2) being linked up to an amplifier (A) which yields said adjustment value (VUW), the output of this amplifier being linked to the wells of said other transistors (MC1, MC2) of these local adjustment means and to that of the functional component (MU) associated with these means.
  8. The integrated circuit as claimed in claims 3 and 5 taken together, wherein said central reference generator (3A) includes a voltage source (ST) delivering a reference voltage (Vref) and a current source (MG5, MG6 and MG7) delivering a reference current (Iref), wherein said local adjustment means (5A-n) comprise a transistor (MC5) connected in order to receive said reference voltage on its gate, and an amplifier (AA) connected in order to amplify the difference between said reference current and the current flowing through this transistor (MC5), the output of said amplifier (AA) being connected to the well of the latter and that of said functional component (MU) in order to supply them with said adjustment value (VW).
  9. The integrated circuit as claimed in claim 8, wherein it comprises a sequencer (6) for dispatching said reference current (Iref) in turn to said local adjustment means, and wherein said local adjustment means comprise memory means (CA) in order to preserve said adjustment value (VW) between two dispatches of said reference current to these means.
  10. The integrated circuit as claimed in claim 4, wherein said adjustment value is the temperature (T) of said circuit.
  11. The integrated circuit as claimed in claim 10, wherein said central reference generator (3B) comprises a reference current source (Iref), and wherein said local adjustment means comprise a reference diode (P1), as well as an amplifier (AB) in order to amplify the difference between the reference current and the current flowing in said diode (P1), the output of said amplifier (AB) being connected to a heat dissipater component (RT) placed near said diode (P1) and near the diode (P2) which forms said functional component.
  12. The integrated circuit as claimed in claim 11, wherein it includes a sequencer (6) in order to dispatch said reference current (Iref) in turn to said local adjustment means (5B-n).
EP96401074A 1995-05-17 1996-05-15 Integrated circuit in which some components have to work with the same operating characteristic Expired - Lifetime EP0743586B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9505920 1995-05-17
FR9505920A FR2734378B1 (en) 1995-05-17 1995-05-17 INTEGRATED CIRCUIT IN WHICH CERTAIN FUNCTIONAL COMPONENTS ARE MADE TO WORK WITH THE SAME OPERATING CHARACTERISTICS

Publications (2)

Publication Number Publication Date
EP0743586A1 EP0743586A1 (en) 1996-11-20
EP0743586B1 true EP0743586B1 (en) 2000-08-02

Family

ID=9479129

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96401074A Expired - Lifetime EP0743586B1 (en) 1995-05-17 1996-05-15 Integrated circuit in which some components have to work with the same operating characteristic

Country Status (4)

Country Link
US (1) US5739718A (en)
EP (1) EP0743586B1 (en)
DE (1) DE69609563D1 (en)
FR (1) FR2734378B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3635768B2 (en) * 1996-03-05 2005-04-06 ヤマハ株式会社 Semiconductor integrated circuit
JPH10135756A (en) * 1996-10-31 1998-05-22 Mitsumi Electric Co Ltd Adjustment method for circuit characteristic of integrated circuit
US20040217934A1 (en) * 2003-04-30 2004-11-04 Jin-Seok Yang Driving circuit of flat panel display device
US6972989B2 (en) * 2003-10-10 2005-12-06 Infincon Technologies Ag Reference current distribution in MRAM devices
FR2957161B1 (en) * 2010-03-02 2012-11-16 St Microelectronics Rousset INTERNAL POWER SUPPLY VOLTAGE CIRCUIT OF AN INTEGRATED CIRCUIT

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8001558A (en) * 1980-03-17 1981-10-16 Philips Nv POWER STABILIZER BUILT UP WITH ENRICHMENT TYPE FIELD-EFFECT TRANSISTOR.
US4471292A (en) * 1982-11-10 1984-09-11 Texas Instruments Incorporated MOS Current mirror with high impedance output
US4814644A (en) * 1985-01-29 1989-03-21 K. Ushiku & Co. Basic circuitry particularly for construction of multivalued logic systems
DE68921020T2 (en) * 1988-05-20 1995-06-29 Mitsubishi Electric Corp Integrated MOS circuit for controlling light-emitting diodes.
NL9001018A (en) * 1990-04-27 1991-11-18 Philips Nv REFERENCE GENERATOR.
US5117130A (en) * 1990-06-01 1992-05-26 At&T Bell Laboratories Integrated circuits which compensate for local conditions
US5157285A (en) * 1991-08-30 1992-10-20 Allen Michael J Low noise, temperature-compensated, and process-compensated current and voltage control circuits
US5461338A (en) * 1992-04-17 1995-10-24 Nec Corporation Semiconductor integrated circuit incorporated with substrate bias control circuit
US5397934A (en) * 1993-04-05 1995-03-14 National Semiconductor Corporation Apparatus and method for adjusting the threshold voltage of MOS transistors
GB9320991D0 (en) * 1993-10-12 1993-12-01 Philips Electronics Uk Ltd A circuit for providing a current source
FR2717918B1 (en) * 1994-03-25 1996-05-24 Suisse Electronique Microtech Circuit to control the voltages between box and sources of mos transistors and servo system of the relationship between the dynamic and static currents of a mos logic circuit.

Also Published As

Publication number Publication date
DE69609563D1 (en) 2000-09-07
EP0743586A1 (en) 1996-11-20
FR2734378A1 (en) 1996-11-22
FR2734378B1 (en) 1997-07-04
US5739718A (en) 1998-04-14

Similar Documents

Publication Publication Date Title
EP3627275B1 (en) Electronic device capable of forming a temperature sensor or a current source for providing a current independently of the temperature
EP0562916A1 (en) Device for generating reference voltages
FR3059495A1 (en) ATTENUATING DEVICE IN A RADIO FREQUENCY TRANSMISSION STAGE
EP0743586B1 (en) Integrated circuit in which some components have to work with the same operating characteristic
FR2534086A1 (en) CONSTANT CURRENT GENERATOR CIRCUIT WITH LOW SUPPLY VOLTAGE, MONOLITHICALLY INTEGRAL
EP0278534A1 (en) Broadband phase shifter
WO2002059974A1 (en) Photoelectric element with high operating dynamics
EP0022015B1 (en) Amplifier arrangement and method of amplification for audio frequencies
EP3457566A1 (en) Device for modifying the impedance value of a reference resistor
EP1361613B1 (en) Photodetecting device, laser pulse detector comprising such device and a laser pulse detecting device comprising such laser pulse detectors
EP0731557A1 (en) Voltage reproduction device with improved linearity
FR2552575A1 (en) CONTROL CIRCUIT FOR AN ALTERNATIVE TYPE PLASMA PANEL
CH644231A5 (en) VARIABLE GAIN CIRCUIT CONTROLLED BY A VOLTAGE.
EP0182679B1 (en) Line transfer photosensitive device with feed-back amplifiers
EP0149948B1 (en) Solid state photosensitive devices
EP0253704B1 (en) Double differential summing amplifier with four independent inputs
EP1211888A1 (en) Infrared radiation-detecting device
EP1146732B1 (en) Photosignal to voltage conversion device in image sensors with offset integrators
FR2482382A1 (en) HIGH OUTPUT AND LOW "LOSS OF VOLTAGE" CURRENT MIRROR CIRCUIT
FR2634900A1 (en) SYSTEM FOR DETECTING INFORMATION IN THE FORM OF ELECTROMAGNETIC RADIATION AND READING DETECTED INFORMATION
EP0654945B1 (en) Injection circuit for thermal imaging
FR2789532A1 (en) Current mode continuous voltage circuit voltage ramp generator having load capacitance/current generator with resistors/transistors producing load current (component resistor/current generator resistance) squared proportional.
EP0679899B1 (en) Detector comprising a plurality of local detectors, in particular photodiodes
FR2599198A1 (en) HIGH CAPACITY MIRROR CIRCUIT
FR2609843A1 (en) 0-180O ACTIVE DEPHASEUR FOR HYPERFREQUENCIES

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI

17P Request for examination filed

Effective date: 19970424

17Q First examination report despatched

Effective date: 19980717

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69609563

Country of ref document: DE

Date of ref document: 20000907

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20001103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010508

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010530

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010605

Year of fee payment: 6

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020515

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST