EP0739732A1 - Tête d'impression acoustique à encre avec distance focale variable - Google Patents

Tête d'impression acoustique à encre avec distance focale variable Download PDF

Info

Publication number
EP0739732A1
EP0739732A1 EP96302898A EP96302898A EP0739732A1 EP 0739732 A1 EP0739732 A1 EP 0739732A1 EP 96302898 A EP96302898 A EP 96302898A EP 96302898 A EP96302898 A EP 96302898A EP 0739732 A1 EP0739732 A1 EP 0739732A1
Authority
EP
European Patent Office
Prior art keywords
ink
acoustic
lenses
substrate
focal length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96302898A
Other languages
German (de)
English (en)
Other versions
EP0739732B1 (fr
Inventor
Martin G. Lim
Babur B. Hadimioglu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xerox Corp
Original Assignee
Xerox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xerox Corp filed Critical Xerox Corp
Publication of EP0739732A1 publication Critical patent/EP0739732A1/fr
Application granted granted Critical
Publication of EP0739732B1 publication Critical patent/EP0739732B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14008Structure of acoustic ink jet print heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14322Print head without nozzle

Definitions

  • the present invention relates generally to acoustic ink printers with lenses for focusing acoustic energy. More particularly, the present invention relates to an acoustic ink printer head having an ink filled channel that supports varying focal length fresnel lenses positioned along the channel.
  • Acoustic ink printing systems provide a nozzleless alternative to conventional thermal ink jet systems. Instead of supporting a large number of easily clogged nozzles, acoustic ink printing systems typically use an ink covered printhead that supports multiple acoustic lenses. Each of the acoustic lens attached to the printhead can focus a beam of sound energy against a free surface of the ink. This focused acoustic beam exerts sufficient acoustic radiation pressure against the surface to cause ejection of individual droplets of ink, which are directed to impact upon a sheet of paper or other printing medium.
  • Precise control of droplets ejected by acoustic ink printheads conventionally is performed by independently modulating the rf excitation of acoustic radiators acoustically coupled to the acoustic lenses.
  • the acoustic radiators (commonly piezoelectric transducers) are amplitude modulated in accordance with a desired input pattern that typically corresponds to pixel level representations of text or imagery. Modulating the transducers in this defined input pattern transiently increases the acoustic radiation pressure to generate brief, controlled excursions to a sufficiently high pressure level for overcoming the ink restraining force of surface tension.
  • acoustic ink printing does not rely upon easily clogged nozzles or small ejection orifices, eliminating mechanical constraints that cause many of the reliability and pixel placement accuracy problems in conventional drop on demand or continuous stream ink jet printers.
  • an acoustic ink printhead must be supplied with a constant and consistent flow of ink to present a stable ink ejection surface.
  • Use of a flowing and appropriately filtered ink supply system also simplifies stabilization of ink temperature, keeps the ink free of various contaminants, and encourages mixing of ink constituents to minimize adverse differential ink evaporation effects that may reduce uniformity of the ink composition and the associated uniformity of droplet ejection.
  • one problem with a flowing ink supply relates to equalization of hydrostatic pressure of the free ink surfaces associated with each acoustic lens. Differing hydrostatic pressures resulting from viscous resistance to fluid flow leads to differing distances between the free surface of the ink and each acoustic lens. If this change in distance is substantial (e.g., greater than a few ⁇ m), an individual acoustic lens in an array of identical lenses may be focused above or below the free surface of the ink, rather than at the surface, eliminating uniformity of droplet ejection, and reducing print reliability.
  • Equalization of pressure may be relatively simple with a small number of lenses and consequently limited ink flow path, but as the number of lenses increases (and with it the required free surface ink flow path) in higher-performance and higher-resolution printers, the ink supply system for delivering ink to the lenses becomes more complex and the equalization of pressure at each lens more difficult.
  • the present invention provides an acoustic ink printhead comprising a channel configured to receive ink, the channel having an ink inlet and an ink outlet, and a plurality of acoustic lenses positioned adjacent to the channel, with a focal length of at least one of the acoustic lenses differing from focal lengths of the other acoustic lenses.
  • the invention further provides an acoustic ink printhead according to claims 5 and 8 of the appended claims.
  • the present invention substantially mitigates the problem of pressure equalization of the free ink surfaces in an acoustic ink printer with a constant flow ink transport system.
  • focal length of acoustic lenses positioned adjacent to the ink outlet is less than the focal length of acoustic lenses positioned adjacent to the ink inlet.
  • the focal length of the acoustic lenses sequentially decreases between the ink inlet and the ink outlet to compensate for the progressive reduction in surface level of the ink.
  • Each acoustic lens in an array of acoustic lenses is adjusted to have a focal length that ensures focusing a predefined acoustic frequency at the surface level of ink flowing above the respective lens, consequently reducing non-uniformity in droplet size, speed, and travel characteristics.
  • an acoustic ink printhead that includes a plurality of channels configured to receive ink has well defined hydrostatic characteristics in each channel, with the free surface level diminishing along the channel between the inlet and outlet. This is particularly true when each channel is connected to a common inlet manifold and a common outlet manifold, so that inlet pressure and outlet pressure (and ink flow velocity) in all channels is substantially equal.
  • a linear array of channels with a sequentially decreasing hydrostatic pressure easily supports use of varying focal length acoustic lenses constructed as multiphase Fresnel lenses.
  • Standard semiconductor integrated circuit techniques are available for fabricating these lenses in compliance with design specifications. Such construction permits relatively tight tolerances, allowing for integrated lens arrays demanding substantial precision in the relative spatial positioning of several lenses.
  • the diffractive performance of these lenses simulate concave refractive lenses, even though the lenses provided by this invention preferably have generally flat geometries.
  • Use of fresnel lenses simplifies machining, etching, growing, or otherwise depositing an acoustic lens having the required focal length on a flat surface such as a channel bottom of an acoustic printhead.
  • FIG. 1 An acoustic ink printhead system is illustrated in Figures 1, 2, and 3.
  • the system 10 includes a printhead 12, with an inlet 18 and an outlet 20, coupled in fluid communication to an ink pump 14 and heater 16 for recirculation of ink.
  • Ink entering the printhead 12 through inlet 18 is distributed by inlet manifold 22 to a plurality of longitudinally extending channels 26 inscribed in the printhead 12.
  • acoustic lenses 28 typically being a spherical lens or a fresnel lens having a ring structure 42 such as shown in Figure 3-5.
  • the acoustic lenses 28 provide an array of electronically controlled ink ejectors that are capable of forcing ejection of an ink droplet from an ink surface in response to application of a suitable frequency and amplitude of focused acoustic energy.
  • the ejected ink droplet can be directed to contact a piece of paper or other recording medium (not shown).
  • the ink After moving through the channels 26, the ink enters an outlet manifold 24 that funnels the ink to the outlet 20 for passage into pump 14.
  • the ink is filtered and reheated by ink heater 16 to ensure maintenance of optimal flow characteristics, and again directed to enter the printhead through inlet 18.
  • each channel 26 in printhead 12 is defined in a top plate 34, the top plate in turn being integrally bonded to a glass substrate 36 supporting the acoustic lenses 28.
  • Ink 30 having an ink surface 32 flows along the channel over the acoustic lenses 28, which are individually controlled by application of a matching number of transducers 38.
  • the transducers 38 are positioned beneath the acoustic lenses 28 to supply acoustic energy that can be focused to emit an ink droplet 40.
  • the Fresnel-type acoustic lenses 28 positioned at the base of the ink containing channels 26 can be fabricated through the use of a conventional photolithographic patterning process.
  • a conventional photolithographic patterning process For example, an acoustically flat layer of etchable material (e.g., amorphous silicon or oxynitride) is grown or otherwise deposited on an acoustically flat face of an etch resistant substrate 36, such as a quartz or glass substrate.
  • etchable material e.g., amorphous silicon or oxynitride
  • the thickness of the acoustic lenses 28 can be controlled with sufficient precision while being deposited to yield an acoustically flat layer having a thickness essentially equal to the height of the highest desired phase steps of the Fresnel lenses, so that no further pre-etch processing is required.
  • radiofrequency (rf) drive voltages are applied across the piezoelectric transducers 38 (by means not shown) on spatially separated centers each acoustically aligned with the acoustic lenses 28.
  • the excited transducers 38 generate longitudinally propagating acoustic plane waves (schematically illustrated as waves 50 in Figure 3)within the substrate 36 for substantially independent, axial illumination of each of the acoustic lenses at near normal angles of incidence.
  • the acoustic lenses 28 are acoustically coupled to the ink 30, either directly (as shown in the Figures) or through an intermediate monolayer or multilayer acoustic coupling medium.
  • text or images based on the pattern of ejected droplets on paper (or other suitable media) can be created.
  • This focal point changes along the channel, because the distance between the ink surface 32 and the base of the channel 26 diminishes as a function of the corresponding pressure drop (attributable mainly to fluid resistance against walls and bottom of the channel) between the inlet 18 and the outlet 20.
  • a suitable mechanism must be employed to maintain focus of the acoustic lenses 28 at designated positions on the ink surface 32 along the channel, even though a pressure drop corresponding to an ink surface level drop of fifty (50) microns or more may exist in the channel between inlet and outlet.
  • the present invention alleviates the problems associated with pressure drop by adjusting the focal length of the acoustic lenses 28.
  • Fresnel lenses such as seen in top view in Figure 4, and in cross section in Figure 5, can have their ring spacing slightly altered, along with other appropriate modifications known to those skilled in the art, to decrease the focal length of acoustic lenses as one proceeds from the inlet toward the outlet of each channel in the printerhead.
  • Figure 6 illustrates a profile of a four phase Fresnel lens suitable for positioning adjacent to the inlet of the channel, with an acoustic lens to surface distance of 360 microns, and the same focal length.
  • Figure 7 illustrates a Fresnel lens suitable for positioning in the same channel, but adjacent to the outlet. At this position, the acoustic lens to surface distance is 350 ⁇ m, requiring a slightly changed focal length to ensure focusing of acoustic energy at the ink surface.

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
EP19960302898 1995-04-27 1996-04-25 Tête d'impression acoustique à encre avec distance focale variable Expired - Lifetime EP0739732B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US43119595A 1995-04-27 1995-04-27
US431195 1995-04-27

Publications (2)

Publication Number Publication Date
EP0739732A1 true EP0739732A1 (fr) 1996-10-30
EP0739732B1 EP0739732B1 (fr) 1998-12-30

Family

ID=23710882

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19960302898 Expired - Lifetime EP0739732B1 (fr) 1995-04-27 1996-04-25 Tête d'impression acoustique à encre avec distance focale variable

Country Status (3)

Country Link
EP (1) EP0739732B1 (fr)
JP (1) JPH08309968A (fr)
DE (1) DE69601245T2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0990524A2 (fr) * 1998-09-30 2000-04-05 Xerox Corporation Procédé d'impression acoustique à encre et système d'amélioration de l'uniformité par manipulation des caractéristiques non linéaires dans le système

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009292106A (ja) 2008-06-09 2009-12-17 Casio Comput Co Ltd 画像形成装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3211088A (en) * 1962-05-04 1965-10-12 Sperry Rand Corp Exponential horn printer
EP0216589A2 (fr) * 1985-09-16 1987-04-01 Xerox Corporation Ejecteurs de fuite de goutelettes liquides sans buses réagissant aux ondes de Rayleigh
EP0375433A2 (fr) * 1988-12-21 1990-06-27 Xerox Corporation Imprimante acoustique à jet d'encre avec une sensibilité réduite de la distance focale
EP0434931A2 (fr) * 1989-12-26 1991-07-03 Xerox Corporation Lentilles de Fresnel acoustiques multiples à phase discrète et leur application à l'impression acoustique à jet d'encre
US5087931A (en) * 1990-05-15 1992-02-11 Xerox Corporation Pressure-equalized ink transport system for acoustic ink printers
EP0493102A1 (fr) * 1990-12-26 1992-07-01 Xerox Corporation Imprimante acoustique à encre
EP0550148A2 (fr) * 1991-12-30 1993-07-07 Xerox Corporation Tête d'impression acoustique à encre avec un élément perforé et un écoulement de l'encre
EP0572220A2 (fr) * 1992-05-29 1993-12-01 Xerox Corporation Stabilisation d'une surface libre d'un liquide

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3211088A (en) * 1962-05-04 1965-10-12 Sperry Rand Corp Exponential horn printer
EP0216589A2 (fr) * 1985-09-16 1987-04-01 Xerox Corporation Ejecteurs de fuite de goutelettes liquides sans buses réagissant aux ondes de Rayleigh
EP0375433A2 (fr) * 1988-12-21 1990-06-27 Xerox Corporation Imprimante acoustique à jet d'encre avec une sensibilité réduite de la distance focale
EP0434931A2 (fr) * 1989-12-26 1991-07-03 Xerox Corporation Lentilles de Fresnel acoustiques multiples à phase discrète et leur application à l'impression acoustique à jet d'encre
US5087931A (en) * 1990-05-15 1992-02-11 Xerox Corporation Pressure-equalized ink transport system for acoustic ink printers
EP0493102A1 (fr) * 1990-12-26 1992-07-01 Xerox Corporation Imprimante acoustique à encre
EP0550148A2 (fr) * 1991-12-30 1993-07-07 Xerox Corporation Tête d'impression acoustique à encre avec un élément perforé et un écoulement de l'encre
EP0572220A2 (fr) * 1992-05-29 1993-12-01 Xerox Corporation Stabilisation d'une surface libre d'un liquide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0990524A2 (fr) * 1998-09-30 2000-04-05 Xerox Corporation Procédé d'impression acoustique à encre et système d'amélioration de l'uniformité par manipulation des caractéristiques non linéaires dans le système
EP0990524A3 (fr) * 1998-09-30 2001-01-31 Xerox Corporation Procédé d'impression acoustique à encre et système d'amélioration de l'uniformité par manipulation des caractéristiques non linéaires dans le système
US6364454B1 (en) 1998-09-30 2002-04-02 Xerox Corporation Acoustic ink printing method and system for improving uniformity by manipulating nonlinear characteristics in the system
CN1131782C (zh) * 1998-09-30 2003-12-24 施乐公司 一种提高打印均匀度的声控喷墨打印方法和系统

Also Published As

Publication number Publication date
JPH08309968A (ja) 1996-11-26
DE69601245T2 (de) 1999-06-02
DE69601245D1 (de) 1999-02-11
EP0739732B1 (fr) 1998-12-30

Similar Documents

Publication Publication Date Title
US5821958A (en) Acoustic ink printhead with variable size droplet ejection openings
EP0640481B1 (fr) Tête d'impression par jet d'encre
EP0726151B1 (fr) Tête d'impression à jet d'encre à haute performance
EP0434931B1 (fr) Lentilles de Fresnel acoustiques multiples à phase discrète et leur application à l'impression acoustique à jet d'encre
EP0272899B1 (fr) Têtes d'impression acoustiques
US5121141A (en) Acoustic ink printhead with integrated liquid level control layer
US5111220A (en) Fabrication of integrated acoustic ink printhead with liquid level control and device thereof
US7150514B2 (en) Print head, manufacturing method therefor, and printer
JP2007535431A (ja) 取り付けアセンブリ
US6893117B2 (en) Laminated ink jet recording head
JPS62263062A (ja) インクジエツトプリンタ用プリンタヘツド
EP0608135B1 (fr) Tête à jet d'encre
JP2831380B2 (ja) オリフィスプレート及びインクジェット記録ヘッドの製造方法,ならびに該オリフィスプレートを用いたインクジェット記録装置
US20020126166A1 (en) Method and apparatus for high resolution acoustic ink printing
EP0739732B1 (fr) Tête d'impression acoustique à encre avec distance focale variable
US6644785B2 (en) Solid BI-layer structures for use with high viscosity inks in acoustic ink in acoustic ink printing and methods of fabrication
JP3126276B2 (ja) インクジェット記録ヘッド
US7829818B2 (en) Ink jet head nozzle plate manufacturing method, ink jet head nozzle plate manufacturing apparatus, ink jet head nozzle plate, ink jet head, and ink jet recording apparatus
US6692103B2 (en) Ink jet recording head
JP3530744B2 (ja) インクジェット記録ヘッドの製造方法
JP2644407B2 (ja) ノズルレス液滴吐出システム
EP0272092A2 (fr) Imprimantes acoustiques
JP2003094644A (ja) インクジェットヘッド及びインクジェット記録装置
JPH0557889A (ja) インクジエツト記録ヘツド
JPH1016215A (ja) インクジェットヘッド及びその製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19970502

17Q First examination report despatched

Effective date: 19970611

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 69601245

Country of ref document: DE

Date of ref document: 19990211

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030408

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030423

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030508

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041103

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST