EP0734773B1 - Method for continuous optimization of the operating condition of an electrofilter - Google Patents

Method for continuous optimization of the operating condition of an electrofilter Download PDF

Info

Publication number
EP0734773B1
EP0734773B1 EP96103433A EP96103433A EP0734773B1 EP 0734773 B1 EP0734773 B1 EP 0734773B1 EP 96103433 A EP96103433 A EP 96103433A EP 96103433 A EP96103433 A EP 96103433A EP 0734773 B1 EP0734773 B1 EP 0734773B1
Authority
EP
European Patent Office
Prior art keywords
phase
voltage
test phase
period
normal phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96103433A
Other languages
German (de)
French (fr)
Other versions
EP0734773A2 (en
EP0734773A3 (en
Inventor
Achim Dr. Deiwick
Frank Bock
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Babcock Prozessautomation GmbH
Original Assignee
Babcock Prozessautomation GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Prozessautomation GmbH filed Critical Babcock Prozessautomation GmbH
Priority to SI9630411T priority Critical patent/SI0734773T1/en
Publication of EP0734773A2 publication Critical patent/EP0734773A2/en
Publication of EP0734773A3 publication Critical patent/EP0734773A3/en
Application granted granted Critical
Publication of EP0734773B1 publication Critical patent/EP0734773B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/66Applications of electricity supply techniques
    • B03C3/68Control systems therefor

Definitions

  • An electrostatic precipitator has two sets of electrodes: precipitation electrodes and spray electrodes.
  • the precipitation electrodes usually exist from profiled sheet metal strips that lead to several parallel walls are composed. Two adjacent walls form an alley for the gas stream to be cleaned. They are in the middle of the alley Spray electrodes arranged. They often consist of wires or Ribbons with laces. Usually they are Precipitation electrodes are grounded, and the spray electrodes are with a High voltage source connected.
  • the dust particles to be separated are separated by electrons the spray electrodes are released, ionized and in the between Spray electrodes and precipitation electrodes existing electrostatic field deflected from the gas flow and to the Precipitation electrodes deposited.
  • the carried electrical transfer charge to the precipitation electrode.
  • the dust particles to be separated have a very high specific resistance (> 10 11 ⁇ cm)
  • the electrical charge from the dust layer deposited on the precipitation electrodes cannot flow away as quickly as it is charged by the influx of further charged particles .
  • the result is the so-called back spraying, ie a discharge which is opposite to the discharge occurring at the spray electrodes.
  • the back spraying throws dust back into the gas stream. The degree of separation deteriorates.
  • the electrostatic separation of high-resistance dusts is one certain strength of the current flowing between the electrodes of a Electrofilter flows, optimally.
  • the deposition deteriorates Increase in the current, this is an indication that the Back spraying has started.
  • the optimal operating point depends on the parameters of the cleaning gas flow. If the parameters change, then in a change in the operating point is also generally required. This be explained using a few simple examples:
  • An electrostatic filter can remove the fly ash from the flue gas separate the coal-fired boiler.
  • a generator can be used to generate electrical energy via a turbine operate. The need for electrical energy increases within of the daily load cycle, less steam is required. For Reduced steam generation, less coal is fired. Accordingly, the amount of fly ash that the e-filter decreases must cut off. By changing the mode of operation of the boiler from Full load to partial load thus changes an essential parameter, namely the volume flow of the fly ash.
  • Soot bubbles Water vapor emitted. This process is called Soot bubbles. Soot blowing can be done 3 to 4 times a day and take half an hour to an hour each. The Steam leaves the boiler with the flue gas through the Dust collector. Part of the moisture is deposited on the fly ash particles and changes the electrical properties of fly ash and Flue gas. Soot blowing also changes the operation of the Electro filter essential parameters.
  • Load changes and soot bladders are only examples of perfectly ordinary ones Operations in the operation of an electrostatic filter, in which the Change the parameters of the gas flow to be cleaned.
  • EP 0 097 161 B1 discloses an electrostatic Operate separator with a current that is just the point of insertion of spraying back. Current and voltage are monitored in which one increases or decreases the arousal to the point determine at which the back spraying begins.
  • the stream consists of one Pulse train, and the voltage is a DC voltage with superimposed AC component. With conventional two-way rectification the mains voltage results for the current and the AC component of the voltage a frequency of 100 Hz.
  • EP 0 140 855 B1 describes a method for changing one of the Electrodes of an electrostatic dust collector Known voltage, in which the voltage by one of the Grid frequency derived pulse train is generated and the change by causing the length of the interval between two successive individual pulses by hiding a straight one Number of pulses is varied. The number of pulses per second is depending on the number of hidden pulses, this means that the number is 33, 20, 14, 11, etc. degraded.
  • the mains voltage is one via thyristors High voltage transformer supplied, the secondary side with a Two-way rectifier is connected. The output voltage of the The rectifier is connected to the electrodes of the electrostatic filter.
  • the thyristors are controlled by a control loop that is switched so that it between two pulses that are fed to the electrostatic filter, one Deletes even number of pulses from the mains voltage.
  • the invention has for its object a method for operating an electrostatic precipitator at which the set operating point is continuously monitored and tracked so that the filter is constantly in works close to the optimal operating point. This task will solved according to the invention by the features specified in claim 1.
  • Figure 1 illustrates the course of current and voltage for different cases, characterized by different length of the interval distinguish between two successive pulses.
  • FIG. 1 illustrates the succession of operating periods.
  • Figure 3 illustrates the sequence of cycles within a single one Phase.
  • FIG. 2 shows several successive operating periods m, m + 1, m + 2, ... shown schematically.
  • Each operating period includes one Normal phase and a subsequent test phase.
  • the normal phase takes much longer than the test phase.
  • the duration of the normal phase is preferably about 4: 1 to 20: 1 for the duration of the test phase.
  • the normal phase lasts e.g. B. 1 h, the test phase 5 - 10 min.
  • a constant pulse number is used in each normal phase, also in every test phase. However, the pulse number deviates from the test phase the pulse number of the immediately preceding normal phase by ⁇ 1 as explained below.
  • the normal phase and the test phase each comprise a sequence of cycles, which are consecutively numbered 1, 2, 3, ..., k, k + 1, ...
  • the cycles follow one another at intervals of 20-40 s, preferably approximately 30 s.
  • the associated residual voltage is measured and due to of the measured value obtained becomes the current limit for the following Cycle set, as explained below with reference to Figure 3.
  • the time 0 in FIG. 3 can be any time during the Operation, z. B. the switch-on time or the start of a Normal phase.
  • the current limit for the Cycle k set to 450 mA.
  • the associated residual voltage is according to the upper diagram of Figure 3 at about 25 kV.
  • the current limit is increased to 500 mA to try out whether a higher residual voltage now arises.
  • the increased Current limitation results in a residual voltage of in cycle k + 1 25.8 kV.
  • As the increase in the current limit leads to an increase in the Residual voltage has led to k + in the following cycle Current limit increased again, this time to 550 mA. It follows again an increased residual voltage, namely 26.2 kV.
  • test phase follows the normal phase. In the test phase should be tried out whether with a changed pulse number Deposition can be improved.
  • a pulse number is used that differs from the Pulse number of the immediately preceding normal phase by ⁇ 1 differs. Also in the test phase are analogous to the normal phase go through numerous cycles. After becoming a quasi stationary State has been set, an average of the Voltage calculated and saved. This mean is compared with the Average of the associated normal phase compared.

Abstract

Continually optimising the operating condition of an electrostatic filter comprises: (a) operating with a direct voltage with superimposed pules, derived by full-wave rectification of the mains voltage, the time spacing between successive pulses being variable by screening a selectable number of full mains waves; (b) operating with a constant number of pulses in the normal phase and subsequent test phase of each of successive operating periods; (c) measuring the residual voltage during the normal and test phases in each of successive cycles (1,2,3...,k,...) at a given limitation of the current or voltage and iteratively varying the limitation, depending on the residual voltage change from cycle, so that the residual voltage tends towards a max.; and (d) operating the test phase of each operating period with a number of pulses differing by 1 from that in the normal phase, measuring and comparing the mean voltage values in the normal and test phases and, depending on the difference, iteratively varying the number of pulses from operating period to operating period such that the mean voltage value tends towards a max..

Description

Ein Elektrofilter hat zwei Sätze von Elektroden: Niederschlagselektroden und Sprühelektroden. Die Niederschlagselektroden bestehen meistens aus profilierten Blechstreifen, die zu mehreren parallelen Wänden zusammengesetzt sind. Je zwei benachbarte Wände bilden eine Gasse für den zu reinigenden Gasstrom. Mittig in der Gasse sind die Sprühelektroden angeordnet. Sie bestehen vielfach aus Drähten oder Bändern, die mit Spitzen besetzt sind. Meistens sind die Niederschlagselektroden geerdet, und die Sprühelektroden sind mit einer Hochspannungsquelle verbunden.An electrostatic precipitator has two sets of electrodes: precipitation electrodes and spray electrodes. The precipitation electrodes usually exist from profiled sheet metal strips that lead to several parallel walls are composed. Two adjacent walls form an alley for the gas stream to be cleaned. They are in the middle of the alley Spray electrodes arranged. They often consist of wires or Ribbons with laces. Mostly they are Precipitation electrodes are grounded, and the spray electrodes are with a High voltage source connected.

Die abzuscheidenden Staubteilchen werden durch Elektronen, die von den Sprühelektroden abgegeben werden, ionisiert und in dem zwischen Sprühelektroden und Niederschlagselektroden bestehenden elektrostatischen Feld aus der Gasströmung ausgelenkt und an den Niederschlagselektroden abgeschieden. Die mitgeführte elektrische Ladung geben sie an die Niederschlagselektrode ab.The dust particles to be separated are separated by electrons the spray electrodes are released, ionized and in the between Spray electrodes and precipitation electrodes existing electrostatic field deflected from the gas flow and to the Precipitation electrodes deposited. The carried electrical They transfer charge to the precipitation electrode.

Wenn aber die abzuscheidenden Staubteilchen einen sehr hohen spezifischen Widerstand haben (> 1011 Ω · cm), kann unter gewissen Betriebsbedingungen die elektrische Ladung aus der auf den Niederschlagselektroden abgelagerten Staubschicht nicht so schnell abfließen, wie sie durch den Zustrom von weiteren geladenen Teilchen aufgeladen wird. Das Ergebnis ist das sogenannte Rücksprühen, d.h. eine Entladung, die der an den Sprühelektroden auftretenden Entladung entgegengerichtet ist. Durch das Rücksprühen wird Staub in den Gasstrom zurückgeschleudert. Der Abscheidegrad wird verschlechtert.However, if the dust particles to be separated have a very high specific resistance (> 10 11 Ωcm), under certain operating conditions the electrical charge from the dust layer deposited on the precipitation electrodes cannot flow away as quickly as it is charged by the influx of further charged particles . The result is the so-called back spraying, ie a discharge which is opposite to the discharge occurring at the spray electrodes. The back spraying throws dust back into the gas stream. The degree of separation deteriorates.

Die elektrostatische Abscheidung hochohmiger Stäube ist bei einer bestimmten Stärke des Stromes, der zwischen den Elektroden eines Elektrofilters fließt, optimal. Verschlechtert sich die Abscheidung bei Vergrößerung des Stromes, so ist dies ein Indiz dafür, daß das Rücksprühen eingesetzt hat. Um die Abscheidung zu optimieren, ist es daher erforderlich, den Strom in der Weise zu begrenzen, daß das Rücksprühen gerade vermieden wird.The electrostatic separation of high-resistance dusts is one certain strength of the current flowing between the electrodes of a Electrofilter flows, optimally. The deposition deteriorates Increase in the current, this is an indication that the Back spraying has started. To optimize the deposition, it is therefore necessary to limit the current so that the Back spraying is just avoided.

Der optimale Betriebspunkt hängt aber von den Kenngrößen des zu reinigenden Gasstromes ab. Wenn die Kenngrößen sich ändern, so ist im allgemeinen auch eine Änderung des Betriebspunktes erforderlich. Dies sei an einigen einfachen Beispielen erläutert:The optimal operating point depends on the parameters of the cleaning gas flow. If the parameters change, then in a change in the operating point is also generally required. This be explained using a few simple examples:

Ein Elektrofilter kann die Flugasche aus dem Rauchgas eines kohlegefeuerten Kessels trennen. Mit dem im Kessel erzeugten Dampf kann über eine Turbine ein Generator zur Erzeugung elektrischer Energie betrieben werden. Nimmt der Bedarf an elektrischer Energie innerhalb des täglichen Lastspiels ab, so wird auch weniger Dampf benötigt. Zur Verminderung der Dampferzeugung wird weniger Kohle gefeuert. Dementsprechend nimmt die Menge an Flugasche ab, die das E-Filter abtrennen muß. Durch die Änderung der Fahrweise des Kessels von Vollast zu Teillast ändert sich also eine wesentliche Kenngröße, nämlich der Volumenstrom der Flugasche.An electrostatic filter can remove the fly ash from the flue gas separate the coal-fired boiler. With the steam generated in the boiler A generator can be used to generate electrical energy via a turbine operate. The need for electrical energy increases within of the daily load cycle, less steam is required. For Reduced steam generation, less coal is fired. Accordingly, the amount of fly ash that the e-filter decreases must cut off. By changing the mode of operation of the boiler from Full load to partial load thus changes an essential parameter, namely the volume flow of the fly ash.

Zur Reinigung der Kesselwände werden diese während des Betriebs mit Wasserdampf abgestrahlt. Diesen Vorgang bezeichnet man als Rußblasen. Rußblasen kann 3 bis 4 mal am Tage vorgenommen werden und jeweils eine halbe bis eine Stunde in Anspruch nehmen. Der Wasserdampf verläßt den Kessel mit dem Rauchgas durch den Entstauber. Ein Teil der Feuchtigkeit lagert sich an die Flugaschepartikel an und ändert die elektrischen Eigenschaften der Flugasche und des Rauchgases. So ändert auch das Rußblasen die für den Betrieb des Elektrofilters wesentlichen Kenngrößen.To clean the boiler walls, they are used during operation Water vapor emitted. This process is called Soot bubbles. Soot blowing can be done 3 to 4 times a day and take half an hour to an hour each. The Steam leaves the boiler with the flue gas through the Dust collector. Part of the moisture is deposited on the fly ash particles and changes the electrical properties of fly ash and Flue gas. Soot blowing also changes the operation of the Electro filter essential parameters.

Lastwechsel und Rußblasen sind nur Beispiele für durchaus gewöhnliche Vorgänge beim Betrieb eines Elektrofilters, bei denen sich die Kenngrößen des zu reinigenden Gasstromes ändern.Load changes and soot bladders are only examples of perfectly ordinary ones Operations in the operation of an electrostatic filter, in which the Change the parameters of the gas flow to be cleaned.

Durch EP 0 097 161 B1 ist es bekannt, einen elektrostatischen Abscheider mit einem Strom zu betreiben, der gerade dem Einsetzpunkt des Rücksprühens entspricht. Strom und Spannung werden überwacht, in dem man die Erregung erhöht oder erniedrigt, um den Punkt zu bestimmen, bei dem das Rücksprühen beginnt. Die Quelle, aus der die Erregung gespeist wird, ist ein 50 Hz - Netz. Der Strom besteht aus einer Pulsfolge, und die Spannung ist eine Gleichspannung mit überlagerter Wechselspannungskomponente. Bei konventioneller Zweiweg-Gleichrichtung der Netzspannung ergibt sich für den Strom und die Wechselspannungskomponente der Spannung eine Frequenz von 100 Hz.EP 0 097 161 B1 discloses an electrostatic Operate separator with a current that is just the point of insertion of spraying back. Current and voltage are monitored in which one increases or decreases the arousal to the point determine at which the back spraying begins. The source from which the Excitation is powered by a 50 Hz network. The stream consists of one Pulse train, and the voltage is a DC voltage with superimposed AC component. With conventional two-way rectification the mains voltage results for the current and the AC component of the voltage a frequency of 100 Hz.

Durch EP 0 140 855 B1 ist ein Verfahren zum Verändern einer an den Elektroden eines elektrostatischen Staubabscheiders auftretenden Spannung bekannt, bei dem die Spannung durch eine von der Netzfrequenz abgeleitete Pulsfolge erzeugt wird und die Veränderung dadurch bewirkt wird, daß die Länge des Intervalls zwischen zwei aufeinanderfolgenden einzelnen Pulsen durch Ausblenden einer geraden Anzahl von Pulsen variiert wird. Die Anzahl der Pulse pro Sekunde wird dadurch je nach Anzahl der ausgeblendeten Pulse auf 33, 20, 14, 11, usw. erniedrigt. Die Netzspannung wird dabei über Thyristoren einem Hochspannungstransformator zugeführt, der sekundärseitig mit einem Zweiweg-Gleichrichter verbunden ist. Die Ausgangsspannung des Gleichrichters liegt an den Elektroden des Elektrofilters. Die Thyristoren werden über einen Regelkreis gesteuert, der so geschaltet ist, daß er zwischen zwei Pulsen, die dem Elektrofilter zugeführt werden, eine gerade Anzahl von Pulsen aus der Netzspannung löscht.EP 0 140 855 B1 describes a method for changing one of the Electrodes of an electrostatic dust collector Known voltage, in which the voltage by one of the Grid frequency derived pulse train is generated and the change by causing the length of the interval between two successive individual pulses by hiding a straight one Number of pulses is varied. The number of pulses per second is depending on the number of hidden pulses, this means that the number is 33, 20, 14, 11, etc. degraded. The mains voltage is one via thyristors High voltage transformer supplied, the secondary side with a Two-way rectifier is connected. The output voltage of the The rectifier is connected to the electrodes of the electrostatic filter. The thyristors are controlled by a control loop that is switched so that it between two pulses that are fed to the electrostatic filter, one Deletes even number of pulses from the mains voltage.

Durch EP 0 465 547 B1 ist es bekannt, zum Steuern der Stromversorgung der Entladungselektroden eines Elektrofilters zwecks Erzielung einer max. It is known from EP 0 465 547 B1 for controlling the power supply the discharge electrodes of an electrostatic filter in order to achieve a max.

Entstaubung den Entladungselektroden Strompulse mit gegebener Stromstärke zuzuführen und die Anzahl der Pulse pro Sekunde gemäß dem vorgenannten Dokument zu variieren. Dabei werden einander entsprechende Momentanwerte der Spannung zwischen Entladungs- und Niederschlagselektroden für eine Anzahl verschiedener Pulsfrequenzen gemessen, und die Strompulsversorgung wird dann auf die Pulsfrequenz eingestellt, für welche der größte Momentanwert gemessen worden ist. Der Impulsstrom wird dabei unter Berücksichtigung der Kapazität der Stromversorgungseinheit und evtl. Überschläge zwischen den Entladungs- und den Niederschlagselektroden auf einen Höchstwert eingestellt.Dedusting the discharge electrodes current pulses with a given Supply current and the number of pulses per second according to vary the aforementioned document. In doing so, each other corresponding instantaneous values of the voltage between discharge and Precipitation electrodes for a number of different pulse frequencies is measured, and the current pulse supply is then adjusted to the pulse frequency for which the largest instantaneous value has been measured. The pulse current is taken into account the capacity of the Power supply unit and possible flashovers between the Discharge and precipitation electrodes to a maximum set.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Betreiben eines Elektrofilters anzugeben, bei dem der eingestellte Betriebspunkt fortgesetzt überwacht und nachgeführt wird, so daß das Filter ständig in der Nähe des optimalen Betriebspunktes arbeitet. Diese Aufgabe wird erfindungsgemäß durch die in Anspruch 1 angegebenen Merkmale gelöst.The invention has for its object a method for operating an electrostatic precipitator at which the set operating point is continuously monitored and tracked so that the filter is constantly in works close to the optimal operating point. This task will solved according to the invention by the features specified in claim 1.

Weitere vorteilhafte Merkmale sind in den Unteransprüchen angegeben.Further advantageous features are specified in the subclaims.

Die Figuren 1 - 3 dienen zur Verdeutlichung der Erfindung anhand von Diagrammen.Figures 1-3 serve to illustrate the invention with reference to Diagrams.

Figur 1 veranschaulicht den Verlauf von Strom und Spannung für verschiedene Fälle, die sich durch unterschiedliche Länge des Intervalls zwischen zwei aufeinanderfolgenden Pulsen unterscheiden.Figure 1 illustrates the course of current and voltage for different cases, characterized by different length of the interval distinguish between two successive pulses.

Figur 2 veranschaulicht die Aufeinanderfolge der Betriebsperioden.Figure 2 illustrates the succession of operating periods.

Figur 3 veranschaulicht die Folge der Zyklen innerhalb einer einzelnen Phase.Figure 3 illustrates the sequence of cycles within a single one Phase.

In Figur 1 zeigen fünf übereinander angeordnete Diagramme den Verlauf von Strom und Spannung für den herkömmlichen Betrieb mit von Strom und Spannung für den herkömmiichen Betrieb mit Netzfrequenz und Zweiweg-Gleichrichtung (oben) sowie im sogenannten "Semipulsbetrieb" mit verschiedenen Pulszahlen 1 - 4. Bei der Zweiweg-Gleichrichtung ist der Stromverlauf ebenso wie der Spannungsverlauf durch eine Kette von Pulsen in Abständen von 10 ms gekennzeichnet. Die Spannungspulse sind dabei einer Gleichspannung überlagert. Bei Pulszahl 1 wird der Hochspannungsteil der Stromversorgung zwischen je zwei Pulsen für eine volle Netzschwingung nicht angesteuert. Die verbleibenden Pulse haben daher einen vergrößerten Abstand von 30 ms. Jeder Spannungspuls hat am Anfang eine steil ansteigende Flanke. Die andere Flanke fällt bis zum Einsetzen des nächst folgenden Pulses annähernd exponentiell auf eine Restspannung ab. Die Strompulse steigen steil bis zu einem Maximalstrom an und fallen dann ebenso steil bis auf 0 ab. Nachfolgend ist mit "Strom" immer der Maximalstrom gemeint. Bei Pulszahl 2 sind zwischen zwei Pulsen jeweils zwei volle Netzschwingungen nicht durchgeschaltet. Die verbleibenden Pulse haben daher einen Abstand von 50 ms. Die entsprechenden Charakteristiken für die Pulszahlen 3 und 4 sind aus Figur 1 ohne weiteres zu entnehmen.In Figure 1, five diagrams arranged one above the other show the course of current and voltage for conventional operation with of current and voltage for conventional operation with Mains frequency and two-way rectification (above) as well as in the so-called "Semi-pulse operation" with different pulse numbers 1 - 4. At the The current path is the same as the two-way rectification Voltage curve through a chain of pulses at intervals of 10 ms characterized. The voltage pulses are a DC voltage overlaid. At pulse number 1, the high voltage part of the Power supply between two pulses for a full network oscillation not controlled. The remaining pulses therefore have one increased interval of 30 ms. Every voltage pulse has at the beginning a steeply rising flank. The other flank falls until the onset of the next following pulse approximately exponentially to one Residual voltage. The current pulses rise steeply up to one Maximum current and then drop just as steeply to 0. Below "current" always means the maximum current. If the number of pulses is 2 Two full network oscillations do not occur between two pulses switched through. The remaining pulses are therefore at a distance of 50 ms. The corresponding characteristics for the pulse numbers 3 and 4 are readily apparent from Figure 1.

In Figur 2 sind mehrere aufeinanderfolgende Betriebsperioden m, m + 1, m + 2, ... schematisch dargestellt. Jede Betriebsperiode umfaßt eine Normalphase und eine anschließende Testphase. Die Normalphase dauert wesentlich länger als die Testphase. Die Dauer der Normalphase verhält sich zur Dauer der Testphase vorzugsweise wie etwa 4:1 bis 20:1. Die Normalphase dauert z. B. 1 h, die Testphase 5 - 10 min.FIG. 2 shows several successive operating periods m, m + 1, m + 2, ... shown schematically. Each operating period includes one Normal phase and a subsequent test phase. The normal phase takes much longer than the test phase. The duration of the normal phase is preferably about 4: 1 to 20: 1 for the duration of the test phase. The normal phase lasts e.g. B. 1 h, the test phase 5 - 10 min.

In jeder einzelnen Normalphase wird mit konstanter Pulszahl gearbeitet, ebenso in jeder Testphase. Jedoch weicht die Pulszahl der Testphase von der Pulszahl der unmittelbar vorangegangenen Normalphase um ± 1 ab, wie weiter unten zu erläutern ist.A constant pulse number is used in each normal phase, also in every test phase. However, the pulse number deviates from the test phase the pulse number of the immediately preceding normal phase by ± 1 as explained below.

Die Normalphase und die Testphase umfassen je eine Folge von Zyklen, welche fortlaufend mit 1, 2, 3, ..., k, k + 1, ... numeriert sind. Die Zyklen folgen aufeinander in Zeitabständen von 20-40 s, vorzugsweise etwa 30 s. In jedem Zyklus wird an der Regeleinrichtung des Elektrofilters ein oberer Grenzwert für den Strom, d. h. eine Strombegrenzung, eingegeben. Die zugehörige Restspannung wird gemessen, und aufgrund des erhaltenen Meßwertes wird die Strombegrenzung für den folgenden Zyklus eingestellt, wie nachfolgend anhand von Figur 3 erläutert wird.The normal phase and the test phase each comprise a sequence of cycles, which are consecutively numbered 1, 2, 3, ..., k, k + 1, ... The cycles follow one another at intervals of 20-40 s, preferably approximately 30 s. In each cycle, one turns on the control device of the electrostatic filter upper limit for the current, d. H. a current limit, entered. The associated residual voltage is measured and due to of the measured value obtained becomes the current limit for the following Cycle set, as explained below with reference to Figure 3.

In Figur 3 sind längs der waagerechten Zeitachse mehrere aufeinanderfolgende Zyklen k, k + 1, ... symbolisch dargestellt. Der zeitliche Abstand zwischen den einzelnen Zyklen beträgt in diesem Fall 30 s. Betrachtet wird zunächst eine Normalphase.In Figure 3 there are several along the horizontal time axis successive cycles k, k + 1, ... are represented symbolically. The In this case, there is a time interval between the individual cycles 30 s. A normal phase is considered first.

Der Zeitpunkt 0 in Figur 3 kann ein beliebiger Zeitpunkt während des Betriebes sein, z. B. der Einschaltzeitpunkt oder der Beginn einer Normalphase. In diesem Zeitpunkt ist die Strombegrenzung für den Zyklus k auf 450 mA eingestellt. Die zugehörige Restspannung liegt gemäß dem oberen Diagramm von Figur 3 bei etwa 25 kV. Anschließend wird die Strombegrenzung auf 500 mA erhöht, um auszuprobieren, ob sich nun eine höhere Restspannung einstellt. Die erhöhte Strombegrenzung ergibt im Zyklus k + 1 eine Restspannung von 25,8 kV. Da die Erhöhung der Strombegrenzung zu einer Erhöhung der Restspannung geführt hat, wird im folgenden Zyklus k + die Strombegrenzung abermals erhöht, diesmal auf 550 mA. Es ergibt sich wieder eine erhöhte Restspannung, nämlich 26,2 kV. Da die Änderung der Restspannung auch diesmal ein positives Vorzeichen hat, wird die Strombegrenzung in der gleichen Richtung noch einmal geändert, d. h. auf 600 mA erhöht. Es stellt sich im Zyklus k + 3 eine erhöhte Restspannung von 26,5 kV ein. Ein erneuter Versuch, durch eine Steigerung der Strombegrenzung auf 650 mA eine noch höhere Restspannung zu erreichen, geht jedoch im Zyklus k + 4 fehl. Die Restspannung fällt auf 26,2 kV ab. Das ist ein Indiz für den Beginn des Rücksprühens. Daher wird im Zyklus k + 5 die Strombegrenzung wieder niedriger angesetzt, und zwar auf 600 mA, mit dem Effekt, daß die Restspannung steigt, und zwar auf 26,5 kV. Nachdem im Zyklus k + 5 die Erniedrigung der Strombegrenzung zu einer erhöhten Restspannung geführt hat, wird die Strombegrenzung für den Zyklus k + 6 ebenfalls erniedrigt. Es ergibt sich aber diesmal eine niedrigere Restspannung von 26,2 kV. Daher wird die Strombegrennzung für den nächsten Zyklus wieder in umgekehrter Richtung geändert, nämlich auf 600 mA erhöht. Das führt im Zyklus k + 7 wieder zu einer erhöhten Restspannung. Offensichtlich hat sich ab Zyklus k + 3 der Zustand stabilisiert. Die Folge ist, daß fortan die Strombegrenzung zwischen 550 und 650 mA hin und her pendelt. Die Restspannung stellt sich auf einen quasi stationären Wert ein. Sie schwankt geringfügig um etwa 26,4 kV. Dieser Zustand ist bei der eingestellten Pulszahl und den augenblicklichen Kenngrößen des zu reinigenden Gasstromes optimal. Sollten sich die Kenngrößen jedoch während der betrachteten Normalphase ändern, so tastet sich die Regeleinrichtung analog zu den Zyklen k bis k + 3 an den optimalen Betriebspunkt heran, der den geänderten Kenngrößen entspricht. Erfahrungsgemäß verlaufen die Änderungen der Kenngrößen relativ langsam, gemessen an der Periodendauer der Zyklen. Die Änderungen der Strombegrenzung von Zyklus zu Zyklus, die bei dem angegebenen Beispiel jeweils ± 50 mA, sind in jedem Falle klein im Vergleich zu dem Strom, auf den jeweils begrenzt wird, vorzugsweise etwa 5 bis 15 %. Daher sind im stationären Zustand auch die Spannungsänderungen relativ klein, so daß der Filterbetrieb durch sie nicht merklich beeinträchtigt wird.The time 0 in FIG. 3 can be any time during the Operation, z. B. the switch-on time or the start of a Normal phase. At this point the current limit for the Cycle k set to 450 mA. The associated residual voltage is according to the upper diagram of Figure 3 at about 25 kV. Subsequently the current limit is increased to 500 mA to try out whether a higher residual voltage now arises. The increased Current limitation results in a residual voltage of in cycle k + 1 25.8 kV. As the increase in the current limit leads to an increase in the Residual voltage has led to k + in the following cycle Current limit increased again, this time to 550 mA. It follows again an increased residual voltage, namely 26.2 kV. Because the change the residual voltage also has a positive sign this time the current limit in the same direction changed again, d. H. increased to 600 mA. There is an increased cycle k + 3 Residual voltage of 26.5 kV. Another try through one Increasing the current limit to 650 mA is an even higher one Reaching residual voltage, however, fails in cycle k + 4. The Residual voltage drops to 26.2 kV. This is an indication of the beginning of the Spraying back. Therefore, the current limitation is restored in cycle k + 5 set lower, namely to 600 mA, with the effect that the Residual voltage rises to 26.5 kV. After in cycle k + 5 the Lowering the current limit to an increased residual voltage has led, the current limitation for the cycle k + 6 is also degraded. This time, however, there is a lower residual voltage of 26.2 kV. Therefore, the current limit for the next cycle changed again in the opposite direction, namely increased to 600 mA. This leads to an increased residual tension in cycle k + 7. Apparently the condition has stabilized from cycle k + 3. The consequence is that from now on the current limitation between 550 and 650 mA now and then commutes here. The residual voltage is quasi stationary Value. It fluctuates slightly around 26.4 kV. That state is at the set pulse number and the current parameters of the optimal gas flow to be cleaned. Should the parameters change however change during the normal phase under consideration, so gropes Control device analogous to the cycles k to k + 3 at the optimal Operating point that corresponds to the changed parameters. Experience has shown that the changes in the parameters are relative slow, measured by the period of the cycles. The changes the current limitation from cycle to cycle that at the specified Example each ± 50 mA, are in any case small compared to that Current to which is limited, preferably about 5 to 15%. Therefore, the voltage changes are also in the stationary state relatively small, so that the filter operation through them is not noticeable is affected.

Es versteht sich von selber, daß unter Berücksichtigung der Strom-Spannungskennlinie, die experimentell zu ermitteln ist, anstelle des Stromes auch die Spannung begrenzt werden kann.It goes without saying that considering the Current-voltage characteristic, which is to be determined experimentally, instead of Current can also limit the voltage.

Während der ganzen Dauer der Normalphase oder zumindest während eines Zeitabschnitts, der sich über mehrere Zyklen am Ende der Normalphase erstreckt, wird durch Auswertung einer großen Anzahl von Momentanwerten ein Mittelwert der Spannung berechnet und gespeichert. Als Mittelwert wird z. B. die effektive Spannung gewählt.During the entire duration of the normal phase or at least during a period of time that spans several cycles at the end of the Normal phase extends by evaluating a large number of An average value of the voltage is calculated and saved. As an average z. B. selected the effective voltage.

An die Normalphase schließt sich eine Testphase an. In der Testphase soll ausprobiert werden, ob mit einer geänderten Pulszahl die Abscheidung verbessert werden kann.A test phase follows the normal phase. In the test phase should be tried out whether with a changed pulse number Deposition can be improved.

In der Testphase wird mit einer Pulszahl gearbeitet, die sich von der Pulszahl der unmittelbar vorangegangenen Normalphase um ± 1 unterscheidet. Auch in der Testphase werden analog zur Normalphase zahlreiche Zyklen durchlaufen. Nachdem sich ein quasi stationärer Zustand eingestellt hat, wird auch in der Testphase ein Mittelwert der Spannung berechnet und gespeichert. Dieser Mittelwert wird mit dem Mittelwert der zugehörigen Normalphase verglichen.In the test phase, a pulse number is used that differs from the Pulse number of the immediately preceding normal phase by ± 1 differs. Also in the test phase are analogous to the normal phase go through numerous cycles. After becoming a quasi stationary State has been set, an average of the Voltage calculated and saved. This mean is compared with the Average of the associated normal phase compared.

Bei dem in Figur 2 veranschaulichten Beispiel ergibt sich für die Betriebsperiode m, daß der Mittelwert in der Testphase niedriger liegt als in der Normalphase. Die Änderung der Pulszahl - in diesem Fall von 5 auf 6 - hat also keine Verbesserung im Sinne einer Erhöhung des Mittelwertes der Spannung ergeben. Daher wird in der Normalphase der folgenden Periode m + 1 wieder mit der Pulszahl 5 gearbeitet. Da in der Betriebsperiode m eine Erhöhung der Pulszahl erfolglos war, wird in der Testphase der Betriebsperiode m + 1 die Pulszahl auf 4 erniedrigt. Der Effekt besteht auch diesmal darin, daß der Mittelwert der Spannung absinkt. Daher wird in der Normalphase der Betriebsperiode m + 2 die Pulszahl auf 5 zurückgestellt. In der anschließenden Testphase wird erneut die Pulszahl 6 ausprobiert, auch hier mit dem Erfolg, daß der Mittelwert der Spannung absinkt. Folglich wird auch in der Betriebsperiode m + 3 in der Normalphase wieder die Pulszahl 5 eingestellt. In der Testphase wird noch einmal die Pulszahl 4 ausprobiert, diesmal mit Erfolg, offenbar weil sich inzwischen eine Kenngröße des zu reinigenden Gasstromes geändert hat. Es stellt sich ein erhöhter Mittelwert der Spannung ein. Da die Absenkung der Pulszahl in der Betriebsperiode m + 3 erfolgreich war, wird in der Betriebsperiode m + 4 in der Normalphase die Pulszahl 4 beibehalten. In der anschließenden Testphase wird die Pulszahl erneut abgesenkt, und zwar auf 3. Der Effekt ist aber negativ. Daher wird in der Normalphase der Betriebsperiode m + 5 die Pulszahl wieder auf 4 zurückgestellt.In the example illustrated in FIG. 2, for Operating period m that the mean value in the test phase is lower than in the normal phase. The change in the pulse number - in this case from 5 to 6 - has no improvement in terms of increasing the Average voltage result. Therefore, in the normal phase following period m + 1 worked again with the pulse number 5. Because in the Operating period m an increase in the number of pulses was unsuccessful, is in the Test phase of the operating period m + 1 reduced the number of pulses to 4. The This time, too, the effect is that the mean value of the voltage sinks. Therefore, in the normal phase of the operating period m + 2 Pulse number reset to 5. In the subsequent test phase tried again the pulse number 6, again with the success that the Average voltage drops. Consequently, also in the Operating period m + 3 in the normal phase the pulse number 5 again set. In the test phase, the pulse number 4 is tried again, this time with success, apparently because a characteristic of cleaning gas flow has changed. It turns out an increased Average voltage. Since the decrease in the number of pulses in the Operating period m + 3 was successful, will be in operating period m + 4 keep the pulse number 4 in the normal phase. In the subsequent Test phase, the pulse number is reduced again, to 3. The effect but is negative. Therefore, in the normal phase of the operating period m + 5 reset the pulse number to 4.

Da die Testphase im Vergleich zur Normalphase relativ kurz ist und die Pulszahlen der Normalphase und der anschließenden Testphase sich nur um ± 1 unterscheiden, sind die hierdurch bedingten Schwankungen relativ gering und haben im Einzelfall geringen Einfluß auf die Qualität der Abscheidung. Wenn sich aber in längeren Zeiträumen die Kenngrößen des zu reinigenden Gasstromes nachhaltig ändern, wird durch die in Figur 2 veranschaulichte Arbeitsweise bewirkt, daß das Elektrofilter stets in der Nähe des jeweiligen optimalen Betriebspunktes arbeitet.Since the test phase is relatively short compared to the normal phase and the Pulse numbers in the normal phase and the subsequent test phase only Differences by ± 1 are the fluctuations caused by this relatively small and have little influence on the quality of the individual Deposition. However, if the Change the parameters of the gas flow to be cleaned sustainably by the method of operation illustrated in FIG. 2 causes the Electrostatic filters always close to the respective optimal operating point is working.

Claims (6)

  1. Method for continuous optimisation of the operational state of an electrostatic filter, with the following features:
    a) operation is with a direct voltage, which is derived from the mains voltage by full-wave rectification, with superimposed pulses, wherein the spacing in time between successive pulses is variable by masking a selectable number of full mains waves;
    b) successive operating periods (1, 2, 3, ..., m, ...) each comprise a respective normal phase and consecutive test phase;
    c) operation in each operating period is with a constant pulse number in the normal and in the test phase;
    d) during the normal phase and the test phase the residual voltage is measured in each of successive cycles (1, 2, 3, ..., k, ...) with a given limitation of the current or the voltage and the limitation is iteratively varied in dependence on the change in the residual voltage from cycle to cycle so that the residual voltage tends to a maximum;
    e) in each operating period (1, 2, 3, ..., m, ...) operation in the test phase is with a pulse number which is changed by comparison with the normal phase by ± 1 and the mean values of the voltage in the normal phase and in the test phase are measured and compared with one another, and in dependence on the difference the pulse number is iteratively varied from operating period to operating period so that the mean value of the voltage tends to a maximum.
  2. Method according to claim 1 for continuous optimisation of the operational state of an electrostatic filter, with the following features:
    a) operation is with a direct voltage, which is derived from the mains voltage by full-wave rectification, with superimposed pulses, wherein the spacing in time between successive pulses is variable by masking a selectable number of full mains waves;
    b) successive operating periods (1, 2, 3, ..., m, ...) each comprise a respective normal phase and consecutive test phase;
    c) operation in each operating period is with a constant pulse number in the normal and in the test phase;
    d) the pulse number of the test phase deviates from the pulse number of the immediately preceding normal phase by ± 1, wherein the sign is determined in accordance with the following features h and i;
    e) the normal phase and the test phase each comprise a sequence of cycles (1, 2, 3, ..., k, ...) according to the following pattern:
    ea) the current is limited to ik;
    eb) the residual voltage uk is measured;
    ec) the current is limited to a value ik+1 = ik + Δik deviating from ik, wherein Δik is positive or negative and the absolute value | Δik | is small relative to ik;
    ed) the residual voltage uk+1 is measured;
    ee) the difference Δuk = uk+1 - uk is ascertained;
    ef) the current is limited to a value ik+2 = ik+1 ± Δik deviating from ik+1, wherein the sign of Δik corresponds with the sign according to ec) when and only when the sign of Δuk according to ee) is positive;
    f) a mean value of the voltage is ascertained and stored at least in the end section in both the normal phase and the test phase;
    g) the mean value of the test phase is compared with the mean value of the associated normal phase;
    h) if in the period (m) the mean value in the test phase is not greater than in the normal phase, then in the following period (m + 1) operation is with the same pulse number in the normal phase as in the normal phase of the period (m) and on transition to the test phase the pulse number is changed in reverse direction to that in the period (m);
    i) but if in the period (m) the mean value in the test phase is greater than in the normal phase, then in the following period (m + 1) operation in the normal phase is with the same pulse number as in the test phase of the period (m) and on transition to the test phase the pulse number is changed to the same direction as in the period (m).
  3. Method according to claim 1 or 2, characterised in that the duration of the normal phase relative to the duration of the test phase is in a ratio such as 4:1 to 20:1.
  4. Method according to one of claims 1 to 3, characterised in that the duration of an operating period amounts to 1 to 2 h.
  5. Method according to one of claims 1 to 4, characterised in that the duration of a cycle amounts to 10 to 30 s.
  6. Method according to one of claims 2 to 5, characterised in that the absolute value |Δik| amounts to between 0.05 ik and 0.15 ik.
EP96103433A 1995-03-30 1996-03-06 Method for continuous optimization of the operating condition of an electrofilter Expired - Lifetime EP0734773B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI9630411T SI0734773T1 (en) 1995-03-30 1996-03-06 Method for continuous optimization of the operating condition of an electrofilter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19511604A DE19511604C2 (en) 1995-03-30 1995-03-30 Method for continuously optimizing the operating state of an electrostatic filter
DE19511604 1995-03-30

Publications (3)

Publication Number Publication Date
EP0734773A2 EP0734773A2 (en) 1996-10-02
EP0734773A3 EP0734773A3 (en) 2000-02-02
EP0734773B1 true EP0734773B1 (en) 2001-10-24

Family

ID=7758106

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96103433A Expired - Lifetime EP0734773B1 (en) 1995-03-30 1996-03-06 Method for continuous optimization of the operating condition of an electrofilter

Country Status (4)

Country Link
EP (1) EP0734773B1 (en)
AT (1) ATE207388T1 (en)
DE (2) DE19511604C2 (en)
SI (1) SI0734773T1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108380391B (en) * 2018-02-11 2024-01-30 洁通科技(北京)有限公司 Ozone-free double-path four-voltage high-voltage electrostatic precipitator and control method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2949786A1 (en) * 1979-12-11 1981-06-19 Siemens AG, 1000 Berlin und 8000 München METHOD FOR DETERMINING THE FILTER CURRENT LIMIT OF AN ELECTROFILTER
JPS58501162A (en) * 1981-07-24 1983-07-21 トル−ス ロドニイ ジヨン How to detect and apply reverse corona in electrostatic precipitators
SE451675B (en) * 1983-10-05 1987-10-26 Flaekt Ab SET AND DEVICE FOR VARIABLE VOLTAGE PRESENTING ACTION BETWEEN ELECTROSTATIC SUBSTANCE DISPENSERS
JPS6125650A (en) * 1984-07-17 1986-02-04 Sumitomo Heavy Ind Ltd Method for controlling electrical charge of electrical dust precipitator
GB8431294D0 (en) * 1984-12-12 1985-01-23 Smidth & Co As F L Controlling intermittant voltage supply
DE3526009A1 (en) * 1985-07-20 1987-01-22 Metallgesellschaft Ag CONTROL METHOD FOR AN ELECTRIC FILTER
SE463353B (en) * 1989-03-28 1990-11-12 Flaekt Ab SETTING TO REGULATE POWER SUPPLY TO AN ELECTROSTATIC DUST DISPENSER
US5311420A (en) * 1992-07-17 1994-05-10 Environmental Elements Corp. Automatic back corona detection and protection system

Also Published As

Publication number Publication date
EP0734773A2 (en) 1996-10-02
DE59607969D1 (en) 2001-11-29
DE19511604C2 (en) 1999-08-12
SI0734773T1 (en) 2002-06-30
ATE207388T1 (en) 2001-11-15
DE19511604A1 (en) 1996-10-02
EP0734773A3 (en) 2000-02-02

Similar Documents

Publication Publication Date Title
EP0206160B1 (en) Current supply for an electrostatic filter
EP0268934B1 (en) Method and device for the energy supply to an electrostatic precipitator
DE3525557C2 (en) Method of monitoring and controlling an electrostatic precipitator
DE2402966C2 (en) Process for generating water vapor, in particular for air humidification, and steam generator for carrying out the process
DE19848636C2 (en) Method for monitoring an AC voltage discharge on a double electrode
DE4490375C2 (en) Method of controlling the power supply to an electrostatic precipitator
DE3447719A1 (en) HIGH-VOLTAGE PULSE SOURCE AND ELECTRICAL DUST SEPARATOR EQUIPPED WITH IT WITH PULSE CHARGE
DE3301772C2 (en)
DE2730807A1 (en) PULSE POWER DEVICE FOR APPLYING A PULSE VOLTAGE TO A CAPACITIVE LOAD
DE2924170A1 (en) CAPACITOR POWER SUPPLY FOR ELECTRICAL MACHINING
DE3526009C2 (en)
DE2824326A1 (en) POWER SUPPLY FOR ELECTRICAL MACHINING
EP0734773B1 (en) Method for continuous optimization of the operating condition of an electrofilter
DE19509658C2 (en) Circuit arrangement for generating a power failure signal in a drive control device
DE2113827A1 (en) Method and device for electrical discharge machining
EP0209714B1 (en) Method for operating an electrostatic filter
DE2728563B2 (en) X-ray diagnostic generator with an inverter feeding a high-voltage transformer and a control device for setting the frequency of the inverter as a function of the selected X-ray tube voltage
DE3249184T1 (en) METHOD AND DEVICE FOR AN ELECTROSTATIC DUST DISPLAY
DE1457350A1 (en) Method and device (electrostatic precipitator) for cleaning a gas that carries suspended particles
DE3343930A1 (en) CIRCUIT ARRANGEMENT FOR OPERATING FLUORESCENT OR ULTRAVIOLET LOW-VOLTAGE DISCHARGE LAMPS
DE2643940C3 (en) Output regulator for a microwave oven
DE4140228C2 (en) Process for dedusting flue gases
EP0210675B1 (en) Control method for an electrostatic filter
DE19751984A1 (en) Part-cleaning process for incinerator gas electrode
EP0317634A1 (en) Device for power supply to gas-cleaning electrofilters

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT DE DK ES FR GB GR IT NL PT SE

AX Request for extension of the european patent

Free format text: SI PAYMENT 960409

RAX Requested extension states of the european patent have changed

Free format text: SI PAYMENT 960409

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT DE DK ES FR GB GR IT NL PT SE

AX Request for extension of the european patent

Free format text: SI PAYMENT 19960409

17P Request for examination filed

Effective date: 20000411

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20010404

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE DK ES FR GB GR IT NL PT SE

AX Request for extension of the european patent

Free format text: SI PAYMENT 19960409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011024

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20011024

REF Corresponds to:

Ref document number: 207388

Country of ref document: AT

Date of ref document: 20011115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59607969

Country of ref document: DE

Date of ref document: 20011129

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020124

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020125

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020306

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020307

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021001

26N No opposition filed
EUG Se: european patent has lapsed

Ref document number: 96103433.7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021129

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST