EP0729128A2 - Dispositif d'adressage d'une électrode d'écran plat de visualisation à micropointes - Google Patents
Dispositif d'adressage d'une électrode d'écran plat de visualisation à micropointes Download PDFInfo
- Publication number
- EP0729128A2 EP0729128A2 EP96410011A EP96410011A EP0729128A2 EP 0729128 A2 EP0729128 A2 EP 0729128A2 EP 96410011 A EP96410011 A EP 96410011A EP 96410011 A EP96410011 A EP 96410011A EP 0729128 A2 EP0729128 A2 EP 0729128A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- column
- voltage
- potential
- control device
- cathode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 22
- 230000010287 polarization Effects 0.000 claims description 20
- 238000001514 detection method Methods 0.000 claims description 18
- 239000003990 capacitor Substances 0.000 claims description 12
- 238000003860 storage Methods 0.000 claims description 3
- 238000007599 discharging Methods 0.000 claims description 2
- 239000004020 conductor Substances 0.000 description 6
- 238000005513 bias potential Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 230000003071 parasitic effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- VAYOSLLFUXYJDT-RDTXWAMCSA-N Lysergic acid diethylamide Chemical compound C1=CC(C=2[C@H](N(C)C[C@@H](C=2)C(=O)N(CC)CC)C2)=C3C2=CNC3=C1 VAYOSLLFUXYJDT-RDTXWAMCSA-N 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 241001080024 Telles Species 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/22—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0264—Details of driving circuits
- G09G2310/027—Details of drivers for data electrodes, the drivers handling digital grey scale data, e.g. use of D/A converters
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/2007—Display of intermediate tones
- G09G3/2014—Display of intermediate tones by modulation of the duration of a single pulse during which the logic level remains constant
Definitions
- the present invention relates to a flat display screen. It applies more particularly to the control, or addressing, of an electrode of a microtip screen.
- Figure 1 shows the functional structure of a conventional microtip flat screen.
- Such a microtip screen essentially consists of a cathode 1 with microtips 2 and a grid 3 provided with holes 4 corresponding to the locations of the microtips.
- the cathode 1 is placed opposite a cathode-luminescent anode 5 including one glass substrate 6 constitutes the surface of the screen.
- the cathode 1 is organized in columns and consists, on a substrate 10 for example of glass, of cathode conductors organized in meshes from a conductive layer.
- the microtips 2 are produced on a resistive layer 11 deposited on the cathode conductors and are arranged inside the meshes defined by the cathode conductors.
- FIG. 1 partially represents the interior of a mesh, the cathode conductors do not appear in this figure.
- the cathode 1 is associated with the grid 3 which is it organized in rows, an insulating layer (not shown) being interposed between the cathode conductors and the grid 3. The intersection of a row of the grid 3 and a column of cathode 1 defines a pixel.
- This device uses the electric field created between the cathode 1 and the grid 3 so that electrons are extracted from the microtips 2 towards phosphor elements 7 of the anode 5.
- the anode 5 is provided with alternating bands d 'phosphor elements 7, each corresponding to a color (Blue, Red, Green).
- the strips are separated from each other by an insulator 8.
- the phosphor elements 7 are deposited on electrodes 9, consisting of corresponding strips of a transparent conductive layer such as indium tin oxide (ITO) .
- ITO indium tin oxide
- the width of a group of bands of the anode 5 corresponds to the width of a pixel.
- the sets of blue, red and green bands are alternately polarized with respect to the cathode 1, so that the electrons extracted from the microtips 2 of a pixel of the cathode / grid are alternately directed towards the phosphor elements 7 opposite each other colors crossing an empty space 12.
- FIG. 2 illustrates schematically and in perspective, an example of conventional addressing of a microtip screen.
- the mesh of the columns K of the cathode has not been shown.
- the cathode 1 has been shown separated from the grid 3 while in practice the vertices of the microtips 2 arrive at the holes 4 made in the grid 3.
- only nine microtips 2 per pixel have been represented. In practice, microtips are several thousand per pixel of screen and the grid 3 has a hole 4 plumb with each microtip 2.
- the display of an image takes place during an image time (for example 20 ms for a frequency of 50 Hz) by suitably polarizing the anode 5, the cathode 1 and the grid 3 by means of an control electronics (not shown).
- the bands R, G, and B of phosphor elements of the anode are sequentially polarized by a set of bands of the same color during a frame time (for example 6.6 ms) corresponding to one third of the reduced image time times required for switching.
- the display is carried out line by line, sequentially polarizing the rows L of the grid 3 during a "line time" during which each column K of the cathode is brought to a potential which is a function of the brightness of the pixel to be displayed along the current row (for example L j ) in the color considered.
- the polarization of the columns K of the cathode 1 changes with each new row of the line scanning.
- a "line time" (for example 10 ms) corresponds to the duration of a frame divided by the number of rows L of the grid 3.
- FIG. 2 illustrates the path of the electrons emitted by the microtips of the columns K i-1 , K i and K i + 1 brought to potentials which are a function of the desired brightness in the green color, respectively for the pixels P (i- 1, j) , P (i, j) and P (i + 1, j) , during a "line time" during which the row L j is polarized.
- the areas of the pixels P are shown in phantom.
- FIG. 3 represents the equivalent simplified electrical diagram of a microtip screen as shown in FIG. 2.
- the resistive layer 11 is symbolized by a resistance R K of access to each microtip 2.
- Each column K of cathode and each row The grid is individually connected to the control electronics (not shown).
- each set of bands of phosphor elements 7 of the same color is connected to a terminal of polarization, respectively A R , A G or A B of the control electronics. From the electrical point of view, each band R, G, or B behaves like a capacitive load with an access resistance R A.
- the sets of bands of phosphor elements 7 are therefore sequentially brought to a potential making it possible to attract the electrons emitted by the microtips 2.
- This potential is chosen by the user taking into account, in particular, the distance between the cathode / grid of the anode and is for example of the order of 300 to 400 volts.
- the rows L of the grid 3 are sequentially polarized during a frame. A given row (for example L j ) is brought to a potential (for example 80 volts) while the other rows are at a zero potential during the "line time" of the current row.
- a disadvantage of conventional screens is that the technological dispersions resulting from the production of the microdots result in that all the microdots of the screen do not have the same emissivity. In other words, for an identical potential V K representing a given luminance setpoint, there are disparities in the brightness of the pixels.
- Another drawback lies in the fact that the electrons emitted by microtips of a given column K of the cathode tend to excite the bands of phosphor elements of the same color which are opposite the two neighboring columns K. Indeed, although two bands of the same color are separated by two bands of another color, the distance (of the order of 0.2 mm) between the phosphor elements 7 and the microtips 2 leads to the fact that the electrons have tendency to deviate to the nearest bands of the same color.
- FIG. 3 This phenomenon of illumination of the neighboring pixels is illustrated in FIG. 3. It is assumed that there is a red frame time where all the bands R i of the anode are addressed. The electrons emitted by certain microtips of a column K i of the cathode tend to be attracted by the columns R i , R i + 1 of the anode. This parasitic bombardment is shown in dotted lines in FIG. 3.
- Such a phenomenon is increased in the event of misalignment of the groups of bands of phosphor elements with respect to the columns K of the cathode, which can occur during assembly of the screen.
- the invention aims to overcome these drawbacks by proposing a device for controlling a flat display screen electrode which ensures uniform brightness of the screen pixels for a given luminance setpoint.
- the invention proposes to carry out the control, or addressing, of an electrode of the screen based on a measurement of the charges of the columns of this electrode.
- the present invention provides a device for controlling a flat screen display electrode of the type comprising a first electrode constituting a microtip cathode, a second electrode constituting an anode provided with phosphor elements and an organized grid. in rows, at least one of said electrodes being organized in columns and the device comprising means for individually addressing each column and for cutting the polarization of a column as soon as its charge reaches a threshold determined according to a luminance setpoint.
- said means consist, for each column, of a control cell comprising a block for switching the polarization of the column between a positive supply potential and a negative supply potential , and a load detection block for this column.
- said anode consists of at least two sets of alternating strips of phosphor elements organized in columns, and said cathode consists of a plane of microtips covering the entire surface of the screen .
- each switching block comprises two switches connected in series between the negative supply potential and, via a sensor of the detection block with which it is associated, the positive potential d power supply, and a comparator receiving on two inputs, respectively a luminance setpoint voltage and a voltage delivered by said detection block and indicator of the quantity of charges received by said column, said switches constituting a polarization stage of the controlled column by said comparator, the output of which controls a first switch via an inverter while it directly controls a second switch.
- each detection block includes a first operational amplifier, a non-inverting input of which receives the voltage across a detection resistor constituting said sensor, an inverting input of which receives the voltage across its terminals. a load resistor and the output of which is sent to the gate of a first N-channel MOS transistor placed between said load resistor and a storage capacitor, the voltage across said capacitor constituting said voltage indicative of the quantity of charges received by the column.
- each control cell further comprises means for discharging said capacitor before each addressing of a new row of said grid.
- said first switch consists of a first N-channel power MOS transistor whose source is connected to said negative supply potential and whose drain is connected to a connection terminal of said column as well as the drain of a second P-channel power MOS transistor, constituting said second switch and the source of which is connected to said positive supply potential via said sensor.
- said comparator consists of a second operational amplifier, an inverting input of which receives said voltage indicative of the quantity of charges received, a non-inverting input of which receives said setpoint voltage and whose output is sent to the gates of said power transistors of the bias stage.
- the output of said comparator is connected to the gate of said first transistor of the bias stage via a delay element and a voltage shifter while it is directly connected to the gate of said second transistor of the bias stage, said positive supply potential being constituted by ground.
- said setpoint voltage is supplied by a digital-analog converter receiving, as input, a luminance setpoint in digital form.
- the device according to the invention is based on an individual measurement of the charges in each column of the electrode with which the device is associated.
- the device is associated with the bands, or columns, of the anode.
- the quantity of charges received by each column of phosphor elements bombarded by the microtips of the cathode is then measured at each "line time". As soon as this quantity corresponds to the quantity required to obtain the desired brightness of the pixel in the color considered, the polarization of the column is cut.
- FIG. 4 illustrates such an embodiment.
- each strip of phosphor elements 7 of the anode is controlled individually.
- the columns R, G, B of the anode are individually addressed by electronic control of the screen in which the device according to the invention is integrated.
- Each column is associated with a control cell comprising a switching block 21 and a counting block 22 (SENSE) of the charges received by the phosphor elements 7 of the column.
- the purpose of block 21 is to switch the polarization of the column between a positive supply potential + V A and a negative supply potential, here the mass M.
- the potential difference between the two positive and negative supply potentials represents the addressing voltage of columns R, G, B of phosphor elements 7, for example of the order of 300 to 400 volts.
- the switching is carried out on the basis of a luminance set point LUM of the pixel in the color of the column and is controlled by the quantity of charges received by the column which is detected by means of block 22.
- the display is always made, frame by frame, by addressing all the columns (for example red) of the same color simultaneously during a frame time, for example of approximately 6.6 ms for an image frequency of 50 Hz.
- Grid 3 is always addressed sequentially by row L by means of a line scan.
- the cathode no longer needs to be addressed by column insofar as the control of the anode fulfills this role.
- the luminance setpoints LUM (R i-1 ), LUM (R i ), LUM (R i + 1 ), etc.
- the invention thus makes it possible, according to this embodiment, to simplify the constitution of the cathode by dispensing with the mesh and the organization in columns of the cathode conductors.
- the cathode 1 is, according to the invention, made up of a microtip plane 2 covering the entire surface of the screen and polarized at a fixed value V K.
- the beginning of the addressing of all the columns, respectively R, G or B of the same color occurs at the same instant at each beginning of addressing of a row L of the grid.
- the end of the addressing of these columns is individualized by means of the device according to the invention. It occurs, in the interval of each "line time", at the instant when the quantity of charges received by a given column corresponds to the desired luminance for the pixel defined by the intersection of this column and the row of the grid in the frame considered.
- block 21 cuts off the addressing of this column which is therefore no longer bombarded.
- An advantage of the present invention is that, for the same luminance setpoint, the brightness of the pixels will be regular over the entire surface of the screen. Indeed, it no longer depends on the emission capacity of the microtips of each pixel.
- FIG. 4 Another advantage of the embodiment shown in FIG. 4 is that it simplifies the positioning of the plates supporting the anode and the cathode / grid respectively during assembly of the screen. Indeed, the columns of the anode no longer need to be aligned with columns of the cathode which here consists of a plane of microtips covering the entire surface of the screen.
- Another advantage of this embodiment is that in the event of a deficiency of certain microtips of the cathode, even in an area reaching the size of a pixel of the screen, the brightness of the pixel considered will not suffer from it. Indeed, assuming that the column located opposite this pixel has not received its charge account, its excitation is continued by the microtips of the neighboring pixels, as soon as a column of the same color which is close to it is brought back to the mass for having been correctly charged.
- FIG. 5 represents an embodiment of a control cell constituting the device represented in FIG. 4.
- the switching block 21 consists of two switches K1 and K2 connected in series between earth and a sensor of the detection block 22. These switches K1 and K2 constitute a stage of polarization of the column, designated here by the reference A, d 'phosphor elements 7 with which the cell is associated.
- the sensor of the detection block 22 creates a negligible voltage drop so that it can be considered that the switches K1 and K2 are connected in series between the ground and the potential + V A.
- Column A is electrically connected to a terminal D corresponding to the midpoint of the association of switches K1 and K2.
- the block 21 also includes a comparator 23 responsible for enabling the switching of the switches K1 and K2.
- a first input of the comparator 23 receives a voltage V CE indicative of the quantity of charges received by the column A. This voltage is delivered by the block 22 from the current drawn by the column A from the supply.
- a second input of comparator 23 receives a setpoint voltage Vref corresponding to the luminance setpoint LUM of the pixel in the color of column A.
- the output of comparator 23 is sent, via an inverter 24, to the command input from first switch K1 while it is sent directly to the control input of the second switch K2.
- the voltage Vref is supplied by a digital-analog converter (DAC) 25 responsible for delivering the voltage level Vref corresponding to the desired luminance LUM setpoint for the pixel in the color considered.
- the DAC 25 receives from the control electronics (not shown) digital signals, for example on eight bits D0 to D7 whose values correspond to the desired luminance level LUM. If the control electronics directly provide a luminance level in the form of an analog signal, the use of such a converter is not necessary.
- a reduced number of digital-analog converter can be used to supply the setpoint voltages Vref to all the columns being associated with elements for storing these voltages (one element per anode column).
- FIG. 6 is an electrical diagram of a control cell illustrating an embodiment of the switches K1 and K2 and of the detection unit 22.
- the positive supply voltage is constituted by the mass M and the negative supply voltage is constituted by a potential -V A.
- the choice of mass as a positive supply potential allows, as will be seen below, to have a reference uniform and stable and simplify the polarization of all components of the cell that are used to measure the amount of charge received by column A.
- the potential -V A is for example -400 V
- the potential -V L for biasing the rows L of the grid 3 is for example -320 V
- the potential -V K of the cathode 1 is for example - 400 V.
- the detection block 22 includes a detection resistor Rs placed between the ground and the switch K2.
- the role of the resistor Rs which constitutes the sensor of the detection block is to measure the current Is taken from column A.
- the voltage across the resistor Rs is sent to the non-inverting input of a first operational amplifier AP 26.
- the positive bias potential of this amplifier corresponds to the positive supply potential (ground) and its negative bias potential is a potential -Vcc which is a function of the operating range in bias voltage of the amplifier 26, for example of the order of 15 volts.
- the inverting input of amplifier 26 is connected to a first terminal of a load resistor Rch, a second terminal of which is connected to ground.
- the first terminal of the resistor Rch is also connected to the drain of a first N-channel MOS transistor MN1.
- the source of this transistor MN1 is connected to the negative bias potential -Vcc via a storage capacitor C.
- the gate of transistor MN1 is connected to the output of amplifier 26.
- the role of amplifier 26 is to copy the voltage Vs, across the resistor Rch.
- the current Ich in the resistor Rch is proportional to the current in the resistor Rs.
- the switches K1 and K2 constituting the polarization stage of the column A are made up of power MOS transistors.
- the polarization stage thus consists of two power MOS transistors, respectively with N channel ML and with P channel MH.
- the source of a first transistor ML is connected to the negative supply potential -V A and its drain is connected to the terminal D for connection of the column A.
- Terminal D is also connected to the drain of a second transistor MH whose the source is connected to ground via the detection resistor Rs.
- the addressing of column A is carried out by an appropriate control of the gates of the transistors MH and ML.
- the gates of these transistors are controlled by means of the comparator 23 consisting, for example, of a second operational amplifier.
- the comparator 23 receives on its two inputs, respectively the voltage Vref supplied by the DAC 25 and the voltage V CE across the capacitor C.
- the inverting input of the operational amplifier 23 is connected to the drain of the transistor MN1, its non-inverting input receives the voltage Vref and its output controls the gates of the transistors MH and ML.
- Comparator 23 and DAC 25 are, like amplifier 26, polarized between ground and -Vcc.
- the output of the comparator 23 is connected to the gate of the transistor ML, via a delay element 27 and a voltage shifter 28 , while it is directly connected to the gate of transistor MH.
- the delay element 27 has the effect of delaying the control of the transistor ML relative to the control of the transistor MH and thus avoids their simultaneous switching.
- the role of the voltage shifter 28 is to allow the switching of the ML transistor by relating the low-voltage output level of the comparator 23 to a level allowing the switching of the ML transistor, that is to say a potential, respectively lower than the potential -V A increased by the threshold voltage Vgs of this transistor or greater than the potential -V A increased by the voltage Vgs.
- the capacitor C is discharged by means of a second N-channel MOS transistor MN2.
- the source of this transistor MN2 is connected to the potential -Vcc, its drain is connected to the drain of the transistor MN1 and its gate is controlled by a RESET signal supplied by the control electronics.
- the duration of a "line time” corresponds, as before, to the frame time divided by the number of rows L of the grid 3. For example, for a screen of 288 rows, the “line time” is approximately 25 ms.
- the discharge of the parasitic capacitances which exist between this column and its two neighboring columns must be very rapid compared to the "line time".
- Such a condition which depends on the drain-source resistance in the on state Rds ON of the transistor ML, is perfectly respected. Indeed, the resistance Rds ON of a power MOS transistor is generally of the order of 1 k ⁇ . However, the value of the stray capacitances is generally around 10 pF which leads to a discharge time of the order of 10 ns.
- the positive supply potential of the columns and the positive bias potential of the operational amplifiers and of the DAC is a potential + V A.
- the negative bias potential of the operational amplifiers and the DAC must then correspond to V A - Vcc so that the bias voltage of these components is Vcc.
- the implementation of such a variant requires that the low-voltage components used do not require a connection to the ground of the circuit. Otherwise, these components are biased between + Vcc and ground, but an additional voltage shifter must then be provided to allow the device to operate.
- the shifter 28 is here associated with the gate of the transistor MH and the additional shifter is, as has been seen above, associated with the non-inverting input of the amplifier 26.
- the potentials + V A and + Vcc must be stable according to the operating conditions of the screen, or at least evolve in the same proportions so as not to distort the load detection.
- the device according to the invention as set out in relation to FIGS. 4 to 6 can be transposed to the individual control of the columns of a cathode with microtips by carrying out the measurement of the charges emitted by the microtips of each column.
- the quantity of charges (of electrons) emitted by each line scan is measured. each column of microtips.
- the polarization, therefore the emission of this column is cut. If such an embodiment makes the screen brightness independent of the technological dispersions resulting from the production of the microtips, it does not make it possible to overcome the deficiency of a large area of microtips and it requires maintaining an organization in columns of the cathode.
- the parasitic capacitances which exist between the grid and the microtips are of the order of 5 pF which leads, for the entire screen, to a greater energy dissipation during the discharge of these parasitic capacitors.
- the invention also applies to the control of a monochrome screen.
- the anode of such a screen is organized into two sets of alternating columns of the same color, it is preferable to carry out the addressing by an individual control of the columns of the anode. If, on the other hand, the anode consists of a plane of phosphor elements covering the entire surface of the screen, addressing will be carried out by individual control of the columns of the cathode associated with a measurement of the charges emitted by these columns .
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Transforming Electric Information Into Light Information (AREA)
Abstract
Description
- La présente invention concerne un écran plat de visualisation. Elle s'applique plus particulièrement à la commande, ou adressage, d'une électrode d'un écran à micropointes.
- La figure 1 représente la structure fonctionnelle d'un écran plat à micropointes classique.
- Un tel écran à micropointes est essentiellement constitué d'une cathode 1 à micropointes 2 et d'une grille 3 pourvue de trous 4 correspondant aux emplacements des micropointes 2. La cathode 1 est placée en regard d'une anode cathodo-luminescente 5 dont un substrat de verre 6 constitue la surface de l'écran.
- Le principe de fonctionnement et le détail de la constitution d'un tel écran à micropointes sont décrits dans le brevet américain numéro 4 940 916 du Commissariat à l'Energie Atomique.
- Classiquement, la cathode 1 est organisée en colonnes et est constituée, sur un substrat 10 par exemple en verre, de conducteurs de cathode organisés en mailles à partir d'une couche conductrice. Les micropointes 2 sont réalisées sur une couche résistive 11 déposée sur les conducteurs de cathode et sont disposées à l'intérieur des mailles définies par les conducteurs de cathode. La figure 1 représentant partiellement l'intérieur d'une maille, les conducteurs de cathode n'apparaissent pas sur cette figure. La cathode 1 est associée à la grille 3 qui est elle organisée en rangées, une couche isolante (non représentée) étant interposée entre les conducteurs de cathode et la grille 3. L'intersection d'une rangée de la grille 3 et d'une colonne de la cathode 1 définit un pixel.
- Ce dispositif utilise le champ électrique créé entre la cathode 1 et la grille 3 pour que des électrons soient extraits des micropointes 2 vers des éléments luminophores 7 de l'anode 5. Pour un écran couleur, l'anode 5 est pourvue de bandes alternées d'éléments luminophores 7, correspondant chacune à une couleur (Bleu, Rouge, Vert). Les bandes sont séparées les unes des autres par un isolant 8. Les éléments luminophores 7 sont déposés sur des électrodes 9, constituées de bandes correspondantes d'une couche conductrice transparente telle que de l'oxyde d'indium et d'étain (ITO). Les bandes sont disposées parallèlement aux colonnes de cathode, un groupe de trois bandes (une par couleur) étant en regard d'une colonne de cathode. Ainsi, la largeur d'un groupe de bandes de l'anode 5 correspond à la largeur d'un pixel. Les ensembles de bandes bleues, rouges, vertes sont alternativement polarisés par rapport à la cathode 1, pour que les électrons extraits des micropointes 2 d'un pixel de la cathode/grille soient alternativement dirigés vers les éléments luminophores 7 en vis à vis de chacune des couleurs en traversant un espace vide 12.
- La figure 2 illustre schématiquement et en perspective, un exemple d'adressage classique d'un écran à micropointes.
- Pour des raisons de clarté le maillage des colonnes K de la cathode n'a pas été représenté. De même, la cathode 1 a été représentée écartée de la grille 3 alors qu'en pratique les sommets des micropointes 2 arrivent au niveau des trous 4 réalisés dans la grille 3. En outre, seules neuf micropointes 2 par pixel ont été représentées. En pratique, les micropointes sont au nombre de plusieurs milliers par pixel d'écran et la grille 3 comporte un trou 4 à l'aplomb de chaque micropointe 2.
- L'affichage d'une image s'effectue pendant un temps d'image (par exemple 20 ms pour une fréquence de 50 Hz) en polarisant convenablement l'anode 5, la cathode 1 et la grille 3 au moyen d'une l'électronique de commande (non représentée).
- Les bandes R, G, et B d'éléments luminophores de l'anode sont séquentiellement polarisées par ensemble de bandes d'une même couleur pendant un temps de trame (par exemple 6,6 ms) correspondant au tiers du temps d'image diminué des temps nécessaires aux commutations. L'affichage s'effectue ligne par ligne, en polarisant séquentiellement les rangées L de la grille 3 pendant un "temps de ligne" durant lequel chaque colonne K de la cathode est portée à un potentiel qui est fonction de la brillance du pixel à afficher le long de la rangée courante (par exemple L j ) dans la couleur considérée. La polarisation des colonnes K de la cathode 1 change à chaque nouvelle rangée du balayage ligne. Un "temps de ligne" (par exemple 10 ms) correspond à la durée d'une trame divisée par le nombre de rangées L de la grille 3.
- La figure 2 illustre le trajet des électrons émis par les micropointes des colonnes K i-1 , K i et K i+1 portées à des potentiels qui sont fonction de la brillance souhaitée dans la couleur verte, respectivement pour les pixels P (i-1, j) , P (i, j) et P (i+1, j) , lors d'un "temps de ligne" pendant lequel la rangée L j est polarisée. Les surfaces des pixels P sont représentées en traits mixtes.
- La figure 3 représente le schéma électrique simplifié équivalent d'un écran à micropointes tel que représenté à la figure 2. La couche résistive 11 est symbolisée par une résistance R K d'accès à chaque micropointe 2. Chaque colonne K de cathode et chaque rangée L de grille est individuellement reliée à l'électronique de commande (non représentée).
- Côté anode 5, chaque ensemble de bandes d'éléments luminophores 7 d'une même couleur est relié à une borne de polarisation, respectivement A R , A G ou A B de l'électronique de commande. Du point de vue électrique, chaque bande R, G, ou B se comporte comme une charge capacitive avec une résistance d'accès R A .
- Les ensembles de bandes d'éléments luminophores 7 sont donc séquentiellement portés à un potentiel permettant d'attirer les électrons émis par les micropointes 2. Ce potentiel est choisi par l'utilisateur en tenant compte, notamment, de la distance qui sépare la cathode/grille de l'anode et est par exemple de l'ordre de 300 à 400 volts. Les rangées L de la grille 3 sont séquentiellement polarisées pendant une trame. Une rangée donnée (par exemple L j ) est portée à un potentiel (par exemple 80 volts) alors que les autres rangées sont à un potentiel nul pendant le "temps de ligne" de la rangée courante. Les colonnes K de la cathode, dont le potentiel, respectivement V Ki-1 , V Ki et V Ki+1 représente à chaque ligne la brillance du pixel défini par l'intersection de la colonne K et de la rangée L dans la couleur considérée (par exemple rouge), sont portées à des potentiels respectifs compris entre un potentiel d'émission maximale et un potentiel d'absence d'émission (par exemple respectivement 0 et 30 volts). Le choix des valeurs des potentiels de polarisation est lié aux caractéristiques des éléments luminophores 7 et des micropointes 2. Classiquement, en dessous d'une différence de potentiel de 50 volts entre la cathode 1 et la grille 3, il n'y a pas d'émission électronique et, l'émission maximale utilisée correspond à une différence de potentiel de 80 volts.
- Un inconvénient des écrans classiques est que les dispersions technologiques provenant de la réalisation des micropointes entraînent que toutes les micropointes de l'écran n'ont pas le même pouvoir émissif. En d'autres termes, pour un potentiel V K identique représentant une consigne de luminance donnée, on constate des disparités dans la brillance des pixels.
- Un autre inconvénient réside dans le fait que les électrons émis par des micropointes d'une colonne K donnée de la cathode ont tendance à exciter les bandes d'éléments luminophores de même couleur qui sont en regard des deux colonnes K voisines. En effet, bien que deux bandes de même couleur soient séparées par deux bandes d'une autre couleur, la distance (de l'ordre de 0,2 mm) entre les éléments luminophores 7 et les micropointes 2 conduit à ce que les électrons ont tendance à dévier vers les bandes de même couleur les plus proches.
- Ce phénomène d'éclairement des pixels voisins est illustré par la figure 3. On suppose que l'on est dans un temps de trame rouge où toutes les bandes R i de l'anode sont adressées. Les électrons émis par certaines micropointes d'une colonne K i de la cathode ont tendance a être attirés par les colonnes R i , R i+1 de l'anode. Ce bombardement parasite est représenté en pointillés à la figure 3.
- Un tel phénomène est accru en cas de désalignement des groupes de bandes d'éléments luminophores par rapport aux colonnes K de la cathode, ce qui peut se produire lors de l'assemblage de l'écran.
- L'invention vise à pallier ces inconvénients en proposant un dispositif de commande d'une électrode d'écran plat de visualisation qui assure une brillance uniforme des pixels de l'écran pour une consigne de luminance donnée.
- Pour ce faire, l'invention propose d'effectuer la commande, ou adressage, d'une électrode de l'écran en se basant sur une mesure des charges des colonnes de cette électrode.
- Pour atteindre cet objet, la présente invention prévoit un dispositif de commande d'une électrode d'écran plat de visualisation du type comportant une première électrode constituant une cathode à micropointes, une seconde électrode constituant une anode pourvue d'éléments luminophores et une grille organisée en rangées, au moins une desdites électrodes étant organisée en colonnes et le dispositif comportant des moyens pour adresser individuellement chaque colonne et pour couper la polarisation d'une colonne dès que sa charge atteint un seuil déterminé en fonction d'une consigne de luminance.
- Selon un mode de réalisation de la présente invention, lesdits moyens sont constitués, pour chaque colonne, d'une cellule de commande comprenant un bloc de commutation de la polarisation de la colonne entre un potentiel positif d'alimentation et un potentiel négatif d'alimentation, et d'un bloc de détection de la charge de cette colonne.
- Selon un mode de réalisation de la présente invention, ladite anode est constituée d'au moins deux ensembles de bandes alternées d'éléments luminophores organisées en colonnes, et ladite cathode est constituée d'un plan de micropointes couvrant toute la surface de l'écran.
- Selon un mode de réalisation de la présente invention, chaque bloc de commutation comporte deux interrupteurs montés en série entre le potentiel négatif d'alimentation et, par l'intermédiaire d'un capteur du bloc de détection auquel il est associé, le potentiel positif d'alimentation, et un comparateur recevant sur deux entrées, respectivement une tension de consigne de luminance et une tension délivrée par ledit bloc de détection et indicatrice de la quantité de charges reçues par ladite colonne, lesdits interrupteurs constituant un étage de polarisation de la colonne commandé par ledit comparateur dont la sortie commande un premier interrupteur par l'intermédiaire d'un inverseur tandis qu'elle commande directement un second interrupteur.
- Selon un mode de réalisation de la présente invention, chaque bloc de détection comporte un premier amplificateur opérationnel dont une entrée non inverseuse reçoit la tension aux bornes d'une résistance de détection constituant ledit capteur, dont une entrée inverseuse reçoit la tension aux bornes d'une résistance de charge et dont la sortie est envoyée sur la grille d'un premier transistor MOS à canal N placé entre ladite résistance de charge et un condensateur de stockage, la tension aux bornes dudit condensateur constituant ladite tension indicatrice de la quantité de charges reçues par la colonne.
- Selon un mode de réalisation de la présente invention, chaque cellule de commande comporte, en outre, des moyens pour décharger ledit condensateur avant chaque adressage d'une nouvelle rangée de ladite grille.
- Selon un mode de réalisation de la présente invention, ledit premier interrupteur est constitué d'un premier transistor MOS de puissance à canal N dont la source est connectée audit potentiel négatif d'alimentation et dont le drain est relié à une borne de raccordement de ladite colonne ainsi qu'au drain d'un deuxième transistor MOS de puissance à canal P, constituant ledit second interrupteur et dont la source est connectée audit potentiel positif d'alimentation par l'intermédiaire dudit capteur.
- Selon un mode de réalisation de la présente invention, ledit comparateur est constitué d'un second amplificateur opérationnel dont une entrée inverseuse reçoit ladite tension indicatrice de la quantité de charges reçues, dont une entrée non inverseuse reçoit ladite tension de consigne et dont la sortie est envoyée sur les grilles desdits transistors de puissance de l'étage de polarisation.
- Selon un mode de réalisation de la présente invention, la sortie dudit comparateur est reliée à la grille dudit premier transistor de l'étage de polarisation par l'intermédiaire d'un élément retardateur et d'un décaleur de tension tandis qu'elle est directement reliée à la grille dudit second transistor de l'étage de polarisation, ledit potentiel positif d'alimentation étant constitué par la masse.
- Selon un mode de réalisation de la présente invention, ladite tension de consigne est fournie par un convertisseur numérique-analogique recevant, en entrée, une consigne de luminance sous forme numérique.
- Ces objets, caractéristiques et avantages, ainsi que d'autres de la présente invention seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non limitatif en relation avec les figures jointes parmi lesquelles :
- les figures 1 à 3 qui ont été décrites précédemment sont destinées à exposer l'état de la technique et le problème posé ;
- la figure 4 représente un mode de réalisation d'un dispositif de commande d'un écran plat de visualisation selon l'invention ;
- la figure 5 représente un mode de réalisation d'une cellule de commande constitutive du dispositif représenté à la figure 4 ; et
- la figure 6 représente le schéma électrique d'un mode de réalisation d'une cellule de commande telle que représentée à la figure 5.
- Pour des raisons de clarté, les mêmes éléments ont été désignés par les mêmes références aux différentes figures.
- Le dispositif selon l'invention est basé sur une mesure individuelle des charges dans chaque colonne de l'électrode à laquelle le dispositif est associé.
- Selon un mode préféré de réalisation, le dispositif est associé aux bandes, ou colonnes, de l'anode. On mesure alors à chaque "temps de ligne" la quantité de charges reçues par chaque colonne d'éléments luminophores bombardée par les micropointes de la cathode. Dès que cette quantité correspond à la quantité requise pour obtenir la brillance souhaitée du pixel dans la couleur considérée, on coupe la polarisation de la colonne. La figure 4 illustre un tel mode de réalisation.
- Selon l'invention, chaque bande d'éléments luminophores 7 de l'anode est commandée individuellement. En d'autres termes, les colonnes R, G, B de l'anode sont adressées individuellement par une électronique de commande de l'écran à laquelle est intégré le dispositif selon l'invention.
- Chaque colonne est associée à une cellule de commande comportant un bloc de commutation 21 et un bloc 22 de comptage (SENSE) des charges reçues par les éléments luminophores 7 de la colonne. Le bloc 21 a pour rôle de commuter la polarisation de la colonne entre un potentiel positif d'alimentation +V A et un potentiel négatif d'alimentation, ici la masse M. La différence de potentiel entre les deux potentiels positif et négatif d'alimentation représente la tension d'adressage des colonnes R, G, B d'éléments luminophores 7, par exemple de l'ordre de 300 à 400 volts. La commutation s'effectue à partir d'une consigne de luminance LUM du pixel dans la couleur de la colonne et est asservie sur la quantité de charges reçues par la colonne qui est détectée au moyen du bloc 22.
- L'affichage s'effectue toujours, trame par trame, en adressant toutes les colonnes (par exemple rouges) d'une même couleur simultanément pendant un temps de trame, par exemple d'environ 6,6 ms pour une fréquence d'image de 50 Hz. La grille 3 est toujours adressée séquentiellement par rangée L au moyen d'un balayage ligne. Par contre, la cathode n'a plus besoin d'être adressée par colonne dans la mesure où la commande de l'anode remplit ce rôle. Pendant le temps de trame d'une couleur (par exemple rouge), les consignes de luminance LUM(R i-1 ), LUM(R i ), LUM(R i+1 ), etc. des colonnes de cette couleur sont en effet individualisées tandis que les consignes de luminance LUM(G i-1 ), LUM(B i-1 ), LUM(G i ), LUM(B i ), LUM(G i+1 ), etc. de toutes les colonnes des deux autres couleurs sont nulles.
- L'invention permet ainsi, selon ce mode de réalisation, de simplifier la constitution de la cathode en dispensant du maillage et de l'organisation en colonnes des conducteurs de cathode. La cathode 1 est, selon l'invention, constituée d'un plan de micropointes 2 couvrant toute la surface de l'écran et polarisé à une valeur fixe V K . Le potentiel V K correspond, de préférence, au potentiel entraînant une émission maximale des micropointes 2. Par exemple, si le potentiel V L de polarisation des rangées L de la grille 3 est de 80 V, la cathode 1 est à la masse (V K = 0V).
- Le début de l'adressage de toutes les colonnes, respectivement R, G ou B d'une même couleur intervient à un même instant à chaque début d'adressage d'une rangée L de la grille. La fin de l'adressage de ces colonnes est individualisée au moyen du dispositif selon l'invention. Elle intervient, dans l'intervalle de chaque "temps de ligne", à l'instant où la quantité de charges reçues par une colonne donnée correspond à la luminance souhaitée pour le pixel défini par l'intersection de cette colonne et de la rangée de la grille dans la trame considérée. Ainsi, dès qu'une colonne a reçu son compte de charges, le bloc 21 coupe l'adressage de cette colonne qui n'est donc plus bombardée.
- Un avantage de la présente invention est que, pour une même consigne de luminance, la brillance des pixels sera régulière sur toute la surface de l'écran. En effet, elle ne dépend plus de la capacité d'émission des micropointes de chaque pixel.
- Un autre avantage du mode de réalisation représenté à la figure 4 est qu'il simplifie le positionnement des plaques supportant respectivement l'anode et la cathode/grille lors de l'assemblage de l'écran. En effet, les colonnes de l'anode n'ont plus besoin d'être alignées avec des colonnes de la cathode qui est ici constituée d'un plan de micropointes couvrant toute la surface de l'écran.
- Encore un avantage de ce mode de réalisation est qu'en cas de déficience de certaines micropointes de la cathode, même sur une zone atteignant la taille d'un pixel de l'écran, la brillance du pixel considéré n'en souffrira pas. En effet, en supposant que la colonne située en regard de ce pixel n'a pas reçu son compte de charges, son excitation est poursuivie par les micropointes des pixels voisins, dès qu'une colonne de même couleur qui lui est proche est ramenée à la masse pour avoir été correctement chargée.
- Ce phénomène est illustré par la figure 4 où l'on suppose que l'on est dans un temps de trame rouge et où la position des interrupteurs des blocs 21 indique que la colonne R i+1 du pixel P (i+1, j) a reçu son compte de charges. Dans ce cas, comme le montrent les pointillés illustrant le trajet des électrons émis par les micropointes 2, la colonne R i du pixel P (i, j) est bombardée par certaines micropointes se trouvant à l'aplomb du pixel P (i+1, j) .
- Lorsque les électrons émis par certaines micropointes (par exemple celles en regard de la colonne G i+1 du pixel P (i+1, j) ) de la cathode ne peuvent plus être attirés par l'anode 5 pour être trop loin d'une colonne polarisée, ces électrons sont collectés par la grille 3.
- La figure 5 représente un mode de réalisation d'une cellule de commande constitutive du dispositif représenté à la figure 4.
- Le bloc de commutation 21 est constitué de deux interrupteurs K1 et K2 montés en série entre la masse et un capteur du bloc de détection 22. Ces interrupteurs K1 et K2 constituent un étage de polarisation de la colonne, désignée ici par la référence A, d'éléments luminophores 7 à laquelle la cellule est associée. Le capteur du bloc de détection 22 crée une chute de tension négligeable de sorte que l'on peut considérer que les interrupteurs K1 et K2 sont montés en série entre la masse et le potentiel +V A . La colonne A est raccordée électriquement à une borne D correspondant au point milieu de l'association des interrupteurs K1 et K2.
- Le bloc 21 comporte également un comparateur 23 chargé de permettre la commutation des interrupteurs K1 et K2. Une première entrée du comparateur 23 reçoit une tension V CE indicatrice de la quantité de charges reçues par la colonne A. Cette tension est délivrée par le bloc 22 à partir du courant prélevé par la colonne A sur l'alimentation. Une seconde entrée du comparateur 23 reçoit une tension de consigne Vref correspondant à la consigne de luminance LUM du pixel dans la couleur de la colonne A. La sortie du comparateur 23 est envoyée, par l'intermédiaire d'un inverseur 24, sur l'entrée de commande du premier interrupteur K1 tandis qu'elle est envoyée directement sur l'entrée de commande du second interrupteur K2.
- Lorsque la tension V CE est inférieure à la tension Vref, l'interrupteur K2 est fermé et l'interrupteur K1 est ouvert. La colonne A est alors adressée en étant portée au potentiel +V A . Dès que la tension V CE devient égale à Vref, ce qui signifie que la colonne A a reçu la quantité de charges correspondant à sa consigne de luminance, la sortie du comparateur 23 inverse les positions des interrupteurs K1 et K2, ce qui provoque la coupure de la polarisation de la colonne.
- La tension Vref est fournie par un convertisseur numérique-analogique (DAC) 25 chargé de délivrer le niveau de tension Vref correspondant à la consigne de luminance LUM souhaitée pour le pixel dans la couleur considérée. Le DAC 25 reçoit de l'électronique de commande (non représentée) des signaux numériques, par exemple sur huit bits D0 à D7 dont les valeurs correspondent au niveau de luminance LUM souhaité. Si l'électronique de commande fournit directement un niveau de luminance sous la forme d'un signal analogique, le recours à un tel convertisseur n'est pas nécessaire.
- Selon une variante s'appliquant plus particulièrement au cas où les consignes de luminance LUM sont codées sur un faible nombre de bits (par exemple 3), un nombre réduit de convertisseur numérique-analogique peut être utilisé pour fournir les tensions de consigne Vref à toutes les colonnes en étant associés à des éléments de stockage de ces tensions (un élément par colonne d'anode).
- La figure 6 est un schéma électrique d'une cellule de commande illustrant un mode de réalisation des interrupteurs K1 et K2 et du bloc de détection 22.
- Selon ce mode de réalisation, la tension positive d'alimentation est constituée par la masse M et la tension négative d'alimentation est constituée par un potentiel -V A . Le choix de la masse comme potentiel positif d'alimentation permet, comme on le verra par la suite, de disposer d'une référence uniforme et stable et de simplifier la polarisation de tous les composants de la cellule qui sont utilisés pour mesurer la quantité de charges reçues par la colonne A.
- Le potentiel -V A est par exemple de -400 V, le potentiel -V L de polarisation des rangées L de la grille 3 est par exemple de -320 V et le potentiel -V K de la cathode 1 est par exemple de - 400 V.
- Le bloc de détection 22 comporte une résistance de détection Rs placée entre la masse et l'interrupteur K2. La résistance Rs qui constitue le capteur du bloc de détection a pour rôle de mesurer le courant Is prélevé par la colonne A.
- La tension aux bornes de la résistance Rs est envoyée sur l'entrée non inverseuse d'un premier amplificateur opérationnel AP 26. Le potentiel positif de polarisation de cet amplificateur correspond au potentiel positif d'alimentation (la masse) et son potentiel négatif de polarisation est un potentiel -Vcc qui est fonction de la plage de fonctionnement en tension de polarisation de l'amplificateur 26, par exemple de l'ordre de 15 volts.
- L'entrée inverseuse de l'amplificateur 26 est reliée à une première borne d'une résistance de charge Rch dont une deuxième borne est connectée à la masse. La première borne de la résistance Rch est également reliée au drain d'un premier transistor MOS à canal N MN1. La source de ce transistor MN1 est connectée au potentiel négatif de polarisation -Vcc par l'intermédiaire d'un condensateur de stockage C. La grille du transistor MN1 est reliée à la sortie de l'amplificateur 26.
- Le rôle de l'amplificateur 26 est de recopier la tension Vs, aux bornes de la résistance Rch. Ainsi, le courant Ich dans la résistance Rch est proportionnel au courant dans la résistance Rs. Ich = Vs/Rch = Rch*Is/Rs. Si les résistances Rs et Rch sont choisies de même valeur, on veillera à ce que cette valeur soit importante (par exemple 100 kΩ) pour éviter que le courant Ich prennent des valeurs trop importantes. Le fait de choisir une valeur importante pour les résistances n'est pas gênant pour l'adressage de l'anode. En effet, même si la chute de tension aux bornes de la résistance Rs atteint une dizaine de volts, cette chute est à rapporter à une tension d'adressage de 300 à 400 volts.
- Lors de l'adressage de la colonne A, c'est-à-dire lorsque son potentiel est porté à la masse et qu'elle prélève un courant Is, le condensateur C est chargé par le courant Ich. La tension V CE aux bornes du condensateur C est donc proportionnelle aux charges reçues par la colonne A. Une telle mesure de charge est particulièrement bien adaptée aux éléments luminophores dont l'émission lumineuse est fonction de leur charge et non de leur tension.
- Le fait de choisir la masse comme potentiel positif d'alimentation et de polarisation évite de générer une forte tension négative de polarisation ou d'avoir recours à un dispositif décaleur de tension sur l'entrée non inverseuse de l'amplificateur 26. De plus, cela évite toute conséquence d'une variation des tensions d'alimentation et de polarisation sur le résultat de la détection de charge.
- Les interrupteurs K1 et K2 constituant l'étage de polarisation de la colonne A sont constitués de transistors MOS de puissance. L'étage de polarisation est ainsi constitué de deux transistors MOS de puissance, respectivement à canal N ML et à canal P MH. La source d'un premier transistor ML est connectée au potentiel négatif d'alimentation -V A et son drain est relié à la borne D de raccordement de la colonne A. La borne D est également reliée au drain d'un second transistor MH dont la source est connectée à la masse par l'intermédiaire de la résistance de détection Rs.
- L'adressage de la colonne A est effectué par une commande appropriée des grilles des transistors MH et ML. Les grilles de ces transistors sont commandées au moyen du comparateur 23 constitué, par exemple, d'un second amplificateur opérationnel. Le comparateur 23 reçoit sur ses deux entrées, respectivement la tension Vref fournie par le DAC 25 et la tension V CE aux bornes du condensateur C. En d'autres termes, l'entrée inverseuse de l'amplificateur opérationnel 23 est reliée au drain du transistor MN1, son entrée non inverseuse reçoit la tension Vref et sa sortie commande les grilles des transistors MH et ML. Le comparateur 23 et le DAC 25 sont, comme l'amplificateur 26, polarisés entre la masse et -Vcc. Ainsi, dès que la tension V CE atteint le niveau Vref, indiquant que la colonne a reçu une quantité de charges correspondant au niveau de luminance LUM souhaité pour le pixel considéré, le potentiel en sortie du comparateur 23 devient nul pour couper l'adressage de la colonne A.
- Pour permettre la commutation des transistors MH et ML et pour éviter qu'elle soit simultanée, la sortie du comparateur 23 est reliée à la grille du transistor ML, par l'intermédiaire d'un élément retardateur 27 et d'un décaleur de tension 28, tandis qu'elle est reliée directement à la grille du transistor MH. L'élément retardateur 27 a pour effet de retarder la commande du transistor ML par rapport à la commande du transistor MH et évite ainsi leur commutation simultanée. Le décaleur de tension 28 a pour rôle de permettre la commutation du transistor ML en rapportant le niveau de sortie basse-tension du comparateur 23 à un niveau permettant la commutation du transistor ML, c'est-à-dire un potentiel, respectivement inférieur au potentiel -V A majoré de la tension seuil Vgs de ce transistor ou supérieur au potentiel -V A majoré de la tension Vgs.
- A chaque fin de "temps de ligne", le condensateur C est déchargé au moyen d'un second transistor MOS à canal N MN2. La source de ce transistor MN2 est raccordée au potentiel -Vcc, son drain est relié au drain du transistor MN1 et sa grille est commandée par un signal RESET fourni par l'électronique de commande.
- La durée d'un "temps de ligne" correspond, comme précédemment, au temps de trame divisé par le nombre de rangées L de la grille 3. Par exemple, pour un écran de 288 rangées, le "temps de ligne" est d'environ 25 ms. Pour éviter que la colonne adressée continue à recevoir des électrons une fois son seuil de charge atteint, il faut que la décharge des capacités parasites qui existent entre cette colonne et ses deux colonnes voisines soit très rapide devant le "temps de ligne". Une telle condition, qui dépend de la résistance drain-source à l'état passant Rds ON du transistor ML, est parfaitement respectée. En effet, la résistance Rds ON d'un transistor MOS de puissance est généralement de l'ordre de 1 kΩ. Or, la valeur des capacités parasites est généralement d'environ 10 pF ce qui conduit à un temps de décharge de l'ordre 10 ns.
- Selon une variante, le potentiel positif d'alimentation des colonnes et le potentiel positif de polarisation des amplificateurs opérationnels et du DAC est un potentiel +V A . Le potentiel négatif de polarisation des amplificateurs opérationnels et du DAC doit alors correspondre à V A - Vcc pour que la tension de polarisation de ces composants soit Vcc. La mise en oeuvre d'une telle variante impose que les composants basse-tension utilisés ne requièrent pas une connexion à la masse du circuit. Sinon, ces composants sont polarisés entre +Vcc et la masse mais il faut alors prévoir un dispositif décaleur de tension supplémentaire pour permettre le fonctionnement du dispositif. Le décaleur 28 est ici associé à la grille du transistor MH et le décaleur supplémentaire est, comme il a été vu plus haut, associé à l'entrée non inverseuse de l'amplificateur 26. De plus, les potentiels +V A et +Vcc doivent être stables en fonction des conditions de fonctionnement de l'écran, ou au moins évoluer dans les mêmes proportions pour ne pas fausser la détection de charge.
- Le dispositif selon l'invention tel qu'exposé en relation avec les figures 4 à 6 peut être transposé à la commande individuelle des colonnes d'une cathode à micropointes en effectuant la mesure des charges émises par les micropointes de chaque colonne. Dans ce cas, on mesure à chaque rangée du balayage ligne, la quantité de charges (d'électrons) émises par chaque colonne de micropointes. Dès que cette quantité correspond à la quantité requise pour obtenir la brillance souhaitée du pixel considéré, on coupe la polarisation, donc l'émission de cette colonne. Si un tel mode de réalisation rend la brillance de l'écran indépendante des dispersions technologiques provenant de la réalisation des micropointes, il ne permet pas de pallier la déficience d'une zone importante de micropointes et il impose de maintenir une organisation en colonnes de la cathode. De plus, les capacités parasites qui existent entre la grille et les micropointes sont de l'ordre de 5 pF ce qui conduit, pour l'écran entier, à une dissipation d'énergie plus importante lors de la décharge de ces capacités parasites.
- Bien entendu, la présente invention est susceptible de diverses variantes et modifications qui apparaîtront à l'homme de l'art. En particulier, chacun des composants décrits pourra être remplacé par un ou plusieurs éléments remplissant la même fonction.
- En outre, l'invention s'applique également à la commande d'un écran monochrome. Dans le cas où l'anode d'un tel écran est organisée en deux ensembles de colonnes alternées de même couleur, on préfèrera effectuer l'adressage par une commande individuelle des colonnes de l'anode. Si par contre, l'anode est constituée d'un plan d'éléments luminophores couvrant toute la surface de l'écran, on effectuera l'adressage par une commande individuelle des colonnes de la cathode associée à une mesure des charges émises par ces colonnes.
Claims (10)
- Dispositif de commande d'une électrode d'écran plat de visualisation du type comportant une première électrode constituant une cathode (1) à micropointes (2), une seconde électrode constituant une anode (5) pourvue d'éléments luminophores (7) et une grille (3) organisée en rangées (L), caractérisé en ce qu'au moins une desdites électrodes est organisée en colonnes (R, G, B ; A) et en ce qu'il comporte des moyens (21, 22) pour adresser individuellement chaque colonne et pour couper la polarisation d'une colonne dès que sa charge atteint un seuil (Vref) déterminé en fonction d'une consigne de luminance (LUM).
- Dispositif selon la revendication 1, caractérisé en ce que lesdits moyens sont constitués, pour chaque colonne (R, G, B ; A), d'une cellule de commande comprenant un bloc (21) de commutation de la polarisation de la colonne entre un potentiel positif d'alimentation (+V A ; M) et un potentiel négatif d'alimentation (M ; -V A ), et d'un bloc (22) de détection de la charge de cette colonne.
- Dispositif de commande selon la revendication 1 ou 2, caractérisé en ce que ladite anode (5) est constituée d'au moins deux ensembles de bandes alternées d'éléments luminophores (7) organisées en colonnes (R, G, B ; A), et en ce que ladite cathode (1) est constituée d'un plan de micropointes (2) couvrant toute la surface de l'écran.
- Dispositif de commande selon la revendication 3, caractérisé en ce que chaque bloc de commutation (21) comporte deux interrupteurs (K1, K2) montés en série entre le potentiel négatif d'alimentation (M ; -V A ) et, par l'intermédiaire d'un capteur (Rs) du bloc de détection (22) auquel il est associé, le potentiel positif d'alimentation (+V A ; M), et un comparateur (23) recevant sur deux entrées, respectivement une tension de consigne de luminance (Vref) et une tension (V CE ) délivrée par ledit bloc de détection (22) et indicatrice de la quantité de charges reçues par ladite colonne (A), lesdits interrupteurs (K1, K2) constituant un étage de polarisation de la colonne commandé par ledit comparateur (23) dont la sortie commande un premier interrupteur (K1) par l'intermédiaire d'un inverseur (24) tandis qu'elle commande directement un second interrupteur (K2).
- Dispositif de commande selon la revendication 4, caractérisé en ce que chaque bloc de détection (22) comporte un premier amplificateur opérationnel (26) dont une entrée non inverseuse reçoit la tension (Vs) aux bornes d'une résistance de détection (Rs) constituant ledit capteur, dont une entrée inverseuse reçoit la tension aux bornes d'une résistance de charge (Rch) et dont la sortie est envoyée sur la grille d'un premier transistor MOS à canal N (MN1) placé entre ladite résistance de charge (Rch) et un condensateur de stockage (C), la tension aux bornes dudit condensateur (C) constituant ladite tension (V CE ) indicatrice de la quantité de charges reçues par la colonne (A).
- Dispositif de commande selon la revendication 5, caractérisé en ce que chaque cellule de commande comporte, en outre, des moyens (MN2) pour décharger ledit condensateur (C) avant chaque adressage d'une nouvelle rangée (L) de ladite grille (3).
- Dispositif de commande selon l'une quelconque des revendications 4 à 6, caractérisé en ce que ledit premier interrupteur (K1) est constitué d'un premier transistor MOS de puissance à canal N (ML) dont la source est connectée audit potentiel négatif d'alimentation (-V A ; M) et dont le drain est relié à une borne (D) de raccordement de ladite colonne (A) ainsi qu'au drain d'un deuxième transistor MOS de puissance à canal P (MH), constituant ledit second interrupteur (K2) et dont la source est connectée audit potentiel positif d'alimentation (+V A ; M) par l'intermédiaire dudit capteur (Rs).
- Dispositif de commande selon la revendication 7, caractérisé en ce que ledit comparateur (23) est constitué d'un second amplificateur opérationnel dont une entrée inverseuse reçoit ladite tension (V CE ) indicatrice de la quantité de charges reçues, dont une entrée non inverseuse reçoit ladite tension de consigne (Vref) et dont la sortie est envoyée sur les grilles desdits transistors de puissance (ML, MH) de l'étage de polarisation (K1, K2).
- Dispositif de commande selon la revendication 7 ou 8, caractérisé en ce que la sortie dudit comparateur (23) est reliée à la grille dudit premier transistor (ML) de l'étage de polarisation (K1, K2) par l'intermédiaire d'un élément retardateur (27) et d'un décaleur de tension (28) tandis qu'elle est directement reliée à la grille dudit second transistor (MH) de l'étage de polarisation, ledit potentiel positif d'alimentation étant constitué par la masse (M).
- Dispositif de commande selon l'une quelconque des revendications 1 à 9, caractérisé en ce que ladite tension de consigne (Vref) est fournie par un convertisseur numérique-analogique (25) recevant, en entrée, une consigne de luminance (LUM) sous forme numérique (D0-D7).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9502066A FR2730843B1 (fr) | 1995-02-17 | 1995-02-17 | Dispositif d'adressage d'une electrode d'ecran plat de visualisation a micropointes |
FR9502066 | 1995-02-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0729128A2 true EP0729128A2 (fr) | 1996-08-28 |
EP0729128A3 EP0729128A3 (fr) | 1996-09-11 |
Family
ID=9476416
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96410011A Withdrawn EP0729128A2 (fr) | 1995-02-17 | 1996-02-08 | Dispositif d'adressage d'une électrode d'écran plat de visualisation à micropointes |
Country Status (4)
Country | Link |
---|---|
US (1) | US6020864A (fr) |
EP (1) | EP0729128A2 (fr) |
JP (1) | JPH08265674A (fr) |
FR (1) | FR2730843B1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998031000A1 (fr) * | 1997-01-07 | 1998-07-16 | Micron Display Technology, Inc. | Ecran a adressage matriciel commande par courant pulse |
WO2000014708A3 (fr) * | 1998-09-03 | 2001-01-11 | Univ Southern California | Attaque pulsee performante de charges capacitives a des niveaux de tension regulables |
US7663618B2 (en) | 1998-09-03 | 2010-02-16 | University Of Southern California | Power-efficient, pulsed driving of capacitive loads to controllable voltage levels |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2769114B1 (fr) * | 1997-09-30 | 1999-12-17 | Pixtech Sa | Simplification de l'adressage d'un ecran a micropointes |
FR2811799B1 (fr) * | 2000-07-13 | 2003-06-13 | Commissariat Energie Atomique | Procede et dispositif de commande d'une source d'electrons a structure matricielle, avec regulation par la charge emise |
JP2002328645A (ja) * | 2001-05-01 | 2002-11-15 | Canon Inc | 画像表示装置及びその駆動方法及び回路 |
US6943761B2 (en) * | 2001-05-09 | 2005-09-13 | Clare Micronix Integrated Systems, Inc. | System for providing pulse amplitude modulation for OLED display drivers |
US6972742B2 (en) * | 2001-05-09 | 2005-12-06 | Clare Micronix Integrated Systems, Inc. | Method of current balancing in visual display devices |
FR2832537B1 (fr) * | 2001-11-16 | 2003-12-19 | Commissariat Energie Atomique | Procede et dispositif de commande en tension d'une source d'electrons a structure matricielle, avec regulation de la charge emise |
JP2006516175A (ja) * | 2002-09-04 | 2006-06-22 | フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン | 電子放出装置を制御するための制御回路 |
DE10241433B4 (de) * | 2002-09-04 | 2008-04-03 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Steuerschaltung zum Steuern einer Elektronenemissionsvorrichtung |
JP4504655B2 (ja) * | 2003-10-15 | 2010-07-14 | 日本放送協会 | 電子放射装置、駆動装置およびディスプレイ |
TWI261140B (en) * | 2005-05-31 | 2006-09-01 | Au Optronics Corp | Display panels |
US20070146241A1 (en) * | 2005-06-09 | 2007-06-28 | Nongqiang Fan | Method of Driving Field Emission Display |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4384287A (en) * | 1979-04-11 | 1983-05-17 | Nippon Electric Co., Ltd. | Inverter circuits using insulated gate field effect transistors |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5528247A (en) * | 1978-08-21 | 1980-02-28 | Hitachi Ltd | El element drive circuit |
US4837566A (en) * | 1985-07-12 | 1989-06-06 | The Cherry Corporation | Drive circuit for operating electroluminescent display with enhanced contrast |
FR2632436B1 (fr) * | 1988-06-01 | 1991-02-15 | Commissariat Energie Atomique | Procede d'adressage d'un ecran matriciel fluorescent a micropointes |
FR2633765B1 (fr) * | 1988-06-29 | 1991-09-06 | Commissariat Energie Atomique | Ecran fluorescent a micropointes ayant un nombre reduit de circuits d'adressage et procede d'adressage de cet ecran |
US5008657A (en) * | 1989-01-31 | 1991-04-16 | Varo, Inc. | Self adjusting matrix display |
FR2711273B1 (fr) * | 1993-10-14 | 1996-01-19 | Pixel Int Sa | Ecran plat à anode doublement commutée, utilisant des bandes de couleur dans le sens des lignes . |
-
1995
- 1995-02-17 FR FR9502066A patent/FR2730843B1/fr not_active Expired - Fee Related
-
1996
- 1996-02-08 EP EP96410011A patent/EP0729128A2/fr not_active Withdrawn
- 1996-02-15 US US08/602,084 patent/US6020864A/en not_active Expired - Fee Related
- 1996-02-16 JP JP8052572A patent/JPH08265674A/ja not_active Ceased
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4384287A (en) * | 1979-04-11 | 1983-05-17 | Nippon Electric Co., Ltd. | Inverter circuits using insulated gate field effect transistors |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998031000A1 (fr) * | 1997-01-07 | 1998-07-16 | Micron Display Technology, Inc. | Ecran a adressage matriciel commande par courant pulse |
US5945968A (en) * | 1997-01-07 | 1999-08-31 | Micron Technology, Inc. | Matrix addressable display having pulsed current control |
WO2000014708A3 (fr) * | 1998-09-03 | 2001-01-11 | Univ Southern California | Attaque pulsee performante de charges capacitives a des niveaux de tension regulables |
US7663618B2 (en) | 1998-09-03 | 2010-02-16 | University Of Southern California | Power-efficient, pulsed driving of capacitive loads to controllable voltage levels |
Also Published As
Publication number | Publication date |
---|---|
EP0729128A3 (fr) | 1996-09-11 |
FR2730843A1 (fr) | 1996-08-23 |
FR2730843B1 (fr) | 1997-05-09 |
JPH08265674A (ja) | 1996-10-11 |
US6020864A (en) | 2000-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0704877B1 (fr) | Protection électrique d'une anode d'écran plat de visualisation | |
EP0729128A2 (fr) | Dispositif d'adressage d'une électrode d'écran plat de visualisation à micropointes | |
FR2511530A1 (fr) | Dispositif d'affichage a decharge | |
FR2708380A1 (fr) | Dispositif d'affichage d'images et circuit de commande associé. | |
EP0145520A2 (fr) | Ecran d'affichage à matrice active sans croisement des lignes et des colonnes d'adressage | |
FR2530851A1 (fr) | Appareil de visualisation plan pour televiseurs et terminaux | |
FR2512240A1 (fr) | Dispositif de visualisation a commande electrique utilisant un element non lineaire en couche epaisse et son procede de fabrication | |
FR2499801A1 (fr) | Dispositif d'affichage d'image de type plat | |
EP0055966A2 (fr) | Dispositif d'affichage matriciel comprenant deux familles d'électrodes lignes et son procédé de commande | |
EP0485285A1 (fr) | Dispositif électrooptique bistable, écran comportant un tel dispositif et procédé de mise en oeuvre de cet écran | |
FR2656453A1 (fr) | Panneau d'affichage a plasma. | |
EP0734042B1 (fr) | Anode d'écran plat de visualisation à bandes résistives | |
FR2657712A1 (en) | Plasma visual display screen | |
EP0292376B1 (fr) | Dispositif d'affichage électroluminescent à effet mémoire et à demi-teintes | |
EP0041890A1 (fr) | Elément à conduction non linéaire, et dispositif à commutation, de visualisation notamment, incorporant un tel élément | |
EP0734043B1 (fr) | Ecran plat de visualisation a double grille | |
FR2645998A1 (fr) | Ecran d'affichage electroluminescent a memoire et a configuration particuliere d'electrodes | |
FR2786021A1 (fr) | Panneau d'affichage plasma et methode de commande de celui-ci | |
EP0817232B1 (fr) | Procédé de régénération de micropointes d'un écran plat de visualisation | |
FR2735265A1 (fr) | Commutation d'une anode d'ecran plat de visualisation | |
WO2002048993A1 (fr) | Dispositif d'ecran video numerique | |
EP0990917B1 (fr) | Procédé de test de la connexion des sorties d'au moins un circuit de puissance pour écran à plasma et circuit de puissance pour sa mise en oeuvre. | |
FR2473207A1 (fr) | Dispositif de commande d'ecrans electroluminescents | |
EP0905670A1 (fr) | Simplification de l'adressage d'un écran à micropointes avec électrode de rappel | |
EP0844643A1 (fr) | Ecran plat de visualisation à déviation latérale |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB IT |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR GB IT |
|
17P | Request for examination filed |
Effective date: 19970207 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: PIXTECH S.A. |
|
111Z | Information provided on other rights and legal means of execution |
Free format text: DE FR GB IT |
|
17Q | First examination report despatched |
Effective date: 20011217 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
19U | Interruption of proceedings before grant |
Effective date: 20020621 |
|
19W | Proceedings resumed before grant after interruption of proceedings |
Effective date: 20210201 |
|
PUAJ | Public notification under rule 129 epc |
Free format text: ORIGINAL CODE: 0009425 |
|
32PN | Public notification |
Free format text: NOTIFICATION ETABLIE CONFORMEMENT A LA REGLE 142 CBE (REPRISE DE LA PROCEDURE CONFORMEMENT A LA REGLE 142 (2) CBE EN DATE DU 17.08.2020) |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
PUAJ | Public notification under rule 129 epc |
Free format text: ORIGINAL CODE: 0009425 |
|
32PN | Public notification |
Free format text: CONSTATATION DE LA PERTE D'UN DROIT CONFORMEMENT A LA REGLE 112(1) CBE (OEB FORM 2015A EN DATE DU 09/08/2021) |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20210602 |