EP0723487B1 - Verfahren und vorrichtung zur einstellung der legierungszusammensetzung eines flüssigen metalls, z.b stahl - Google Patents

Verfahren und vorrichtung zur einstellung der legierungszusammensetzung eines flüssigen metalls, z.b stahl Download PDF

Info

Publication number
EP0723487B1
EP0723487B1 EP94929580A EP94929580A EP0723487B1 EP 0723487 B1 EP0723487 B1 EP 0723487B1 EP 94929580 A EP94929580 A EP 94929580A EP 94929580 A EP94929580 A EP 94929580A EP 0723487 B1 EP0723487 B1 EP 0723487B1
Authority
EP
European Patent Office
Prior art keywords
liquid metal
receptacle
reactor
metal
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94929580A
Other languages
English (en)
French (fr)
Other versions
EP0723487A1 (de
Inventor
Jean Alex Michard
Henri Gaye
Jean-Luc Roth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sollac SA
Original Assignee
Sollac SA
Lorraine de Laminage Continu SA SOLLAC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sollac SA, Lorraine de Laminage Continu SA SOLLAC filed Critical Sollac SA
Publication of EP0723487A1 publication Critical patent/EP0723487A1/de
Application granted granted Critical
Publication of EP0723487B1 publication Critical patent/EP0723487B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/56Manufacture of steel by other methods
    • C21C5/567Manufacture of steel by other methods operating in a continuous way
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S75/00Specialized metallurgical processes, compositions for use therein, consolidated metal powder compositions, and loose metal particulate mixtures
    • Y10S75/957Continuous refining of molten iron

Definitions

  • the invention relates to the production of liquid steel. It is particularly applicable to the production of high purity steels, with extremely low carbon contents, and even also nitrogen and oxygen.
  • the circulation of the metal between the pocket and the tank causes gentle agitation of the metal in the pocket, favorable to good decantation of the non-metallic inclusions.
  • a processing time of 10 minutes may be enough to lower the carbon content in the steel from 300 ppm to 20 ppm.
  • the object of the invention is to propose a new type of metallurgical reactor, which gives access to the carbon contents in the liquid steel of the order of 10 ppm and less under satisfactory productivity conditions.
  • This reactor should also be able to be used to produce less deeply decarburized steels but with very low content of oxidized inclusions.
  • the subject of the invention is a method for adjusting the composition of a liquid metal, according to which, from a starting container, said liquid metal is sucked inside a reactor which is placed under reduced pressure with respect to said first container, it is subjected to a metallurgical treatment, and said metal is discharged into an inlet container with respect to which said reactor is also placed under reduced pressure, characterized in that said metal is run off inside said reactor according to a regime close to a piston flow.
  • said starting container is supplied with metal continuously, and said metal is made to flow from said arrival container also continuously.
  • the liquid metal is steel
  • the metallurgical treatment comprises decarburization, denitriding or deoxidation by carbon under vacuum
  • the arrival container is a continuous casting distributor.
  • the invention also relates to an installation for adjusting the composition of a liquid metal, such as steel, which comprises a starting container containing said liquid metal, a reactor, and an arrival container, said reactor.
  • a tank provided with means allowing its interior to be maintained at a reduced pressure compared to those prevailing in said starting container and said arrival container, of a first plunger called ascending plunger, one end of which dips in the liquid metal contained in said starting container and the other end of which is connected to the bottom of said tank, of a second plunger, said descending plunger, one end of which dips in the liquid metal contained in said arrival container and the other end of which is connected at the bottom of said tank, and means for ensuring a continuous circulation of said liquid metal between said departure container and said arrival container e through said plungers and said reactor vessel, characterized in that said vessel is shaped so as to impose on said metal liquid a flow close to a piston type flow on its path between said plungers.
  • the new proposed reactor has points in common with RH, namely the presence of a tank placed under vacuum and two plungers, through which the metal enters the tank and leaves. But the principle of continuous circulation of the liquid metal between the ladle and the reactor is abandoned: the metal leaving the reactor here pours into another container than its starting container and will no longer return to this same reactor.
  • the liquid steel in the reactor according to the invention must have a flow close to a piston flow. If necessary, as will be seen, this pseudo-piston flow is obtained by fragmenting the reactor into a multiplicity of perfectly mixed cells between which the exchange of matter is reduced to a minimum.
  • this reactor can advantageously be inserted in a continuous or semi-continuous production line for liquid steel.
  • the principle of the continuous recirculation of the metal between the ladle and the tank means that the tank is constantly supplied with less decarburized metal than is the metal being decarburized which is already there.
  • the tank behaves like a perfectly stirred reactor, we can define at any time an average carbon content C V of the metal in the tank, as well as an average carbon content C L of the metal in the ladle.
  • C L is permanently greater than C V , it is understood that the decrease in C V is slowed down by the addition of less decarburized metal, of carbon content C L.
  • This is well reflected in the mathematical models of decarburization which involve the relationship in the expression of the kinetic coefficient of the reaction.
  • the report must be as close as possible to 1. It is of the order of 0.6 on average in conventional RH, and varies according to the stage of advancement of decarburization and the rate of recirculation of the metal.
  • this descending plunger 10 does not open into the same container as the ascending plunger 8, but into an inlet container 11 which, in the example shown, is a continuous casting distributor.
  • this distributor 11 is equipped with at least one outlet nozzle 12 thanks to which the liquid metal 2 flows continuously, with a flow controllable by a stopper rod or a drawer not shown, in at least one ingot mold 13 bottomless, with walls energetically cooled by an internal circulation of water. It is in this ingot mold 13 that the solidification of a crust 14 of steel begins which gives rise to a steel product 15, slab, bloom or billet according to the format of the ingot mold 13.
  • the RH tanks have a substantially cylindrical shape, with an inside diameter of a few meters at most. This configuration gives RH the properties of a perfectly stirred reactor.
  • the tank 6 must confer on the reactor 5 properties as close as possible to those of a piston flow reactor, where the steel which has undergone degassing and / or decarburization to given levels cannot then be mixed with less purified steel.
  • one solution consists in giving the inside of the tank 6 the shape of a corridor, that is to say a channel of rectangular or approximately rectangular section, long and narrow, at the ends of which are connected the divers 8, 10.
  • the ratio between the distance separating the divers 8, 10 and the width of the channel is at least equal to 6.
  • the tank 6, for example, a width of 1 m to 1.50 m and a length separating the divers 8, 10 from 8 to 10 m.
  • the efficiency of decarburization and degassing is largely a function of the ratio between the surface of liquid metal 2 offered under vacuum and the volume of this same liquid metal 2 present in the tank 5. This ratio must be as high as possible, which implies that, for a given volume of metal, the depth "e" of the metal present in the tank 5 must not be too great (0.40 to 0.80 m for example).
  • This depth is governed by the geometry of the set of the installation, (in particular the differences in level between the tank 6, and the intermediate container 4 and the distributor 11) and also by the pressure difference ⁇ P between the inside of the tank 6 and the atmosphere to which the surfaces are exposed 16 and 17 of the liquid steel 2, respectively in the intermediate container 4 and in the distributor 11.
  • ⁇ h ⁇ P ⁇ .g
  • the density of the liquid steel (approximately 7000 kg / m 3 ) and g the acceleration of gravity (9.8 m / s 2 ), that is: ⁇ h (in m) ⁇ 1.46.10 -5 ⁇ P (in Pa)
  • the depth e of the liquid metal 2 in the tank 5 is therefore relatively little dependent, in the usual pressure ranges, on the level of vacuum obtained in the tank 5.
  • the circulation of metal between the containers 4, 11 through the reactor 5 is governed in part by the injection of gas into the ascending plunger 8 if it is practiced there. But in all cases, the existence of this circulation and the flow of metal which it brings into play depend on the difference in level between the surface 16 of the liquid metal 2 in the intermediate container 4 and the surface 17 of the liquid metal 2 in the distributor 11. This difference in level is linked in particular to the difference between the supply flow rate of the intermediate container 4 and the flow rate of metal 2 leaving the distribution valve 11.
  • the corridor shape for the tank 6 of the reactor 5 is the most suitable for establishing a piston-type flow for the liquid metal 2.
  • the arrival of the metal in coming from the ascending plunger 8 and the gaseous releases due to the argon possibly injected into this plunger 8 and the decarburization of the metal cause strong agitation which can significantly degrade and in an uncontrollable manner the conditions of this flow.
  • it is advisable to carry out a flow approaching a piston flow by dividing the tank 6 of the reactor 5 into a series of perfectly mixed cells and between which the exchanges of liquid metal 2 are as limited as possible.
  • dams 24-28 are arranged transversely to the general orientation of the tank 6 and delimit cells 29-34, each equipped with a fluid injection device 19-23 (except possibly the first cell 29, if an injection of fluid is carried out in the ascending plunger 8; it is then this injection which causes the agitation of metal in this first cell 29).
  • Openings 36-39 are provided in the other dams 25-28 to allow minimal communication of the cells 30-34 between them ensuring the progression of the liquid metal 2 in the tank 6. These openings 36-39 are preferably placed in the parts lower dams 25-28 to allow complete emptying of the tank 6. In this way, the respective zones of influence of the fluid injection devices 19-23 are well delimited, and a large number of such devices can be provided without increasing the risk of excessive metal exchanges between two neighboring cells. This brings us closer to the conditions of an ideal piston flow than in the absence of such dams.
  • the reactor 5 is provided with all the equipment (not shown) that can usually be encountered on RH, namely: one or more television cameras allowing operators to observe the surface of the liquid metal 2 in the tank, one or more devices for taking metal samples (it is advantageous to provide several staggered along the tank 5 to follow the evolution of the composition of the metal during vacuum treatment), one or more devices introduction of alloying elements, one or more oxygen blowing devices, one or more graphite resistors providing a preheating of the refractories of the tank 6. It is advantageous to install an oxygen insufflation device (lance or nozzle) at least in the first cell 29.
  • one or more television cameras allowing operators to observe the surface of the liquid metal 2 in the tank
  • one or more devices for taking metal samples it is advantageous to provide several staggered along the tank 5 to follow the evolution of the composition of the metal during vacuum treatment
  • one or more devices introduction of alloying elements it is advantageous to provide several staggered along the tank 5 to follow the evolution of the composition of the metal during vacuum treatment
  • the fluid injected into the bottom 18 of the tank 6 by at least some of the devices 19-23 may be not argon, but a gas capable, initially, of partially dissolving in the liquid steel , and whose departure under the effect of the vacuum tends to favor decarburization.
  • This gas can be nitrogen and, above all, hydrogen. In doing so, of course, it is accepted that the content of the metal in this gas in most of the tank is higher than with the usual practice of argon insufflation. But since hydrogen is a relatively easy gas to remove from liquid steel, it is sufficient to inject argon in its place in the very last cell (s) to find the levels of hydrogen in metal 2 usually encountered at the outlet of a vacuum reactor. With regard to nitrogen, its departure from the liquid metal is slower and risks not being total: it is better not to use it as a stirring gas if very low nitrogen contents are sought in conjunction with very low contents carbon.
  • This reactor 5 can also be used not as an advanced decarburization reactor, but as a vacuum deoxidation reactor.
  • carbon is added to the bath in solid or gaseous form (for example in the form of CH 4 ) in one or more places of tank 6, so that it combines with dissolved oxygen and decreases its concentration.
  • a level deemed sufficiently low for example 80 ppm
  • carbon is added to the bath in solid or gaseous form (for example in the form of CH 4 ) in one or more places of tank 6, so that it combines with dissolved oxygen and decreases its concentration.
  • the advantage of such a mode of deoxidation is that it saves a large part of the aluminum usually used to deoxidize the bath, and, thereby, avoid the massive formation of inclusions of alumina. which should then be removed before the metal is poured.
  • This method can also be applied to the production of stainless steels for which carbon deoxidation can be a prerequisite for the massive addition of chromium.
  • Another advantage of the installation according to the invention is that the metal flow rate which passes through it is very moderate compared to that which circulates in an RH (10 rpm against 240 rpm). The refractories therefore wear considerably less quickly, in particular at the level of the plungers.
  • this reactor 5 can also be used simply so as to decant said metal from a container initially containing a certain quantity of liquid steel (and no longer receiving it later) in another container, pocket or distributor, initially empty.
  • a container initially containing a certain quantity of liquid steel (and no longer receiving it later) in another container, pocket or distributor, initially empty it is however necessary to arrange so that the surface of the metal in the arrival container is permanently at an altitude lower than that of the surface of the metal in the departure container. This may require moving these devices relative to each other during operation in a rather complex way, and requiring the departure and arrival containers to be shallow, so that their movements do not have a too large amplitude.
  • the initial carbon content of the liquid steel is not very high at the inlet of reactor 5 (for example of the order of 80 ppm), a single reactor of reasonable dimensions makes it possible to reduce this content to levels of the order of 5 ppm, as will be seen in the example described below. If the initial carbon content is a few hundred ppm, an additional reactor can be added to reactor 5 located upstream of it in the continuous production line, which would have the function of bringing the carbon content to the level required at the inlet of reactor 5 (80 ppm in our example).
  • This production line firstly comprises a primary production machine 40. Its function is to produce, continuously or discontinuously, a liquid steel whose composition must be adjusted in the course of operations.
  • This machine 40 can, as shown in Figure 2, be a conventional LD type converter, that is to say in which the liquid iron which is introduced therein is transformed into liquid steel by decarburization. This decarburization is obtained by insufflation of oxygen by means of an emerged lance 42.
  • any other known primary production machine may be suitable, for example a converter of the LWS type with oxygen blowing from the bottom, a blown converter, or an electric furnace producing steel liquid from scrap.
  • this primary production machine 40 feeds liquid steel 2 to a large steelworks pocket 43 which acts as a buffer container.
  • this pocket 43 pours continuously into a first container 44.
  • the feed rate of this first container 44 is controlled by a drawer closure (not shown) of a type known per se (or its functional equivalent) ) located on the pocket 43.
  • the liquid steel 2 is introduced into the first container 44 by a protective tube 45 in refractory designed to limit the absorption of atmospheric oxygen and nitrogen by the jet of liquid metal.
  • the flow of steel leaving the pocket 43 is, for example, around 10 rpm, corresponding to the average productivity of the production machine 40.
  • the first container 44 can take place various operations for adjusting the composition of the liquid steel 2, in particular the addition of alloying elements, and above all a desulfurization. It is indeed advisable to desulfurize the steel 2, when necessary, before the vacuum treatment. One reason for this is that this operation requires the addition of materials such as lime which may have a high moisture content. They are therefore capable of supplying hydrogen to the liquid steel 2.
  • the desulfurization requires intense mixing of the liquid steel 2 which thus risks absorbing atmospheric nitrogen. It is therefore necessary for the degassing of the liquid steel 2 to follow the desulfurization in order to compensate for the negative effects on the dissolved gas content. In addition, the departure of nitrogen during this degassing is all the easier the lower the sulfur content of the liquid steel 2.
  • the first compartment 46 is also equipped with means for stirring the liquid steel 2, such as means 51 for blowing argon, making it possible to ensure the intense stirring between the metal 2 and the slag 50 necessary for the performing desulfurization, and removing much of the alumina inclusions formed during the introduction of aluminum.
  • means for stirring the liquid steel 2 such as means 51 for blowing argon
  • the sulfur content of the liquid steel 2 obtained as a result of this treatment also depends on the sulfur content of the raw materials from which it was produced, the quantity of slag 50 surmounting the liquid steel 2, and the average residence time of the liquid steel 2 in this first compartment 46.
  • the capacity and the geometry of this first compartment 46 must therefore be calculated to guarantee the liquid steel 2 an average residence time high enough for the sulfur content to reach the desired level.
  • This reactor 53 has, in the example shown, a configuration quite similar to that of a conventional RH. It comprises a cylindrical tank 54 provided with two plungers, namely said ascending plunger 52 which can be equipped with an argon injection device 55, and a descending plunger 56, the lower end of which dips in an intermediate container 57 separate from the first container 44.
  • the tank 54 is equipped with a gas suction device 58 making it possible to maintain a reduced pressure in the reactor 53, for example of the order of 50 torr or less, under the effect of which liquid metal 2 is sucked inside the tank 54.
  • the gas possibly blown into the ascending plunger 55 contributes to ensuring the circulation of the metal 2 between the first container 44 and the intermediate container 57, with a flow rate which, in operation permanent, is substantially equal to the feed rate of the first container 44. This maintains stable operating conditions throughout the installation if we manage to maintain a drop constant designation between the surfaces of the metal in the first container 44 and the intermediate container 57.
  • the vessel 54 of the reactor 53 is equipped with a lance 59 (or an equivalent device) making it possible to inject oxygen into the liquid metal, preferably in an area situated at the level of the ascending plunger 52.
  • the oxygen thus introduced on the one hand consumes the aluminum present in the bath, and on the other hand, dissolves in steel 2 where it can thus combine with carbon to effect the coarse decarburization required. This should bring the carbon content of metal 2 from 200-800 ppm to, for example, about 80 ppm. Since decarburization is very rapid in this range of contents, this perfectly stirred reactor 53 is sufficient to obtain this result.
  • the liquid steel 2 therefore has a carbon content already considerably reduced compared to its initial content, and contains sufficient dissolved oxygen so that decarburization can continue until an ultra-low content if it is treated in a reactor of the type shown in FIG. 1. Such treatment constitutes the next step in the production chain.
  • the liquid steel 2 is withdrawn from the intermediate container 57 by an advanced decarburization reactor 5, identical to that previously described and shown in FIG. 1. For this reason, it is not useful to describe it here in more detail.
  • the intermediate container 57 here fulfills the functions of the intermediate container 4 in FIG. 1.
  • the other elements common to the two installations are designated in FIG. 2 by the same reference signs as in FIG. 1.
  • Means 60 have been added to it. the continuous addition to the liquid steel 2 of alloying elements such as aluminum, silicon, manganese in the last cell or cells of the advanced decarburization reactor 5. At this stage, decarburization is considered as completed, and the metal can be definitively nuanced after the capture by the aluminum of the residual dissolved oxygen.
  • the decarburized and nuanced liquid steel 2 enters a continuous casting distributor 11, in which the descending plunger 10 of the advanced decarburization reactor 5 is immersed. Then it begins to solidify in the ingot mold (s) 13 to form in each of them a slab, a bloom or a billet 15.
  • This distributor 11 is preferably equipped with all the known improvements which make it possible to pour high-quality metallurgical products, in particular from the point of view of inclusion cleanliness: obstacles increasing the residence time of the metal, devices for mixing by gas blowing or by induction, cover covering the distributor and under which neutral gas is blown.
  • the metallurgical vessels 43, 44, 57 are provided with covers and means for blowing a neutral gas under these covers (not shown) to limit the contact of the liquid metal with the ambient air.
  • the ultra-low carbon contents obtained often go hand in hand with very low nitrogen contents (30 ppm and less), provided that the nitrogen content at the outlet of the production machine 40 is not too high, and that the following stages (in particular the transfers from one container to another and the stirring of the metal) do not bring about significant nitrogen recovery.
  • the preceding procedure would not be optimal.
  • the denitriding in the last cells would be very low since the deeply decarburized metal would have a high content of dissolved oxygen.
  • the CO sweep produced by decarburization would therefore be too reduced to be able to offset the negative effect of dissolved oxygen on the denitriding kinetics.
  • the reactor 5 can no longer be used as an advanced decarburization reactor, but as a reactor for deoxidation of the metal by carbon under vacuum.
  • the advantage is to obtain a final metal with a very low content of inclusive oxygen, since a minimum quantity of aluminum is necessary for the final deoxidation of the liquid metal.
  • the carbon content of 80 ppm (for example) obtained thanks to the coarse decarburization reactor 53.
  • the various injections of argon are replaced by injections of a liquid or gaseous hydrocarbon such as methane CH 4 , which decomposes by cracking into carbon and hydrogen.
  • Carbon combines with the oxygen dissolved in metal 2 to form CO, the formation kinetics of which is accelerated by hydrogen.
  • the quantity of hydrocarbon injected can optionally be modulated in each cell so that the carbon content of the bath remains constant as the deoxidation takes place. It is thus possible to obtain a dissolved oxygen content of approximately 10 ppm while retaining the initial 80 ppm of carbon.
  • the invention is not limited to the examples which have been described and shown, and modifications can be made to the constitution of the metallurgical reactor according to the invention and to the process for the preparation of the liquid steel which produces it. use.
  • the main thing is to keep the general principle governing the design of the reactor, namely, a flow of liquid metal within it as close as possible to the ideal case of a piston flow.
  • the reactor which has been described can without problems also be used for the production of steels whose carbon content is not particularly low, and for which no research that a high inclusive cleanliness and a low dissolved gas content.
  • the invention can find applications in the preparation of metals other than steel.

Claims (23)

  1. Verfahren zur Einstellung der Zusammensetzung eines flüssigen Metalls, bei dem aus einem Ausgangsbehälter das flüssige Metall in das Innere eines Reaktors gesaugt wird, der bezogen auf den ersten Behälter unter verringertem Druck gesetzt wird, dieses einer metallurgischen Behandlung unterworfen und in einen Zuführungsbehälter eingefüllt wird, der bezogen auf den Reaktor ebenfalls unter verringertem Druck gesetzt wird, dadurch gekennzeichnet, daß das Metall in das Innere des Reaktors gemaß einer Betriebsweise eingefüllt wird, die einer Kolbenauslassweise ähnlich ist.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, daß der Ausgangsbehälter mit flüssigem Metall auf kontinuierliche Weise versorgt wird, und daß das Metall aus dem Zuführungsbehälter ebenfalls auf kontinuierliche Weise abgeführt wird.
  3. Verfahren nach Anspruch 2,
    dadurch gekennzeichnet, daß der Zuführungsbehälter ein Verteiler für den Strangguß ist.
  4. Verfahren nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, daß der Reaktor in eine Vielzahl von Zellen unterteilt ist, von denen jede eine perfekt durchmischte Zone bildet.
  5. Verfahren nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, daß das flüssige Metall Stahl ist und daß die metallurgische Verarbeitung eine Entkohlung aufweist.
  6. Verfahren nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet, daß das flüssige Metall Stahl ist und die metallurgische Verarbeitung eine Denitrierung aufweist.
  7. Verfahren nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet, daß das flüssige Metall Stahl ist und daß die metallurgische Verarbeitung eine Vakuumdesoxidierung durch Kohlenstoff aufweist.
  8. Anlage zur Einstellung der Zusammensetzung eines flüssigen Metalls (2) wie Stahl, die einen Ausgangsbehälter (4), der das flüssige Metall enthält, einen Reaktor (5) und einen Zuführungsbehälter (11) aufweist, wobei der Reaktor (5) einen Schacht (6) aufweist, der mit Mitteln (7) versehen ist, die gestatten, in seinem Innern einen, bezogen auf die im Ausgangs- (4) und Zuführungsbehälter (11) herrschenden Drücke, niedrigeren Druck aufrechtzuerhalten, einen ersten Tauchkolben (8), genannt aufsteigender Tauchkolben, dessen eines Ende im flüssigen Metall (2) eingetaucht ist, das im Ausgangsbehälter (4) enthalten ist, und dessen anderes Ende mit dem Boden (18) des Schachts (6) verbunden ist, einen zweiten Tauchkolben (10), genannt absteigender Tauchkolben, dessen eines Ende in dem flüssigen Metall (2) eingetaucht ist, das im Zuführungsbehälter (11) enthalten ist, und dessen anderes Ende mit dem Boden (18) des Schachts verbunden ist, und Mittel aufweist, um eine kontinuierliche Zirkulation des flüssigen Metalls zwischen dem Ausgangsbehälter (4) und dem Zuführungsbehälter (11) durch die Tauchkolben (8, 10) und den Schacht (6) des Reaktors (5) hindurch zu gewährleisten,
    dadurch gekennzeichnet, daß der Schacht (6) derart geformt ist, daß er dem flüssigen Metall beim Durchlaufen der Strecke zwischen den Tauchkolben (8, 10) eine Fließbewegung auferlegt, die derjenigen vom Kolbentyp ähnlich ist.
  9. Anlage nach Anspruch 8,
    dadurch gekennzeichnet, daß der Schacht (6) einen annähernd rechteckigen Querschnitt aufweist und daß das Verhältnis zwischen dem Abstand, der die Tauchkolben (8, 10) trennt, und der Breite des Schachts (6) mindestens gleich 6 ist.
  10. Anlage nach Anspruch 8 oder 9,
    dadurch gekennzeichnet, daß der Schacht (6) eine Vielzahl von Mitteln zum Bewegen des flüssigen Metalls (2) aufweist, die den Schacht (6) in eine Vielzahl von Zellen (29-34) unterteilt, von denen jede perfekt durchmischt ist.
  11. Anlage nach Anspruch 10,
    dadurch gekennzeichnet, daß die Bewegungsmittel Mittel (19-23) zum Einblasen eines Fluids in das flüssige Metall aufweisen.
  12. Anlage nach Anspruch 11,
    dadurch gekennzeichnet, daß das Fluid für mindestens einen Teil der Bewegungsmittel Argon ist.
  13. Anlage nach Anspruch 11,
    dadurch gekennzeichnet, daß das Fluid für mindestens einen Teil der Bewegungsmittel Wasserstoff ist.
  14. Anlage nach Anspruch 11,
    dadurch gekennzeichnet, daß das Fluid für mindestens einen Teil der Bewegungsmittel ein Kohlenwasserstoff ist.
  15. Anlage nach einem der Ansprüche 10 bis 14,
    dadurch gekennzeichnet, daß die Bewegungsmittel Mittel zum Anlegen beweglicher elektromagnetischer Felder an das flüssige Metall (2) aufweisen.
  16. Anlage nach einem der Ansprüche 10 bis 15,
    dadurch gekennzeichnet, daß die Zellen (29-34) durch Absperrungen (24-28) voneinander getrennt sind, von denen jede eine Verbindung zwischen den Zellen, die sie trennt, zuläßt.
  17. Anlage nach einem der Ansprüche 8 bis 16,
    dadurch gekennzeichnet, daß die Mittel zur Gewährleistung eines kontinuierlichen Umlaufs des flüssigen Metalls zwischen dem Ausgangsbehälter (4) und dem Zuführungsbehälter (11) Mittel (9) zum Einblasen eines Gases in das flüssige Metall (2) aufweisen, das durch den aufsteigenden Tauchkolben (8) eingeschlossen ist.
  18. Anlage nach einem der Ansprüche 8 bis 17,
    dadurch gekennzeichnet, daß sie Mittel (1) aufweist, um den Ausgangsbehälter (4) auf kontinuierliche Weise mit flüssigem Metall (2) zu versorgen, und Mittel (12) aufweist, um das flüssige Metall (2) vom Zuführungsbehälter (11) auf kontinuierliche Weise zu abzuführen.
  19. Anlage nach Anspruch 18,
    dadurch gekennzeichnet, daß der Zuführungsbehälter (11) ein Verteiler für kontinuierlichen Strangguß ist.
  20. Anlage zur Dosierung der Legierungszusammensetzung des flüssigen Stahls,
    dadurch gekennzeichnet, daß sie aufweist:
    - Eine Maschine (40) zur primären Verarbeitung von flüssigem Stahl (2);
    - Mittel (43), um den aus der Maschine (40) zur primären Verarbeitung stammenden flüssigen Stahl (2) in einen ersten Behälter (44) auszugießen, der mit Mitteln zur Einführung von Desoxidatoren in das flüssige Metall (2) und mit Mitteln (51) zur Durchmischung versehen ist;
    - einen Reaktor (53) zur groben Entkohlung des flüssigen Metalls (2), aufweisend einen Schacht (54), der mit Mitteln (58) versehen ist, um ihn unter geringen Druck zu setzen, einen ersten Tauchkolben (52), der in das flüssige Metall (2) eingetaucht ist, das im ersten Behälter (44) enthalten ist, und einen zweiten Tauchkolben (56), der in einen Zwischenbehälter (57) eintaucht, wobei der Schacht (53) ebenfalls Mittel (59) zum Einblasen von Sauerstoff in das flüssige Metall aufweist;
    - Mittel zur Gewährleistung einer kontinuierlichen Zirkulation des flüssigen Metalls (2) zwischen dem ersten Behälter (44) und dem Zwischenbehälter (57);
    - mindestens eine Anlage zur Einstellung der Zusammensetzung des flüssigen Stahls nach einem der Ansprüche 8 bis 19, für die der Zwischenbehälter (57) den Ausgangsbehälter (4) bildet.
  21. Anlage nach Anspruch 20,
    dadurch gekennzeichnet, daß die Maschine (40) zur primären Verarbeitung das Mittel (43) bildet zum kontinuierlichen Entleeren des flüssigen Stahls (2) in den ersten Behälter (44).
  22. Anlage nach Anspruch 20 oder 21,
    dadurch gekennzeichnet, daß der erste Behälter (44) eine Trennwand (48) aufweist, die ihn in zwei zusammenhängende Abteile (46, 47) trennt, daß eines (46) dieser Abteile allein das flüssige Metall (2) aufnimmt, das von den Mitteln (43) stammt die es in den ersten Behälter (44) giessen, sowie die Desoxidatoren, und daß der erste Tauchkolben (52) des Reaktors (53) zur groben Entkohlung in das andere Abteil (47) eingetaucht ist.
  23. Anlage nach einem der Ansprüche 20 bis 22,
    dadurch gekennzeichnet, daß die Mittel zur Gewährleistung eines kontinuierlichen Umlaufs des flüssigen Metalls (2) zwischen dem ersten Behälter (44) und dem Zwischenbehälter (7) Mittel (55) zum Einblasen eines Gases in das flüssige Metall aufweisen, das durch den ersten Tauchkolben (52) eingeschlossen ist.
EP94929580A 1993-10-15 1994-10-05 Verfahren und vorrichtung zur einstellung der legierungszusammensetzung eines flüssigen metalls, z.b stahl Expired - Lifetime EP0723487B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9312469A FR2711083B1 (fr) 1993-10-15 1993-10-15 Procédé de réglage de la composition d'un métal liquide tel que l'acier, et installation pour sa mise en Óoeuvre.
FR9312469 1993-10-15
PCT/FR1994/001161 WO1995010377A1 (fr) 1993-10-15 1994-10-05 Procede de reglage de la composition d'un metal liquide tel que l'acier, et installation pour sa mise en ×uvre

Publications (2)

Publication Number Publication Date
EP0723487A1 EP0723487A1 (de) 1996-07-31
EP0723487B1 true EP0723487B1 (de) 1997-09-03

Family

ID=9452008

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94929580A Expired - Lifetime EP0723487B1 (de) 1993-10-15 1994-10-05 Verfahren und vorrichtung zur einstellung der legierungszusammensetzung eines flüssigen metalls, z.b stahl

Country Status (11)

Country Link
US (1) US5868816A (de)
EP (1) EP0723487B1 (de)
JP (1) JPH09503821A (de)
KR (1) KR100327288B1 (de)
AT (1) ATE157573T1 (de)
AU (1) AU683094B2 (de)
CA (1) CA2174109A1 (de)
DE (1) DE69405401T2 (de)
ES (1) ES2107252T3 (de)
FR (1) FR2711083B1 (de)
WO (1) WO1995010377A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10022785B2 (en) * 2014-10-17 2018-07-17 Nucor Corporation Method of continuous casting

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH380885A (de) * 1959-10-29 1964-08-15 Beteiligungs & Patentverw Gmbh Stranggiessverfahren und Vorrichtung zur Durchführung des Verfahrens
DE1268790B (de) * 1961-08-09 1968-05-22 Erik Allan Olsson Verfahren zum fortlaufenden Entgasen von Metallschmelzen
US3321300A (en) * 1963-08-13 1967-05-23 Conzinc Riotinto Ltd Degassing of metals or alloys
US3367396A (en) * 1965-04-05 1968-02-06 Heppenstall Co Installation for the vacuum treatment of melts, in particular steel melts, and process for its operation
DE1807846A1 (de) * 1968-11-08 1970-07-30 Vaw Ver Aluminium Werke Ag Verfahren und Vorrichtung zur Foerderung,Verteilung oder Dosierung von schmelzfluessigem Metall
US3901305A (en) * 1971-04-07 1975-08-26 Inst Po Metalloznanie I Tekno Apparatus for continuous casting of metals
US4515630A (en) * 1983-08-15 1985-05-07 Olin Corporation Process of continuously treating an alloy melt
JPH04131316A (ja) * 1990-09-20 1992-05-06 Kawasaki Steel Corp 極低炭素鋼の真空脱ガス方法および装置

Also Published As

Publication number Publication date
ATE157573T1 (de) 1997-09-15
WO1995010377A1 (fr) 1995-04-20
KR100327288B1 (ko) 2002-10-18
DE69405401D1 (de) 1997-10-09
ES2107252T3 (es) 1997-11-16
EP0723487A1 (de) 1996-07-31
US5868816A (en) 1999-02-09
FR2711083B1 (fr) 1995-12-01
CA2174109A1 (fr) 1995-04-20
AU683094B2 (en) 1997-10-30
JPH09503821A (ja) 1997-04-15
AU7858294A (en) 1995-05-04
DE69405401T2 (de) 1998-03-12
FR2711083A1 (fr) 1995-04-21
KR960704659A (ko) 1996-10-09

Similar Documents

Publication Publication Date Title
EP0048713B1 (de) Verfahren und vorrichtung zur herstellung von metallteilchen sowie dabei erhaltene teilchen
US3125440A (en) Tlbr b
FR2472019A1 (fr) Procede de fabrication d'acier au four a arc, comportant le soufflage d'un materiau carbonace dans l'acier fondu
LU81971A1 (fr) Utilisation d'argon dans le procede d'affinage d'acier en fusion a l'oxygene basique en vue de controler les projections
EP0196952B1 (de) Verfahren zur Herstellung beruhigten Stahls mit niedrigem Stickstoffgehalt
JPH10152714A (ja) 溶銑の精錬方法
EP0723487B1 (de) Verfahren und vorrichtung zur einstellung der legierungszusammensetzung eines flüssigen metalls, z.b stahl
LU84472A1 (fr) Procede et installation pour le traitement de l'acier en poche
FR2476140A1 (fr) Procede pour la production d'acier a haute teneur en chrome
BE898341Q (fr) Procédé de conversion de mattes d'un métal non ferreux en ce métal ou un sulfure de ce métal.
LU82481A1 (fr) Procede et appareil de fabrication d'acier au carbone et d'acier faiblement allie aumoyen d'un four a oxygene basique a soufflage par le fond
EP0924305B1 (de) Metallurgischer Reaktor zur Behandlung von geschmolzenem Metall unter vermindertem Druck
EP0342132A1 (de) Verfahren zur Entschwefelung von Roheisen
CA1154967A (fr) Procede de decarburation des fontes au chrome
FR2607829A1 (fr) Procede de traitement d'acier en poche
CN110892083A (zh) 抑制炉渣发泡的方法以及转炉精炼方法
US3202409A (en) Apparatus for degassing molten metals
EP0223722A1 (de) Verfahren und Vorrichtung zum Einblasen von pulverigen Zusätzen in den Strahl einer Metallschmelze unter vermindertem Druck
Hirashima et al. Developpement of a process fot producing extremely low carbon steel at Nippon Steel, Yawata Works
RU2406768C1 (ru) Способ дегазации стали
JPS6035408B2 (ja) 溶銑の連続処理法および装置
EP2918688A1 (de) Entschwefelungsverfahren eines flüssigen Gusseisens, und Seelendraht für seine Umsetzung
RU2156811C1 (ru) Способ производства железоуглеродистого расплава для получения стали
WO2001039912A1 (fr) Procede et dispositif pour couler des alliages de cuivre
SU1253716A1 (ru) Устройство дл получени слитков

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960515

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

17Q First examination report despatched

Effective date: 19960823

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19970903

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970903

REF Corresponds to:

Ref document number: 157573

Country of ref document: AT

Date of ref document: 19970915

Kind code of ref document: T

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970909

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

ITF It: translation for a ep patent filed

Owner name: BUGNION S.P.A.

REF Corresponds to:

Ref document number: 69405401

Country of ref document: DE

Date of ref document: 19971009

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2107252

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19971105

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19971008

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: 76265

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 76265

Country of ref document: IE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020918

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20020923

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020925

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20020926

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020930

Year of fee payment: 9

Ref country code: LU

Payment date: 20020930

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20021002

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20021003

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021009

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021017

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20021022

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031005

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031005

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031006

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

BERE Be: lapsed

Owner name: S.A. *SOLLAC

Effective date: 20031031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040501

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031005

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040630

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20040430

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20031006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051005