EP0721995A2 - Use of an iron based alloy for plastic molds - Google Patents

Use of an iron based alloy for plastic molds Download PDF

Info

Publication number
EP0721995A2
EP0721995A2 EP96890005A EP96890005A EP0721995A2 EP 0721995 A2 EP0721995 A2 EP 0721995A2 EP 96890005 A EP96890005 A EP 96890005A EP 96890005 A EP96890005 A EP 96890005A EP 0721995 A2 EP0721995 A2 EP 0721995A2
Authority
EP
European Patent Office
Prior art keywords
weight
iron
based alloy
pref
max
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96890005A
Other languages
German (de)
French (fr)
Other versions
EP0721995B1 (en
EP0721995A3 (en
Inventor
Gerhard Dr. Hackl
Manfred Ing. Gstettner
Karl Dipl.-Ing. Leban
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Boehler Edelstahl GmbH
Boehler Ybbstalwerke GmbH
Original Assignee
Voestalpine Boehler Edelstahl GmbH
Boehler Ybbstalwerke GmbH
Boehler Edelstahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voestalpine Boehler Edelstahl GmbH, Boehler Ybbstalwerke GmbH, Boehler Edelstahl GmbH filed Critical Voestalpine Boehler Edelstahl GmbH
Priority to SI9630109T priority Critical patent/SI0721995T1/en
Publication of EP0721995A2 publication Critical patent/EP0721995A2/en
Publication of EP0721995A3 publication Critical patent/EP0721995A3/en
Application granted granted Critical
Publication of EP0721995B1 publication Critical patent/EP0721995B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium

Definitions

  • the invention relates to the use of a chromium-containing, martensitic iron-based alloy for plastic molds.
  • Iron-based alloys with a chromium content of more than 12% are mainly used for the production of corrosion-resistant plastic molds for processing chemically attacking molding compounds.
  • temperable Cr steels with approx. 13.0% Cr and approx. 0.2 or approx. 0.4% by weight C are used, for example according to DIN material numbers 1.2082 and 1.2083.
  • These iron-base alloys, which essentially contain carbon and chromium, can be used economically for less stressed molds, but have the disadvantage that insufficient tool life is achieved for highly corrosive molding compounds and plastics with wearing additives.
  • a typical iron-based alloy for highly stressed plastic tools is material no. 1.2361 according to DIN.
  • a material distortion or an uneven dimensional change can occur, which often involves expensive reworking or the removal of the require processed part.
  • Such a non-uniform dimensional change is essentially brought about by a deformation texture or a line arrangement of the carbides.
  • the object of the invention was to avoid the above disadvantages and to propose a chromium-containing, martensitic iron-based alloy for thermally tempered plastic molds with high corrosion resistance, which molds can be produced economically with little dimensional change and have improved usage properties.
  • the advantages achieved by the invention are essentially to be seen in the fact that the molded part or the workpiece shows largely isometric dimensional changes during a heat treatment. Furthermore, the corrosion resistance of the material is improved and its matrix is more homogeneous. Both the mechanical properties and, surprisingly, the wear resistance of the plastic molds made from the alloy used according to the invention are significantly increased. The reason for this improvement in the properties of the mold material is seen in the fact that the iron-based alloy contains nitrogen, which element is on the one hand a strong austenite former and on the other hand causes nitride-forming elements to produce intermetallic hard phases.
  • the concentrations of all essential alloy elements are synergistic with one another, taking into account the effect of nitrogen the solidification, on the precipitations, on the conversion kinetics in a heat treatment and on the corrosion and cracking behavior of the iron-based alloy, so that when the material is used according to the invention for the production of thermally tempered plastic molds, these have significantly improved performance properties. This applies in particular to the high-gloss polishability of the plastic mold, which is often necessary, inter alia when the mold is used in the electronics industry.
  • a minimum content of 0.5% by weight of molybdenum is important to support the corrosion resistance or the stabilization of the surface passive layer, but contents higher than 3.0% by weight can have a ferrite-stabilizing effect, making it difficult to harden the alloy .
  • Vanadium has a very high affinity for both carbon and nitrogen.
  • the fine dispersed monocarbides (VC) or the mononitrides (VN) and the mixed carbides are advantageously effective in the range from 0.04 to 0.4% by weight of vanadium with regard to the material properties of the material in the tempered state, whereby particularly good hardness values and high tempering resistance with good dimensional stability of the shape were achieved in the range between 0.05 and 0.2% by weight of V, which is presumably due to the germinating effect of the small, homogeneously distributed vanadium compounds.
  • the total effect of carbon and nitrogen in the iron-based alloy is essential in the selected concentration ranges of the alloy metals.
  • With a total content in the range from 0.5 to 1.2% by weight of C + N it has surprisingly been found that the fatigue strength in particular in the case of alternating stresses such as occurs in the case of plastic forms due to the filling cycles is significantly increased. This is probably due to the stabilization of the passive layer in the atomic or micro range caused by nitrogen and thus a avoidance of crack initiation by local material attack.
  • Nitrogen atoms which will be examined in more detail, could have a beneficial effect on the material's alternating corrosion stress, as was found. Furthermore, with the above minimum total content, the cubic body-centered lattice obviously begins to be destabilized, so that there are no remaining areas with alpha and delta structure in the coating, which eliminates the tendency of the material to crack corrosion. With the same hardness and wear resistance, alloying the chromium-containing martensitic steel with carbon and nitrogen results in a lower carbide content, the matrix having increased strength, which significantly improves the performance properties of a highly stressed plastic mold.
  • Tungsten contents of up to 3.0% by weight improve the hardness and wear resistance, but higher values have a disadvantageous effect on the machinability and the annealing behavior of the material due to the high carbon affinity of the tungsten.
  • Niobium and / or titanium are monocarbide and mononitride formers in higher proportions; up to a concentration of 0.18% by weight or 0.2% by weight, however, these elements are mainly stored in mixed carbide, improve the mechanical properties of the steel and significantly reduce the risk of overheating. Higher levels can increase the brittleness of the molds, particularly when the carbon content exceeds 0.7% by weight.
  • Cobalt and nickel improve the material toughness in low contents of up to 2.8% by weight and 3.9% by weight, respectively, with nickel, an austenite-forming element, preferably not exceeding a concentration value of 1.5% by weight because of the hardenability should.
  • the invention is illustrated by means of examples which are described in are summarized in a table, described below.
  • Eight iron-based alloys were used for plastic molds of the same design, which are particularly high, but of the same chemical and wear, whereby the result values of the mold from the DIN material no To be able to clearly display shapes made of different materials.
  • the respective values are rounded total values.
  • the corrosion behavior, the mechanical properties, the fatigue strength, the hard material coating and the number of wear and tear are better with higher result values, less dimensional stability and better polishability of the material are indicated by lower identification numbers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Mold Materials And Core Materials (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

Iron-based alloy contains (in wt.%): 0.25-1, pref. 0.4-0.8, C; max. 1 Si; max. 1.6, pref. 0.3-0.8, Mn; 0.1-0.35, pref. 0.12-0.29, N; max. 1, pref. 0.002-0.8, Al; max. 2.8 Co, 14-25, pref. 16-19, Cr; 0.5-3, pref. 0.8-1.5, Mo; max. 3.9, pref. max 1.5 Ni; 0.04-0.4, pref. 0.05-0.2, V; max. 3 W; max. 0.18 Nb; max. 0.2 Ti; and balance Fe plus melting impurities. The sum of C+N is 0.5-1.2, pref. 0.61-0.95. The alloy may contain 0.02-0.45, pref. 0.2-0.3 S. The alloy may be provided with a surface coating of carbide and/or nitride and/or oxide of Ti and/or V and/or Al.

Description

Die Erfindung betrifft die Verwendung einer chromhältigen, martensitischen Eisenbasislegierung für Kunststofformen.The invention relates to the use of a chromium-containing, martensitic iron-based alloy for plastic molds.

Für die Herstellung von korrosionsbeständigen Kunststofformen zur Verarbeitung von chemisch angreifenden Preßmassen werden vorwiegend Eisenbasislegierungen mit einem Chromgehalt von über 12 % verwendet. Je nach erforderlicher bzw. gewünschter Materialhärte kommen vergütbare Cr-Stähle mit ca. 13,0% Cr und ca. 0,2 oder ca. 0,4 Gew. -% C, zum Beispiel nach DIN Werkstoffnummer 1.2082 und 1.2083, zur Anwendung. Diese, im wesentlichen Kohlenstoff und Chrom enthaltende Eisenbasislegierungen sind für weniger beanspruchte Formen durchaus wirtschaftlich einsetzbar, haben aber den Nachteil, daß für hochkorrosive Preßmassen und Kunststoffe mit verschleißenden Zusätzen keine ausreichende Standzeiten des Werkzeuges erreicht werden.Iron-based alloys with a chromium content of more than 12% are mainly used for the production of corrosion-resistant plastic molds for processing chemically attacking molding compounds. Depending on the required or desired material hardness, temperable Cr steels with approx. 13.0% Cr and approx. 0.2 or approx. 0.4% by weight C are used, for example according to DIN material numbers 1.2082 and 1.2083. These iron-base alloys, which essentially contain carbon and chromium, can be used economically for less stressed molds, but have the disadvantage that insufficient tool life is achieved for highly corrosive molding compounds and plastics with wearing additives.

Durch eine Erhöhung des Chromgehaltes auf ca. 14,5 Gew.-% und eine Anhebung des Kohlenstoffgehaltes auf ca.0,48 Gew.-% sowie einen Zusatz von ca. 0,25 Gew.-% Molybdän entsprechend der DIN Werkstoffnummer 1.2314 können besser korrosionsbeständige Eisenbasislegierungen für eine Kunststoffverarbeitung erhalten werden. Derartige Werkstoffe sind zumeist im praktischen Einsatz ausreichend beständig gegen chemischen Angriff, haben jedoch, insbesondere bei Mineralfasern enthaltenden Preßmassen, keinen ausreichenden Widerstand gegen Verschleiß.By increasing the chromium content to approx. 14.5% by weight and increasing the carbon content to approx. 0.48% by weight as well as adding approx. 0.25% by weight of molybdenum in accordance with DIN material number 1.2314 better corrosion-resistant iron-based alloys can be obtained for plastics processing. Such materials are usually sufficiently resistant to chemical attack in practical use, but, particularly in the case of molding compositions containing mineral fibers, do not have sufficient resistance to wear.

Verbesserte Gebrauchseigenschaften von Kunststofformen betreffend Oxidation/Korrosion und Verschleiß sind durch vergleichsweise hohe Chromgehalte, hohe Kohlenstoffgehalte sowie Molybdän- und Vanadingehalte des verwendeten Stahls erreichbar. Eine dafür typische Eisenbasislegierung für hochbeanspruchte Kunststoffwerkzeuge stellt der Werkstoff Nr. 1.2361 gemäß DIN dar. Bei einer Herstellung von Werkzeugen bzw. Formen aus dieser Legierung kann jedoch ein Materialverzug bzw. eine ungleichmäßige Maßänderung entstehen, welcher bzw. welche oft teure Nacharbeiten oder ein Ausscheiden des angearbeiteten Teiles erfordern. Eine derartige ungleichmäßige Maßänderung, wie dem Fachmann bekannt ist, wird im wesentlichen durch eine Verformungstextur bzw. eine zeilige Anordnung der Karbide bewirkt. Wird nun, wie vorgeschlagen wurde, der Kohlenstoffgehalt und damit der Karbidanteil in der Matrix erniedrigt, so erniedrigt sich auch insbesondere der Verschleißwiderstand des Werkstoffes, wodurch die Abtragung der Form bei hoher Reibbeanspruchung vergrößert und die Standzeit verringert sind. Ein weiterer Nachteil eines hohen Kohlenstoffgehaltes besteht in einem geringen Dehnungsvermögen und einer geringen Zähigkeit des Stahls.Improved usage properties of plastic molds with regard to oxidation / corrosion and wear can be achieved through comparatively high chrome contents, high carbon contents as well as molybdenum and vanadium contents of the steel used. A typical iron-based alloy for highly stressed plastic tools is material no. 1.2361 according to DIN. However, when tools or molds are made from this alloy, a material distortion or an uneven dimensional change can occur, which often involves expensive reworking or the removal of the require processed part. Such a non-uniform dimensional change, as is known to the person skilled in the art, is essentially brought about by a deformation texture or a line arrangement of the carbides. If, as has been proposed, the carbon content and thus the carbide content in the matrix is reduced, the wear resistance of the material also decreases, which increases the removal of the mold under high friction stress and reduces the service life. Another disadvantage of a high carbon content is the low elongation and the toughness of the steel.

Aufgabe der Erfindung war, obige Nachteile zu vermeiden und eine chromhältige, martensitische Eisenbasislegierung für thermisch vergütete Kunststofformen mit hoher Korrosionsbeständigkeit vorzuschlagen, welche Formen wirtschaftlich mit geringer Maßänderung herstellbar sind und verbesserte Gebrauchseigenschaften aufweisen.The object of the invention was to avoid the above disadvantages and to propose a chromium-containing, martensitic iron-based alloy for thermally tempered plastic molds with high corrosion resistance, which molds can be produced economically with little dimensional change and have improved usage properties.

Zur Lösung dieser Aufgabe wird erfindungsgemäß die Verwendung einer Eisenbasislegierung mit der Zusammensetzung gemäß Anspruch 1 zur Herstellung thermisch vergüteter Kunststofformen mit einer Härte von mindestens 45 HRC , vorzugsweise von 50 bis 55 HRC, und mit hoher Korrosionsbeständigkeit vorgeschlagen.To achieve this object, the use of an iron-based alloy with the composition according to claim 1 for the production of thermally tempered plastic molds with a hardness of at least 45 HRC, preferably from 50 to 55 HRC, and with high corrosion resistance is proposed.

Die durch die Erfindung erreichten Vorteile sind im wesentlichen darin zu sehen, daß der Formteil bzw. das Werkstück weitgehend isometrische Maßänderungen bei einer Wärmebehandlung zeigt. Weiters ist die Korrosionsbeständigkeit des Werkstoffes verbessert und dessen Matrix weist eine größere Homogenität auf. Sowohl die mechanischen Eigenschaften als auch , vollkommen überraschend, die Verschleißfestigkeit der Kunststofformen aus der erfindungsgemäß verwendeten Legierung sind deutlich erhöht. Die Ursache für diese Eigenschaftsverbesserung des Formenmaterials wird darin gesehen, daß die Eisenbasislegierung Stickstoff enthält, welches Element einerseits ein starker Austenitbildner ist und andererseits mit nitridbildenden Elementen ein Entstehen intermetallischer harter Phasen bewirkt. Die Konzentrationen aller wesentlichen Legierungselemente sind dabei synergetisch aufeinander, unter Bedachtnahme auf die Wirkung des Stickstoffes auf die Erstarrung, auf die Ausscheidungen, auf die Umwandlungskinetik bei einer Wärmebehandlung und auf das Korrosions- sowie Rißverhalten der Eisenbasislegierung abgestimmt, so daß bei einer erfindungsgemäßen Verwendung des Werkstoffes zur Herstellung thermisch vergüteter Kunststofformen diese wesentlich verbesserte Gebrauchseigenschaften aufweisen. Im besonderen gilt dies für eine Hochglanzpolierbarkeit der Kunststofform, welche oft, unter anderem bei einer Verwendung der Form in der Elektronikindustrie, erforderlich ist. Alle Ursachen dafür sind wissenschaftlich noch nicht restlos geklärt, jedoch wurden folgende Zusammenhänge gefunden: Bei der Erstarrung und Verformung sowie einer üblichen Wämebehandlung sind die Konzentrationsunterschiede an Chrom in der Matrix des erfindungsgemäß verwendeten des Formmaterials gering und auch der Karbidanteil ist im Vergleich mit stickstoffreien martensitischen Chromstählen niedrig, was eine hohe Korrosionsbeständigkeit und offensichtlich eine besonders gute Hochglanzpolierbarkeit bewirkt. Niedrigere Cr-Gehalte als 14 Gew.-% führen jedoch zu einem sprunghaft erhöhten chemischen Angriff, insbesondere durch organische Säuren. Bei Chromgehalten über 25 Gew.-% wurden Versprödungserscheinungen des Werkstoffes bei der Verwendung für Kunststofformen beobachtet, wobei die besten Langzeitergebnisse bei Cr-Konzentrationen von 16, 0 bis 18,0 Gew.-% festgestellt wurden.The advantages achieved by the invention are essentially to be seen in the fact that the molded part or the workpiece shows largely isometric dimensional changes during a heat treatment. Furthermore, the corrosion resistance of the material is improved and its matrix is more homogeneous. Both the mechanical properties and, surprisingly, the wear resistance of the plastic molds made from the alloy used according to the invention are significantly increased. The reason for this improvement in the properties of the mold material is seen in the fact that the iron-based alloy contains nitrogen, which element is on the one hand a strong austenite former and on the other hand causes nitride-forming elements to produce intermetallic hard phases. The concentrations of all essential alloy elements are synergistic with one another, taking into account the effect of nitrogen the solidification, on the precipitations, on the conversion kinetics in a heat treatment and on the corrosion and cracking behavior of the iron-based alloy, so that when the material is used according to the invention for the production of thermally tempered plastic molds, these have significantly improved performance properties. This applies in particular to the high-gloss polishability of the plastic mold, which is often necessary, inter alia when the mold is used in the electronics industry. All the reasons for this have not yet been fully clarified scientifically, but the following relationships have been found: during solidification and deformation and a conventional heat treatment, the concentration differences of chromium in the matrix of the molding material used according to the invention are small and the carbide content is also low compared to nitrogen-free martensitic chromium steels low, which results in a high corrosion resistance and obviously a particularly good high-gloss polishability. However, Cr contents lower than 14% by weight lead to a sudden increase in chemical attack, in particular due to organic acids. At chromium contents above 25% by weight, embrittlement phenomena of the material were observed when used for plastic molds, the best long-term results being found at Cr concentrations of 16.0 to 18.0% by weight.

Zur Unterstützung der Korrosionsbeständigkeit bzw. der Stabilisierung der Oberflächen-Passivschicht ist ein Mindestgehalt von 0,5 Gew.-% Molybdän wichtig, höhere Gehalte als 3,0 Gew.-% können jedoch eine ferritstabilisierende Wirkung haben, wodurch eine Vergütbarkeit der Legierung erschwert wird. Besonders gute Ergebnisse auch hinsichtlich der Wirkung des Molybdännitrides (Mo2N) auf die mechanischen Materialeigenschaften, insbesondere jedoch auf den Verschleißwiderstand wurden bei Gehalten im Bereich von 0,3 bis 1,5 Gew.-% Mo gefunden.A minimum content of 0.5% by weight of molybdenum is important to support the corrosion resistance or the stabilization of the surface passive layer, but contents higher than 3.0% by weight can have a ferrite-stabilizing effect, making it difficult to harden the alloy . Particularly good results, also with regard to the effect of molybdenum nitride (Mo 2 N) on the mechanical material properties, but in particular on the wear resistance, were found at contents in the range from 0.3 to 1.5% by weight of Mo.

Vanadin hat sowohl zu Kohlenstoff als auch zu Stickstoff eine sehr hohe Affinität. Die feinen dispers verteilten Monokarbide (VC) bzw. die Mononitride ( VN) und die Mischkarbide sind im Bereich von 0,04 bis 0,4 Gew.-% Vanadin vorteilhaft wirksam betreffend die Materialeigenschaften des Werkstoffes im vergüteten Zustand, wobei im Bereich zwischen 0,05 und 0,2 Gew.-% V besonders gute Härtewerte und hohe Anlaßbeständigkeit bei guter Maßhaltigkeit der Form erreicht wurden, was vermutlich auf die Keimwirkung der kleinen homogen verteilten Vanadinverbindungen zurückzuführen ist.Vanadium has a very high affinity for both carbon and nitrogen. The fine dispersed monocarbides (VC) or the mononitrides (VN) and the mixed carbides are advantageously effective in the range from 0.04 to 0.4% by weight of vanadium with regard to the material properties of the material in the tempered state, whereby particularly good hardness values and high tempering resistance with good dimensional stability of the shape were achieved in the range between 0.05 and 0.2% by weight of V, which is presumably due to the germinating effect of the small, homogeneously distributed vanadium compounds.

Von wesentlicher Bedeutung ist in den gewählten Konzentrationsbereichen der Legierungsmetalle die Summenwirkung von Kohlenstoff und Stickstoff in der Eisenbasislegierung. Bei Minimalkonzentrationen von entweder Kohlenstoff und/oder Stickstoff von 0,25 bzw. 0,1 Gew.-% muß die Summe der Gehalte mindestens 0,5 Gew.-% sein, um eine vorteilhafte Wechselwirkung der Legierungselemente, wie vorher erwähnt, zu bewirken. Bei einem Summengehalt im Bereich von 0,5 bis 1,2 Gew.-% C + N wurde überraschend gefunden, daß insbesondere die Dauerfestigkeit bei Wechselbeanspruchungen wie sie bei Kunststofformen der Füllzyklen wegen auftritt wesentlich erhöht ist. Wahrscheinlich ist dies auf die durch Stickstoff bewirkte Stabilisierung der Passivschicht im atomaren bzw. Mikro- Bereich und damit eine Vermeidung einer Rißinitiation durch örtlichen Materialangriff zurückzuführen. Stickstoffatome könnten, was noch genauer zu untersuchen sein wird, bei Korrosions- Wechselbeanspruchung des Werkstoffes, wie gefunden wurde, eine günstige Wirkung ausüben. Weiters beginnt bei obigem Mindest-Summengehalt offensichtlich eine Destabilisierung des kubisch raumzentrierten Gitters, so daß bei der Vergütung in einfacher Weise keine Restbereiche mit Alpha- und Deltagefüge verbleiben, was eine Spannungsrißkorrosionsneigung des Werkstoffes ausschaltet. Bei gleicher Härte und Verschleißfestgkeit ist durch ein Legieren des chromhältigen martensitischen Stahles mit Kohlenstoff und Stickstoff ein geringerer Karbidgehalt gegeben, wobei die Matrix eine erhöhte Festigkeit besitzt, was die Gebrauchseigenschaften einer hochbeanspruchten Kunststofform wesentlich verbessert. Höhere Summenwerte von Kohlenstoff und Stickstoff als 1,2 Gew.-% bewirken zwar eine außerordentlich große Härte bei aufwendigen Anlaß- und Tiefkühlbehandlungen der Form, erhöhen aber auch sprunghaft deren Bruchgefahr.
In einem Bereich von 0,61 bis 0,95 Gew.-% des Summengehaltes von Kohlenstoff und Stickstoff der Eisenbasislegierung wurden bei daraus gefertigten thermisch vergüteten Kunststofformen mit einer Materialhärte von 50 bis 55 HRC die höchsten Standzeiten , insbesondere bei einer Verarbeitung von stark chemisch angreifenden Preßmassen und Kunststoffen mit verschleißenden Zusätzen ermittelt. Dabei war überraschend, daß die Haftung des Kunststoffproduktes bzw. Preßlings in der Form, insbesondere bei hohen Produktionszahlen, wesentlich geringer war als bei niedrigen Stickstoffkonzentrationen in der Legierung, was den Auswurf des Preßgutes wesentlich erleichterte. Die Ursache für eine Verringerung der Gleitreibung an der Formwand ist noch nicht vollkommen geklärt.
The total effect of carbon and nitrogen in the iron-based alloy is essential in the selected concentration ranges of the alloy metals. At minimum concentrations of either carbon and / or nitrogen of 0.25 or 0.1% by weight, the sum of the contents must be at least 0.5% by weight in order to bring about an advantageous interaction of the alloying elements, as previously mentioned . With a total content in the range from 0.5 to 1.2% by weight of C + N, it has surprisingly been found that the fatigue strength in particular in the case of alternating stresses such as occurs in the case of plastic forms due to the filling cycles is significantly increased. This is probably due to the stabilization of the passive layer in the atomic or micro range caused by nitrogen and thus a avoidance of crack initiation by local material attack. Nitrogen atoms, which will be examined in more detail, could have a beneficial effect on the material's alternating corrosion stress, as was found. Furthermore, with the above minimum total content, the cubic body-centered lattice obviously begins to be destabilized, so that there are no remaining areas with alpha and delta structure in the coating, which eliminates the tendency of the material to crack corrosion. With the same hardness and wear resistance, alloying the chromium-containing martensitic steel with carbon and nitrogen results in a lower carbide content, the matrix having increased strength, which significantly improves the performance properties of a highly stressed plastic mold. Total values of carbon and nitrogen higher than 1.2% by weight bring about an extraordinarily great hardness in the case of complex tempering and deep-freezing treatments of the mold, but they also suddenly increase the risk of breakage.
In a range from 0.61 to 0.95% by weight of the total content of carbon and nitrogen of the iron-based alloy, the longest service lives were achieved with thermally tempered plastic molds with a material hardness of 50 to 55 HRC, especially when processing strongly chemically aggressive ones Pressing compounds and plastics with wearing additives determined. It was surprising that the adhesion of the plastic product or compact in the mold, in particular in the case of high production numbers, was significantly lower than at low nitrogen concentrations in the alloy, which made it easier to eject the compact. The cause of a reduction in sliding friction on the mold wall has not yet been fully clarified.

Wolframgehalte bis 3,0 Gew.-% verbessern die Härte und Verschleißfestigkeit, höhere Werte jedoch wirken sich der großen Kohlenstoffaffinität des Wolframs wegen nachteilig auf die Bearbeitbarkeit und das Glühverhalten des Materials aus.Tungsten contents of up to 3.0% by weight improve the hardness and wear resistance, but higher values have a disadvantageous effect on the machinability and the annealing behavior of the material due to the high carbon affinity of the tungsten.

Niob und/oder Titan sind in höheren Anteilen Monokarbid- und Mononitridbildner; bis zu einer Konzentration von 0,18 Gew.-% bzw. 0,2 Gew.-% werden diese Elemente jedoch hauptsächlich im Mischkarbid eingelagert, verbessern die mechanischen Eigenschaften des Stahles und verringern eine Überhitzungsgefahr wesentlich. Höhere Gehalte können insbesondere bei Kohlenstoffgehalten über 0,7 Gew..-% die Sprödigkeit der Formen erhöhen.Niobium and / or titanium are monocarbide and mononitride formers in higher proportions; up to a concentration of 0.18% by weight or 0.2% by weight, however, these elements are mainly stored in mixed carbide, improve the mechanical properties of the steel and significantly reduce the risk of overheating. Higher levels can increase the brittleness of the molds, particularly when the carbon content exceeds 0.7% by weight.

Kobalt und Nickel verbessern in geringen Gehalten bis 2,8 Gew.-% bzw. 3,9 Gew.-% die Materialzähigkeit, wobei Nickel , ein austenitbildendes Element, der Härtbarkeit wegen vorzugsweise einen Konzentrationswert von 1,5 Gew.-% nicht übersteigen sollte.Cobalt and nickel improve the material toughness in low contents of up to 2.8% by weight and 3.9% by weight, respectively, with nickel, an austenite-forming element, preferably not exceeding a concentration value of 1.5% by weight because of the hardenability should.

Eine Verbesserung der Bearbeitbarkeit des Materials ist , wie an sich bekannt, durch ein Zulegieren von Schwefel erreichbar, wobei die günstigsten Werte in einem Konzentrationsbereich gemäß Anspruch 2 gefunden wurden.As is known per se, an improvement in the machinability of the material can be achieved by alloying with sulfur, the most favorable values being found in a concentration range according to claim 2.

Zur weiteren Härtung bzw. Erhöhung der Verschleißfestigkeit der Oberfläche der Kunststofformen aus einer erfindungsgemäß verwendeten Eisenbasislegierung ist, wie umfangreiche Arbeiten zeigten, vorteilhaft, wenn insbesondere auf der Arbeitsfläche eine, vorzugsweise nach einem CVD- oder PVD-Verfahren hergestellte, Hartstoffschicht ausgebildet ist.Extensive work has shown that, for further hardening or increasing the wear resistance of the surface of the plastic molds made from an iron-based alloy used according to the invention, it is advantageous if, in particular, a hard material layer, preferably produced by a CVD or PVD process, is formed on the work surface.

Die Erfindung wird zwecks weiterer Verdeutlichung anhand von Beispielen, die in einer Tabelle zusammengefaßt sind, nachfolgend beschrieben. Dabei wurden für gleich ausgebildete, besonders hoch, jedoch gleichartig chemisch und auf Verschleiß beanspruchte Kunststofformen acht Eisenbasislegierungen verwendet, wobei die Ergebniswerte der Form aus dem zum Stand der Technik zu zählenden DIN Werkstoff Nr. 1.2361 mit 100% gesetzt wurden, um vergleichend wesentliche Eigenschaftswerte anderer Formen aus untertschiedlichen Werkstoffen deutlich darstellen zu können. Die jeweiligen Werte sind gerundete Summenwerte. Dabei sind das Korrosionsverhalten, die mechanischen Eigenschaften, die Dauerfestigkeit, die Hartstoffbeschichtung und die Verschleißbestandszahl bei höheren Ergebniswerten besser, eine geringere Maßbeständigkeit und eine bessere Hochglanzpolierbarkeit des Werkstoffes werden durch geringere Kennzeichnungszahlen angegeben.For the purpose of further clarification, the invention is illustrated by means of examples which are described in are summarized in a table, described below. Eight iron-based alloys were used for plastic molds of the same design, which are particularly high, but of the same chemical and wear, whereby the result values of the mold from the DIN material no To be able to clearly display shapes made of different materials. The respective values are rounded total values. The corrosion behavior, the mechanical properties, the fatigue strength, the hard material coating and the number of wear and tear are better with higher result values, less dimensional stability and better polishability of the material are indicated by lower identification numbers.

Claims (3)

Verwendung einer Eisenbasislegierung bestehend aus in Gew.-% C   0,25 bis 1,0, vorzugsweise 0,4 bis 0,8 Si   bis 1,0 Mn   bis 1,6, vorzugsweise 0,3 bis 0,8 N   0,10 bis 0,35, vorzugweise 0,12 bis 0,29 Al   bis 1,0, vorzugsweise 0,002 bis 0,8 Co   bis 2,8 Cr   14,0 bis 25,0, vorzugsweise 16,0 bis 19,0 Mo   0,5 bis 3,0, vorzugsweise 0,8 bis 1,5 Ni   bis 3,9, vorzugsweise bis 1,5 V   0,04 bis 0,4, vorzugsweise 0,05 bis 0,2 W   bis 3,0 Nb   bis 0,18 Ti   bis 0,20 mit der Maßgabe, daß die Summe der Konzentration von Kohlenstoff und Stickstoff einen Wert A von in Gew.-%
mindestens 0,5 und höchstens 1,2, vorzugsweise von mindestens 0,61 und höchstens 0,95 ergibt, Rest Eisen und erschmelzungsbedingte Verunreinigungen zur Herstellung thermisch vergüteter Kunststofformen mit einer Härte von mindestens 45 HRC, vorzugsweise von 50 bis 55 HRC und mit hoher Korrosionsbeständigkeit und/oder Hochglanzpolierbarkeit.
Use of an iron-based alloy consisting of in% by weight C 0.25 to 1.0, preferably 0.4 to 0.8 Si to 1.0 Mn to 1.6, preferably 0.3 to 0.8 N 0.10 to 0.35, preferably 0.12 to 0.29 Al to 1.0, preferably 0.002 to 0.8 Co to 2.8 Cr 14.0 to 25.0, preferably 16.0 to 19.0 Mo 0.5 to 3.0, preferably 0.8 to 1.5 Ni to 3.9, preferably to 1.5 V 0.04 to 0.4, preferably 0.05 to 0.2 W to 3.0 Nb to 0.18 Ti to 0.20 with the proviso that the sum of the concentration of carbon and nitrogen has a value A of in% by weight
gives at least 0.5 and at most 1.2, preferably at least 0.61 and at most 0.95, the rest iron and melting-related impurities for the production of thermally tempered plastic molds with a hardness of at least 45 HRC, preferably from 50 to 55 HRC and with high Corrosion resistance and / or high gloss polishability.
Verwendung einer Eisenbasislegierung gemäß Anspruch 1, welche in Gew.-% 0,02 bis 0,45, vorzugsweise 0,20 bis 0,30 Schwefel enthält, entsprechend dem Zweck nach Anspruch 1.Use of an iron-based alloy according to claim 1, which contains in% by weight 0.02 to 0.45, preferably 0.20 to 0.30 sulfur, according to the purpose according to claim 1. Verwendung einer Eisenbasislegierung gemäß einem der Ansprüche 1 oder 2 mit einer Oberfläche, insbesondere Arbeitsoberfläche, auf welcher zumindest teilweise eine Hartstoffschicht, vorzugsweise aus Karbid und/oder Nitrid und/oder Oxid in Einzel- oder Mischformen , insbesondere der Elemente Titan und/oder Vanadin und/oder Aluminium, ausgebildet ist.Use of an iron-based alloy according to one of claims 1 or 2 with a surface, in particular a work surface, on which at least partially a hard material layer, preferably made of carbide and / or nitride and / or oxide in individual or mixed forms, in particular the elements titanium and / or vanadium and / or aluminum.
EP96890005A 1995-01-16 1996-01-10 Use of an iron based alloy for plastic molds Expired - Lifetime EP0721995B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI9630109T SI0721995T1 (en) 1995-01-16 1996-01-10 Use of an iron based alloy for plastic molds

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT54/95 1995-01-16
AT0005495A AT405193B (en) 1995-01-16 1995-01-16 USE OF A CHROMED MARTENSITIC IRON BASED ALLOY FOR PLASTICS
AT5495 1995-01-16

Publications (3)

Publication Number Publication Date
EP0721995A2 true EP0721995A2 (en) 1996-07-17
EP0721995A3 EP0721995A3 (en) 1996-11-27
EP0721995B1 EP0721995B1 (en) 1999-10-20

Family

ID=3480314

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96890005A Expired - Lifetime EP0721995B1 (en) 1995-01-16 1996-01-10 Use of an iron based alloy for plastic molds

Country Status (16)

Country Link
US (1) US5641453A (en)
EP (1) EP0721995B1 (en)
JP (1) JP3438121B2 (en)
CN (1) CN1068073C (en)
AR (1) AR000727A1 (en)
AT (2) AT405193B (en)
BR (1) BR9600095A (en)
CA (1) CA2167221C (en)
CO (1) CO4560389A1 (en)
DE (1) DE59603379D1 (en)
DK (1) DK0721995T3 (en)
ES (1) ES2138315T3 (en)
GR (1) GR3032228T3 (en)
PE (1) PE5897A1 (en)
SI (1) SI0721995T1 (en)
TR (1) TR199600037A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT407647B (en) * 1999-05-10 2001-05-25 Boehler Edelstahl MARTENSITIC CORROSION RESISTANT CHROME STEEL
AT501794A1 (en) * 2005-04-26 2006-11-15 Boehler Edelstahl PLASTIC FORM
WO2011124970A1 (en) * 2010-04-07 2011-10-13 Toyota Jidosha Kabushiki Kaisha Austenitic heat-resistant cast steel
WO2015124169A1 (en) 2014-02-18 2015-08-27 Schmiedewerke Gröditz Gmbh Chromium steel for machine parts subject to strong wear, in particular pelletization matrices
CN111074135A (en) * 2019-11-14 2020-04-28 河冶科技股份有限公司 Special corrosion-resistant wear-resistant tool steel for preparing screw rod in rubber and plastic machinery, preparation method thereof and screw rod for rubber and plastic machinery
CN115679194A (en) * 2021-07-30 2023-02-03 宝山钢铁股份有限公司 Plastic die steel plate and manufacturing method thereof

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6110300A (en) * 1997-04-07 2000-08-29 A. Finkl & Sons Co. Tool for glass molding operations and method of manufacture thereof
CA2397408C (en) * 2000-01-17 2006-10-03 Stahlwerk Ergste Westig Gmbh Chrome steel alloy
SE516622C2 (en) * 2000-06-15 2002-02-05 Uddeholm Tooling Ab Steel alloy, plastic forming tool and toughened plastic forming tool
US6689312B2 (en) * 2001-11-28 2004-02-10 Sg Alternatives, L.L.C. Alloy composition and improvements in mold components used in the production of glass containers
JP2007009321A (en) * 2005-06-02 2007-01-18 Daido Steel Co Ltd Steel for plastic molding die
CN103014510B (en) * 2012-12-01 2015-05-13 滁州市成业机械制造有限公司 High-strength cold-extrusion die steel and processing technology thereof
WO2015126311A1 (en) * 2014-02-18 2015-08-27 Uddeholms Ab Stainless steel for a plastic mould and a mould made of the stainless steel
CN104018083B (en) * 2014-06-20 2016-01-06 重庆材料研究院有限公司 Nitrogenous stainless bearing steel and preparation method
CN104164625B (en) * 2014-08-01 2016-08-31 中材装备集团有限公司 The heat resisting steel of a kind of resistance to chlorine corrosion under worst hot case and using method thereof
CN105112801B (en) * 2015-09-09 2017-05-17 滁州迪蒙德模具制造有限公司 Manufacturing method for nonmetal mold
US10508327B2 (en) 2016-03-11 2019-12-17 Daido Steel Co., Ltd. Mold steel and mold
SE541151C2 (en) * 2017-10-05 2019-04-16 Uddeholms Ab Stainless steel
CN108559925A (en) * 2018-08-01 2018-09-21 攀钢集团攀枝花钢铁研究院有限公司 Mould steel and preparation method thereof
CN111575577B (en) * 2020-04-26 2021-11-02 攀钢集团江油长城特殊钢有限公司 Plastic die round steel and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0348380A1 (en) * 1988-06-21 1989-12-27 BÖHLER Gesellschaft m.b.H. Use of an iron-base alloy in the manufacture of sintered parts with a high corrosion resistance, a high wear resistance as well as a high toughness and compression strength, especially for use in the processing of synthetic materials
DE4212966A1 (en) * 1992-04-18 1993-10-21 Ver Schmiedewerke Gmbh Martensitic chromium@ steel - has good wear resistance and high temp. tensile strength, used in building parts
EP0638658A1 (en) * 1993-08-11 1995-02-15 SOCIETE INDUSTRIELLE DE METALLURGIE AVANCEE S.I.M.A. Société Anonyme Nitrogen-containing martensilic steel with low carbon content and process for its manufacture

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3607461A (en) * 1967-12-18 1971-09-21 Trw Inc Hot workability of austenitic stainless steel alloys
JPS4619774Y1 (en) * 1970-02-25 1971-07-09
JPS5361514A (en) * 1976-11-16 1978-06-02 Daido Steel Co Ltd Ferriteebased precipitation hardening type stainless steel
JPS53103918A (en) * 1977-02-23 1978-09-09 Hitachi Metals Ltd Steel for prehardened metal mold used for forming glass
JPS54115615A (en) * 1978-02-28 1979-09-08 Hitachi Metals Ltd Corrosion resistant alloy steel
JPH0577308A (en) * 1991-04-24 1993-03-30 Hitachi Metals Ltd Screw for synthetic resin molding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0348380A1 (en) * 1988-06-21 1989-12-27 BÖHLER Gesellschaft m.b.H. Use of an iron-base alloy in the manufacture of sintered parts with a high corrosion resistance, a high wear resistance as well as a high toughness and compression strength, especially for use in the processing of synthetic materials
DE4212966A1 (en) * 1992-04-18 1993-10-21 Ver Schmiedewerke Gmbh Martensitic chromium@ steel - has good wear resistance and high temp. tensile strength, used in building parts
EP0638658A1 (en) * 1993-08-11 1995-02-15 SOCIETE INDUSTRIELLE DE METALLURGIE AVANCEE S.I.M.A. Société Anonyme Nitrogen-containing martensilic steel with low carbon content and process for its manufacture

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch, Week 7828 Derwent Publications Ltd., London, GB; Class M27, AN 78-50293A XP002013878 & JP-A-53 061 514 (DAIDO TOKUSHOKO KK) , 2.Juni 1978 *
DATABASE WPI Section Ch, Week 7942 Derwent Publications Ltd., London, GB; Class A32, AN 79-76207B XP002013877 & JP-A-54 115 615 (HITACHI METAL KK) , 8.September 1979 *
DATABASE WPI Section Ch, Week 9317 Derwent Publications Ltd., London, GB; Class A32, AN 93-140023 XP002013876 & JP-A-05 077 308 (HITACHI METALS LTD) , 30.März 1993 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT407647B (en) * 1999-05-10 2001-05-25 Boehler Edelstahl MARTENSITIC CORROSION RESISTANT CHROME STEEL
AT501794A1 (en) * 2005-04-26 2006-11-15 Boehler Edelstahl PLASTIC FORM
AT501794B1 (en) * 2005-04-26 2008-06-15 Boehler Edelstahl PLASTIC FORM
WO2011124970A1 (en) * 2010-04-07 2011-10-13 Toyota Jidosha Kabushiki Kaisha Austenitic heat-resistant cast steel
US9163303B2 (en) 2010-04-07 2015-10-20 Toyota Jidosha Kabushiki Kaisha Austenitic heat-resistant cast steel
WO2015124169A1 (en) 2014-02-18 2015-08-27 Schmiedewerke Gröditz Gmbh Chromium steel for machine parts subject to strong wear, in particular pelletization matrices
CN111074135A (en) * 2019-11-14 2020-04-28 河冶科技股份有限公司 Special corrosion-resistant wear-resistant tool steel for preparing screw rod in rubber and plastic machinery, preparation method thereof and screw rod for rubber and plastic machinery
CN111074135B (en) * 2019-11-14 2021-07-06 河冶科技股份有限公司 Preparation method of corrosion-resistant and wear-resistant tool steel and screw for rubber and plastic machinery
CN115679194A (en) * 2021-07-30 2023-02-03 宝山钢铁股份有限公司 Plastic die steel plate and manufacturing method thereof
CN115679194B (en) * 2021-07-30 2023-09-12 宝山钢铁股份有限公司 Plastic mold steel plate and manufacturing method thereof

Also Published As

Publication number Publication date
CO4560389A1 (en) 1998-02-10
CN1068073C (en) 2001-07-04
EP0721995B1 (en) 1999-10-20
EP0721995A3 (en) 1996-11-27
ATA5495A (en) 1998-10-15
BR9600095A (en) 1998-01-27
JPH08253846A (en) 1996-10-01
GR3032228T3 (en) 2000-04-27
CA2167221C (en) 2000-10-10
PE5897A1 (en) 1997-04-21
US5641453A (en) 1997-06-24
DE59603379D1 (en) 1999-11-25
ATE185853T1 (en) 1999-11-15
CN1134987A (en) 1996-11-06
TR199600037A2 (en) 1996-08-21
AR000727A1 (en) 1997-08-06
JP3438121B2 (en) 2003-08-18
DK0721995T3 (en) 2000-01-03
ES2138315T3 (en) 2000-01-01
SI0721995T1 (en) 2000-02-29
CA2167221A1 (en) 1996-07-17
AT405193B (en) 1999-06-25

Similar Documents

Publication Publication Date Title
EP0721995B1 (en) Use of an iron based alloy for plastic molds
AT507215B1 (en) WEAR-RESISTANT MATERIAL
DE3041565C2 (en)
AT393387B (en) COLD WORK STEEL WITH HIGH PRESSURE STRENGTH AND USE OF THIS STEEL
EP1249511B1 (en) High speed steel with good high temperature strength manufactured by powder metallurgy
EP0348380B1 (en) Use of an iron-base alloy in the manufacture of sintered parts with a high corrosion resistance, a high wear resistance as well as a high toughness and compression strength, especially for use in the processing of synthetic materials
AT409636B (en) STEEL FOR PLASTIC MOLDS AND METHOD FOR HEAT TREATING THE SAME
EP1274872B1 (en) Method for the production of nitrogen alloyed steel, spray compacted steel
EP0341643A1 (en) Corrosion-resistant cold-worked steel and composite containing a matrix of this cold-worked steel and a hard material
DE69907896T4 (en) COLD STEEL
DE19950263A1 (en) High strength steel shaft manufacturing method e.g. for automobile propeller shaft
EP2052096B1 (en) Steel piston ring
EP0733719B1 (en) Iron base alloy for use at high temperature
EP1052304B1 (en) Martensitic corrosion resistant chromium steel
DE60204449T2 (en) STEEL SUBJECT
EP0897018A1 (en) Duplex stainless steel with high tensile strength and good corrosion properties
EP1471160B1 (en) Cold-worked Steel Object
AT407648B (en) METALLIC MATERIAL WITH HIGH HARDNESS, HIGH WEAR RESISTANCE AND HIGH TOUGHNESS
EP2233596B1 (en) Cold worked steel object
DE4334062A1 (en) Tool steel compsn. having high temp. strength - comprises manganese@, chromium@, molybdenum@, tungsten@, vanadium@, cobalt@ and nitrogen@
DE2428995B2 (en) Use of a naturally hard steel for weldable reinforcing steel with high fatigue strength
EP0433264A2 (en) Method for the production of preformed material for workpieces comprising a large proportion of metal compounds
DE4202339A1 (en) Stainless, highly wear-resistant, hardenable steels - contg. carbon, chromium@, silicon@, manganese@, molybdenum@, titanium@ and niobium, are useful for e.g. pump components and valves for use with particle-laden, corrosive fluids
DE1533215B1 (en) Use of a steel as a tool steel
DE4133480A1 (en) Corrosion resistant chrome-alloy steel exhibiting improved tensile strength and weldability - is used in mfr. of moulds in plastics industry and has compsn. having specified carbon and chromium@ contents

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960118

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: LT PAYMENT 960118;LV PAYMENT 960118;SI PAYMENT 960118

RAX Requested extension states of the european patent have changed

Free format text: LT PAYMENT 960118;LV PAYMENT 960118;SI PAYMENT 960118

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: LT PAYMENT 960118;LV PAYMENT 960118;SI PAYMENT 960118

17Q First examination report despatched

Effective date: 19971001

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: LT PAYMENT 19960118;LV PAYMENT 19960118;SI PAYMENT 19960118

REF Corresponds to:

Ref document number: 185853

Country of ref document: AT

Date of ref document: 19991115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: HANS RUDOLF GACHNANG PATENTANWALT

REF Corresponds to:

Ref document number: 59603379

Country of ref document: DE

Date of ref document: 19991125

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19991112

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2138315

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000110

ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA S.R.L.

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20000131

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19991210

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: SI

Ref legal event code: IF

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20050111

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20050112

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20050126

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20050223

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

LTLA Lt: lapse of european patent or patent extension

Effective date: 20060110

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

BERE Be: lapsed

Owner name: *BOHLER YBBSTALWERKE G.M.B.H.

Effective date: 20060131

Owner name: *BOHLER EDELSTAHL G.M.B.H.

Effective date: 20060131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060802

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20131219

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140122

Year of fee payment: 19

Ref country code: SE

Payment date: 20140121

Year of fee payment: 19

Ref country code: CH

Payment date: 20140121

Year of fee payment: 19

Ref country code: NL

Payment date: 20140121

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20140129

Year of fee payment: 19

Ref country code: IT

Payment date: 20140129

Year of fee payment: 19

Ref country code: AT

Payment date: 20140113

Year of fee payment: 19

Ref country code: FR

Payment date: 20140123

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140121

Year of fee payment: 19

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20150710

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59603379

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20150801

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 185853

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150110

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150110

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150801

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150131

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150710

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150110

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150111

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150110

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: MAXIMUM VALIDITY LIMIT REACHED

Effective date: 20160110

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20160119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20150717