EP0348380A1 - Use of an iron-base alloy in the manufacture of sintered parts with a high corrosion resistance, a high wear resistance as well as a high toughness and compression strength, especially for use in the processing of synthetic materials - Google Patents

Use of an iron-base alloy in the manufacture of sintered parts with a high corrosion resistance, a high wear resistance as well as a high toughness and compression strength, especially for use in the processing of synthetic materials Download PDF

Info

Publication number
EP0348380A1
EP0348380A1 EP89890163A EP89890163A EP0348380A1 EP 0348380 A1 EP0348380 A1 EP 0348380A1 EP 89890163 A EP89890163 A EP 89890163A EP 89890163 A EP89890163 A EP 89890163A EP 0348380 A1 EP0348380 A1 EP 0348380A1
Authority
EP
European Patent Office
Prior art keywords
max
iron
content
alloy according
carbides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89890163A
Other languages
German (de)
French (fr)
Other versions
EP0348380B1 (en
EP0348380B2 (en
Inventor
Alfred Dr. Kulmburg
Johann Dipl.-Ing. Stamberger
Hubert Dipl.-Ing. Lenger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boehler Edelstahl alpha Edelstahl Gmbh boehle GmbH
Boehler GmbH Germany
Original Assignee
Boehler GmbH
Boehler GmbH Germany
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=3516903&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0348380(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Boehler GmbH, Boehler GmbH Germany filed Critical Boehler GmbH
Publication of EP0348380A1 publication Critical patent/EP0348380A1/en
Publication of EP0348380B1 publication Critical patent/EP0348380B1/en
Application granted granted Critical
Publication of EP0348380B2 publication Critical patent/EP0348380B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%

Definitions

  • the invention relates to the use of an iron-based alloy with a special composition as a material for the powder metallurgical production of parts with high corrosion resistance, high wear resistance and high toughness and pressure resistance, preferably for plastic molds, machine parts and tools for non-cutting shaping.
  • a material for the powder metallurgical production of parts with high corrosion resistance, high wear resistance and high toughness and pressure resistance preferably for plastic molds, machine parts and tools for non-cutting shaping.
  • shaping parts are exposed to chemical and abrasive stresses at the same time, these parts having to have high material toughness, high compressive strength and special material homogeneity due to the mechanical stresses.
  • Such requirements are placed, for example, on materials that are used in devices for pressing fiber-reinforced or filler-containing plastics. Austenitic steels or chrome steels with a chromium content of approx.
  • alloys according to DIN material no. are used for mechanical components such as screws etc. and also for forming and pressing tools, which are particularly exposed to corrosive stresses. 1.4528. Although such materials have sufficient corrosion resistance, the wear behavior is usually unsatisfactory in practical operation. In order to improve or increase the wear resistance and hardness of the steel, attempts have also been made by higher carbon contents to increase the carbide content of the alloy. These steels, for example alloys according to DIN material no. 1.2080 and material no. 1.2379, with a carbon content of approx. 2% and a chromium content of approx.
  • the object of the invention is to avoid the above disadvantages and, in particular, to create materials which can be used advantageously for the plastics processing industry and which, due to a special composition when using certain manufacturing processes, provide high corrosion resistance, high wear resistance and high pressure resistance have good toughness properties.
  • the invention therefore relates to the use of an iron-based alloy with a composition in% by weight.
  • the alloy proportions in% by weight chrome 18.0 - 25.0 molybdenum 0.6 - 1.7 tungsten 0.5 - 1.5 Vanadium 3.5 - 5.6 nitrogen 0.03-0.1 niobium up to 5.0 titanium up to 5.0 boron to 0.03
  • the material has a niobium content of 0.2 to 3.0 and / or a titanium content of 0.2 to 3.5 and / or a boron content of 0.001 to 0.002. It is particularly preferred if the value is formed from (% Cr - 13) + 4.4x (% V - 3) + 2x (% Nb) + 4.2x (Ti) is at least 10.0.
  • the parts which are manufactured from the alloy according to the invention or from the material according to the invention by a powder metallurgical manufacturing process must have a chromium concentration in all parts of the matrix of at least 13 after hardening and tempering.
  • the alloy according to the invention from a minimum value, which takes into account the concentrations and the respective effect with the mutual influence of the carbide-forming elements chromium, vanadium, niobium and titanium, and which in particular determines the wear resistance of the material, in certain narrow Limits set carbon contents and when using powder metallurgical manufacturing processes, materials that have high corrosion resistance, high wear resistance, high pressure resistance and high toughness and are advantageous, especially for the construction of plastic molds, can be used, the hardened and tempered state of the Chromium content in all areas of the matrix and the proportion as well as the composition and the grain size of the carbides can be adjusted according to the invention.
  • Silicon as a deoxidizing agent influences the composition of the oxides and, in small concentrations, can be advantageous for good polishability from Le manufactured parts. Levels above 1% by weight, however, have an adverse effect on the solidification behavior and, if appropriate, on the conversion processes during the heat treatment. Manganese contents of up to 1% by weight may be important for sulfur contents of up to 0.03% by weight in order to bind the sulfur as sulfide and thereby improve the toughness of the material. Phosphorus has an embrittling effect and should be present in the steel as low as possible, but below 0.03% by weight. Chromium acts as an alloying element which, from a content of approx. 13% by weight in the matrix, makes the material resistant to corrosion.
  • chromium is a carbide former that can also form M23C6 carbides with carbon in certain carbon activities and in the presence of molybdenum and vanadium in addition to M7C3 carbides. It is therefore important that the steel contains at least 16% by weight of chromium, but at most contains 29% by weight of chromium, because higher chromium concentrations lead to embrittlement of the material. Molybdenum in a content of 0.4 to 2.5 wt .-% and tungsten in a content of 0.3 to 2.0 wt .-% cause an increase in secondary hardness in the heat treatment by the formation of fine carbides and are used to adjust the carbon activity Alloy important.
  • Vanadium as a strong carbide former, causes the formation of MC carbides, especially at levels above 0.7 to 3% by weight. Higher contents, in particular over 10%, lead to an improvement in wear resistance, but the toughness of the parts deteriorates considerably. Titanium up to 5% by weight improves the wear resistance of the material, in particular through MC carbide formation. Due to nitride formation, nitrogen contents from 0.01% have a grain-refining effect or prevent grain growth during annealing at high temperatures tures, whereby a decrease in the toughness of the alloy is avoided. Furthermore, wear resistance can be improved by nitrogen concentrations up to 0.18%.
  • Aluminum can be alloyed as an element with a high affinity for oxygen and a high affinity for nitrogen in concentrations of up to 1% by weight to adjust the low oxygen content of the steel and to avoid grain growth, whereby advantageous effects on the conversion behavior and the toughness of the material can also be achieved. It was also found that a minimum value of the alloy, formed from the concentrations of the carbide- and nitride-forming elements chromium, tungsten, niobium, titanium and certain action factors of these elements is required for the setting of the desired mechanical properties of the part, by increasing this Worth an improvement in wear resistance and compressive strength with a slight decrease in toughness.
  • the carbon content is set within narrow limits depending on the contents and on certain operating parameters of the carbide-forming elements in the steel in order to obtain the desired properties of the parts.
  • MC carbides are formed for matrix hardening and to obtain high compressive strength M7C3, M23C6 and M6C carbides and for setting high wear resistance, but on the other hand there is a chromium content of greater than 13% required for corrosion resistance in all areas of the matrix.
  • Powder-metallurgical production of the parts is essential because this significantly improves their isotropy of the properties of the material and the grain size of the precipitates or intermetallic phases can be kept small.
  • Carbides with grain sizes over 14 ⁇ m significantly impair the mechanical properties, in particular the bending strength of the parts.
  • the powder can be produced using all suitable processes, in particular using gas atomization processes, after which, if appropriate, compacting is carried out by hot-isostatic pressing and / or by hot-working the powder in suitable casings.
  • the wear behavior of the part was tested in the grinding wheel test, in which a steel disc rotates in a corundum-water mixture, against which the sample is pressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

Use of an iron-based alloy for the production of sintered parts of high corrosion resistance, high wear resistance, high toughness and high compressive strength, in particular for processing plastics, having a composition, in % by weight, chromium 16.0-29.0, molybdenum 0.4-2.5, tungsten 0.3-2.0, vanadium 3.0-10.0, titanium up to 5.0, aluminium up to 1.0, boron up to 0.05, nitrogen 0.01-0.18, niobium up to 5.0, iron and preparation-related impurities as the remainder, the value formed from (% of Cr - 13) + 4.4 x (% of V - 3) + 2 x (% of Nb) + 4.2 x (% of Ti) being greater than 8.8, and the minimum carbon content of the alloy corresponding to the correlation Cmin = 0.3 + [(% of Cr - 13) x 0.06] + [(2 x % of Mo + W) x 0.03] + (% of V x 0.24) + (% of Nb x 0.13) + (% of Ti x 0.25) and the maximum carbon content of the alloy corresponds to the correlation Cmax = 0.7 + [(% of Cr - 13) x 0.06] + [(2 x % of Mo + W) x 0.03] + (% of V x 0.24) + (% of Nb x 0.13) + (% of Ti x 0.25), with the proviso that the matrix has a chromium content of at least 13% after hardening and annealing, and the carbide content is at least 25% by volume, the carbide grain size being less than 14 mu m and at least 5 % by volume of the carbides being in the form of MC carbides.

Description

Die Erfindung betrifft die Verwendung einer Eisenbasis­legierung mit spezieller Zusammensetzung als Werkstoff für die pulvermetallurgische Herstellung von Teilen mit hoher Korrosionsbeständigkeit, hoher Verschleißfestigkeit sowie hoher Zähigkeit und Druckfestigkeit, vorzugsweise für Kunststofformen, Maschinenteile und Werkzeuge zur spanlosen Formgebung. Insbesondere in der Kunststoff­industrie sind formgebende Teile gleichzeitig chemischen und abrasiven Beanspruchungen ausgesetzt, wobei diese Teile aufgrund der mechanischen Beanspruchungen, gege­benenfalls hohe Materialzähigkeit, hohe Druckfestigkeit und besondere Werkstoffhomogenität aufweisen müssen. Der­artige Anforderungen werden beispielsweise an Materialien gestellt, welche in Einrichtungen zum Verpressen von faserverstärkten oder Füllstoffe enthaltenden Kunst­stoffen eingesetzt werden.
Für Maschinenbauelemente, wie beispielsweise Schnecken etc. und auch für Umform- und Preßwerkzeuge, welche ins­besondere korrosiven Beanspruchungen ausgesetzt sind, werden austenitische Stähle oder Chromstähle mit einem Chromgehalt von ca. 18 %, beispielsweise Legierungen nach DIN Werkstoff-Nr. 1.4528, verwendet. Derartige Werkstoffe weisen zwar eine ausreichende Korrosionsbeständigkeit auf, das Verschleißverhalten ist jedoch zumeist im prak­tischen Betrieb nicht befriedigend.
Um die Verschleißfestigkeit und die Härte des Stahles zu verbessern bzw. zu erhöhen, wurde auch versucht, durch höhere Kohlenstoffgehalte den Karbidanteil der Legierung zu vergrößern. Diese Stähle, beispielsweise Legierungen nach DIN Werkstoff-Nr. 1.2080 und Werkstoff-Nr. 1.2379, mit einem Kohlenstoffgehalt von ca. 2 % und einem Chrom­gehalt von ca. 12 % haben eine verbesserte Verschleiß­festigkeit, sind jedoch für korrosive Beanspruchungen weniger geeignet, wobei die Teile aufgrund einer ge­gebenenfalls ungünstigen Karbidstruktur sich anisotro­pisch verhalten, spröde sind bzw. eine hohe Bruchneigung aufweisen, wobei auch zumeist keine ausreichende Formbe­ständigkeit bei der Wärmebehandlung gegeben ist.
The invention relates to the use of an iron-based alloy with a special composition as a material for the powder metallurgical production of parts with high corrosion resistance, high wear resistance and high toughness and pressure resistance, preferably for plastic molds, machine parts and tools for non-cutting shaping. In the plastics industry in particular, shaping parts are exposed to chemical and abrasive stresses at the same time, these parts having to have high material toughness, high compressive strength and special material homogeneity due to the mechanical stresses. Such requirements are placed, for example, on materials that are used in devices for pressing fiber-reinforced or filler-containing plastics.
Austenitic steels or chrome steels with a chromium content of approx. 18%, for example alloys according to DIN material no., Are used for mechanical components such as screws etc. and also for forming and pressing tools, which are particularly exposed to corrosive stresses. 1.4528. Although such materials have sufficient corrosion resistance, the wear behavior is usually unsatisfactory in practical operation.
In order to improve or increase the wear resistance and hardness of the steel, attempts have also been made by higher carbon contents to increase the carbide content of the alloy. These steels, for example alloys according to DIN material no. 1.2080 and material no. 1.2379, with a carbon content of approx. 2% and a chromium content of approx. 12%, have improved wear resistance, but are less suitable for corrosive stresses, whereby the parts behave anisotropically due to a possibly unfavorable carbide structure, are brittle or have a high tendency to break have, whereby usually there is not sufficient dimensional stability in the heat treatment.

Es wurde auch vorgeschlagen, Stähle zu verwenden, welche äußerst weite Bereichsgrenzen in ihrer chemischen Zusam­mensetzung, insbesondere für den Kohlenstoffgehalt, den Chromgehalt und den Vanadingehalt aufweisen, wobei jedoch keinerlei Hinweise gegeben wurden, wie eine Legierung, die eine hohe Korrosionsbeständigkeit und eine hohe Ver­schleißfestigkeit mit ausreichenden Zähigkeitseigenschaf­ten und hoher Druckfestigkeit aufweist, zusammengesetzt sein muß. Auch der Fachmann konnte daraus keine Lehre entnehmen, wie und wodurch eine Kombination der geforder­ten Materialeigenschaften erzielbar ist.It has also been proposed to use steels which have extremely wide range limits in their chemical composition, in particular for the carbon content, the chromium content and the vanadium content, but no indications have been given, such as an alloy which has a high corrosion resistance and a high wear resistance has sufficient toughness properties and high compressive strength, must be composed. Even the person skilled in the art could not learn from this how and how a combination of the required material properties can be achieved.

Ausgehend von diesem Stand der Technik liegt der Erfin­dung die Aufgabe zugrunde, obige Nachteile zu vermeiden und insbesondere für die kunststoffverarbeitende Indu­strie vorteilhaft verwendbare Werkstoffe zu schaffen, die durch eine spezielle Zusammensetzung bei Anwendung be­stimmter Herstellverfahren eine hohe Korrosionsbeständig­keit, eine hohe Verschleißfestigkeit und eine hohe Druck­festigkeit bei guten Zähigkeitseigenschaften aufweisen.On the basis of this prior art, the object of the invention is to avoid the above disadvantages and, in particular, to create materials which can be used advantageously for the plastics processing industry and which, due to a special composition when using certain manufacturing processes, provide high corrosion resistance, high wear resistance and high pressure resistance have good toughness properties.

Diese Aufgabe wird durch die Erfindung gelöst. Gegenstand der Erfindung ist daher die Verwendung einer Eisenbasis­legierung mit einer Zusammensetzung in Gew.-% Silizium max. 1,0 Mangan max. 1,0 Schwefel max. 0,03 Phosphor max. 0,03 Chrom 16,0 - 29,0 Molybdän 0,4 - 2,5 Wolfram 0,3 - 2,0 Vanadin 3,0 - 10,0 Titan bis 5,0 Aluminium bis 1,0 Nickel max. 0,8 Kobalt max. 0,8 Kupfer max. 0,5 Bor bis 0,05 Stickstoff 0,01 - 0,18 Niob bis 5,0 Eisen und herstellungsbedingte Verunreinigungen als Rest, wobei der Wert, gebildet aus
(%Cr - 13) + 4,4x (%V - 3) + 2x (%Nb) + 4,2x (%Ti)
großer als 8,8 ist und der minimale Kohlenstoffgehalt der Legierung entsprechend dem Zusammenhang
Cmin = 0,3 + [(%Cr - 13) x 0,06] + [(2x %Mo + W)
x 0,03] + (%V x 0,24) + (%Nb x 0,13)
+ (%Ti x 0,25)
und der maximale Kohlenstoffgehalt der Legierung ent­sprechend dem Zusammenhang
Cmax = 0,7 + [(%Cr - 13) x 0,06] + [(2x %Mo + W)
x 0,03] + (%V x 0,24) + (%Nb x 0,13)
+ (%Ti x 0,25)
beträgt, zur pulvermetallurgischen Herstellung von Teilen mit hoher Korrosionsbeständigkeit, hoher Verschleißfe­stigkeit sowie hoher Zähigkeit und hoher Druckfestigkeit, insbesondere für Kunststofformen, Maschinenteile und Werkzeuge zur spanlosen Formgebung mit der Maßgabe, daß die Matrix nach dem Härten und Anlassen einen Chromgehalt von mindestens 13 % aufweist und der Karbidgehalt minde­stens 25 Vol.-% beträgt, wobei die Karbidkorngröße klei­ner als 14 µm ist und mindestens 5 Vol.-% der Karbide als MC-Karbide ausgebildet sind. Bevorzugt ist es, wenn die Legierungsanteile in Gew.-% Chrom 18,0 - 25,0 Molybdän 0,6 - 1,7 Wolfram 0,5 - 1,5 Vanadin 3,5 - 5,6 Stickstoff 0,03 - 0,1 Niob bis 5,0 Titan bis 5,0 Bor bis 0,03 betragen, wobei in weiteren Ausführungsformen der Werk­stoff einen Niobgehalt von 0,2 bis 3,0 und/oder einen Titangehalt von 0,2 bis 3,5 und/oder einen Borgehalt von 0,001 bis 0,002 aufweist. Besonders bevorzugt ist, wenn der Wert, gebildet aus
(%Cr - 13) + 4,4x (%V - 3) + 2x (%Nb) + 4,2x (Ti)
mindestens 10,0 beträgt. Die Teile, die aus der erfin­dungsgemäßen Legierung bzw. aus dem erfindungsgemäßen Werkstoff nach einem pulvermetallurgischen Herstellungs­verfahren gefertigt sind, müssen dabei nach dem Härten und Anlassen eine Chromkonzentration in allen Teilen der Matrix von mindestens 13 aufweisen.
This object is achieved by the invention. The invention therefore relates to the use of an iron-based alloy with a composition in% by weight. silicon Max. 1.0 manganese Max. 1.0 sulfur Max. 0.03 phosphorus Max. 0.03 chrome 16.0-29.0 molybdenum 0.4-2.5 tungsten 0.3 - 2.0 Vanadium 3.0-10.0 titanium up to 5.0 aluminum to 1.0 nickel Max. 0.8 cobalt Max. 0.8 copper Max. 0.5 boron to 0.05 nitrogen 0.01-0.18 niobium up to 5.0 Iron and manufacturing-related impurities as the rest, being the value formed from
(% Cr - 13) + 4.4x (% V - 3) + 2x (% Nb) + 4.2x (% Ti)
is greater than 8.8 and the minimum carbon content of the alloy according to the relationship
C min = 0.3 + [(% Cr - 13) x 0.06] + [(2x% Mo + W)
x 0.03] + (% V x 0.24) + (% Nb x 0.13)
+ (% Ti x 0.25)
and the maximum carbon content of the alloy according to the relationship
C max = 0.7 + [(% Cr - 13) x 0.06] + [(2x% Mo + W)
x 0.03] + (% V x 0.24) + (% Nb x 0.13)
+ (% Ti x 0.25)
is for powder metallurgical production of parts with high corrosion resistance, high wear resistance as well as high toughness and high pressure resistance, in particular for plastic molds, machine parts and tools for non-cutting shaping with the proviso that the matrix has a chromium content of at least 13% after hardening and tempering and the carbide content is at least 25% by volume, the carbide grain size being less than 14 μm and at least 5% by volume of the carbides being in the form of MC carbides. It is preferred if the alloy proportions in% by weight chrome 18.0 - 25.0 molybdenum 0.6 - 1.7 tungsten 0.5 - 1.5 Vanadium 3.5 - 5.6 nitrogen 0.03-0.1 niobium up to 5.0 titanium up to 5.0 boron to 0.03 In other embodiments, the material has a niobium content of 0.2 to 3.0 and / or a titanium content of 0.2 to 3.5 and / or a boron content of 0.001 to 0.002. It is particularly preferred if the value is formed from
(% Cr - 13) + 4.4x (% V - 3) + 2x (% Nb) + 4.2x (Ti)
is at least 10.0. The parts which are manufactured from the alloy according to the invention or from the material according to the invention by a powder metallurgical manufacturing process must have a chromium concentration in all parts of the matrix of at least 13 after hardening and tempering.

Überraschenderweise hat sich gezeigt, daß die erfindungs­gemäße Legierung ab einem Mindestwert, der die Konzentra­tionen und die jeweilige Wirkung mit der gegenseitigen Beeinflussung der karbidbildenden Elemente Chrom, Vana­din, Niob und Titan berücksichtigt und durch den insbe­sondere die Verschleißfestigkeit des Werkstoffes bestimmt ist, bei bestimmten in engen Grenzen eingestellten Koh­lenstoffgehalten und bei Anwendung pulvermetallurgischer Herstellverfahren, Werkstoffe ergibt, die gleichzeitig eine hohe Korrosionsbeständigkeit, eine hohe Verschleiß­festigkeit, eine hohe Druckbeständigkeit und eine hohe Zähigkeit aufweisen und vorteilhaft, insbesondere für den Bau von Kunststofformen, einsetzbar sind, wobei im gehär­teten und angelassenen Zustand der Chromgehalt in allen Bereichen der Matrix und der Anteil sowie die Zusammen­setzung und die Korngröße der Karbide erfindungsgemäß eingestellt werden können.Surprisingly, it has been shown that the alloy according to the invention from a minimum value, which takes into account the concentrations and the respective effect with the mutual influence of the carbide-forming elements chromium, vanadium, niobium and titanium, and which in particular determines the wear resistance of the material, in certain narrow Limits set carbon contents and when using powder metallurgical manufacturing processes, materials that have high corrosion resistance, high wear resistance, high pressure resistance and high toughness and are advantageous, especially for the construction of plastic molds, can be used, the hardened and tempered state of the Chromium content in all areas of the matrix and the proportion as well as the composition and the grain size of the carbides can be adjusted according to the invention.

Beschreibung der Legierung bzw. der Wirkung der Legie­rungselemente:Description of the alloy or the effect of the alloying elements:

Silizium als Desoxidationsmittel beeinflußt die Zusammen­setzung der Oxide und kann in geringen Konzentrationen vorteilhaft für eine gute Polierbarkeit der aus der Le­ gierung gefertigten Teile sein. Gehalte über 1 Gew.-% wirken jedoch nachteilig auf das Erstarrungsverhalten und gegebenenfalls auf die Umwandlungsvorgänge bei der Wär­mebehandlung. Mangangehalte bis zu 1 Gew.-% sind gege­benenfalls bei Schwefelgehalten bis 0,03 Gew.-% wichtig, um den Schwefel als Sulfid abzubinden und dadurch die Zähigkeit des Werkstoffes zu verbessern. Phosphor wirkt versprödend und soll im Stahl so niedrig wie möglich, jedoch unter 0,03 Gew.-%, vorliegen. Chrom wirkt als Le­gierungselement, das ab einem Gehalt von ca. 13 Gew.-% in der Matrix eine Korrosionsbeständigkeit des Werkstoffes bewirkt. Gleichzeitig ist Chrom ein Karbidbildner, der mit Kohlenstoff bei bestimmten Kohlenstoffaktivitäten und bei Anwesenheit von Molybdän und Vanadin neben M₇C₃ Karbiden auch M₂₃C₆ Karbide bilden kann. Es ist somit wichtig, daß der Stahl mindestens 16 Gew.-% Chrom ent­hält, höchstens jedoch einen Gehalt von 29 Gew.-% Chrom aufweist, weil höhere Chromkonzentrationen zu einer Ver­sprödung des Werkstoffes führen. Molybdän in Gehalten von 0,4 bis 2,5 Gew.-% und Wolfram in Gehalten von 0,3 bis 2,0 Gew.-% bewirken einen Sekundärhärteanstieg bei der Wärmebehandlung durch die Bildung feiner Karbide und sind für die Einstellung der Kohlenstoffaktivität der Legie­rung wichtig. Vanadium als starker Karbidbildner bewirkt insbesondere in Gehalten über 0,7 bis 3 Gew.-% die Ent­stehung von MC-Karbiden. Höhere Gehalte, insbesondere über 10 %, führen zwar zu einer Verbesserung der Ver­schleißfestigkeit, die Zähigkeit der Teile wird jedoch wesentlich verschlechtert. Titan bis 5 Gew.-% verbessert die Verschleißfestigkeit des Werkstoffes, insbesondere durch eine MC-Karbidbildung. Aufgrund einer Nitridbildung wirken Stickstoffgehalte ab 0,01 % kornfeinend bzw. ver­hindern ein Kornwachstum beim Glühen bei hohen Tempera­ turen, wodurch ein Abfall der Zähigkeit der Legierung vermieden wird. Weiters kann durch Stickstoffkonzentra­tionen bis 0,18 % insbesondere die Verschleißfestigkeit verbessert werden. Aluminium kann als Element mit hoher Sauerstoffaffinität und hoher Stickstoffaffinität in Konzentrationen bis 1 Gew.-% zur Einstellung niedriger Sauerstoffgehalte des Stahles und zur Vermeidung des Kornwachstumes zulegiert sein, wobei auch vorteilhafte Wirkungen auf das Umwandlungsverhalten und die Zähigkeit des Werkstoffes erzielbar sind.
Es wurde auch gefunden, daß für die Einstellung der ge­wünschten mechanischen Eigenschaften des Teiles ein Min­destwert der Legierung, gebildet aus den Konzentrationen der karbid- und nitridbildenden Elemente Chrom, Wolfram, Niob, Titan und bestimmten Wirkungsfaktoren dieser Ele­mente erforderlich ist, wobei durch eine Erhöhung dieses Wertes eine Verbesserung der Verschleißfestigkeit und der Druckfestigkeit bei gering abfallender Zähigkeit bewirkt wird. Weiters ist es wichtig, daß der Kohlenstoffgehalt in engen Grenzen in Abhängigkeit von den Gehalten und von bestimmten Wirkungsparametern der karbidbildenden Elemen­te im Stahl eingestellt wird, um die gewünschten Eigen­schaften der Teile zu erhalten. Dadurch werden einerseits für eine Matrixhärtung und zum Erhalt hoher Druckfestig­keit M₇C₃, M₂₃C₆ und M₆C Karbide und zur Ein­stellung hoher Verschleißfestigkeit MC-Karbide gebildet, wobei jedoch andererseits ein für die Korrosionsbestän­digkeit erforderlicher Chromgehalt von größer als 13 % in allen Bereichen der Matrix vorliegt.
Eine pulvermetallurgische Herstellung der Teile ist we­sentlich, weil dadurch deren Isotropie der Eigenschaften des Werkstoffes wesentlich verbessert wird und die Korn­größe der Ausscheidungen bzw. intermetallischen Phasen klein gehalten werden kann. Karbide mit Korngrößen über 14 µm verschlechtern wesentlich die mechanischen Eigen­schaften, insbesondere die Biegefestigkeit der Teile. Die Pulverherstellung kann dabei mit allen geeigneten Ver­fahren, insbesondere mit Gasverdüsungsverfahren erfolgen, wonach gegebenenfalls ein Kompaktieren durch heißisosta­tisches Pressen und/oder durch Warmverformung des Pulvers in geeigneten Umhüllungen durchgeführt wird.
Silicon as a deoxidizing agent influences the composition of the oxides and, in small concentrations, can be advantageous for good polishability from Le manufactured parts. Levels above 1% by weight, however, have an adverse effect on the solidification behavior and, if appropriate, on the conversion processes during the heat treatment. Manganese contents of up to 1% by weight may be important for sulfur contents of up to 0.03% by weight in order to bind the sulfur as sulfide and thereby improve the toughness of the material. Phosphorus has an embrittling effect and should be present in the steel as low as possible, but below 0.03% by weight. Chromium acts as an alloying element which, from a content of approx. 13% by weight in the matrix, makes the material resistant to corrosion. At the same time, chromium is a carbide former that can also form M₂₃C₆ carbides with carbon in certain carbon activities and in the presence of molybdenum and vanadium in addition to M₇C₃ carbides. It is therefore important that the steel contains at least 16% by weight of chromium, but at most contains 29% by weight of chromium, because higher chromium concentrations lead to embrittlement of the material. Molybdenum in a content of 0.4 to 2.5 wt .-% and tungsten in a content of 0.3 to 2.0 wt .-% cause an increase in secondary hardness in the heat treatment by the formation of fine carbides and are used to adjust the carbon activity Alloy important. Vanadium, as a strong carbide former, causes the formation of MC carbides, especially at levels above 0.7 to 3% by weight. Higher contents, in particular over 10%, lead to an improvement in wear resistance, but the toughness of the parts deteriorates considerably. Titanium up to 5% by weight improves the wear resistance of the material, in particular through MC carbide formation. Due to nitride formation, nitrogen contents from 0.01% have a grain-refining effect or prevent grain growth during annealing at high temperatures tures, whereby a decrease in the toughness of the alloy is avoided. Furthermore, wear resistance can be improved by nitrogen concentrations up to 0.18%. Aluminum can be alloyed as an element with a high affinity for oxygen and a high affinity for nitrogen in concentrations of up to 1% by weight to adjust the low oxygen content of the steel and to avoid grain growth, whereby advantageous effects on the conversion behavior and the toughness of the material can also be achieved.
It was also found that a minimum value of the alloy, formed from the concentrations of the carbide- and nitride-forming elements chromium, tungsten, niobium, titanium and certain action factors of these elements is required for the setting of the desired mechanical properties of the part, by increasing this Worth an improvement in wear resistance and compressive strength with a slight decrease in toughness. Furthermore, it is important that the carbon content is set within narrow limits depending on the contents and on certain operating parameters of the carbide-forming elements in the steel in order to obtain the desired properties of the parts. As a result, MC carbides are formed for matrix hardening and to obtain high compressive strength M₇C₃, M₂₃C₆ and M₆C carbides and for setting high wear resistance, but on the other hand there is a chromium content of greater than 13% required for corrosion resistance in all areas of the matrix.
Powder-metallurgical production of the parts is essential because this significantly improves their isotropy of the properties of the material and the grain size of the precipitates or intermetallic phases can be kept small. Carbides with grain sizes over 14 µm significantly impair the mechanical properties, in particular the bending strength of the parts. The powder can be produced using all suitable processes, in particular using gas atomization processes, after which, if appropriate, compacting is carried out by hot-isostatic pressing and / or by hot-working the powder in suitable casings.

Die Erfindung wird zwecks weiterer Verdeutlichung anhand eines Beispieles nachfolgend beschrieben.
Aus einer Schmelze mit folgenden Gehalten in Gew.-% Chrom 20,0 Molybdän 1,0 Wolfram 0,6 Vanadin 4,0 Stickstoff 0,04 und einer entsprechend eingestellten Kohlenstoffkonzentration von 1,9 sowie Silizium 0,3 Mangan 0,35 Phosphor 0,012 Schwefel 0,011 Aluminium 0,001 Nickel 0,2 Kobalt 0,1 Kupfer 0,12 Eisen und herstellungsbedingte Verunreinigungen als Rest wurde im Gasverdüsungsverfahren ein Legierungspulver her­gestellt. Nach dem Einfüllen des Pulvers in eine Kapsel mit einem Durchmesser von 250 mm und dem Evakuieren und gasdichten Abschließen der Kapsel erfolgte eine Warmver­formung bei 1110°C unter Anwendung eines 6-fachen Ver­formungsgrades. Nach einem Weichglühen bei 880 bis 900°C und langsamen Abkühlen wurden aus dem Schmiedestab Kunst­stofformen hergestellt. Die Härte des Materials lag dabei bei ca. 280 HB. Das Härten der Teile erfolgte nach einem Aufheizen auf eine Temperatur von 1140°C durch Abkühlung im Warmbad, worauf ein Härtewert von 61 HRC gemessen wur­de. Nach dem Anlassen bei einer Temperatur von 540°C lag die Materialhärte bei 59 HRC. Die mittlere Biegebruch­festigkeit, quer zur Verformungsrichtung, betrug 3,5 Kilo N/mm² und lag somit wesentlich über jenen Werten, die an konventionell gefertigten Teilen mit vergleichbarer Härte gemessen wurden. Zur Ermittlung der Druckfestigkeit wurde die 0,2 % Stauchgrenze herangezogen, wobei der Wert bei 2015 N/mm² lag. Die Prüfung des Verschleißverhal­tens des Teiles erfolgte im Schleifradtest, bei dem in einem Korund-Wasser-Gemisch sich eine Stahlscheibe dreht, gegen welche die Probe gedrückt wird.
Folgende Verschleißbedingungen wurden angewendet: Anpreßkraft der Probe 30 N Schleifradwerkstoff C 15 Härte des Schleifrades 126 (HV10) Breite des Schleifrades 15 mm Durchmesser des Schleifrades 168 mm Drehzahl des Schleifrades 50 U/min Probengröße 20 x 20 x 8 Al₂O₃-Schlämme: (Feststoffanteil/H₂O) = 1 Al₂O₃-Korngröße 0,7 µm.
The invention is described below for the purpose of further clarification using an example.
From a melt with the following contents in% by weight chrome 20.0 molybdenum 1.0 tungsten 0.6 Vanadium 4.0 nitrogen 0.04 and a correspondingly set carbon concentration of 1.9 and silicon 0.3 manganese 0.35 phosphorus 0.012 sulfur 0.011 aluminum 0.001 nickel 0.2 cobalt 0.1 copper 0.12 Iron and manufacturing-related impurities as the rest an alloy powder was produced in the gas atomization process. After filling the powder into a capsule With a diameter of 250 mm and the evacuation and gas-tight sealing of the capsule, a hot deformation was carried out at 1110 ° C. using a 6-fold degree of deformation. After soft annealing at 880 to 900 ° C and slow cooling, plastic molds were made from the forging rod. The hardness of the material was approx. 280 HB. The parts were hardened after heating to a temperature of 1140 ° C. by cooling in a warm bath, whereupon a hardness value of 61 HRC was measured. After tempering at 540 ° C the material hardness was 59 HRC. The mean bending strength, transverse to the direction of deformation, was 3.5 kilo N / mm² and was therefore significantly higher than the values measured on conventionally manufactured parts with comparable hardness. The 0.2% compression limit was used to determine the compressive strength, the value being 2015 N / mm². The wear behavior of the part was tested in the grinding wheel test, in which a steel disc rotates in a corundum-water mixture, against which the sample is pressed.
The following wear conditions were applied: Contact pressure of the sample 30 N Grinding wheel material C 15 Hardness of the grinding wheel 126 (HV10) Width of the grinding wheel 15 mm Diameter of the grinding wheel 168 mm Speed of grinding wheel 50 rpm Sample size 20 x 20 x 8 Al₂O₃ slurries: (Solids content / H₂O) = 1 Al₂O₃ grain size 0.7 µm.

Bei der Erprobung wurde nach einer Zeit vom 100 sec. ein spezifischer Verschleiß (relativ zum hoch verschleißfe­ sten, jedoch weniger korrosionsbeständigen Werkstoff mit einer Zusammensetzung von 2,3 % C, 12,5 % Cr, 1,1 % Mo, 4,0 % V) von 200 %, nach 1000 h 128 % und nach 10.000 h 120 % festgestellt. Das Korrosionsverhalten des Werk­stoffes wurde im Salzsprühtest ermittelt, wobei die kor­rodierte Oberfläche in % nach 480 min. einen Wert von 50 ergab. Eine weitere Prüfung des Korrosionsverhaltens in 20 %iger Essigsäure über einen Zeitraum von 24 h erbrach­te einen Wert von 6,98 g/m² h. Die metallographischen, elektronenmikroskopischen und röntgenanalytischen Unter­suchungen ergaben, daß der Karbidanteil ca. 39 Vol.-% be­trug, wovon ca. 10 Vol.-% als MC-Karbide vorlagen, wobei die maximale Karbidkorngröße 10 µm aufwies.During the test, a specific wear (relative to the high wear Most, but less corrosion-resistant material with a composition of 2.3% C, 12.5% Cr, 1.1% Mo, 4.0% V) of 200%, 128% after 1000 h and 120% after 10,000 h . The corrosion behavior of the material was determined in the salt spray test, the corroded surface in% after 480 min. gave a value of 50. A further test of the corrosion behavior in 20% acetic acid over a period of 24 h resulted in a value of 6.98 g / m² h. The metallographic, electron microscopic and X-ray analyzes showed that the carbide content was approximately 39% by volume, of which approximately 10% by volume was present as MC carbides, the maximum carbide grain size being 10 µm.

Claims (9)

1. Verwendung einer Eisenbasislegierung mit einer Zusam­mensetzung in Gew.-% Silizium max. 1,0 Mangan max. 1,0 Schwefel max. 0,03 Phosphor max. 0,03 Chrom 16,0 - 29,0 Molybdän 0,4 - 2,5 Wolfram 0,3 - 2,0 Vanadin 3,0 - 10,0 Titan bis 5,0 Aluminium bis 1,0 Nickel max. 0,8 Kobalt max. 0,8 Kupfer max. 0,5 Bor bis 0,05 Stickstoff 0,01 - 0,18 Niob bis 5,0 Eisen und herstellungsbedingte Verunreinigungen als Rest,
wobei der Wert, gebildet aus
(%Cr - 13) + 4,4x (%V - 3) + 2x (%Nb) + 4,2x (%Ti)
größer als 8,8 ist und der minimale Kohlenstoffgehalt der Legierung entsprechend dem Zusammenhang
Cmin = 0,3 + [(%Cr - 13) x 0,06] + [(2x %Mo + W)
x 0,03] + (%V x 0,24) + (%Nb x 0,13)
+ (%Ti x 0,25)
und der maximale Kohlenstoffgehalt der Legierung ent­sprechend dem Zusammenhang
Cmax = 0,7 + [(%Cr - 13) x 0,06] + [(2x %Mo + W)
x 0,03] + (%V x 0,24) + (%Nb x 0,13)
+ (%Ti x 0,25)
beträgt, zur pulvermetallurgischen Herstellung von Teilen mit hoher Korrosionsbeständigkeit und hoher Verschleiß­festigkeit sowie hoher Zähigkeit und hoher Druckfestig­keit, insbesondere für Kunststofformen, Maschinenteile und Werkzeuge zur spanlosen Formgebung mit der Maßgabe, daß die Matrix nach dem Härten und Anlassen einen Chrom­gehalt von mindestens 13 % aufweist und der Karbidgehalt mindestens 25 Vol.-% beträgt, wobei die Karbidkorngröße kleiner als 14 µm ist und mindestens 5 Vol.-% der Karbide als MC-Karbide ausgebildet sind.
1. Use of an iron-based alloy with a composition in% by weight silicon Max. 1.0 manganese Max. 1.0 sulfur Max. 0.03 phosphorus Max. 0.03 chrome 16.0-29.0 molybdenum 0.4-2.5 tungsten 0.3 - 2.0 Vanadium 3.0-10.0 titanium up to 5.0 aluminum to 1.0 nickel Max. 0.8 cobalt Max. 0.8 copper Max. 0.5 boron to 0.05 nitrogen 0.01-0.18 niobium up to 5.0 Iron and manufacturing-related impurities as the rest,
being the value formed from
(% Cr - 13) + 4.4x (% V - 3) + 2x (% Nb) + 4.2x (% Ti)
is greater than 8.8 and the minimum carbon content of the alloy according to the relationship
C min = 0.3 + [(% Cr - 13) x 0.06] + [(2x% Mo + W)
x 0.03] + (% V x 0.24) + (% Nb x 0.13)
+ (% Ti x 0.25)
and the maximum carbon content of the alloy according to the relationship
C max = 0.7 + [(% Cr - 13) x 0.06] + [(2x% Mo + W)
x 0.03] + (% V x 0.24) + (% Nb x 0.13)
+ (% Ti x 0.25)
is for the powder metallurgical production of parts with high corrosion resistance and high wear resistance as well as high toughness and high pressure resistance, in particular for plastic molds, machine parts and tools for non-cutting shaping, with the proviso that the matrix has a chromium content of at least 13% after hardening and tempering and the carbide content is at least 25% by volume, the carbide grain size being less than 14 μm and at least 5% by volume of the carbides being in the form of MC carbides.
2. Verwendung einer Eisenbasislegierung nach Anspruch 1, mit einer Zusammensetzung in Gew.-% Silizium max. 0,6 Mangan max. 0,6 Schwefel max. 0,015 Phosphor max. 0,02 Chrom 18,0 - 25,0 Molybdän 0,6 - 1,7 Wolfram 0,5 - 1,5 Vanadin 3,5 - 5,6 Titan bis 5,0 Aluminium bis 1,0 Nickel max. 0,5 Kobalt max. 0,5 Kupfer max. 0,4 Bor bis 0,03 Stickstoff 0,03 - 0,1 Niob bis 5,0 Eisen und herstellungsbedingte Verunreinigungen als Rest
wobei der Wert, gebildet aus
(%Cr - 13) + 4.4x (%V - 3) + 2x (%Nb) + 4,2x (%Ti)
größer als 8,8 ist und der maximale Kohlenstoffgehalt der Legierung entsprechend dem Zusammenhang
Cmin = 0,3 + [(%Cr - 13) x 0,06] + [(2x %Mo + W)
x 0,03] + (%V x 0,24 + (%Nb x 0,13)
+ (%Ti x 0,25)
und der maximale Kohlenstoffgehalt der Legierung ent­sprechend dem Zusammenhang
Cmax = 0,7 + [(%Cr - 13) x 0,06] + [(2x %Mo + W)
x 0,3] + (%V x 0,24) + (%Nb x 0,13)
+ (%Ti x 0,25)
beträgt, zur pulvermetallurgischen Herstellung von Teilen mit hoher Korrosionsbeständigkeit und hoher Verschleiß­festigkeit sowie hoher Zähigkeit und hoher Druckfestig­keit, insbesondere für Kunststofformen, Maschinenteile und Werkzeuge zur spanlosen Formgebung mit der Maßgabe, daß die Matrix nach dem Härten und Anlassen einen Chrom­gehalt von mindestens 13 % aufweist und der Karbidgehalt mindestens 25 % beträgt, wobei die Karbidkorngröße klei­ner als 14 µm ist und mindestens 5 Vol.-% der Karbide als MC-Karbide ausgebildet sind.
2. Use of an iron-based alloy according to claim 1, with a composition in wt .-% silicon Max. 0.6 manganese Max. 0.6 sulfur Max. 0.015 phosphorus Max. 0.02 chrome 18.0 - 25.0 molybdenum 0.6 - 1.7 tungsten 0.5 - 1.5 Vanadium 3.5 - 5.6 titanium up to 5.0 aluminum to 1.0 nickel Max. 0.5 cobalt Max. 0.5 copper Max. 0.4 boron to 0.03 nitrogen 0.03-0.1 niobium up to 5.0 Iron and manufacturing-related impurities as the rest
being the value formed from
(% Cr - 13) + 4.4x (% V - 3) + 2x (% Nb) + 4.2x (% Ti)
is greater than 8.8 and the maximum carbon content of the alloy according to the relationship
C min = 0.3 + [(% Cr - 13) x 0.06] + [(2x% Mo + W)
x 0.03] + (% V x 0.24 + (% Nb x 0.13)
+ (% Ti x 0.25)
and the maximum carbon content of the alloy according to the relationship
C max = 0.7 + [(% Cr - 13) x 0.06] + [(2x% Mo + W)
x 0.3] + (% V x 0.24) + (% Nb x 0.13)
+ (% Ti x 0.25)
is for powder metallurgical production of parts with high corrosion resistance and high wear resistance as well as high toughness and high pressure resistance, especially for plastic molds, machine parts and tools for non-cutting shaping with the proviso that the matrix has a chromium content of at least 13% after hardening and tempering and the carbide content is at least 25%, the carbide grain size being smaller than 14 μm and at least 5 vol.% of the carbides as MC carbides are formed.
3. Verwendung einer Eisenbasislegierung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Wert, gebildet aus
(%Cr - 13) + 4,4x (%V - 3) + 2x (%Nb) + 4,2x (%Ti)
größer als 10,0 ist.
3. Use of an iron-based alloy according to claim 1 or 2, characterized in that the value formed from
(% Cr - 13) + 4.4x (% V - 3) + 2x (% Nb) + 4.2x (% Ti)
is greater than 10.0.
4. Verwendung einer Eisenbasislegierung nach einem der Ansprüche 1 bis 3, mit einem Niobgehalt in Gew.-% von 0,2 bis 3,0.4. Use of an iron-based alloy according to one of claims 1 to 3, with a niobium content in wt .-% of 0.2 to 3.0. 5. Verwendung einer Eisenbasislegierung nach einem der Ansprüche 1 bis 4, mit einem Titangehalt von 0,2 bis 3,5.5. Use of an iron-based alloy according to one of claims 1 to 4, with a titanium content of 0.2 to 3.5. 6. Verwendung einer Eisenbasislegierung nach einem der Ansprüche 1 bis 5, mit einem Borgehalt von 0,001 bis 0,002.6. Use of an iron-based alloy according to one of claims 1 to 5, with a boron content of 0.001 to 0.002. 7. Verwendung einer gehärteten und angelassenen Eisen­basislegierung nach einem der Ansprüche 1 bis 6, mit ei­nem Chromgehalt der Matrix von mindestens 13 % und einem Karbidgehalt von mindestens 25 % wobei die Karbidkorn­größe kleiner als 14 µm ist und mindestens 5 % der Karbi­de als MC-Karbide abgebildet sind.7. Use of a hardened and tempered iron-based alloy according to one of claims 1 to 6, with a chromium content of the matrix of at least 13% and a carbide content of at least 25%, the carbide grain size being less than 14 µm and at least 5% of the carbides as MC carbides are shown. 8. Verwendung einer Eisenbasislegierung nach Anspruch 1 bis 7, mit einem Kohlenstoffgehalt in Gew.-% von minde­stens 1,8, höchstens jedoch 6,2.8. Use of an iron-based alloy according to claim 1 to 7, with a carbon content in wt .-% of at least 1.8, but at most 6.2. 9. Verwendung einer Eisenbasislegierung gemäß Anspruch 1 bis 8, als Werkstoff für die pulvermetallurgische Her­stellung von Kunststofformen.9. Use of an iron-based alloy according to claim 1 to 8, as a material for the powder metallurgical production of plastic molds.
EP89890163A 1988-06-21 1989-06-14 Use of an iron-base alloy in the manufacture of sintered parts with a high corrosion resistance, a high wear resistance as well as a high toughness and compression strength, especially for use in the processing of synthetic materials Expired - Lifetime EP0348380B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT1599/88 1988-06-21
AT0159988A AT393642B (en) 1988-06-21 1988-06-21 USE OF AN IRON BASED ALLOY FOR THE POWDER METALLURGICAL PRODUCTION OF PARTS WITH HIGH CORROSION RESISTANCE, HIGH WEAR RESISTANCE AND HIGH TENSITY AND PRESSURE STRENGTH, ESPECIALLY FOR THE PROCESS

Publications (3)

Publication Number Publication Date
EP0348380A1 true EP0348380A1 (en) 1989-12-27
EP0348380B1 EP0348380B1 (en) 1992-11-19
EP0348380B2 EP0348380B2 (en) 1996-04-17

Family

ID=3516903

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89890163A Expired - Lifetime EP0348380B2 (en) 1988-06-21 1989-06-14 Use of an iron-base alloy in the manufacture of sintered parts with a high corrosion resistance, a high wear resistance as well as a high toughness and compression strength, especially for use in the processing of synthetic materials

Country Status (8)

Country Link
EP (1) EP0348380B2 (en)
JP (1) JP2583451B2 (en)
AT (2) AT393642B (en)
AU (1) AU615756B2 (en)
DE (1) DE58902742D1 (en)
ES (1) ES2052971T5 (en)
PT (1) PT90925B (en)
ZA (1) ZA894703B (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0378925A1 (en) * 1988-12-27 1990-07-25 Daido Tokushuko Kabushiki Kaisha Powdered steel for cold processing tool
EP0721995A2 (en) * 1995-01-16 1996-07-17 BÖHLER Edelstahl GmbH Use of an iron based alloy for plastic molds
GB2298869A (en) * 1995-03-10 1996-09-18 Powdrex Ltd Stainless steel powders and articles produced therefrom by powder metallurgy
US5679908A (en) * 1995-11-08 1997-10-21 Crucible Materials Corporation Corrosion resistant, high vanadium, powder metallurgy tool steel articles with improved metal to metal wear resistance and a method for producing the same
WO2000073527A1 (en) * 1999-05-28 2000-12-07 Edelstahl Witten-Krefeld Gmbh Spray-deposited steel, method for the production of the same and a composite substance
WO2003069004A1 (en) * 2002-02-15 2003-08-21 Uddeholm Tooling Aktiebolag High chromium and carbide rich tool steel made by powder metallurgi and tool made of the steel
WO2006112912A1 (en) * 2005-04-18 2006-10-26 Wilson Tool International Inc. Tough, wear-resistant punches and dies made of powder metallurgy cold work tool steel
AT501794A1 (en) * 2005-04-26 2006-11-15 Boehler Edelstahl PLASTIC FORM
US7442338B2 (en) 2001-11-13 2008-10-28 Fundacion Inasmet Product manufacture in structural metallic materials reinforced with carbides
WO2011115547A1 (en) * 2010-03-17 2011-09-22 Uddeholms Ab A method for the manufacture of a wear pad for a band saw blade guide, such a wear pad, and the use of a steel material for producing the wear pad
EP3428300A1 (en) * 2017-07-10 2019-01-16 Saar-Pulvermetall GmbH Roller for a grinding or/and pressing device, in particular compression roller for a press for the production of pellets, and method of manufacturing the roller
CN111850427A (en) * 2020-06-07 2020-10-30 江苏钢银智能制造有限公司 Alloy steel material and steel plate processing and casting technology thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5900560A (en) * 1995-11-08 1999-05-04 Crucible Materials Corporation Corrosion resistant, high vanadium, powder metallurgy tool steel articles with improved metal to metal wear resistance and method for producing the same
CN103060700B (en) * 2013-01-07 2014-12-31 北京工业大学 Boride particle reinforced Fe-Cr-Al composite material and its preparation method
CN104878298B (en) * 2015-05-15 2017-05-03 安泰科技股份有限公司 Powder metallurgy wearing-resistant corrosion-resistant alloy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1313981A (en) * 1970-08-28 1973-04-18 Hoeganaes Ab High alloy steel powders and their consolidation into homogeneous tool steel
LU81268A1 (en) * 1978-09-20 1979-09-10 Crucible Inc POWDER METALLURGICAL STEEL ITEM WITH HIGH VANADIUM CARBIDE CONTENT
EP0271238A2 (en) * 1986-12-11 1988-06-15 Crucible Materials Corporation Wear and corrosion resistant alloy articles

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2204886C3 (en) * 1972-02-02 1979-11-22 Gfe Gesellschaft Fuer Elektrometallurgie Mbh, 4000 Duesseldorf Process for the powder metallurgical production of high-speed steel moldings
SE446277B (en) * 1985-01-16 1986-08-25 Kloster Speedsteel Ab VANAD-containing TOOLS MANUFACTURED FROM METAL POWDER AND SET ON ITS MANUFACTURING

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1313981A (en) * 1970-08-28 1973-04-18 Hoeganaes Ab High alloy steel powders and their consolidation into homogeneous tool steel
LU81268A1 (en) * 1978-09-20 1979-09-10 Crucible Inc POWDER METALLURGICAL STEEL ITEM WITH HIGH VANADIUM CARBIDE CONTENT
EP0271238A2 (en) * 1986-12-11 1988-06-15 Crucible Materials Corporation Wear and corrosion resistant alloy articles

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0378925A1 (en) * 1988-12-27 1990-07-25 Daido Tokushuko Kabushiki Kaisha Powdered steel for cold processing tool
EP0721995A2 (en) * 1995-01-16 1996-07-17 BÖHLER Edelstahl GmbH Use of an iron based alloy for plastic molds
EP0721995A3 (en) * 1995-01-16 1996-11-27 Boehler Edelstahl Use of an iron based alloy for plastic molds
GB2298869A (en) * 1995-03-10 1996-09-18 Powdrex Ltd Stainless steel powders and articles produced therefrom by powder metallurgy
GB2298869B (en) * 1995-03-10 1999-03-03 Powdrex Ltd Stainless steel powders and articles produced therefrom by powder metallurgy
US5679908A (en) * 1995-11-08 1997-10-21 Crucible Materials Corporation Corrosion resistant, high vanadium, powder metallurgy tool steel articles with improved metal to metal wear resistance and a method for producing the same
US5936169A (en) * 1995-11-08 1999-08-10 Crucible Materials Corporation Corrosion resistant, high vanadium, powder metallurgy tool steel articles with improved metal to metal wear resistance and a method for producing the same
WO2000073527A1 (en) * 1999-05-28 2000-12-07 Edelstahl Witten-Krefeld Gmbh Spray-deposited steel, method for the production of the same and a composite substance
US7442338B2 (en) 2001-11-13 2008-10-28 Fundacion Inasmet Product manufacture in structural metallic materials reinforced with carbides
WO2003069004A1 (en) * 2002-02-15 2003-08-21 Uddeholm Tooling Aktiebolag High chromium and carbide rich tool steel made by powder metallurgi and tool made of the steel
WO2006112912A1 (en) * 2005-04-18 2006-10-26 Wilson Tool International Inc. Tough, wear-resistant punches and dies made of powder metallurgy cold work tool steel
AT501794A1 (en) * 2005-04-26 2006-11-15 Boehler Edelstahl PLASTIC FORM
AT501794B1 (en) * 2005-04-26 2008-06-15 Boehler Edelstahl PLASTIC FORM
WO2011115547A1 (en) * 2010-03-17 2011-09-22 Uddeholms Ab A method for the manufacture of a wear pad for a band saw blade guide, such a wear pad, and the use of a steel material for producing the wear pad
CN102905831A (en) * 2010-03-17 2013-01-30 尤迪霍尔姆斯有限责任公司 A method for the manufacture of a wear pad for a band saw blade guide, such a wear pad, and the use of a steel material for producing the wear pad
EP3428300A1 (en) * 2017-07-10 2019-01-16 Saar-Pulvermetall GmbH Roller for a grinding or/and pressing device, in particular compression roller for a press for the production of pellets, and method of manufacturing the roller
CN111850427A (en) * 2020-06-07 2020-10-30 江苏钢银智能制造有限公司 Alloy steel material and steel plate processing and casting technology thereof

Also Published As

Publication number Publication date
JP2583451B2 (en) 1997-02-19
EP0348380B1 (en) 1992-11-19
AU3666289A (en) 1990-01-25
PT90925A (en) 1989-12-29
PT90925B (en) 1997-10-31
ES2052971T5 (en) 1996-10-01
DE58902742D1 (en) 1992-12-24
JPH0277556A (en) 1990-03-16
ES2052971T3 (en) 1994-07-16
EP0348380B2 (en) 1996-04-17
ATE82595T1 (en) 1992-12-15
AT393642B (en) 1991-11-25
ZA894703B (en) 1992-01-29
ATA159988A (en) 1991-05-15
AU615756B2 (en) 1991-10-10

Similar Documents

Publication Publication Date Title
DE2211229C3 (en) Process for improving the creep rupture strength at temperatures above 750 degrees C of an austenitic chrome-nickel steel semi-finished product
DE69818138T2 (en) Cold work tool steel particles with high impact strength from metal powder and process for its production
DE2937724C2 (en) Steel product made by powder metallurgy with a high proportion of vanadium carbide
DE69429610T2 (en) High strength martensitic stainless steel and process for its manufacture
DE69604902T2 (en) STAINLESS STEEL POWDER AND THEIR USE FOR PRODUCING MOLDED BODIES BY POWDER METALLURGY
DE2717842C2 (en) Process for the surface treatment of sintered hard metal bodies
EP0348380B1 (en) Use of an iron-base alloy in the manufacture of sintered parts with a high corrosion resistance, a high wear resistance as well as a high toughness and compression strength, especially for use in the processing of synthetic materials
EP1249512B1 (en) Cold work steel for powder metallurgical production of parts
DE2407410B2 (en) Carbide hard metal with precipitation hardenable metallic matrix
DE2429075A1 (en) Carbonitrides of titanium alloys - for use as cutting tools in machining of metals
DE60124646T2 (en) Stainless cast steel with good heat resistance and good tensionability
DE3853000T2 (en) COMPOSED ALLOY STEEL POWDER AND Sintered Alloy Steel.
DE3881979T2 (en) Alloyed steel powder for powder metallurgical processes.
DE3781773T2 (en) ALLOY MADE OF DEFORM RESISTANT, METALLICALLY BONDED CARBONITRIDE.
DE3744550C2 (en)
EP3323902A1 (en) Steel material containing hard particles prepared by powder metallurgy, method for producing a component from such a steel material and component produced from the steel material
AT410447B (en) HOT STEEL SUBJECT
DE68905066T2 (en) HIGH TEMPERATURE RESISTANT STEEL TUBE WITH LOW SILICON CONTENT AND WITH IMPROVED DUCTILITY AND CAPABILITY PROPERTIES.
DE69717541T2 (en) Low-alloy steel powder for hardener sintering
DE69601340T2 (en) HIGH-STRENGTH, HIGH-STRENGTH HEAT-RESISTANT STEEL AND METHOD FOR THE PRODUCTION THEREOF
DE60002669T2 (en) HIGH-FIXED POWDER METALLURGICAL TOOL STEEL AND ITEM OBTAINED THEREFROM
EP0341643B1 (en) Corrosion-resistant cold-worked steel and composite containing a matrix of this cold-worked steel and a hard material
DE3001761C2 (en) Use of a cobalt-free high-speed steel for cutting tools
EP0733719B1 (en) Iron base alloy for use at high temperature
EP0719349B1 (en) Process of producing sintered articles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890621

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19910731

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 82595

Country of ref document: AT

Date of ref document: 19921215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58902742

Country of ref document: DE

Date of ref document: 19921224

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19921127

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: CRUCIBLE MATERIALS CORPORATION

Effective date: 19930818

NLR1 Nl: opposition has been filed with the epo

Opponent name: CRUCIBLE MATERIALS CORPORATION

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2052971

Country of ref document: ES

Kind code of ref document: T5

EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 89890163.2

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19960417

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

NLR2 Nl: decision of opposition
REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWALTSBUERO JEAN HUNZIKER

Ref country code: CH

Ref legal event code: PFA

Free format text: BOEHLER GESELLSCHAFT M.B.H. TRANSFER- BOEHLER-UDDEHOLM AKTIENGESELLSCHAFT

Ref country code: CH

Ref legal event code: PUE

Owner name: BOEHLER-UDDEHOLM AKTIENGESELLSCHAFT TRANSFER- BOEH

GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)

Effective date: 19960529

ITF It: translation for a ep patent filed
ET3 Fr: translation filed ** decision concerning opposition
NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Kind code of ref document: T5

Effective date: 19960716

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

NLS Nl: assignments of ep-patents

Owner name: BOEHLER EDELSTAHL GMBH;ALPHA EDELSTAHL GMBH;BOEHLE

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: BOEHLER GMBH

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Kind code of ref document: T5

Effective date: 19960716

BECA Be: change of holder's address

Free format text: 960531 *BOHLER EDELSTAHL G.M.B.H.:MARIAZELLERSTRASSE 25, A-8605 KAPFENBERG

BECH Be: change of holder

Free format text: 960531 *BOHLER EDELSTAHL G.M.B.H.:MARIAZELLERSTRASSE 25, A-8605 KAPFENBERG

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20050615

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20050621

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20050704

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20060614

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070101

BERE Be: lapsed

Owner name: *BOHLER EDELSTAHL G.M.B.H.

Effective date: 20060630

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060614

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080613

Year of fee payment: 20

Ref country code: ES

Payment date: 20080627

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20080616

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080625

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080620

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080613

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080620

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20090613

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20090615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20090613