EP0714497A1 - Process and device for removing and oxidising organic components from kitchen fumes - Google Patents

Process and device for removing and oxidising organic components from kitchen fumes

Info

Publication number
EP0714497A1
EP0714497A1 EP94926872A EP94926872A EP0714497A1 EP 0714497 A1 EP0714497 A1 EP 0714497A1 EP 94926872 A EP94926872 A EP 94926872A EP 94926872 A EP94926872 A EP 94926872A EP 0714497 A1 EP0714497 A1 EP 0714497A1
Authority
EP
European Patent Office
Prior art keywords
filter
catalyst
exhaust air
organic components
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94926872A
Other languages
German (de)
French (fr)
Other versions
EP0714497B1 (en
Inventor
Malte Dr. Berndt
Martin Meister
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Engelhard Italiana SpA
Original Assignee
Doduco GmbH and Co KG Dr Eugen Duerrwaechter
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6495873&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0714497(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Doduco GmbH and Co KG Dr Eugen Duerrwaechter filed Critical Doduco GmbH and Co KG Dr Eugen Duerrwaechter
Publication of EP0714497A1 publication Critical patent/EP0714497A1/en
Application granted granted Critical
Publication of EP0714497B1 publication Critical patent/EP0714497B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/20Removing cooking fumes
    • F24C15/2042Devices for removing cooking fumes structurally associated with a cooking range e.g. downdraft
    • F24C15/205Devices for removing cooking fumes structurally associated with a cooking range e.g. downdraft with means for oxidation of cooking fumes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/36Kitchen hoods

Definitions

  • the invention relates to a method and a device for removing and oxidizing organic components of kitchen fumes from an exhaust air flow using a fan producing the exhaust air flow in an exhaust air duct, a filter adsorbing the organic components and a catalytic oxidation of the organic components performing heated catalyst.
  • a device is known from German Offenlegungsschrift 23 63 820, which has a heated catalyst behind a filter and a fan, through which the exhaust air loaded with organic components is passed immediately after the pre-filtering for catalytic oxidation of the organic components.
  • the disadvantage of this device is that the catalytic converter must be continuously heated as long as the fan is in operation and supplies it with polluted exhaust air.
  • catalysts In order to To be sam, catalysts generally have a large specific surface, which additionally leads to an energy transfer to the exhaust air flowing through them, in particular in the case of exhaust air mixed with water vapor. The expenditure of energy and the associated costs for keeping the catalytic converter constantly at operating temperature are correspondingly high.
  • the organic constituents which are generally only present in a relatively low concentration in the exhaust air flow, can only make an insignificant contribution to the heating of the catalyst due to their exothermic catalytic oxidation due to the high exhaust air volume flow accompanying them.
  • the invention is therefore based on the object
  • the filter is regenerated by supplying heat and the catalyst is only heated for a limited time and is therefore heated in an energy-saving manner for the catalytic oxidation of the organic constituents.
  • This is possible due to the fact that the organic components of the kitchen vapors are not constantly subjected to catalysis as opposed to the state of the art, but are first adsorbed and temporarily stored by the filter and from time to time reacted on the heated catalyst organic components from the filter - if it is in front of the catalyst - are desorbed by heating.
  • the desorption phase is carried out at the latest when the filter is saturated with organic components.
  • the catalytic oxidation of the organic constituents then also takes place, preferably when the kitchen is shut down, for example at night.
  • the catalytic oxidation of the organic constituents previously adsorbed and enriched in a filter takes significantly less time and energy as a result of the more concentrated conversion one which, as in the prior art, is operated continuously during the supply of organic constituents by the exhaust air stream, etc.
  • zeolites have a particularly high adsorption capacity, in particular for gaseous substances.
  • zeolites When filtering exhaust air containing kitchen vapors, zeolites are advantageously suitable which have hydrophobic properties and therefore selectively adsorb the organic components of the kitchen vapors, but not water vapor adhering to the kitchen vapors.
  • Zeolites can be in the form of a powder bed, a bed of granules or a monolithic body.
  • Granulate beds are preferably used because they have better flow-through properties than the powder bed and are cheaper to produce than the monolithic body.
  • a special property of the Zeo- lithe is their reversible adsorption capacity, ie they release the previously adsorbed organic components when the temperature rises.
  • the desorption temperature depends on the one hand on the characteristic properties of the zeolite, in particular on its optionally modified surface properties and on the nature of the adsorbed organic constituents themselves. Suitable desorption temperatures are in the range from 150 ° C. to 300 ° C., a higher temperature leading to an advantageously high desorption rate, but the upper limit of the desorption temperature has to be limited in order to avoid undesired carburization, which increases the regeneration capacity of the zeolite and would affect the filter.
  • Zeolites or filters which, as described above, desorb the organic constituents when heat is added are referred to below as “desorbing zeolites” or “desorbing filters”.
  • zeolites has the advantage, compared to the adsorption filters made of activated carbon or non-woven mat, which are difficult to desorb, which are otherwise used in kitchens, that they can be subjected to higher thermal loads.
  • ERSA ⁇ ZBLA ⁇ T (RULE 26)
  • zeolites catalytically active substances which oxidize the organic constituents with the addition of oxygen, in particular with noble metal salts.
  • the catalytic effect of the zeolite and thus of the filter is activated by the application of heat.
  • the organic constituents are catalytically oxidized in the presence of oxygen without first being desorbed.
  • the previously adsorbing zeolite is expediently operated as a catalyst at temperatures of 200 ° C. to 900 ° C. Preferably in the range of 200 ° C to 450 ° C.
  • Filters and zeolites which catalytically oxidize the previously absorbed organic constituents with the addition of heat are hereinafter referred to as "oxidizing zeolites" or "oxidizing filters”.
  • the filter can be heated in many ways.
  • the filter can be heated directly, in particular by means of an electrical heating device.
  • the filter itself can also be designed as a heat exchanger, for example according to the cross-flow principle, in order to be able to use any waste heat that may be used to heat the filter.
  • the filter can be heated indirectly by, for example, connecting a heating device upstream of it, which heats the exhaust air flow before it enters the filter.
  • the heating device device can, for example, in turn be operated electrically or be designed as a heat exchanger.
  • inventive method according to claim 1 and the inventive device according to claim 9 are characterized in that a "desorbable filter", in particular a zeolite, is used as the filter and the catalytic oxidation is carried out in a separate but fluidically connected and heated catalyst.
  • a "desorbable filter” in particular a zeolite
  • the conditions for the catalytic oxidation of the organic constituents are the same as for the oxidizing filter.
  • the filter is at the same time catalyst, as previously described for the "oxidizing zeolite". This reduces the number of components and the device can be made more compact overall.
  • the advantage of the device according to claim 9, with the catalyst separated from the "desorbing filter”, is that the catalyst can be assigned, for example, to several filters during which the desorption phases are shifted simultaneously or at different times. This would be particularly advantageous for canteen kitchens or large systems with several suction points for organically contaminated vapors.
  • a catalyst separated from the filter can be arranged in a branch line which is not flowed through in the adsorption phase, so that the catalyst is not loaded in the adsorption phase, in particular not with water vapor.
  • the catalytic converter arranged downstream of the desorbing filter can be heated directly or indirectly via a heating device, the type of heating preferably being electric.
  • Heating devices of the "desorbing filter” and the downstream catalytic converter according to claim 9 and the “oxidizing filter” according to claim 10 of the present invention can be switched by switching devices assigned to them independently of the fan assigned to them and generating the exhaust air flow, so that they can be actuated earlier when the filter reaches saturation or as required.
  • the heating devices of the "desorbing filter” and the downstream catalytic converter according to claim 9 can also be designed as a common heating device or have a common switching device, since the desorption and the catalytic oxidation take place almost simultaneously in the catalyst downstream of the filter . Certain circuitry precautions can be taken to ensure that the catalytic converter is heated to its operating temperature immediately before the filter is heated and the desorption is started.
  • the catalyst of the device according to the invention according to claim 9 is not heated state during the adsorption phase with condensed water, it is only in the heated state, preferably only in the desorption phase, exposed to the exhaust air stream leaving the filter.
  • This is advantageously achieved by the fact that the catalyst is bypassed by a bypass and shut-off devices in the bypass and / or through the bypass to the bridging portion of the Abluft ⁇ channel, .with the catalyst are provided, and are examples of playing designed as controllable valves.
  • the heat stored in the gaseous carrier medium after the catalytic oxidation of the organic constituents can at least partially be supplied to the desorption process or the catalysis. This can be done, for example, in such a way that the heated exhaust air is fed to the filter, which may be designed as a cross-flow heat exchanger, or to a heat exchanger which is connected upstream of the filter and which is intended to heat the exhaust air supplied to the filter. It is also possible that part of the exhaust air exiting and heated from the catalytic converter is mixed with the colder exhaust air entering the filter in order to heat it up, but a minimum oxygen content in the exhaust air supplied to the filter must not be undercut, since otherwise the following
  • FIG. 1 shows the block diagram of a device for removing and oxidizing organic constituents 1 of kitchen vapors in the adsorption phase
  • FIG. 2 shows the block diagram of the device from FIG. 1 in the phase of desorption and catalysis
  • FIG. 3 shows the block diagram of the device from FIG. 1 at the end of the desorption phase.
  • the device consists of a filter 2, a catalytic converter 3 and a fan 4, which generates an exhaust air flow 5, the filter 2, the catalytic converter 3 and the fan 4 being arranged downstream in terms of flow and connected via the exhaust air duct.
  • the exhaust air duct 6 branches upstream of the catalytic converter 3 into a bypass 7,
  • a first controllable shut-off device 8 is arranged in the bypass 7. In the part of the exhaust air duct 6 bridged by the bypass 7, a second controllable shut-off device 9 is provided in front of the catalytic converter 3.
  • a heating device 10 or 11 is integrated in the filter 2 or the catalyst 3 and can be switched independently of one another and independently of the fan 4. In the adsorption phase (FIG. 1), the shut-off device 8 is open and the shut-off device 9 is closed, so that the exhaust air stream 5 is directed past the catalyst 3.
  • the heating devices 10 and 11 are switched off and the filter 2 and the catalytic converter 3 are at a low temperature T Q , where T Q is less than 100 ° C.
  • the organic components 1 located in the exhaust air stream 5 adsorb in the filter 2.
  • the exhaust air cleaned in this way is drawn off via the bypass.
  • the catalyst 3 is heated to its operating temperature T 1 (for example 350 ° C.) by means of the second electrical heating device 11. As soon as it reaches this temperature, the second shut-off device
  • the first heating device 10 and the second heating device 11 are switched off again, the first shut-off device 8 is opened again and the second shut-off device 9 is closed again .
  • the filter 2 is now in a regenerated form and, after cooling to T Q, can again adsorb new organic constituents 1 from the exhaust air stream 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

A process and device are disclosed for removing and oxidising organic components (1) from kitchen fumes in an outgoing air flow (5) by means of a filter (2) and a heatable catalyst (3). In order to save energy and filters (2), filters (2) that can be regenerated by heat supply are used and the catalyst (3) is not permanently heated, but is heated only after the filter (2) is saturated or as required to catalytically oxidise the adsorbed organic components (1).

Description

Verfahren und Vorrichtung zum Entfernen und Oxidieren organischer Bestandteile von Küchendünsten Method and device for removing and oxidizing organic components from kitchen fumes
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Entfernen und Oxidieren organischer Bestandteile von Küchendünsten aus einem Abluftstrom unter Einsatz eines den Abluftstrom in einem Abluftkanal erzeugenden Ven- tilators, eines die organischen Bestandteile adsorbieren¬ den Filters und eines die katalytische Oxidation der or¬ ganischen Bestandteile durchführenden beheizten Kataly¬ sators.The invention relates to a method and a device for removing and oxidizing organic components of kitchen fumes from an exhaust air flow using a fan producing the exhaust air flow in an exhaust air duct, a filter adsorbing the organic components and a catalytic oxidation of the organic components performing heated catalyst.
Küchendünste und darunter fallen im weiteren Sinne auch die bei der Erzeugung und Zubereitung von Lebensmitteln und Speisen, beispielsweise durch Bäckereien oder Schoko¬ ladenhersteller, anfallenden Dünste, enthaltenen zumeist organische Bestandteile, die in Abhängigkeit von ihrer Kon¬ zentration und der Lage der Emissionsquelle zu einer Ge¬ ruchsbelästigung in der Umgebung sowie zu anderen uner- erwünschten Erscheinungen, beispielsweise zu Ablagerungen und die sie begleitende Schimmelbildung, führen können.Kitchen vapors and, in the broader sense, also include the vapors usually obtained in the production and preparation of food and dishes, for example by bakeries or chocolate manufacturers organic constituents which, depending on their concentration and the location of the emission source, can lead to unpleasant odors in the environment and to other undesirable phenomena, for example deposits and the accompanying mold formation.
Aus diesem Grunde ist man bemüht, die Dünste möglichst nahe am Entstehungsort abzufangen, vorzugsweise abzusaugen, und die mit den Dünsten beladene Abluft zur Reinigung von den organischen Bestandteilen unter anderem durch Filter zu leiten. Allerdings ist das Absorptionsvermögen eines jeden Filters begrenzt, was bei Erreichen der Sättigung deren Wirksamkeit beeinträchtigt oder gar aufhebt. Ein Austausch der Filter ist mit Arbeitsaufwand und Kosten sowie ggfs. mit Entsorgungsproblemen verbunden.For this reason, efforts are made to intercept the vapors as close as possible to the point of origin, preferably to extract them, and to pass the exhaust air laden with the vapors through filters, among other things, to purify the organic components. However, the absorption capacity of each filter is limited, which affects or even removes its effectiveness when saturation is reached. Replacing the filters is associated with labor and costs as well as with disposal problems.
Aus der deutschen Offenlegungsschrift 23 63 820 ist eine Vorrichtung bekannt, die hinter einem Filter und einem Ven¬ tilator einen beheizten Katalysator aufweist, durch den die mit organischen Bestandteilen befrachtete Abluft unmittel¬ bar nach der Vorfilterung zur katalytischen Oxidation der organischen Bestandteile hindurch geleitet wird. Der Nach¬ teil dieser Vorrichtung liegt darin, dass der Katalysator ständig beheizt werden uss solange der Ventilator in Be- trieb ist und ihn mit belasteter Abluft versorgt. Um wirk- sam zu sein, weisen Katalysatoren im allgemeinen eine große spezifische Oberfläche auf, was zusätzlich zu einer Energieübertragung an die sie durchströmende Ab¬ luft, insbesondere bei mit Wasserdampf versetzter Ab- luft, führt. Entsprechend hoch sind der Energieaufwand und die damit verbundenen Kosten, um den Katalysator ständig auf Betriebstemperatur zu halten. Weiter kommt hinzu, dass die im allgemeinen im Abluftstrom nur in relativ geringer Konzentration vorliegenden organi- sehen Bestandteile wegen des hohen sie begleitenden Abluftvolumenstroms nur unwesentlich zur Heizung des Katalysators durch ihre exotherme katalytische Oxi- dation beitragen können.A device is known from German Offenlegungsschrift 23 63 820, which has a heated catalyst behind a filter and a fan, through which the exhaust air loaded with organic components is passed immediately after the pre-filtering for catalytic oxidation of the organic components. The disadvantage of this device is that the catalytic converter must be continuously heated as long as the fan is in operation and supplies it with polluted exhaust air. In order to To be sam, catalysts generally have a large specific surface, which additionally leads to an energy transfer to the exhaust air flowing through them, in particular in the case of exhaust air mixed with water vapor. The expenditure of energy and the associated costs for keeping the catalytic converter constantly at operating temperature are correspondingly high. In addition, the organic constituents, which are generally only present in a relatively low concentration in the exhaust air flow, can only make an insignificant contribution to the heating of the catalyst due to their exothermic catalytic oxidation due to the high exhaust air volume flow accompanying them.
Der Erfindung liegt daher die Aufgabe zugrunde, dasThe invention is therefore based on the object
Verfahren und die Vorrichtung der eingangs genannten Art so auszugestalten und weiterzubilden, dass der Energie¬ aufwand für Abluftreinigung herabgesetzt wird. Diese Aufgabe wird durch die Merkmale des Patentanspruchs 1 oder 2 bzw. durch die Merkmale des Patentanspruchs 9 oder 10 gelöst. Vorteilhafte Weiterbildungen der An¬ sprüche sind Gegenstand der Unteransprüche. Developing and developing the method and the device of the type mentioned at the outset in such a way that the energy expenditure for exhaust air purification is reduced. This object is achieved by the features of patent claim 1 or 2 or by the features of patent claim 9 or 10. Advantageous developments of the claims are the subject of the subclaims.
Erfindungsgemäss wird der Filter durch Wärmezufuhr regeneriert und der Katalysator wird nur zeitlich begrenzt und daher energiesparend zur katalytischen Oxidation der organischen Bestandteile beheizt. Das ist dadurch möglich, dass die organischen Be¬ standteile des Küchendunstes in Abkehr vom Stand der Technik nicht ständig der Katalyse unterzogen, son¬ dern zunächst durch den Filter adsorbiert und zwi¬ schengespeichert und von Zeit zu Zeit am beheizten Katalysator umgesetzt werden, wozu die organischen Bestandteile vom Filter - wenn er vor dem Kataly¬ sator liegt - durch Erwärmen desorbiert werden.According to the invention, the filter is regenerated by supplying heat and the catalyst is only heated for a limited time and is therefore heated in an energy-saving manner for the catalytic oxidation of the organic constituents. This is possible due to the fact that the organic components of the kitchen vapors are not constantly subjected to catalysis as opposed to the state of the art, but are first adsorbed and temporarily stored by the filter and from time to time reacted on the heated catalyst organic components from the filter - if it is in front of the catalyst - are desorbed by heating.
Die Desorptionsphase wird spätestens dann, durchge- führt, wenn der Filter mit organischen Bestandteilen gesättigt ist. Die katalytische Oxidation der or¬ ganischen Bestandteile erfolgt dann ebenfalls, vor¬ zugsweise wenn der Küchenbetrieb eingestellt ist, beispielsweise nachts.The desorption phase is carried out at the latest when the filter is saturated with organic components. The catalytic oxidation of the organic constituents then also takes place, preferably when the kitchen is shut down, for example at night.
Die katalytische Oxidation der zuvor in einem Filter adsorbierten und angereicherten organischen Bestand¬ teile nimmt durch die konzentriertere Umsetzung deutlich weniger Zeit und Energie in Anspruch als eine solche, die wie beim Stand der Technik ständig während der Zufuhr von organischen Bestandteilen durch den Abluftstrom betrieben werden uss.The catalytic oxidation of the organic constituents previously adsorbed and enriched in a filter takes significantly less time and energy as a result of the more concentrated conversion one which, as in the prior art, is operated continuously during the supply of organic constituents by the exhaust air stream, etc.
Es bestehen zwei Möglichkeiten die Erfindung durchzu¬ führen bzw. auszugestalten. Bei beiden Möglichkeiten werden die mit dem Abluftstrom herantransportierten or¬ ganischen Bestandteile zunächst an einem Filter adsor¬ biert. Dieser Filter besteht vorzugsweise aus zeolithi- schem Material. Zeolithe weisen aufgrund ihrer spezifi¬ schen chemischen und physikalischen Eigenschaften, die in einem weiten Bereich bei ihrer Herstellung modi¬ fiziert werden können, ein besonders hohes Adsorp¬ tionsvermögen, insbesondere für gasförmige Stoffe, auf. Bei der Filterung von Ablüften, die Küchen¬ dünste enthalten, sind vorteilhafterweise solche Zeolithe geeignet, die hydrophobe Eigenschaften be¬ sitzen und deshalb selektiv die organischen Bestand¬ teile der Küchendünste adsorbieren, jedoch nicht den Küchendünsten anhaftenden Wasserdampf. Zeolithe können in Form eines Pulverbetts, einer Granulatschüttung oder eines monolithischen Körpers vorliegen. Vorzugsweise werden Granulatschüttungen eingesetzt, da sie gegenüber dem Pulverbett eine bessere Durchströmbarkeit aufweisen und gegenüber dem monolithischen Körper kostengünstiger herzustellen sind. Eine besondere Eigenschaft der Zeo- lithe ist ihre reversible Adsorptionsfähigkeit, d.h. sie geben die zuvor adsorbierten organischen Bestandteile bei Temperaturerhöhung wieder ab. Die Desorptionstempera- tur hängt dabei einerseits von den charakteristischen Eigenschaften des Zeoliths, insbesondere von seinen gegebenenfalls modifizierten Oberflächeneigenschaften sowie von der Art der adsorbierten organischen Bestand¬ teile selbst ab. Geeignete Desorptionstemperaturen liegen im Bereich von 150°C bis 300°C, wobei eine höhere Tempera- tur zu einer vorteilhaften hohen Desorptionsrate führt, jedoch die Desorptionstemperatur nach oben begrenzt werden uss, um eine unerwünschte Karburierung zu ver¬ meiden, was die Regenerationsfähigkeit des Zeoliths und damit des Filters beeinträchtigen würde. Zeolithe bzw. Filter die wie oben beschrieben, bei Wärmezufuhr die organischen Bestandteile wieder desorbieren werden im weiteren als "desorbierende Zeolithe" bzw. "desorbieren- de Filter" bezeichnet.There are two ways of carrying out or embodying the invention. In both cases, the organic components transported in with the exhaust air stream are first adsorbed on a filter. This filter is preferably made of zeolitic material. Because of their specific chemical and physical properties, which can be modified in a wide range during their production, zeolites have a particularly high adsorption capacity, in particular for gaseous substances. When filtering exhaust air containing kitchen vapors, zeolites are advantageously suitable which have hydrophobic properties and therefore selectively adsorb the organic components of the kitchen vapors, but not water vapor adhering to the kitchen vapors. Zeolites can be in the form of a powder bed, a bed of granules or a monolithic body. Granulate beds are preferably used because they have better flow-through properties than the powder bed and are cheaper to produce than the monolithic body. A special property of the Zeo- lithe is their reversible adsorption capacity, ie they release the previously adsorbed organic components when the temperature rises. The desorption temperature depends on the one hand on the characteristic properties of the zeolite, in particular on its optionally modified surface properties and on the nature of the adsorbed organic constituents themselves. Suitable desorption temperatures are in the range from 150 ° C. to 300 ° C., a higher temperature leading to an advantageously high desorption rate, but the upper limit of the desorption temperature has to be limited in order to avoid undesired carburization, which increases the regeneration capacity of the zeolite and would affect the filter. Zeolites or filters which, as described above, desorb the organic constituents when heat is added are referred to below as "desorbing zeolites" or "desorbing filters".
Die Verwendung von Zeolithen hat gegenüber den in Küchen sonst verwendeten, schwerlich desorbierbaren Adsorptions¬ filter aus Aktivkohle oder Faservliesmatten den Vorteil, thermisch höher belastbar zu sein.The use of zeolites has the advantage, compared to the adsorption filters made of activated carbon or non-woven mat, which are difficult to desorb, which are otherwise used in kitchens, that they can be subjected to higher thermal loads.
Eine Möglichkeit zur Modifizierung der spezifischen Eigenschaften der Zeolithe besteht darin, dieOne way to modify the specific properties of the zeolites is to use the
ERSAΓZBLAΓT (REGEL 26) Oberfläche der Zeolithe unter anderem mit katalytisch wirksamen und die organischen Bestandteile unter Sauer¬ stoffzufuhr oxidierenden Substanzen zu versehen, ins¬ besondere mit Edelmetallsalzen. Die katalytische Wir- kung des Zeoliths und damit des Filters wird durch Wärmezufuhr aktiviert. Dabei werden die organischen Bestandteile ohne vorher zu desorbieren in Gegen¬ wart von Sauerstoff katalytisch oxidiert. Der vorher adsorbierende Zeolith wird zweckmässigerweise bei Temperaturen von 200°C bis 900°C als Katalysator be¬ trieben. Vorzugsweise im Bereich von 200°C bis 450°C. Filter und Zeolithe, die die vorher absorbierten or¬ ganischen Bestandteile unter Wärmezufuhr katalytisch oxidieren, werden im weiteren "oxidierende Zeolithe" bzw. "oxidierende Filter" genannt.ERSAΓZBLAΓT (RULE 26) To provide the surface of the zeolites with, inter alia, catalytically active substances which oxidize the organic constituents with the addition of oxygen, in particular with noble metal salts. The catalytic effect of the zeolite and thus of the filter is activated by the application of heat. The organic constituents are catalytically oxidized in the presence of oxygen without first being desorbed. The previously adsorbing zeolite is expediently operated as a catalyst at temperatures of 200 ° C. to 900 ° C. Preferably in the range of 200 ° C to 450 ° C. Filters and zeolites which catalytically oxidize the previously absorbed organic constituents with the addition of heat are hereinafter referred to as "oxidizing zeolites" or "oxidizing filters".
Die Erwärmung des Filters kann auf vielfache Weise ge¬ schehen. Der Filter kann direkt, insbesondere mittels einer elektrischen Heizeinrichtung beheizt werden. Der Filter kann auch selbst als Wärmetauscher ausge¬ legt sein, beispielsweise nach dem Kreuzstrom-Prinzip, um eventuell anfallende Abwärme zum Beheizen des Fil¬ ters verwenden zu können. Indirekt kann der Filter be¬ heizt werden, indem ihm beispielsweise eine Heizein- richtung vorgeschaltet wird, die den Abluftstrom auf¬ heizt bevor er in den Filter eintritt. Die Heizeinrich- tung kann beispielsweise wiederum elektrisch betrieben werden oder als Wärmetauscher ausgelegt sein.The filter can be heated in many ways. The filter can be heated directly, in particular by means of an electrical heating device. The filter itself can also be designed as a heat exchanger, for example according to the cross-flow principle, in order to be able to use any waste heat that may be used to heat the filter. The filter can be heated indirectly by, for example, connecting a heating device upstream of it, which heats the exhaust air flow before it enters the filter. The heating device device can, for example, in turn be operated electrically or be designed as a heat exchanger.
Das erfindungsgemässe Verfahren nach Anspruch 1 und die erfindungsgemässe Vorrichtung nach Anspruch 9 zeichnen sich dadurch aus, dass als Filter ein "desorbierbarer Filter", insbesondere ein Zeolith, eingesetzt wird und die katalytische Oxidation in einem davon getrennten aber strömungstechnisch verbundenen und beheizten Katalysator durchgeführt wird. Dabei sind die Be¬ dingungen für die katalytische Oxidation der organi¬ schen Bestandteile dieselben wie für den oxidierenden Filter. Nach dem erfindungsgemässen Verfahren gemäss Anspruch 2 und der erfindungsgemässen Vorrichtung ge- mäss Anspruch 10 ist der Filter zugleich Katalysator, wie zuvor bei dem "oxidierenden Zeolith" beschrieben. Dadurch wird die Anzahl der Bauteile reduziert und die Vorrichtung kann insgesamt kompakter ausgeführt werden. Der Vorteil der Vorrichtung gemäss Anspruch 9, mit dem vo "desorbierenden Filter" getrennten Katalysator, liegt darin, dass der Katalysator beispielsweise mehreren Filtern während derer gleichzeitig oder zeit¬ lich versetzten Desorptionsphasen zugeordnet werden kann. Dies wäre insbesondere für Großküchen oder Groß- anlagen mit mehreren Absaugstellen für organisch be¬ lastete Dünste von Vorteil. Ausserdem kann ein vom Filter getrennter Katalysator in einer Zweigleitung angeordnet werden,die in der Adsorptionsphase nicht durchströmt wird, so dass der Katalysator in der Ad- sorptionsphase nicht belastet wird, insbesondere nicht mit Wasserdampf. Der dem desorbierenden Filter nachgeordnete Kataly¬ sator kann über eine Heizeinrichtung direkt oder in¬ direkt beheizt werden, wobei die Beheizungsart vor¬ zugsweise elektrisch ist.The inventive method according to claim 1 and the inventive device according to claim 9 are characterized in that a "desorbable filter", in particular a zeolite, is used as the filter and the catalytic oxidation is carried out in a separate but fluidically connected and heated catalyst. The conditions for the catalytic oxidation of the organic constituents are the same as for the oxidizing filter. According to the inventive method according to claim 2 and the inventive device according to claim 10, the filter is at the same time catalyst, as previously described for the "oxidizing zeolite". This reduces the number of components and the device can be made more compact overall. The advantage of the device according to claim 9, with the catalyst separated from the "desorbing filter", is that the catalyst can be assigned, for example, to several filters during which the desorption phases are shifted simultaneously or at different times. This would be particularly advantageous for canteen kitchens or large systems with several suction points for organically contaminated vapors. In addition, a catalyst separated from the filter can be arranged in a branch line which is not flowed through in the adsorption phase, so that the catalyst is not loaded in the adsorption phase, in particular not with water vapor. The catalytic converter arranged downstream of the desorbing filter can be heated directly or indirectly via a heating device, the type of heating preferably being electric.
Heizeinrichtungen des "desorbierenden Filters" und des nachgeordneten Katalysators gemäss Anspruch 9 sowie des "oxidierenden Filters" gemäss Anspruch 10 der vor¬ liegenden Erfindung können durch ihnen zugeordnete Schalteinrichtungen unabhängig von dem ihnen zuge¬ ordneten und den Abluftstrom erzeugenden Ventilator geschaltet werden, so dass sie bei Erreichen der Sättigung des Filters oder nach Bedarf früher betätigbar sind. Die Heizeinrichtungen des "desor- bierenden Filters" und des nachgeordneten Kataly¬ sators nach Anspruch 9 können auch als gemeinsame Heizeinrichtung ausgebildet sein bzw. eine gemeinsame Schalteinrichtung aufweisen, da die Desorption und die katalytische Oxidation in dem dem Filter nachge- ordneten Katalysator fast gleichzeitig stattfindet. Durch bestimmte schaltungstechnische Vorkehrungen kann sichergestellt werden, dass der Katalysator auf seine Betriebstemperatur aufgeheizt wird, unmittelbar bevor der Filter beheizt wird und die Desorption in Gang gesetzt wird.Heating devices of the "desorbing filter" and the downstream catalytic converter according to claim 9 and the "oxidizing filter" according to claim 10 of the present invention can be switched by switching devices assigned to them independently of the fan assigned to them and generating the exhaust air flow, so that they can be actuated earlier when the filter reaches saturation or as required. The heating devices of the "desorbing filter" and the downstream catalytic converter according to claim 9 can also be designed as a common heating device or have a common switching device, since the desorption and the catalytic oxidation take place almost simultaneously in the catalyst downstream of the filter . Certain circuitry precautions can be taken to ensure that the catalytic converter is heated to its operating temperature immediately before the filter is heated and the desorption is started.
Um zu vermeiden, dass der Katalysator der erfin¬ dungsgemässen Vorrichtung nach Anspruch 9 im nicht beheizten Zustand während der Adsorptionsphase mit Kondenswasser belegt wird, ist dieser nur im beheizten Zustand, vorzugsweise nur in der Desorptionsphase, dem den Filter verlassenden Abluftstrom auszusetzen. Dies wird vorteilhafterweise dadurch verwirklicht, dass der Katalysator mittels eines Bypasses umgangen wird und Absperreinrichtungen im Bypass und/oder dem durch den Bypass zu überbrückenden Abschnitt des Abluft¬ kanals,.mit dem Katalysator vorgesehen sind und bei- spielsweise als ansteuerbare Ventile ausgestaltet sind.In order to avoid that the catalyst of the device according to the invention according to claim 9 is not heated state during the adsorption phase with condensed water, it is only in the heated state, preferably only in the desorption phase, exposed to the exhaust air stream leaving the filter. This is advantageously achieved by the fact that the catalyst is bypassed by a bypass and shut-off devices in the bypass and / or through the bypass to the bridging portion of the Abluft¬ channel, .with the catalyst are provided, and are examples of playing designed as controllable valves.
Die im gasförmigen Trägermedium nach der katalytischen Oxidation der organischen Bestandteile gespeicherte Wärme kann zumindest teilweise dem Desorptionsvor- gang oder der Katalyse zugeführt werden. Dies kann beispielsweise derart geschehen, dass die aufge¬ heizte Abluft dem ggfs. als Kreuzstrom-Wärmetauscher ausgestalteten Filter oder einem Wärmetauscher,der dem Filter vorgeschaltet ist und die dem Filter zuge- führte Abluft erwärmen soll, zugeführt wird. Es ist auch möglich, dass ein Teil der aus dem Katalysator austretenden und erhitzten Abluft der in den Filter eintretenden, kälteren Abluft zugemischt wird, um diese zu erwärmen, wobei aber ein Mindestsauerstoff- anteil in der dem Filter zugeführten Abluft nicht unterschritten werden darf, da sonst die folgende The heat stored in the gaseous carrier medium after the catalytic oxidation of the organic constituents can at least partially be supplied to the desorption process or the catalysis. This can be done, for example, in such a way that the heated exhaust air is fed to the filter, which may be designed as a cross-flow heat exchanger, or to a heat exchanger which is connected upstream of the filter and which is intended to heat the exhaust air supplied to the filter. It is also possible that part of the exhaust air exiting and heated from the catalytic converter is mixed with the colder exhaust air entering the filter in order to heat it up, but a minimum oxygen content in the exhaust air supplied to the filter must not be undercut, since otherwise the following
katalytische Oxidation nur unvollständig abläuft.catalytic oxidation is incomplete.
Ein Ausführungsbeispiel der Erfindung ist schematisch in den beigefügten Zeichnungen dargestellt.An embodiment of the invention is shown schematically in the accompanying drawings.
Figur 1 zeigt die Blockdarstellung einer Vorrich¬ tung zum Entfernen und Oxidieren organi¬ scher Bestandteile 1 von Küchendünsten in der Phase der Adsorption,FIG. 1 shows the block diagram of a device for removing and oxidizing organic constituents 1 of kitchen vapors in the adsorption phase,
Figur 2 zeigt die Blockdarstellung der Vorrich¬ tung aus Figur 1 in der Phase der De¬ sorption und Katalyse, undFIG. 2 shows the block diagram of the device from FIG. 1 in the phase of desorption and catalysis, and
Figur 3 zeigt die Blockdarstellung der Vorrich¬ tung aus Figur 1 am Schluß der Desorp¬ tionsphase.FIG. 3 shows the block diagram of the device from FIG. 1 at the end of the desorption phase.
Die Vorrichtung besteht aus einem Filter 2, einem Kataly- sator 3 und einem Ventilator 4, der einen Abluftstrom 5 erzeugt, wobei der Filter 2, der Katalysator 3 und der Ventilator 4 einander stromungsmassig nachgeordnet und über den Abluftkanal verbunden sind. Der Abluftkanal 6 verzweigt vor dem Katalysator 3 in einen Bypass 7, The device consists of a filter 2, a catalytic converter 3 and a fan 4, which generates an exhaust air flow 5, the filter 2, the catalytic converter 3 and the fan 4 being arranged downstream in terms of flow and connected via the exhaust air duct. The exhaust air duct 6 branches upstream of the catalytic converter 3 into a bypass 7,
der den Katalysator 3 überbrückt und vor dem Ventilator 4 wieder in den Abluftkanal 6 einmündet. In dem Bypass 7 ist eine erste ansteuerbare Absperreinrichtung 8 ange¬ ordnet. In dem vom Bypass 7 überbrückten Teil des Ab- luftkanals 6 ist eine zweite ansteuerbare Absperrein¬ richtung 9 vor dem Katalysator 3 vorgesehen. In den Filter 2 bzw. den Katalysator 3 ist eine Heizeinrich¬ tung 10 bzw. 11 integriert, die unabhängig voneinander und unabhängig vom Ventilator 4 schaltbar sind. In der Adsorptionsphase (Fig. 1) ist die Absperreinrichtung 8 geöffnet und die Absperreinrichtung 9 geschlossen, so dass der Abluftstrom 5 am Katalysator 3 vorbeigeleitet wird. Die Heizeinrichtungen 10 und 11 sind ausgeschaltet und der Filter 2 sowie der Katalysator 3 befinden sich auf niedriger Temperatur TQ , wobei TQ kleiner 100°C ist. Die im Abluftstrom 5 befindlichen organischen Bestand¬ teile 1 adsorbieren im Filter 2. Die so gereinigte Ab¬ luft wird über den Bypass abgezogen. Zum Ende der Ad¬ sorptionsphase, d.h. bei Sättigung des Filters 2, oder bei Bedarf wird der Katalysator 3 mittels der zweiten elektrischen Heizeinrichtung 11 auf seine Betriebs¬ temperatur T„ (z.B. 350°C) aufgeheizt. Sobald er diese Temperatur erreicht, wird die zweite Absperreinrichtungwhich bridges the catalyst 3 and opens again in the exhaust air duct 6 in front of the fan 4. A first controllable shut-off device 8 is arranged in the bypass 7. In the part of the exhaust air duct 6 bridged by the bypass 7, a second controllable shut-off device 9 is provided in front of the catalytic converter 3. A heating device 10 or 11 is integrated in the filter 2 or the catalyst 3 and can be switched independently of one another and independently of the fan 4. In the adsorption phase (FIG. 1), the shut-off device 8 is open and the shut-off device 9 is closed, so that the exhaust air stream 5 is directed past the catalyst 3. The heating devices 10 and 11 are switched off and the filter 2 and the catalytic converter 3 are at a low temperature T Q , where T Q is less than 100 ° C. The organic components 1 located in the exhaust air stream 5 adsorb in the filter 2. The exhaust air cleaned in this way is drawn off via the bypass. At the end of the adsorption phase, ie when the filter 2 is saturated, or if necessary, the catalyst 3 is heated to its operating temperature T 1 (for example 350 ° C.) by means of the second electrical heating device 11. As soon as it reaches this temperature, the second shut-off device
9 geöffnet und anschließenddie erste Absperreinrichtung 8 geschlossen. Danach bringt die erste Heizeinrichtung9 opened and then the first shut-off device 8 closed. Then bring the first heater
10 den Filter 2 auf seine Desorptionste peratur T., (z.B. 200°C) . Die während der Desorptionsphase (Fig.2) vom Filter freigesetzten organischen Bestandteile 1 werden mittels des Abluftstroms 5 über den Abluftkanal 6 zum Kataly¬ sator 3 transportiert. Dort werden die desorbierten organi¬ schen Bestandteile 1 ansdiießend direkt katalytisch oxidiert, bevor sie die Vorrichtung über den Ventilator 4 verlassen.10 the filter 2 to its desorption temperature T., (eg 200 ° C). The during the desorption phase (Fig. 2) Organic constituents 1 released from the filter are transported by means of the exhaust air flow 5 via the exhaust air duct 6 to the catalytic converter 3. There the desorbed organic constituents 1 are directly catalytically oxidized before they leave the device via the fan 4.
Nachdem die im Filter 2 angereicherten organischen Bestand¬ teile vollständig desorbiert worden sind (Fig. 3) , werden die erste Heizeinrichtung 10 und die zweite Heizeinrichtung 11 wieder abgeschaltet sowie die erste Absperreinrichtung 8 wie¬ der geöffnet und die zweite Absperreinrichtung 9 wieder ge¬ schlossen. Der Filter 2 liegt jetzt in regenerierter Form vor und kann nach Abkühlung auf TQ wieder von neuem organi¬ sche Bestandteile 1 aus dem Abluftstrom 5 adsorbieren. After the organic constituents enriched in the filter 2 have been completely desorbed (FIG. 3), the first heating device 10 and the second heating device 11 are switched off again, the first shut-off device 8 is opened again and the second shut-off device 9 is closed again . The filter 2 is now in a regenerated form and, after cooling to T Q, can again adsorb new organic constituents 1 from the exhaust air stream 5.

Claims

Ansprüche: Expectations:
1. Verfahren zum Entfernen und Oxidieren organischer Bestandteile (1) von Küchendünsten aus einem Abluft¬ strom (5) durch1. Process for removing and oxidizing organic components (1) of kitchen vapors from an exhaust air stream (5)
- Hindurchleiten des Abluftstroms (2) durch einen Filter (2) und- Passing the exhaust air flow (2) through a filter (2) and
- anschließende Katalyse mittels eines beheizten Kataly-' εators (3) ,- subsequent catalysis using a heated catalyst (3),
dadurch gekennzeichnet, dasscharacterized in that
- die organischen Bestandteile (1) von dem Filter (2) ab¬ wechselnd adsorbiert und durch Wärmezufuhr desorbiert werden und - der Katalysator (3) nicht oder nur zeitweise in der Ad¬ sorptionsphase beheizt wird.- The organic constituents (1) are alternately adsorbed by the filter (2) and desorbed by the addition of heat, and - The catalyst (3) is not heated or is heated only temporarily in the adsorption phase.
2. Verfahren zum Entfernen und Oxidieren organischer Bestandteile von Küchendünsten aus einem Abluft- ström durch2. Process for removing and oxidizing organic components of kitchen fumes from an exhaust air stream
- Hindurchleiten des Abluftstroms durch einen Filter und- Passing the exhaust air flow through a filter and
- anschließende Katalyse mittels eines beheizten Kataly¬ sators,subsequent catalysis by means of a heated catalyst,
dadurch gekennzeichnet, dasscharacterized in that
ERSATZBLAΓΓ (REGEL 26) - der Filter zugleich Katalysator ist und während der Adsorptionsphase nicht oder nur zeitweise durch Be¬ heizung aktiviert wird undREPLACEMENT BLAΓΓ (RULE 26) the filter is at the same time a catalyst and is not activated or is activated only temporarily by heating during the adsorption phase, and
- die organischen Bestandteile durch die katalytische Oxidation vom Filter entfernt werden.- The organic components are removed from the filter by the catalytic oxidation.
3. Verfahren nach Anspruch 1 oder 2, dadurch ge¬ kennzeichnet, dass der Filter (2) spätestens bei3. The method according to claim 1 or 2, characterized ge indicates that the filter (2) at the latest
Erreichen der Sättigung mit den organischen Bestand- teilen (1) , vorzugsweise in Abwesenheit von Küchendämpfen, beispielsweise nachts, aufgeheizt wird.Heating to saturation with the organic constituents (1), preferably in the absence of kitchen vapors, for example at night.
4. Verfahren nach Anspruch 1, dadurch gekennzeich¬ net, dass der Filter (2) spätestens bei Erreichen der Sättigung mit den organischen Bestandteilen (1) , vor¬ zugsweise in Abwesenheit von Küchendämpfen, beispiels¬ weise nachts, auf eine Temperatur zwischen 150°C und 300°C, vorzugsweise zwischen 200°C und 250°C, aufge¬ heizt wird.4. The method according to claim 1, characterized in that the filter (2) at the latest when saturation with the organic components (1) is reached, preferably in the absence of kitchen vapors, for example at night, to a temperature between 150 ° C and 300 ° C, preferably between 200 ° C and 250 ° C, is heated.
5. Verfahren nach Anspruch 4, dadurch gekennzeich¬ net, dass die desorbierten organischen Bestand¬ teile (1) mittels eines gasförmigen, sauerstoffhaltigen Trägermediums, vorzugsweise Abluft (5), welches den Fil- ter (2) während der Desorptionsphase durchströmt, dem Katalysator (3) zugeführt werden. 5. The method according to claim 4, characterized gekennzeich¬ net that the desorbed organic constituents (1) by means of a gaseous, oxygen-containing carrier medium, preferably exhaust air (5), which flows through the filter (2) during the desorption phase, the catalyst (3) can be fed.
6. Verfahren nach Anspruch 5, dadurch gekennzeich¬ net, dass der Katalysator (3) unmittelbar vor der6. The method according to claim 5, characterized gekennzeich¬ net that the catalyst (3) immediately before
Desorptionsphase auf eine Temperatur zwischen 200°C und 900°C, vorzugsweise zwischen 200°C und 450°C, aufgeheizt und während der Desorptionsphase des Filters (2) auf dieser Temperatur gehalten wird.Desorption phase to a temperature between 200 ° C and 900 ° C, preferably between 200 ° C and 450 ° C, heated and maintained during the desorption phase of the filter (2) at this temperature.
7. Verfahren nach Anspruch 2, dadurch gekennzeich- .,net, dass der Filter spätestens bei Erreichen der Sättigung mit den organischen Bestandteilen, vorzugsweise in Abwesenheit von Küchendämpfen, beispielsweise nachts, auf eine Temperatur zwischen 200°C und 900°C, vorzugs¬ weise zwischen 200°C und 450°C, aufgeheizt wird, wobei die organischen Bestandteile vom Filter in Gegenwart eines gasförmigen sauerstoffhaltigen Trägermediums, vor¬ zugsweise Abluft, katalytisch oxidiert werden.7. The method according to claim 2, characterized in that the filter at the latest when reaching the saturation with the organic components, preferably in the absence of kitchen vapors, for example at night, to a temperature between 200 ° C and 900 ° C, preferably as between 200 ° C and 450 ° C, the organic components are catalytically oxidized by the filter in the presence of a gaseous oxygen-containing carrier medium, preferably exhaust air.
8. Verfahren nach Anspruch 6 oder 7, dadurch gekenn¬ zeichnet, dass das gasförmige Trägermedium den Katalysator (3) zusammen mit den gasförmigen Oxidations- produkten der organischen Bestandteile (1) verläßt und die darin gespeicherte Wärme zumindest teilweise zum Filter (2) zurückgeführt wird, um ihn zu beheizen.8. The method according to claim 6 or 7, characterized gekenn¬ characterized in that the gaseous carrier medium leaves the catalyst (3) together with the gaseous oxidation products of the organic components (1) and the heat stored therein at least partially returned to the filter (2) to heat him.
9. Vorrichtung zur Durchführung des Verfahrens nach9. Device for carrying out the method
Anspruch 1, bestehend aus einem Ventilator (4) zum Erzeugen eines AbluftStroms (5) in einem Abluftkanal (6) , einem Filter (2) zum Adsorbieren der organischen Bestand¬ teile (1) , einem Katalysator (3) zur Durchführung der ka¬ talytischen Oxidation der organischen Bestandteile (1) und einer Heizeinrichtung (11) für den Katalysator, dadurch gekennzeichnet, dassClaim 1, consisting of a fan (4) for generating an exhaust air flow (5) in an exhaust air duct (6), a filter (2) for adsorbing the organic components (1), a catalyst (3) for carrying out the catalytic oxidation of the organic components (1) and a heating device (11) for the catalyst, characterized in that
- als Filter (2) ein solcher ausgewählt ist, der unter Wärmezufuhr die adsorbierten organischen Bestandteile (1) desorbiert und der regenerierbar ist,- The filter (2) selected is one that desorbs the adsorbed organic constituents (1) under heat and which can be regenerated
- eine.erste Schalteinrichtung zur Schaltung der Heiz- einrichtung (11) des Katalysators (3) unabhängig vom- A first switching device for switching the heating device (11) of the catalyst (3) regardless of
Ventilator (4) sowieFan (4) and
- eine Heizeinrichtung (10) zum Beheizen des Filters (2) vorgesehen ist, welche durch eine zweite Schaltein¬ richtung vom Ventilator (4) unabhängig schaltbar ist.- A heating device (10) for heating the filter (2) is provided, which can be switched independently by the fan (4) by means of a second switching device.
10. Vorrichtung zur Durchführung des Verfahrens nach10. Device for performing the method after
Anspruch 2, bestehend aus einem Ventilator zum Erzeugen eines Abluftstroms in einem Abluftkanal, einem Filter zum Adsorbieren der organischen Bestandteile, einem Katalysator zur Durchführung der katalytischen Oxidation der organischen Bestandteile und eine Heiz¬ einrichtung für den Katalysator, dadurch gekennzeich¬ net, dassClaim 2, consisting of a fan for generating an exhaust air flow in an exhaust air duct, a filter for adsorbing the organic components, a catalyst for carrying out the catalytic oxidation of the organic components and a heating device for the catalyst, characterized in that
- der Filter zugleich Katalysator ist, - regenerierbar ist und- The filter is also a catalyst, - Can be regenerated and
- eine Schalteinrichtung vorgesehen ist, durch welche die Heizeinrichtung vom Ventilator unabhängig schalt¬ bar ist. - A switching device is provided, by means of which the heating device can be switched independently of the fan.
11. Vorrichtung nach Anspruch 9 oder 10, dadurch ge¬ kennzeichnet, dass der Filter (2) hyrophob ist.11. The device according to claim 9 or 10, characterized ge indicates that the filter (2) is hydrophobic.
12. Vorrichtung nach Anspruch 9, 11 oder 10, dadurch gekennzeichnet, dass der Filter (2) aus Zeolithen besteht, die vorzugsweise in Form von Granalien im Filter vorliegen.12. The device according to claim 9, 11 or 10, characterized in that the filter (2) consists of zeolites, which are preferably present in the form of granules in the filter.
13. .Vorrichtung nach Anspruch 9, dadurch gekennzeich- net, dass die Abluftleitung (6) einen Bypass (7) zur13. .Device according to claim 9, characterized in that the exhaust line (6) has a bypass (7) for
Umgehung des Katalysators (3) aufweist.Bypassing the catalyst (3).
14. Vorrichtung nach Anspruch 13, dadurch gekennzeich¬ net, dass im vom Bypass (7) überbrückten Teil des Abluftkanals (6) eine ansteuerbare Absperreinrichtung (9) zum zeitweisen Unterbinden des Abluftstroms (5) durch den Kataly¬ sator (3) hindurch vorgesehen ist.14. The apparatus according to claim 13, characterized gekennzeich¬ net that in the bypass (7) bridged part of the exhaust duct (6) a controllable shut-off device (9) for temporarily stopping the exhaust air flow (5) through the catalyst (3) is provided is.
15. Verfahren nach Anspruch 14, dadurch gekennzeich- net, dass eine ansteuerbare Absperreinrichtung im15. The method according to claim 14, characterized in that a controllable shut-off device in
Bypass (7) vorhanden ist, um den Abflußstrom (5) durch den Bypass (7) hindurch zeitweise zu unterbinden. Bypass (7) is present to temporarily prevent the outflow (5) through the bypass (7).
EP94926872A 1993-08-24 1994-08-24 Use of a hydrophobic filter in a process for removing and oxidising organic components from kitchen fumes Expired - Lifetime EP0714497B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4328405 1993-08-24
DE4328405A DE4328405A1 (en) 1993-08-24 1993-08-24 Method and device for removing and oxidizing organic components from kitchen fumes
PCT/EP1994/002796 WO1995006227A1 (en) 1993-08-24 1994-08-24 Process and device for removing and oxidising organic components from kitchen fumes

Publications (2)

Publication Number Publication Date
EP0714497A1 true EP0714497A1 (en) 1996-06-05
EP0714497B1 EP0714497B1 (en) 1999-07-28

Family

ID=6495873

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94926872A Expired - Lifetime EP0714497B1 (en) 1993-08-24 1994-08-24 Use of a hydrophobic filter in a process for removing and oxidising organic components from kitchen fumes

Country Status (4)

Country Link
US (1) US5858316A (en)
EP (1) EP0714497B1 (en)
DE (2) DE4328405A1 (en)
WO (1) WO1995006227A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19730292C1 (en) * 1997-07-15 1999-03-11 Daimler Benz Ag Plant for the removal of gaseous organic substances from the air
US7094388B2 (en) * 2000-04-21 2006-08-22 Dte Energy Technologies, Inc. Volatile organic compound abatement through a fuel cell
FR2886869B1 (en) * 2005-06-14 2007-08-31 Saint Gobain Ct Recherches STRUCTURE AND CATALYTIC FILTER FOR FILTERING GAS COMPRISING HYDROPHOBIC OR OLEOPHOBIC CEMENT
EP2893967A1 (en) * 2014-01-10 2015-07-15 Berbel Ablufttechnik Gmbh Device and method for elimination of odours
CN104728893A (en) * 2015-03-30 2015-06-24 宁波博业环保科技有限公司 Oil fume treating system for kitchen

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2658742A (en) * 1950-01-09 1953-11-10 Harold R Suter Catalytic fume incineration
GB1206829A (en) * 1968-01-26 1970-09-30 Carr Fastener Co Ltd Means for cleaning air or gases in domestic cooking ovens
DE2363820C3 (en) * 1973-12-21 1980-02-21 Licentia-Patent-Verwaltungs-Gmbh, 6000 Frankfurt Kitchen vapor filter device
JPS5096178A (en) * 1973-12-24 1975-07-31
US4235220A (en) * 1979-06-07 1980-11-25 Hepner Robert J Cooking stove exhaust air filtration system
DE3447481A1 (en) * 1984-12-27 1986-07-03 Küppersbusch AG, 4650 Gelsenkirchen Roasting oven with automatic removal of odorous and dirtying particles in the roasting oven air
DE3636250A1 (en) * 1986-10-24 1988-04-28 Josef Dr Muschawek Process and apparatus for eliminating gaseous impurities from a crude gas
DE3715598A1 (en) * 1987-05-09 1988-11-24 Licentia Gmbh Cooking stove with heat self-cleaning - has main and auxiliary fume flues with shutter and afterburner
JPH0615016B2 (en) * 1988-09-09 1994-03-02 トヨタ自動車株式会社 Automotive exhaust gas purification device
JPH03141816A (en) * 1989-10-27 1991-06-17 Toyota Motor Corp Exhaust gas purifier
DE4142336A1 (en) * 1991-12-20 1993-06-24 Bosch Siemens Hausgeraete Vapour duct for domestic oven with catalytic afterburner - which allows burning of combustible vapours and neutralisation of odours at entrance to fume extn. chimney

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9506227A1 *

Also Published As

Publication number Publication date
US5858316A (en) 1999-01-12
WO1995006227A1 (en) 1995-03-02
DE4328405A1 (en) 1995-03-02
EP0714497B1 (en) 1999-07-28
DE59408549D1 (en) 1999-09-02

Similar Documents

Publication Publication Date Title
DE60032649T2 (en) Air treatment system
DE3412007C2 (en) Process for cleaning workpieces using a liquid solvent
DE4427793C2 (en) Device for removing the harmful and aromatic substances from an air flow supplied to the vehicle interior
EP0968860B1 (en) Apparatus for cleaning an air stream
EP3573739B1 (en) Device for cleaning air laden with co2 in the passenger compartment of a motor vehicle in recirculated-air mode by means of an adsorption device
DE19512844A1 (en) Device and method for treating an air flow supplied to an interior
EP0630681B1 (en) Process for the elimination of unwanted impurities from a gas
DE102015212040B4 (en) Process for the regeneration of a VOC adsorber
DE3233156A1 (en) DEVICE FOR TREATING COMPRESSED AIR FOR BREATHING PURPOSES
CH671344A5 (en)
EP0714497A1 (en) Process and device for removing and oxidising organic components from kitchen fumes
DE10032385B4 (en) Process for the regeneration of electrically conductive adsorbents loaded with organic substances
EP3112008B1 (en) Method for regenerating an adsorber using a plasma source
WO2003047723A1 (en) Method for removing oxidable substances from an air flow, and device for carrying out the method
DE19849389C2 (en) Regenerable filter medium with high spontaneity and high capacity as well as its use
EP1321177B1 (en) Adsorber for purification of raw gases
DE102010010684B4 (en) A method for filtering and eliminating odors from living room air and filter apparatus for carrying out the method
EP0513599A1 (en) Arrangement for waste air purification in painting plants
EP1358923A2 (en) Particle or hybrid filter, in particular for the treatment of air to be introduced in a vehicle passenger compartment
DE10211810A1 (en) Reducing organic and inorganic pollutants in exhaust gases and waste air comprises feeding exhaust gas stream onto adsorber/catalyst, separating exhaust gas stream from adsorber and connecting to circulating system
DE102004033588A1 (en) Sorptive recovery of halogenated hydrocarbon from volatile inhalation anesthetic comprises temporarily removing and storing the hydrocarbon from the gas portion by microporous sorbent at the adsorption filter; and releasing
DE69013163T2 (en) METHOD FOR REMOVING COMBUSTIBLE POLLUTANTS FROM AIR AND DEVICE FOR IMPLEMENTING THE METHOD.
DE3232138C2 (en) Method and device for cleaning a gas flow in a sorption filter
DE19936965C2 (en) Method for operating an exhaust air purification system and exhaust air purification system
DE10154098B4 (en) Device for the oxidation of substances in a moist hydrogen-containing gas stream

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960325

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DODUCO GMBH + CO DR. EUGEN DUERRWAECHTER I.K.

17Q First examination report despatched

Effective date: 19970812

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

RTI1 Title (correction)

Free format text: USE OF A HYDROPHOBIC FILTER IN A PROCESS FOR REMOVING AND OXIDISING ORGANIC COMPONENTS FROM KITCHEN FUMES

REF Corresponds to:

Ref document number: 59408549

Country of ref document: DE

Date of ref document: 19990902

ITF It: translation for a ep patent filed
ET Fr: translation filed
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ENGELHARD ITALIANA S.P.A.

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130830

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130822

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20131031

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59408549

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59408549

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140826