EP0712972B1 - Reinforced concrete element - Google Patents

Reinforced concrete element Download PDF

Info

Publication number
EP0712972B1
EP0712972B1 EP95116996A EP95116996A EP0712972B1 EP 0712972 B1 EP0712972 B1 EP 0712972B1 EP 95116996 A EP95116996 A EP 95116996A EP 95116996 A EP95116996 A EP 95116996A EP 0712972 B1 EP0712972 B1 EP 0712972B1
Authority
EP
European Patent Office
Prior art keywords
concrete
elements
body according
matrix
stressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95116996A
Other languages
German (de)
French (fr)
Other versions
EP0712972A1 (en
Inventor
Horst Dr.-Ing. Kinkel
Wolfgang Dipl.-Ing. Kinkel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0712972A1 publication Critical patent/EP0712972A1/en
Application granted granted Critical
Publication of EP0712972B1 publication Critical patent/EP0712972B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/08Members specially adapted to be used in prestressed constructions
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/01Reinforcing elements of metal, e.g. with non-structural coatings
    • E04C5/012Discrete reinforcing elements, e.g. fibres
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
    • E04C5/073Discrete reinforcing elements, e.g. fibres

Definitions

  • Another objective in the reinforcement of concrete is Increasing the tensile strength of the concrete.
  • the necessary fibers have a very good bond and great rigidity, so the Micro cracks in the concrete can be reduced. Examples of this type facade panels are used.
  • This fiber reinforced concrete has little toughness, i.e. after exceeding the It tears through tensile strength.
  • the fibers used are short and have a rough surface.
  • Fibers for example Fibers made of steel, glass, plastic or carbon can be used.
  • the concrete bar elements according to the invention can according to a Process are produced in which long clamping elements are tensioned concrete around the clamping elements by wetting or Extrusion is applied in a soft state and after Hardening the concrete of the composite body obtained to a variety is cut by concrete bar elements.
  • Figure 1 describes a prestressed concrete bar element.
  • the Concrete matrix (1) surrounds the tensioning element (2).
  • the tensioning element (2) is made preferably made of rustproof materials such as glass fiber, carbon, Aramid or comparable materials.
  • the end anchors (3) can by knots, loops or weaving the tensioning element, or but generated by gluing or welding. You can both the adhesive itself and glued parts as End anchorage can be used. Between the end anchors creates a route with a relatively poor network, the after tearing open the fiber concrete and thus a large free Elongation length of the clamping element allows.
  • the modulus of elasticity of the tensioning element is large Axial stiffness. This enables the use of relatively short ones Concrete bar elements that still have a high elasticity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Panels For Use In Building Construction (AREA)
  • Rod-Shaped Construction Members (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)

Description

Die vorliegende Erfindung betrifft einen Betonkörper, insbesondere einen Betonkörper mit Betonstabelementen gemäß Anspruch 1. Die Erfindung betrifft weiterhin Betonstabelemente, die als Zuschlagsmaterial in Umgebungsbeton einbringbar sind, sowie ein Herstellungsverfahren dafür.The present invention relates to a concrete body, in particular a concrete body with concrete bar elements according to claim 1. Die The invention further relates to concrete bar elements that as Additional material can be brought into the surrounding concrete, as well as a Manufacturing process therefor.

Es ist bekannt, Beton zur Erhöhung der Zugfestigkeit und der Zähigkeit mit Fasern zu durchsetzen. Dazu werden Stahlfasern, üblicherweise mit 0.15 bis 2 mm Durchmesser und Längen von 10 bis 50 mm, verwendet oder es kommen dünne Fasern aus Glas oder Kunststoff zur Anwendung. Die Fasern werden meistens in den Beton eingemischt. Dabei zeigt sich eine Grenze für die Verarbeitbarkeit des Betons, die je nach Fasertyp bei 3 bis 5 Vol% liegt. Mit speziellen, nur begrenzt verwendbaren Verfahren lassen sich Fasergehalte von ca. 15 Vol% erreichen. Bei diesen Verfahren werden die Fasern nicht eingemischt, sondern der Beton wird in die Fasern infiltriert.It is known to increase tensile strength and concrete Toughness to be enforced with fibers. For this, steel fibers, usually with 0.15 to 2 mm diameter and lengths from 10 to 50 mm, used or there are thin fibers made of glass or Plastic for use. The fibers are mostly in the concrete mixed. There is a limit to the processability of the concrete, which is 3 to 5 vol% depending on the type of fiber. With special processes that can only be used to a limited extent Achieve fiber contents of approx. 15 vol%. With these procedures the fibers are not mixed in, but the concrete is in the Fibers infiltrated.

Faserzusätze im Beton können mit unterschiedlichen Zielsetzungen beigegeben werden. Wenn die Zähigkeitserhöhung, wie bei Industriefußböden, das Ziel ist, werden relativ lange Fasern zugegeben, die auch bei großer Betondehnung noch Kräfte über die Risse hinweg übertragen können. Diese Fasern haben einen Schlupf im Verbund oder sind mit Endverstärkungen ausgebildet und haben dadurch eine große Dehnlänge. Diese Art von faserverstärkten Beton ermöglicht große Dehnungen und führt zu einer gleichmäßigen Rißverteilung.Fiber additives in concrete can have different objectives be added. If the toughness increase, as with Industrial floors, the goal is to be relatively long fibers admitted that even with large concrete expansion forces still over the Can transmit cracks. These fibers have a slip in combination or are designed with final reinforcements and have thereby a large stretch length. This type of fiber reinforced concrete enables large stretches and leads to a uniform Rißverteilung.

Eine andere Zielsetzung bei der Faserverstärkung von Beton ist die Erhöhung der Zugfestigkeit des Betons. Die dazu notwendigen Fasern haben einen sehr guten Verbund und große Steifigkeit, damit die Mikrorisse des Betons reduziert werden. Beispiele für diese Art der Anwendung sind Fassadenplatten. Dieser faserverstärkte Beton hat nur eine geringe Zähigkeit, d.h. nach dem Überschreiten der Zugfestigkeit reißt er durch. Die verwendeten Fasern sind kurz und haben eine rauhe Oberfläche.Another objective in the reinforcement of concrete is Increasing the tensile strength of the concrete. The necessary fibers have a very good bond and great rigidity, so the Micro cracks in the concrete can be reduced. Examples of this type facade panels are used. This fiber reinforced concrete has little toughness, i.e. after exceeding the It tears through tensile strength. The fibers used are short and have a rough surface.

Fasern wirken um so besser, je höher der Fasergehalt, je höher die Fasersteifigkeit d.h. der E-Modul und je besser der Verbund zwischen Faser und Betonmatrix ist. Bei den üblichen Fasergehalten ist der Beton schon gerissen bis die Fasern so viel Dehnung erfahren haben, daß sie Kräfte aufnehmen können, d.h. heute übliche Fasern bewirken eine Verbesserung des gerissenen Betons, sie sind aber nicht steif genug, die Rissbildung zu verzögern.Fibers work better, the higher the fiber content, the higher the Fiber stiffness i.e. the modulus of elasticity and the better the bond between fiber and concrete matrix. At the usual fiber content the concrete is already torn until the fibers stretch so much have learned that they can absorb forces, i.e. today usual fibers improve the cracked concrete, but they are not stiff enough to delay cracking.

Betonstabbewehrungen für Betonbauteile sind bekannt. Sie haben gegenüber anderen Bewehrungen durch die Vorspannung des Betons im Gebrauchszustand eine hohe Steifigkeit und durch das günstige Verhältnis aufnehmbare Kraft zu Umfang ein sehr günstiges Verbundverhalten. Die Zähigkeit des Betons kann jedoch mit Betonstabbewehrungen nicht verbessert werdenReinforcing bars for concrete components are known. They have compared to other reinforcements due to the prestressing of the concrete in the Condition of use a high rigidity and by the cheap Ratio of absorbable force to volume is a very favorable one Bond behavior. The toughness of the concrete can, however Reinforcing concrete bars cannot be improved

Es ist daher Aufgabe der Erfindung Betonkörper bereitzustellen, die eine hohe Zugfestigkeit und Zähigkeit aufweisen. It is therefore an object of the invention to provide concrete bodies which have high tensile strength and toughness.

Zur Lösung dieser Aufgabe wird ein Betonkörper aus einer ersten Betonmatrix vorgeschlagen mit ungeordneten oder teilweise orientiert eingebetteten, länglichen vorgespannten Betonstabelementen aus einer zweiten Betonmatrix mit in Längsrichtung der Betonstabelemente angeordneten Spannelementen, wobei die Längserstreckung der Betonstabelemente relativ zu den Abmessungen des Betonkörpers klein ist.To solve this task, a concrete body from a first Concrete matrix proposed with disordered or partial oriented embedded, elongated prestressed Concrete bar elements made of a second concrete matrix with in Longitudinal direction of the concrete bar elements arranged clamping elements, the longitudinal extension of the concrete bar elements relative to the Dimensions of the concrete body is small.

Die rauhe Betonoberfläche der Betonstabelemente ergibt eine schlupffreie Verbindung zwischen Betonstabelement und der Betonmatrix des Betonkörpers. Damit ist bis zum Aufreißen der vorgespannten Betonstabelemente ein sehr guter Verbund und hohe Steifigkeit gegeben, wie sie zur Erzielung hoher Betonzugspannungen erforderlich ist. Nach dem Aufreißen der Betonstabelemente wird die freie Dehnlänge des Spannelementes maßgebend für die Dehnfähigkeit der Betonstabelemente. Damit ist die Voraussetzung für eine duktile Betonkonstruktion gegeben. Die Betonstabfasern gemäß vorliegender Erfindung bewirken also beides, sowohl die Erhöhung der Betonzugfestigkeit, als auch die Erhöhung der Zähigkeit. Um diesen Effekt zu verstärken werden die Spannelemente vorzugsweise mit Endverankerungen ausgebildet.The rough concrete surface of the concrete bar elements results in a slip-free connection between the concrete bar element and the Concrete matrix of the concrete body. So that is until the opening prestressed concrete bar elements a very good bond and high Given stiffness, how to achieve high Concrete tension is required. After tearing open the Concrete bar elements become the free stretch length of the tensioning element decisive for the elasticity of the concrete bar elements. So that is the prerequisite for a ductile concrete structure. The Concrete rod fibers according to the present invention thus do both both the increase in concrete tensile strength and the increase of toughness. To reinforce this effect, the Clamping elements are preferably designed with end anchorages.

Erfindungsgemäß kann der Betonkörper sowohl bei Gebrauch hergestellt werden als auch als vorgefertigtes Bauteil verwendet werden. Im Betonkörper können zur besseren Durchsetzung.der Betonmatrix in Menge und Abmessungen aufeinander abgestimmte Betonstabelemente unterschiedlichen Querschnitts und unterschiedlicher Länge verwendet werden. According to the invention, the concrete body can be used both are manufactured as well as used as a prefabricated component become. In the concrete body, the Concrete matrix coordinated in quantity and dimensions Concrete bar elements of different cross sections and different lengths can be used.

Es ist weiterhin möglich den Betonkörper mit zusätzlichen Bewehrungselementen zu verstärken oder den Betonkörper selbst zusätzlich vorzuspannen. Dabei sind als Fasern beispielsweise Fasern aus Stahl, Glas, Kunststoff oder Carbon verwendbar.It is still possible to add the concrete body Reinforcing reinforcement elements or the concrete body itself preload additionally. Here are as fibers, for example Fibers made of steel, glass, plastic or carbon can be used.

Der Betonkörper kann vorzugsweise in Ortbeton hergestellt sein. Vorzugsweise kann der Betonkörper als Rohr, Fassadenelement oder Dachelement ausgebildet sein. Außerdem kann der Betonkörper als ein flüssigkeitsdichtes Bauteil, Industriefußboden, Straßenabschnitt oder Landebahn vorliegen.The concrete body can preferably be made of in-situ concrete. Preferably, the concrete body as a tube, facade element or Roof element be formed. In addition, the concrete body as a liquid-tight component, industrial floor, Section of road or runway.

Die erfindungsgemäßen, länglichen Betonstabelemente können ungeordnet in den Umgebungsbeton (erste Matrix) eingebracht werden und umfassen eine Betonmatrix (zweite Matrix) mit in Längsrichtung angeordneten und vorgespannten Spannelementen. Die Betonstabelemente können einen sehr kleinen Querschnitt von vorzugsweise 1 bis 3 mm Durchmesser haben. In den Betonstabelementen können als Bindemittel in der Betonmatrix ganz oder teilweise Polymere vorliegen. Die Spannelemente der Betonstabelemente können vorzugsweise Kunststoff, Glas, Stahl, Carbon oder Keramik enthalten. Dabei bestehen die Vorspannelemente vorzugsweise aus vielen einzelnen Drähten oder Filamenten, die zum besseren Verbundverhalten sich möglichst gleichmäßig über den Querschnitt verteilen. Die Vorspannelemente haben vorzugsweise an ihren Enden als Verankerungen wirkende Verdickungen aus.dem gleichen oder einem anderen Material. Die Betonmatrix der Betonstabelemente wird vorzugsweise in ihren Eigenschaften so eingestellt, daß sie im eingebetteten Zustand durch Kriechverkürzungen Kräfte auf die Betonmatrix des Betonkörpers abgibt.The elongated concrete bar elements according to the invention can disorderly into the surrounding concrete (first matrix) and comprise a concrete matrix (second matrix) with in the longitudinal direction arranged and prestressed clamping elements. The Concrete bar elements can have a very small cross section of preferably 1 to 3 mm in diameter. In the Concrete bar elements can be used as a binder in the concrete matrix or some polymers are present. The clamping elements of the Concrete bar elements can preferably be plastic, glass, steel, Carbon or ceramic included. The prestressing elements exist preferably from many individual wires or filaments that are used for better bond behavior are as even as possible over the Distribute cross section. The biasing elements are preferably on thickened ends acting as anchors same or a different material. The concrete matrix of the Concrete bar elements are preferably so in their properties set that they are in the embedded state by Creep shortening forces on the concrete matrix of the concrete body emits.

Die erfindungsgemäßen Betonstabelemente können nach einem Verfahren hergestellt werden, bei dem lange Spannelemente gespannt werden, Beton um die Spannelemente herum durch Benetzen oder Extrusion in weichem Zustand aufgebracht wird und nach dem Erhärten des Betons der erhaltene Verbundkörper zu einer Vielzahl von Betonstabelementen durchtrennt wird.The concrete bar elements according to the invention can according to a Process are produced in which long clamping elements are tensioned concrete around the clamping elements by wetting or Extrusion is applied in a soft state and after Hardening the concrete of the composite body obtained to a variety is cut by concrete bar elements.

Im folgenden wird die Erfindung anhand von Zeichnungen und Ausführungsbeispielen erläutert. Es zeigt:

  • Figur 1 (a) eine Seitenansicht eines Längsschnitts durch ein erfindungsgemäßes, vorgespanntes Betonstabelement;
  • Figur 1 (b) eine Vorderansicht eines erfindungsgemäßen, vorgespannten Betonstabelements;
  • Figur 2 ein Querschnitt durch einen Betonkörper mit eingebetteten Betonstabelementen und angedeuteter Rißbildung;.
  • Figur 3 ein weiterer Querschnitt durch einen Betonkörper mit eingebetteten Betonstabelementen und angedeuteter Rißbildung;.
  • The invention is explained below with reference to drawings and exemplary embodiments. It shows:
  • Figure 1 (a) is a side view of a longitudinal section through a prestressed concrete bar element according to the invention;
  • Figure 1 (b) is a front view of a prestressed concrete bar element according to the invention;
  • Figure 2 shows a cross section through a concrete body with embedded concrete bar elements and indicated cracking.
  • Figure 3 shows a further cross section through a concrete body with embedded concrete bar elements and indicated cracking.
  • Figur 1 beschreibt ein vorgespanntes Betonstabelement. Die Betonmatrix (1) umgibt das Spannelement (2). Als Betonmatrix können sowohl sehr feinkörnige Betone, wie auch kunststoffhaltige Betone eingesetzt werden. Das Spannelement (2) besteht vorzugsweise aus nichtrostenden Materialien wie Glasfaser, Carbon, Aramid oder vergleichbaren Materialien. Die Endverankerungen (3) können durch Knoten, Schlingen oder Weben des Spannelements, oder aber durch Kleben oder Verschweißen erzeugt werden. Dabei können sowohl der Klebstoff selbst, als auch aufgeklebte Teile als Endverankerung eingesetzt werden. Zwischen den Endverankerungen entsteht eine Strecke mit relativ schlechtem Verbund, der sich nach Aufreißen des Faserbetons löst und damit eine große freie Dehnlänge des Spannelements ermöglicht. Verbunden mit dem geringen E-Modul des Spannelements ergibt sich dadurch eine große Dehnsteifigkeit. Das ermöglicht eine Verwendung von relativ kurzen Betonstabelementen, die trotzdem eine hohe Dehnfähigkeit haben.Figure 1 describes a prestressed concrete bar element. The Concrete matrix (1) surrounds the tensioning element (2). As a concrete matrix can both very fine-grained concretes, as well as plastic-containing Concretes are used. The tensioning element (2) is made preferably made of rustproof materials such as glass fiber, carbon, Aramid or comparable materials. The end anchors (3) can by knots, loops or weaving the tensioning element, or but generated by gluing or welding. You can both the adhesive itself and glued parts as End anchorage can be used. Between the end anchors creates a route with a relatively poor network, the after tearing open the fiber concrete and thus a large free Elongation length of the clamping element allows. Associated with the minor The modulus of elasticity of the tensioning element is large Axial stiffness. This enables the use of relatively short ones Concrete bar elements that still have a high elasticity.

    Figur 2 zeigt die in ein Betonkörper (10) eingemischten Betonstabelemente (11) und (13). Die Lage der Betonstabelemente ergibt sich beim Mischen und Einbringen des Betons. Die Betonstabelemente wirken gleichmäßig in alle Richtungen. In Figur 2 ist der Beton des Betonkörpers (10) unter äußerer Belastung bereits gerissen. Die Risse werden jedoch durch die Betonstabelemente gestoppt, da diese eine höhere Zugfestigkeit haben. Es kommt zu einer Erhöhung der Zugfestigkeit des Betonkörpers.Figure 2 shows those mixed into a concrete body (10) Concrete bar elements (11) and (13). The location of the concrete bar elements results when mixing and pouring the concrete. The Concrete bar elements work evenly in all directions. In figure 2 is the concrete of the concrete body (10) under external load already torn. However, the cracks are caused by the Concrete bar elements stopped because they have higher tensile strength to have. There is an increase in the tensile strength of the Concrete body.

    Figur 3 zeigt den Zustand, in dem die äußere Belastung so groß geworden ist, daß die Rißlast der Betonstabelementen (21) überschritten wurde. Die Risse (22) aus dem Betonkörper (20) setzen sich in den Betonstabelementen fort (23). In diesem Zustand kommt die volle Dehnungslänge des Spannelements (24) zur Wirkung und es stellt sich für den gesamten Betonkörper gegenüber dem Zustand ohne Betonstabelemente eine Erhöhung der Dehnfähigkeit ein.Figure 3 shows the state in which the external load is so great has become that the crack load of the concrete bar elements (21) was exceeded. The cracks (22) from the concrete body (20) continue in the concrete bar elements (23). In this condition the full stretch length of the tensioning element (24) comes into effect and it faces the entire concrete body Condition without concrete bar elements an increase in elasticity on.

    Claims (20)

    1. Aggregate for concrete, comprising thin, elongate prestressed concrete rod elements (1) made from a concrete matrix with stressing elements (2) which are prestressed and arranged in the longitudinal direction, the concrete rod elements (1) having dimensions which allow the aggregate to be mixed randomly in the surrounding concrete (10).
    2. Aggregate according to Claim 1, characterized in that the elements (1) have a cross section with a diameter of from 1 to 3 mm.
    3. Aggregate according to one of Claims 1 or 2, characterized in that the binder in the concrete matrix is completely or partially made up of polymers.
    4. Aggregate according to one of Claims 1 to 3, characterized in that the concrete rod elements (1) contain stressing elements (2) made from plastic, glass, steel, carbon or ceramic.
    5. Aggregate according to Claim 4, characterized in that the stressing elements (2) comprise a large number of individual wires or filaments which are distributed as uniformly as possible over the cross section in order to form an optimum composite.
    6. Aggregate according to one of Claims 1 to 5, characterized in that the properties of the concrete matrix of the concrete rod elements (1) are set in such a way that, in the embedded state, the matrix transmits forces produced by shortening due to creep to the surrounding concrete (10).
    7. Aggregate according to one of Claims 1 to 6,
      characterized in that the stressing elements (2) at their ends, have thickened sections (3), which act as anchoring means, made from the same material or a different material.
    8. Process for producing the aggregate according to one of Claims 1 to 7, characterized in that long stressing elements (2) are stressed, the concrete is arranged around the stressing elements by wetting or extrusion in the soft state and, after the concrete has set, the composite body obtained is severed so that it forms a multiplicity of concrete rod elements (1).
    9. Concrete body comprising a first concrete matrix (10) with random or partially oriented embedded, elongate prestressed concrete rod elements (1, 11, 13, 21, 23) comprising a second concrete matrix with stressing elements (2, 24) arranged in the longitudinal direction of the concrete rod elements, the longitudinal extent of the concrete rod elements being short relative to the dimensions of the concrete body.
    10. Concrete body according to Claim 9, characterized in that, for better distribution within the concrete matrix (10), concrete rod elements (2, 24) which are matched to one another in terms of quantity and dimensions but are of different cross section and length are used.
    11. Concrete body according to one of Claims 9 or 10, characterized in that it is additionally reinforced with reinforcement elements.
    12. Concrete body according to one of Claims 9 to 11, characterized in that it is prestressed by stressing members which are introduced into the first concrete matrix.
    13. Concrete body according to one of Claims 9 to 12, characterized in that it additionally contains fibres of steel, glass, plastic or carbon.
    14. Concrete body according to one of Claims 9 to 13, characterized in that it is in the form of a prefabricated building component.
    15. Concrete body according to one of Claims 9 to 14, characterized in that it is produced in cast-in-place concrete.
    16. Concrete body according to one of Claims 9 to 15, characterized in that it is designed in the form of a pipe.
    17. Concrete body according to one of Claims 9 to 16, characterized in that it is designed in the form of a facade panel.
    18. Concrete body according to one of Claims 9 to 17, characterized in that it is designed in the form of a roof panel.
    19. Concrete body according to one of Claims 9 to 18, characterized in that it is the form of a liquid-tight building component.
    20. Concrete body according to one of Claims 9 to 19, characterized in that it is the form of an industrial floor, a section of a roadway or a runway.
    EP95116996A 1994-11-04 1995-10-27 Reinforced concrete element Expired - Lifetime EP0712972B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE4439534 1994-11-04
    DE4439534A DE4439534A1 (en) 1994-11-04 1994-11-04 Concrete body with reinforcement

    Publications (2)

    Publication Number Publication Date
    EP0712972A1 EP0712972A1 (en) 1996-05-22
    EP0712972B1 true EP0712972B1 (en) 2002-03-06

    Family

    ID=6532553

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP95116996A Expired - Lifetime EP0712972B1 (en) 1994-11-04 1995-10-27 Reinforced concrete element

    Country Status (2)

    Country Link
    EP (1) EP0712972B1 (en)
    DE (2) DE4439534A1 (en)

    Families Citing this family (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102015100386A1 (en) * 2015-01-13 2016-07-14 Technische Universität Dresden Reinforcing rod of filament composite and method for its production
    DE102022132727A1 (en) 2022-12-08 2024-06-13 H.R. GmbH & Co. KG Base plate and method for producing such a base plate

    Family Cites Families (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3400507A (en) * 1966-09-12 1968-09-10 Ellamac Inc Structural members with preformed concrete reinforcing devices
    DE2759161A1 (en) * 1977-12-31 1979-07-12 Strabag Bau Ag Prestressed concrete tension bar reinforced with glass fibre rod - with cured resin binder having unaligned glass fibres to take up internal stresses
    DE2930939C2 (en) * 1979-07-31 1984-01-26 Heidelberger Zement Ag, 6900 Heidelberg Process for the mechanical reinforcement of moldable and / or hardenable materials
    US4945694A (en) * 1989-04-20 1990-08-07 John Mitchell Building module
    FR2673223A1 (en) * 1991-02-27 1992-08-28 Cogema CONCRETE AND PRECONTROLLING METHOD, CONTAINER MADE WITH THE CONCRETE.
    DE4313227A1 (en) * 1993-04-22 1994-10-27 Horst Dr Ing Kinkel Prestressed reinforcement element

    Also Published As

    Publication number Publication date
    DE59510089D1 (en) 2002-04-11
    EP0712972A1 (en) 1996-05-22
    DE4439534A1 (en) 1996-05-09

    Similar Documents

    Publication Publication Date Title
    DE4315270A1 (en) Steel fiber reinforced concrete with high flexural strength
    DE69929540T2 (en) FIBER-REINFORCED CEMENT MATERIAL WITH IMPROVED TOASTNESS AND DURABILITY
    DE102016111176A1 (en) Concrete reinforcement grid element, process for its production and its use
    DE102018102317A1 (en) Final anchoring of reinforcing fibers
    EP1259679B1 (en) Anchoring for a pre-tensioned and/or loaded strength member and anchor sleeve
    DE2952783A1 (en) Multiphase construction material with low sensitivity to impact - where concrete contg. metal, polymer, and/or glass fibres, is reinforced by steel rods or plate
    EP0712972B1 (en) Reinforced concrete element
    DE2322271C2 (en) Process for the mechanical reinforcement of moldable and / or hardenable materials
    DE2930939C2 (en) Process for the mechanical reinforcement of moldable and / or hardenable materials
    DE19525508A1 (en) Laminate coating for reinforced concrete or brickwork
    DE10332491B4 (en) Concrete mixture for an ultra-high-strength concrete and its use
    EP1282751B1 (en) Steel fibers
    EP3819431B1 (en) Reinforcement arrangement comprising an existing structure and a reinforcing device attached to same and method for reinforcing such an existing structure
    EP0895558B1 (en) Reinforcing bar
    EP3061978A1 (en) Fastening element for fastening attachments to a piece of masonry or a concrete body, a fastening system, a tensioning anchor and a method for fastening attachments to a piece of masonry or a concrete body
    DE10039830B4 (en) Use of annular fiber composites as reinforcing elements in concrete
    DE1659131B2 (en) Tendon anchorage for concrete components and method for their application
    WO2009049571A1 (en) Structural element, particularly plate-shaped structural element made of concrete and concrete aggregate material
    WO2008095211A1 (en) Disc-shaped body for fibres
    AT504665B1 (en) DISK BODIES FOR FIBERS
    DE29901676U1 (en) Reinforcement fiber for the reinforcement of steel fiber concrete
    EP3705657B1 (en) Textile reinforcing structure for a component, method for producing a reinforcing structure, component and semi-finished part
    DE2504122B2 (en) REINFORCED CONCRETE COMPONENT PRE-TENSIONED IN THE FITTING BED
    DE102019105493A1 (en) Textile reinforcement structure for a component, manufacturing process for a reinforcement structure, component and semi-finished part
    CH646930A5 (en) Multi-phase material with a concrete phase

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE FR GB

    17P Request for examination filed

    Effective date: 19961121

    17Q First examination report despatched

    Effective date: 19990907

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB

    REF Corresponds to:

    Ref document number: 59510089

    Country of ref document: DE

    Date of ref document: 20020411

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20020516

    ET Fr: translation filed
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20021027

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20021209

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030501

    GBPC Gb: european patent ceased through non-payment of renewal fee
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030630

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST