EP0709926A1 - Système de connecteur de type centre jack vis - Google Patents

Système de connecteur de type centre jack vis Download PDF

Info

Publication number
EP0709926A1
EP0709926A1 EP95307674A EP95307674A EP0709926A1 EP 0709926 A1 EP0709926 A1 EP 0709926A1 EP 95307674 A EP95307674 A EP 95307674A EP 95307674 A EP95307674 A EP 95307674A EP 0709926 A1 EP0709926 A1 EP 0709926A1
Authority
EP
European Patent Office
Prior art keywords
bolt
axial bore
housing
module
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95307674A
Other languages
German (de)
English (en)
Other versions
EP0709926B1 (fr
Inventor
John Mark Myer
Mark Dwayne Anderson
Keith Robert Denlinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Whitaker LLC
Original Assignee
Whitaker LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Whitaker LLC filed Critical Whitaker LLC
Publication of EP0709926A1 publication Critical patent/EP0709926A1/fr
Application granted granted Critical
Publication of EP0709926B1 publication Critical patent/EP0709926B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/62Means for facilitating engagement or disengagement of coupling parts or for holding them in engagement
    • H01R13/621Bolt, set screw or screw clamp
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/62Means for facilitating engagement or disengagement of coupling parts or for holding them in engagement
    • H01R13/621Bolt, set screw or screw clamp
    • H01R13/6215Bolt, set screw or screw clamp using one or more bolts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/193Means for increasing contact pressure at the end of engagement of coupling part, e.g. zero insertion force or no friction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/514Bases; Cases composed as a modular blocks or assembly, i.e. composed of co-operating parts provided with contact members or holding contact members between them

Definitions

  • the present invention relates to the field of electrical connectors, and more particularly, to center jackscrew type connectors with over torque protection and with enhanced locking performance.
  • Center jackscrew type connectors typically include a pair of mating plastic housings (a module housing and a receptacle housing) which are connected to each other and fastened by means of a steel bolt which has a threaded portion and a flange spaced apart from the threaded portion.
  • the threaded portion of the bolt is threaded into a tapped metal insert installed longitudinally within the module housing until both the module housing and the receptacle housing bottom.
  • the plastic housings are placed in greater and greater compression.
  • a module housing 10 mates with a receptacle housing 11 by means of a bolt 12.
  • a metal insert 13 is installed within the module housing 10 to receive the threaded portion 14 of the bolt 12.
  • the bolt 12 is threaded into the metal insert 13 until mating surface 16 of the module housing 10 and mating surface 17 of the receptacle housing 11 bottom (or engage each other). As the bolt 12 is over torqued, the module housing 10 and the receptacle housing 11 are placed in continually increasing compression until the plastic breaks. For example, a particular application in the automotive field requires a torque of 60 inch-pounds which translates into a compressive force of 1,270 pounds on the plastic housings. The excessive torque is applied by a flange 21 on the bolt 12 (FIG. 1) which engages a tower 18 on the plastic housing 11 (FIG. 2) causing the tower 18 to mushroom out, shear off or crack.
  • a typical remedy for overcoming this problem is to employ additional strengthening components or else use very high compressive strength plastics as a material for the housings, all of which is burdensome and costly.
  • an object of the present invention to provide a cost effective center jackscrew type connector assembly, wherein the plastic parts of the connector assembly are not subject to damage under excessive torque loads, thereby eliminating plastic creep problems.
  • a plastic receptacle housing has an engagement surface and a crush rib on the engagement surface
  • a module connector includes a metal insert having an internally-threaded blind axial bore having a bottom at a predetermined depth.
  • the metal-to-metal contact between the tip of the bolt and the bottom of the blind axial bore keeps the flange on the bolt at a certain distance from the engagement surface of the receptacle housing, even if a sufficient over-torque is applied to the bolt, thereby avoiding an excessive compressive load to be applied to the receptacle housing.
  • the threaded portion of the bolt is received into the blind axial bore by turning the bolt until the tip on the threaded portion engages the bottom of the blind axial bore. Then, the bolt is turned further to a predetermined torque. This stretches the insert axially relative to the bolt and deforms the internal threads, thereby removably locking the bolt to the insert.
  • FIG. 1 is a longitudinal cross-sectional view of a module connector of the prior art.
  • FIG. 2 is a longitudinal cross-sectional view of a complementary receptacle housing of the prior art.
  • FIG. 3 is a perspective exploded view of a connector assembly of the present invention.
  • FIG. 4 is a perspective view of the module connector.
  • FIG. 5 is a longitudinal sectional view of the module connector taken along lines 5-5 of FIG. 4.
  • FIG. 6 is a perspective view of the receptacle housing.
  • FIG. 7 is a longitudinal sectional view of the receptacle housing taken along lines 7-7 of FIG. 6.
  • FIGS. 8-11 are longitudinal sectional views showing the connector assembly mating sequence.
  • FIGS. 12-15 show respective longitudinal enlarged sectional views of the bolt within the metal insert during the over torquing procedure.
  • the connector assembly 22 of the present invention includes a module connector 23, an upper connector subassembly 24, sealing O-rings 25, a bolt 12, and a rubber bolt grommet 26.
  • the module connector 23 and the upper connector subassembly 24 are removably secured to each other by the bolt 12.
  • O-rings 25 provide a sealing function where the module connector and the upper connector subassembly 24 are received in a casting 27 (for example, an automotive transmission casing) as shown more clearly in FIG. 5.
  • the module connector 23 includes a plastic module housing 28 and a metal insert 29 (preferably made of brass) secured within the module housing 28 along its longitudinal axis 30.
  • the metal insert 29 has an internally threaded blind axial bore 31 having a bottom 32 and a plurality of internal threads 33. The bottom 32 is located a predetermined depth 34 within the blind axial bore 31.
  • the metal insert 29 has three rings 35, 36 and 37 with external threads, thereby securing the metal insert 29 within the module housing 28. While the internal surface of the blind axial bore 31 is shaped as a right cylinder, the external surface has a gradually changing cross-section diameter, increasing in the direction from an opening 38 of the blind axial bore 31 towards the head 39 of the metal insert 29.
  • a tower-like element 40 is provided to receive and secure a portion of the metal insert 29.
  • a step-like element 41 is extended above a bottom 42 of the module housing 28 and extends longitudinally from the bottom 42 until the tower-like element 40.
  • the step-like element 41 has walls 43, which form recesses 44 between an external surface of the walls 43 and an internal surface 45 of walls 46 of the module housing 28.
  • the internal surface 45 of the walls 46 forms a box-like receptacle cavity 47, while an external surface 48 of the walls 46 is formed as a cylinder.
  • the external surface 48 has a recess 49 for receiving one of the sealing O-rings 25 for sealing contact between the casting 27 and the module housing 28.
  • the upper connector subassembly 24 includes a plastic receptacle housing 50 and a plurality of conductive wires (not shown) received in respective slots 51.
  • the receptacle housing 50 includes a module side 52 and a wire side 53 connected by a main body 54.
  • the module side 52 has walls 55 which, being of rectangular box-like shape, fit into the box-like receptacle cavity 47 of the module housing 28.
  • the walls 55 On their external surface, the walls 55 have tabs 56 (FIGS. 8, 9) which are received in respective keyways 57 (FIG. 4) on internal surface 45 of the walls 46 of the module housing 28.
  • the walls 55 extend from the main body 54 the full internal length of the module housing 28.
  • the main body 54 of the receptacle housing 50 being of cylindrical shape outwardly, has the same diameter as the cylindrical external surface 48 of the walls 46. This diameter is identified as a major diameter.
  • the main body provides two recesses 61 for sealing O-rings 25.
  • the wire side 53 of the receptacle housing 50 has an axial tower-like element 62 having a cylindrical shape.
  • the tower-like element 62 extends a predetermined length 63 (for example, 24.50 mm) from the mating surface 59 and has an engagement surface 64.
  • the engagement surface 64 has a ring shape of a certain width 66.
  • Crush rib 65 is integrally molded on the engagement surface 64.
  • Crush rib 65 also has a cylindrical shape; however, a width 67 of the crush rib 65 is smaller than the width 66 of the engagement surface 64.
  • the crush rib 65 extends axially from the engagement surface 64 by a certain length 68, such that an edge 69 of the crush rib 68 is spaced apart from the mating surface 59 by a predetermining length 70, for example, 25.50 mm.
  • the bolt 12 has a threaded portion 71, having a plurality of external threads 72, the flange 21 at the head 19, and a tip 73.
  • the tip 73 is spaced apart from the flange 21 by a predetermined distance 74.
  • the preassembled bolt 12 (inserted by its threaded portion first through a central through opening 75 and turned into the blind axial bore 31) is turned until the tip 73 hits the bottom 32 of the blind axial bore 31. Since the blind axial bore 31 has the predetermined depth 34 and the flange 21 is spaced apart from the tip 73 by the predetermined distance 74, the flange 21 is kept continuously a certain distance 76 from the mating surface 58 of the module housing 28, for example, 25.00 mm.
  • the 25.00 mm distance 76 will not change regardless of torque applied to the bolt 12, due to metal-to-metal engagement of the steel tip 73 and brass bottom 32 of the blind axial bore 31. Due to chosen combination of the predetermining length 63, the predetermined length 70, the predetermined depth 34, and the predetermined distance 74, the tip 73 engages the bottom 32 simultaneously with the engagement between the mating surfaces 58, 59 and prior to the flange 21 of the bolt 12 engaging the engagement surface 64 of the tower-like element 62 on the receptacle housing 50.
  • the engagement surface 64 itself does not bear a torque force applied by flange 21. Rather, it is the crush rib 65, which bears the torque load applied by the flange 21, which creates compressive force on plastic module housing 28 and the receptacle housing 50.
  • the crush rib 65 serves as sacrificial plastic material which is easily compressed and sheared off by the flange 21 of the bolt 12 in order that the module housing 28 and the receptacle housing could be held snugly together but not under the excessive compressive load.
  • tabs 56 on external surface of the walls 54 of the receptacle housing 50 engage respective keyways on the module housing 28.
  • the major diameter of the main body 54 of the receptacle housing 50 engages the casting 27.
  • the threads 72 of the bolt 12 engage the internal threads 33 of the blind axial bore 31, and the bolt is torqued down (O-rings 25 enter the casting 27) as the bolt 12 is turned until the tip 73 engages the bottom 32 and the mating surfaces 58 and 59 are engaged. Simultaneously, the crush rib 65 is sheared off and deformed by the flange 21 of the bolt 12.
  • This stored strain energy provides a frictional locking force between the internal threads 33 of the blind axial bore 31 and the external threads 72 of the bolt 12 and does not appreciably diminish during thermal cycling and vibration.
  • Metal-to-metal interference of the steel bolt 12 and the brass threaded insert 29 keeps the bolt 12 from vibrating loose.
  • the bolt 12 will not loosen and allow loss of electrical engagement between wires (not shown) and respective contact members (not shown).
  • the steel bolt 12 may be employed in combination with the brass metal insert 29. It would also work if materials of the bolt and the metal insert were reversed, and/or the metal insert 29 would be made as the compressed member. For example, if the bolt 12 had a shoulder which bottomed on the mating face of the metal insert 29, the metal insert 29 would be compressed as the bolt 12 was turned.
  • the present invention provides a superior central jackscrew connector having a robust design, over torque protection for plastic components, reduced plastic creep problems and enhanced locking performance, thereby assuring proper mechanical and electrical engagement of all components of the connector system.
EP95307674A 1994-10-28 1995-10-27 Système de connecteur de type centre jack vis Expired - Lifetime EP0709926B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US331258 1989-03-30
US33125894A 1994-10-28 1994-10-28

Publications (2)

Publication Number Publication Date
EP0709926A1 true EP0709926A1 (fr) 1996-05-01
EP0709926B1 EP0709926B1 (fr) 1999-01-13

Family

ID=23293225

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95307674A Expired - Lifetime EP0709926B1 (fr) 1994-10-28 1995-10-27 Système de connecteur de type centre jack vis

Country Status (5)

Country Link
EP (1) EP0709926B1 (fr)
JP (1) JPH09180812A (fr)
KR (1) KR100354448B1 (fr)
BR (1) BR9504556A (fr)
DE (1) DE69507256T2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017178147A1 (fr) * 2016-04-15 2017-10-19 Bayerische Motoren Werke Aktiengesellschaft Système de liaison d'un premier élément structurel à un second élément structurel, notamment pour véhicule, et dispositif de liaison, notamment pour véhicule
WO2020207721A1 (fr) * 2019-04-09 2020-10-15 Audi Ag Dispositif de douilles pour la connexion électrique sécurisée contre les contacts d'un dispositif de connecteur correspondant, dispositif de connecteur et module de batterie pour une batterie à haute tension
EP3823108A1 (fr) * 2019-11-12 2021-05-19 Aptiv Technologies Limited Connecteur électrique doté d'une bride de montage et son procédé d'assemblage

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012186002A (ja) * 2011-03-04 2012-09-27 Sumitomo Wiring Syst Ltd コネクタ
EP3477782B1 (fr) * 2017-10-25 2021-03-10 Tyco Electronics AMP Korea Co., Ltd. Ensemble de connecteur de couplage direct

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5165834A (en) * 1990-04-23 1992-11-24 Yazaki Corporation Waterproof ring for connector housing of threaded connection type
EP0550334A1 (fr) * 1991-12-31 1993-07-07 Société anonyme dite: LABINAL Connecteur électrique
US5271689A (en) * 1991-05-21 1993-12-21 Yazaki Corporation Thread fastening type connector assembly
GB2272335A (en) * 1992-10-28 1994-05-11 Whitaker Corp Connector with bolt retainer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5165834A (en) * 1990-04-23 1992-11-24 Yazaki Corporation Waterproof ring for connector housing of threaded connection type
US5271689A (en) * 1991-05-21 1993-12-21 Yazaki Corporation Thread fastening type connector assembly
EP0550334A1 (fr) * 1991-12-31 1993-07-07 Société anonyme dite: LABINAL Connecteur électrique
GB2272335A (en) * 1992-10-28 1994-05-11 Whitaker Corp Connector with bolt retainer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017178147A1 (fr) * 2016-04-15 2017-10-19 Bayerische Motoren Werke Aktiengesellschaft Système de liaison d'un premier élément structurel à un second élément structurel, notamment pour véhicule, et dispositif de liaison, notamment pour véhicule
CN109075501A (zh) * 2016-04-15 2018-12-21 宝马股份公司 尤其是用于车辆的、第一结构元件与第二结构元件的连接组件以及尤其是用于车辆的连接设备
US10756451B2 (en) 2016-04-15 2020-08-25 Bayerische Motoren Werke Aktiengesellschaft Connection arrangement of a first component on a second component, in particular for a vehicle, and connection device, in particular for a vehicle
WO2020207721A1 (fr) * 2019-04-09 2020-10-15 Audi Ag Dispositif de douilles pour la connexion électrique sécurisée contre les contacts d'un dispositif de connecteur correspondant, dispositif de connecteur et module de batterie pour une batterie à haute tension
CN113519095A (zh) * 2019-04-09 2021-10-19 奥迪股份公司 用于触摸安全地电接触对应的插头装置的插座装置,插头装置及用于高压电池的电池模块
US11705660B2 (en) 2019-04-09 2023-07-18 Audi Ag Socket device for the touch-proof electrical contacting of a corresponding plug device, plug device and battery module for a high-voltage battery
CN113519095B (zh) * 2019-04-09 2023-11-17 奥迪股份公司 插座装置,插头装置及用于高压电池的电池模块
EP3823108A1 (fr) * 2019-11-12 2021-05-19 Aptiv Technologies Limited Connecteur électrique doté d'une bride de montage et son procédé d'assemblage
US11462854B2 (en) 2019-11-12 2022-10-04 Aptiv Technologies Limited Electrical connector with a mounting flange and method of assembling same

Also Published As

Publication number Publication date
EP0709926B1 (fr) 1999-01-13
BR9504556A (pt) 1997-02-25
KR960016016A (ko) 1996-05-22
DE69507256T2 (de) 1999-09-02
DE69507256D1 (de) 1999-02-25
KR100354448B1 (ko) 2002-12-26
JPH09180812A (ja) 1997-07-11

Similar Documents

Publication Publication Date Title
US5030126A (en) Coupling ring retainer mechanism for electrical connector
EP0645844B1 (fr) Connecteur d'adaptation autocentrant
US4447103A (en) Moisture seal for a separable electrical connection
US7717658B2 (en) Bolt assembly
CA1296078C (fr) Joint d'etancheite pour connecteur de paire coaxiale
EP1468477B1 (fr) Dispositif de soulagement de contraintes de cables d'interconnexion flexibles
AU2016247222A1 (en) Cable sealing device, cable termination and attaching device
EP2254199A1 (fr) Terminaison de tresse de blindage pour connecteur électrique blindé
KR950002113A (ko) 변형이 감소된 케이블 커넥터
EP3475746B1 (fr) Boîtier destiné à un connecteur sur un câble
JP3299835B2 (ja) ボルト締め型コネクタ
EP2495827A1 (fr) Connecteur
US6033168A (en) Jacking screw
CA2097979C (fr) Connecteur electrique a burnetype femelle
WO2008008355A2 (fr) Pièce de fixation dotée d'un dispositif de retenue d'outil
EP0709926B1 (fr) Système de connecteur de type centre jack vis
US6083031A (en) Cable end connector
US5586854A (en) Connector fastening nut and bolt-nut fastened connector
US6273742B1 (en) Electrical connector having a jack screw
US4707047A (en) Environmentally sealed electrical connector
US7780386B2 (en) Torque-limited electrical connector
GB2284510A (en) Electrical connector
GB2297000A (en) Clutching mechanism of connector or fastener
GB2375438A (en) Anti-decoupling mechanism for a threaded coupling connector
EP0247814A2 (fr) Connecteurs électriques

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19961030

17Q First examination report despatched

Effective date: 19961227

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19990113

REF Corresponds to:

Ref document number: 69507256

Country of ref document: DE

Date of ref document: 19990225

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011005

Year of fee payment: 7

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20051019

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20051130

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20061027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061027