EP0703364A1 - Verfahren und Vorrichtung zur Ansteuerung einer Mikropumpe - Google Patents

Verfahren und Vorrichtung zur Ansteuerung einer Mikropumpe Download PDF

Info

Publication number
EP0703364A1
EP0703364A1 EP95112161A EP95112161A EP0703364A1 EP 0703364 A1 EP0703364 A1 EP 0703364A1 EP 95112161 A EP95112161 A EP 95112161A EP 95112161 A EP95112161 A EP 95112161A EP 0703364 A1 EP0703364 A1 EP 0703364A1
Authority
EP
European Patent Office
Prior art keywords
driver signal
valve structure
micropump
pump
resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95112161A
Other languages
English (en)
French (fr)
Other versions
EP0703364B1 (de
Inventor
Roland Zengerle
Axel Richter
Stefan Kluge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP0703364A1 publication Critical patent/EP0703364A1/de
Application granted granted Critical
Publication of EP0703364B1 publication Critical patent/EP0703364B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/006Micropumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/04Motor parameters of linear electric motors
    • F04B2203/0404Frequency of the electric current

Definitions

  • the present invention relates to a method and a device for controlling a micropump by means of a driver signal such that a conveying direction defined by a valve structure is reversed.
  • Micro diaphragm pumps are known for example from WO-93/05295. One of the pumps described there is shown in Fig. 1.
  • This micro-diaphragm pump 100 comprises a two-part displacement unit 102 and also a two-part valve unit 104.
  • the two parts of the displacement unit 102 comprise a flexible pump diaphragm 106 and a rigid counter electrode 108.
  • a so-called drive chamber 110 is formed between the pump diaphragm 106 and a counter chamber 108.
  • the pump membrane 106 is attracted by the counter electrode 108.
  • the volume of the pump chamber 112 increases and a fluid to be pumped is sucked in via an inlet.
  • the pump membrane 106 relaxes in its output region and displaces the fluid to be pumped into the outlet 116.
  • Two passive check valves 118, 120 which define a preferred direction for the fluid flow, result in a directional pumping action when the displacement unit 102 is periodically activated from inlet 114 to outlet 116 of the pump.
  • the behavior of the valves 118, 120 is quasi static, ie the position of the movable valve part results at all times from the hydrostatic pressure difference applied across the valve.
  • Known methods for controlling such a micro diaphragm pump enable a fluid to be pumped in the preferred direction defined by the valves 118, 120.
  • micromembrane pump In technical applications of the micromembrane pump, the situation often arises in which fluids, for example, both have to be transported to a sensor element and have to be removed again. This occurs, for example, in chemical analysis, in which liquids both have to be transported to a sensor element and have to be removed again. So far, a micro-diaphragm pump has to be used both for the forward transport and for the removal, these micro-diaphragm pumps being arranged in opposite directions. The need for the two micro diaphragm pumps increases the complexity of such analytical systems and their manufacturing costs and makes it difficult to fill them with a fluid when operating these systems.
  • the present invention is based on the object of creating a method and a device for controlling a micropump which make it possible to reverse the conveying direction defined by a valve structure.
  • the present invention provides a method for controlling a micro-diaphragm pump by means of a driver signal, the micro-diaphragm pump having a delivery direction defined by a valve structure, with the method step of applying the driver signal to the excitation frequency Micro diaphragm pump, the excitation frequency being in the range above a resonance of a system formed from the moving parts of the micro diaphragm pump and the fluid to be pumped, as a result of which the delivery direction defined by a valve structure is reversed.
  • the present invention provides a device for controlling a micro-diaphragm pump by means of a driver signal, the micro-diaphragm pump having a delivery direction defined by a valve structure, with a device for generating the driver signal with an excitation frequency which is in the range above a resonance of one of the movable ones Parts of the micro-diaphragm pump and the system to be pumped fluid is located, whereby the delivery direction defined by a valve structure is reversed.
  • An advantage of the present invention is that for practical applications in which both a transport and a transport of fluids to an element is required, only a micro-diaphragm pump has to be used, whereby the required space is reduced.
  • Another advantage is that the filling of such systems with a fluid is made easier.
  • Yet another advantage is that the manufacturing cost of such systems can be significantly reduced.
  • the method according to the invention and the device according to the invention make it possible to reverse the pumping direction in micro-diaphragm pumps (see FIG. 1) with so-called passive check valves 118, 120.
  • the displacement unit 102 is acted upon by a driver signal which has an operating frequency in the region of a resonance, which is essentially defined by the movable valve parts, which lies above this resonance.
  • this resonance is a resonance of a system which is formed from the moving parts of the micro diaphragm pump (106, 118, 120) and from the fluid to be pumped.
  • This behavior corresponds to that of an oscillatory, mechanical system, which is stimulated to a forced oscillation by an external force.
  • the amplitude of the vibration has the known resonance behavior.
  • the curves 200 and 202 shown in FIG. 2 represent the course of the deflection and the phase shift with different damping or quality factors.
  • the course of the curve 200 is assigned a quality factor of 3 and the course of the curve 202 is assigned a quality factor of 1 .
  • the deflection and phase shift of a movable valve part shown in FIG. 2 applies to a resonance of this part of 3000 Hz.
  • the curves in the first line indicate the so-called exciting pressure
  • the signal curves in the middle line indicate the opening state of the movable valve
  • the signal curves in the lower row show the time-dependent flow
  • the respective y-scales in any Units are shown.
  • the second effect is that the valve can only be opened in the positive direction (see second line of Fig. 3), i.e. the valve is completely closed for half a period.
  • the micro diaphragm pump In the frequency range from 1 Hz to 1 kHz, the micro diaphragm pump is in its so-called standard operating range, which is shown by arrow 400. In this standard operating range 400, the micro diaphragm pump has a positive pumping rate ( ⁇ > 0), which corresponds to a forward pumping effect.
  • the micro diaphragm pump In the frequency range from 2 kHz to 6 kHz, which is represented by the arrow 410, the micro diaphragm pump has a negative pumping rate ( ⁇ ⁇ 0), which corresponds to a backward pumping effect.
  • the resonance frequency of the movable valve parts used in a micro diaphragm pump can be varied by a suitable change in the shape of the valves used. This makes it possible to influence the frequency range 410 in which the negative pumping rate occurs.
  • the frequency range 410 where a negative pumping rate occurs is the frequency range where there is a phase difference of about 90 degrees to about 180 degrees between the drive signal and the deflection of the valves.
  • the frequency range in which a positive pumping rate occurs is that frequency range in which a phase difference of approximately 0 degrees to 90 degrees occurs between the driver signal and the deflection of the valve structure.
  • FIG. 5 shows a block diagram of the arrangement of a device for generating a driver signal and a micro diaphragm pump.
  • the device according to the invention for controlling a micro-diaphragm pump 510 by means of a driver signal comprises a device 500 for generating the driver signal with an excitation frequency which lies in the range above a resonance of the system formed from the moving parts of the micro-diaphragm pump 510 and the fluid to be pumped.
  • the driver signal is over one or more Signal lines 520 applied to the micro diaphragm pump 510.
  • the driver signal generating device generates a second driver signal with a second excitation frequency, which is in a range in which a phase difference of approximately 0 degrees to 90 degrees occurs between the driver signal and the deflection of the valve structure, in order to fluid to be pumped into that defined by the valve structure Pump direction of pumping.
  • the method according to the invention and the device according to the invention are not limited to micro-diaphragm pumps that use check valves.
  • the application of the invention to micro diaphragm pumps which use passive valves of a different design is readily possible.
  • the application of the present invention is not limited to a micro diaphragm pump that uses two valves.
  • the use of micro diaphragm pumps that use one valve or more than two valves is easily possible.
  • piezoelectric and pneumatic or thermopneumatic drive mechanisms for the micro diaphragm pump are also possible.
  • a two-phase thermal drive is also contemplated, in which a liquid is heated in a drive chamber, whereby a vapor bubble is formed, through which a pump membrane is actuated by displacement.
  • the thermal two-phase drive enables higher pressures to be generated than a purely thermopneumatic drive.
  • a piston displacer can also be considered in addition to a membrane displacer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

Eine Mikropumpe (100) hat eine durch ihre Ventilstruktur (118, 120) definierte Förderrichtung. Die durch die Ventilstruktur (118, 120) definierte Förderrichtung wird wahlweise umkehrt, indem ein Treibersignal mit einer Erregerfrequenz an die Mikropumpe (100) angelegt wird, welche im Bereich oberhalb einer Resonanz eines aus den beweglichen Teilen (106, 118, 120) der Mikropumpe (100) und dem zu pumpenden Fluid gebildeten Systems liegt. <IMAGE>

Description

  • Die vorliegende Erfindung bezieht sich auf ein Verfahren und eine Vorrichtung zur Ansteuerung einer Mikropumpe mittels eines Treibersignals, derart daß sich eine durch eine Ventilstruktur definierte Förderrichtung umkehrt.
  • Mikro-Membranpumpen sind beispielsweise aus der WO-93/05295 bekannt. Eine der dort beschriebenen Pumpen ist in Fig. 1 dargestellt.
  • Diese Mikro-Membranpumpe 100 umfaßt eine aus zwei Teilen bestehende Verdrängereinheit 102 und eine ebenfalls aus zwei Teilen bestehende Ventileinheit 104. Bei dieser Mikro-Membranpumpe umfassen die zwei Teile der Verdrängereinheit 102 eine flexible Pumpmembran 106 und eine starre Gegenelektrode 108. Zwischen der Pumpmembran 106 und der Gegenelektrode 108 ist eine sogenannte Antriebskammer 110 gebildet. Beim Anlegen einer Betriebsspannung wird die Pumpmembran 106 von der Gegenelektrode 108 angezogen. Das Volumen der Pumpkammer 112 vergrößert sich und ein zu pumpendes Fluid wird über einen Einlaß angesaugt. Beim Abschalten der Betriebsspannung relaxiert die Pumpmembran 106 in ihren Ausgangsbereich und verdrängt das zu pumpende Fluid in den Auslaß 116. Durch zwei passive Rückschlagventile 118, 120, die für die Fluidströmung eine Vorzugsrichtung definieren, ergibt sich bei einer periodischen Ansteuerung der Verdrängereinheit 102 eine gerichtete Pumpwirkung vom Einlaß 114 zum Auslaß 116 der Pumpe. Bei Betriebsfrequenzen, die weit unterhalb der Eigenfrequenz der beweglichen Ventilteile liegen, ist das Verhalten der Ventile 118, 120 quasi statisch, d.h. die Stellung des beweglichen Ventilteils ergibt sich zu jedem Zeitpunkt aus der über das Ventil anliegenden hydrostatischen Druckdifferenz.
  • Bekannte Verfahren zur Ansteuerung einer solchen Mikro-Membranpumpe ermöglichen das Pumpen eines Fluids in die durch die Ventile 118, 120 definierte Vorzugsrichtung.
  • Bei technischen Anwendungen der Mikromembranpumpe tritt oft die Situation ein, in der Fluide beispielsweise sowohl zu einem Sensorelement hintransportiert als auch wieder abtransportiert werden müssen. Dies tritt beispielsweise bei der chemischen Analytik auf, bei der Flüssigkeiten sowohl zu einem Sensorelement hintransportiert als auch wieder abtransportiert werden müssen. Sowohl für den Hintransport als auch für den Abtransport muß bislang jeweils eine Mikro-Membranpumpe eingesetzt werden, wobei diese Mikro-Membranpumpen entgegengesetzt angeordnet sind. Die Notwendigkeit der zwei Mikro-Membranpumpen erhöht die Komplexität solcher analytischer Systeme und deren Herstellungskosten und erschwert beim Betrieb dieser Systeme deren Befüllung mit einem Fluid erheblich.
  • Ausgehend von diesem Stand der Technik liegt der vorliegenden Erfindung die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung zur Ansteuerung einer Mikropumpe zu schaffen, die eine Umkehr der durch eine Ventilstruktur definierten Förderrichtung ermöglichen.
  • Diese Aufgabe wird durch ein Verfahren und eine Vorrichtung zur Ansteuerung einer Mikropumpe nach Anspruch 1 und nach Anspruch 6 gelöst.
  • Die vorliegende Erfindung schafft ein Verfahren zur Ansteuerung einer Mikro-Membranpumpe mittels eines Treibersignals, wobei die Mikro-Membranpumpe eine durch eine Ventilstruktur definierte Förderrichtung hat, mit dem Verfahrensschritt des Anlegens des Treibersignals mit einer Erregerfrequenz an die Mikro-Membranpumpe, wobei die Erregerfrequenz im Bereich oberhalb einer Resonanz eines aus den beweglichen Teilen der Mikro-Membranpumpe und dem zu pumpenden Fluid gebildeten Systems liegt, wodurch sich die durch eine Ventilstruktur definierte Förderrichtung umkehrt.
  • Die vorliegende Erfindung schafft eine Vorrichtung zum Ansteuern einer Mikro-Membranpumpe mittels eines Treibersignals, wobei die Mikro-Membranpumpe eine durch eine Ventilstruktur definierte Förderrichtung hat, mit einer Einrichtung zum Erzeugen des Treibersignals mit einer Erregerfrequenz, die im Bereich oberhalb einer Resonanz eines aus den beweglichen Teilen der Mikro-Membranpumpe und dem zu pumpenden Fluid gebildeten Systems liegt, wodurch sich die durch eine Ventilstruktur definierte Förderrichtung umkehrt.
  • Ein Vorteil der vorliegenden Erfindung besteht darin, daß für praktische Anwendungen, bei denen sowohl ein Hintransport als auch ein Abtransport von Fluiden zu einem Element erforderlich ist, lediglich eine Mikro-Membranpumpe eingesetzt werden muß, wodurch sich der erforderliche Platzaufwand erniedrigt.
  • Ein weiterer Vorteil besteht darin, daß die Befüllung solcher Systeme mit einem Fluid erleichtert wird.
  • Wiederum ein weiterer Vorteil besteht darin, daß die Herstellungskosten solcher Systeme erheblich gesenkt werden können.
  • Bevorzugte Weiterbildungen der vorliegenden Erfindung sind in den Unteransprüchen definiert.
  • Anhand der beiliegenden Zeichnungen wird nachfolgend ein bevorzugtes Ausführungsbeispiel der vorliegenden Erfindung naher beschrieben. Es zeigen:
  • Fig. 1
    eine Querschnittsdarstellung einer Mikro-Membranpumpe;
    Fig. 2
    eine maximale Auslenkung und eine Phasenverschiebung eines beweglichen Ventilteils bei verschiedenen Dämpfungen bzw. Gütefaktoren;
    Fig. 3
    einen zeitabhängigen Durchfluß durch ein Ventil abhängig von einer Betriebsfrequenz, einer Amplitude der Druckoszillationen und unterschiedlichen Phasenverschiebungen;
    Fig. 4
    eine graphische Darstellung der Pumprate einer Mikro-Membranpumpe, die gemäß der vorliegenden Erfindung angesteuert ist; und
    Fig. 5
    ein Blockdiagramm, das die Anordnung der erfindungsgemäßen Vorrichtung zur Ansteuerung einer Mikro-Membranpumpe darstellt.
  • Das erfindungsgemäße Verfahren und die erfindungsgemäße Vorrichtung ermöglichen es, die Pumprichtung bei Mikro-Membranpumpen (siehe Fig. 1) mit sogenannten passiven Rückschlagventilen 118, 120 umzukehren. Hierzu wird die Verdrängereinheit 102 mit einem Treibersignal beaufschlagt, das eine Betriebsfrequenz im Bereich einer Resonanz, die im wesentlichen durch die beweglichen Ventilteile definiert ist, aufweist, die oberhalb dieser Resonanz liegt.
  • Es ist offensichtlich, daß es sich bei dieser Resonanz um eine Resonanz eines Systems handelt, das aus den beweglichen Teilen der Mikro-Membranpumpe (106, 118, 120) und aus dem zu pumpenden Fluid gebildet ist.
  • Durch die Ansteuerung entstehen in der Pumpkammer 112 Druckoszillationen, die von der äußeren Erregerfrequenz abhängen. Durch das Fluidsystem werden diese Druckschwingungen auf die beweglichen Ventilteile übertragen, wodurch sich das betreffende Ventil öffnet bzw. schließt.
  • Im Bereich der Resonanz ergibt sich jedoch eine Phasendifferenz zwischen der durch das Fluid übertragenen Kraft auf die beweglichen Ventilteile und der aktuellen Auslenkung des beweglichen Ventilteils.
  • Dieses Verhalten entspricht dem eines schwingungsfähigen, mechanischen Systems, welches durch eine externe Kraft zu einer erzwungenen Schwingung angeregt wird. Wie es in Fig. 2a dargestellt ist, weist die Amplitude der Schwingung das bekannte Resonanzverhalten auf. Ferner ergibt sich eine Phasenverschiebung zwischen der erregenden Kraft und der Auslenkung des Schwingers, wie es in Fig. 2b dargestellt ist.
  • Die in Fig. 2 dargestellten Kurven 200 und 202 stellen den Verlauf der Auslenkung und der Phasenverschiebung bei verschiedenen Dämpfungen bzw. Gütefaktoren dar. Hierbei ist dem Verlauf der Kurve 200 ein Gütefaktor von 3 zugeordnet und dem Verlauf der Kurve 202 ist ein Gütefaktor von 1 zugeordnet.
  • Die in Fig. 2 dargestellte Auslenkung und Phasenverschiebung eines beweglichen Ventilteils gilt für eine Resonanz dieses Teils von 3000 Hz.
  • In Fig. 3 geben die Verläufe in der ersten Zeile den sogenannten erregenden Druck an, die Signalverläufe in der mittleren Zeile geben den Öffnungszustand des beweglichen Ventils an und die Signalverläufe in der unteren Reihe zeigen den zeitabhängigen Durchfluß, wobei die jeweiligen y-Skalen in beliebigen Einheiten dargestellt sind.
  • Die Umkehrung der Pumprichtung wird durch das Zusammenwirken zweier Effekte ermöglicht.
  • Einerseits hinkt der Öffnungszustand des Ventils der durch die Flüssigkeit übertragene Kraft um die Phase Θ hinterher, wie es in Fig. 3 deutlich zu erkennen ist.
  • Hieraus resultiert eine Verzögerung des Öffnungs- und Schließvorgangs des Ventils gegenüber der Fluidbewegung.
  • Der zweite Effekt besteht darin, daß eine Öffnung des Ventils lediglich in positiver Richtung möglich ist (siehe zweite Zeile der Fig. 3), d.h. während einer halben Periodendauer ist das Ventil vollständig geschlossen.
  • Wie aus Fig. 3 zu sehen ist, fließt mit zunehmender Phasendifferenz ein immer größerer Anteil des Fluids innerhalb eines Pumpzykluses in die Sperrichtung durch das Ventil. Dies bedeutet eine Umkehr der Förderrichtung (Φ<0). Bei einer Phase von -180 Grad wird eine vollständige Umkehr der Förderrichtung erreicht, wie es in der fünften Spalte in Fig. 3 dargestellt ist.
  • In Fig. 4 ist die Frequenzabhängigkeit der Pumprate bei einer elektrostatisch angetriebenen Mikro-Membranpumpe unter Verwendung von sogenannten Klappenventilen in einem halblogarithmischen Maßstab dargestellt.
  • Im Frequenzbereich von 1 Hz bis 1 kHz befindet sich die Mikro-Membranpumpe in ihrem sogenannten Standard-Betriebsbereich, der durch den Pfeil 400 dargestellt ist. In diesem Standard-Betriebsbereich 400 weist die Mikro-Membranpumpe eine positive Pumprate (Φ>0) auf, was einer vorwärtsgerichteten Pumpwirkung entspricht.
  • Im Frequenzbereich von 2 kHz bis 6 kHz, der durch den Pfeil 410 dargestellt ist, weist die Mikro-Membranpumpe eine negative Pumprate (Φ<0) auf, was einer rückwärts gerichteten Pumpwirkung entspricht.
  • Es wird darauf hingewiesen, daß nicht nur die Phase, sondern auch die maximale Öffnung des beweglichen Ventilteils sowie die Amplitude der erregenden Druckoszillationen von der anliegenden Erregerfrequenz abhängen. Neben dem Effekt der Phasenverschiebung zwischen dem Öffnungszustand des beweglichen Ventils und der erregenden Druckoszillation besteht auch eine Auswirkung der Frequenzabhängigkeit der maximalen Amplitude des beweglichen Ventils und die Frequenzabhängigkeit der Amplitude der erregenden Druckoszillationen.
  • Durch eine geeignete Veränderung der Form der verwendeten Ventile kann die Resonanzfrequenz der in einer Mikro- Membranpumpe verwendeten, beweglichen Ventilteile variiert werden. Hierdurch ist es möglich, den Frequenzbereich 410 zu beeinflussen, in dem die negative Pumprate auftritt.
  • Neben der oben beschriebenen sogenannten ersten Resonanz der beweglichen Ventilteile treten auch Resonanzen höherer Ordnung auf. Mit jeder neuen Resonanz läßt sich die Förderrichtung erneut umkehren.
  • Es wird darauf hingewiesen, daß sich der Frequenzbereich 410, bei dem eine negative Pumprate auftritt, derjenige Frequenzbereich ist, bei dem eine Phasendifferenz von etwa 90 Grad bis etwa 180 Grad zwischen dem Treibersignal und der Auslenkung der Ventile auftritt. Der Frequenzbereich, bei dem eine positive Pumprate auftritt, ist derjenige Frequenzbereich, bei dem eine Phasendifferenz von etwa 0 Grad bis 90 Grad zwischen dem Treibersignal und der Auslenkung der Ventilstruktur auftritt.
  • In Fig. 5 ist ein Blockdiagramm der Anordnung einer Vorrichtung zur Erzeugung eines Treibersignals und einer Mikro-Membranpumpe dargestellt. Die erfindungsgemäße Vorrichtung zum Ansteuern einer Mikro-Membranpumpe 510 mittels eines Treibersignals umfaßt eine Einrichtung 500 zum Erzeugen des Treibersignals mit einer Erregerfrequenz, die im Bereich oberhalb einer Resonanz der aus den beweglichen Teilen der Mikro-Membranpumpe 510 und dem zu pumpenden Fluid gebildeten Systems liegt. Das Treibersignal wird über eine oder mehrere Signalleitungen 520 an die Mikro-Membranpumpe 510 angelegt.
  • Ferner erzeugt die Treibersignalerzeugungseinrichtung ein zweites Treibersignal mit einer zweiten Erregerfrequenz, die in einem Bereich liegt, bei dem eine Phasendifferenz von etwa 0 Grad bis 90 Grad zwischen dem Treibersignal und der Auslenkung der Ventilstruktur auftritt, um das zu pumpende Fluid in die durch die Ventilstruktur definierte Förderrichtung zu pumpen.
  • Das erfindungsgemäße Verfahren und die erfindungsgemäße Vorrichtung sind nicht auf Mikro-Membranpumpen beschränkt, die Rückschlagventile verwenden. Die Anwendung der Erfindung auf Mikro-Membranpumpen, die anders ausgebildete passive Ventile verwenden, ist ohne weiteres möglich.
  • Weiterhin beschränkt sich die Anwendung der vorliegenden Erfindung nicht auf eine Mikro-Membranpumpe, die zwei Ventile verwendet. Die Verwendung von Mikro-Membranpumpen, die ein Ventil oder mehr als zwei Ventile verwenden, ist ohne weiteres möglich.
  • Neben der oben beschriebenen elektrostatischen Erregung der Pumpmembran der Mikro-Membranpumpe sind auch piezoelektrische und pneumatische bzw. thermopneumatische Antriebsmechanismen für die Mikro-Membranpumpe möglich.
  • In Betracht kommt auch ein thermischer Zweiphasenantrieb, bei dem eine Flüssigkeit in einer Antriebskammer erhitzt wird, wodurch sich eine Dampfblase bildet, durch die eine Pumpmembran durch Verdrängung betätigt wird. Der thermische Zweiphasenantrieb ermöglicht gegenüber einem rein thermopneumatischen Antrieb die Erzeugung höherer Drücke.
  • In Abweichung von den gezeigten Ausführungsformen der Antriebe kommt neben einem Membranverdränger auch ein Kolbenverdränger in Betracht.

Claims (9)

  1. Verfahren zur Ansteuerung einer Mikropumpe (100) mittels eines Treibersignals, wobei die Mikropumpe (100) eine durch eine Ventilstruktur (118, 120) definierte Förderrichtung hat,
    gekennzeichnet durch folgenden Verfahrensschritt:
    Anlegen des Treibersignals mit einer Erregerfrequenz an die Mikropumpe (100), wobei die Erregerfrequenz im Bereich oberhalb einer Resonanz eines aus den beweglichen Teilen (106, 118, 120) der Mikropumpe (100) und dem zu pumpenden Fluid gebildeten Systems liegt, wodurch sich die durch die Ventilstruktur (118, 120) definierte Förderrichtung umkehrt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet,
    daß die Mikropumpe als eine Mikro-Membranpumpe (100) ausgebildet ist.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet,
    daß der Bereich, in dem die Erregerfrequenz liegt, derjenige Frequenzbereich ist, bei dem eine Phasendifferenz von etwa 90 Grad bis etwa 180 Grad zwischen dem Treibersignal und der Auslenkung der Ventilstruktur (118, 120) auftritt.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet,
    daß die Resonanz im wesentlichen durch die Ventilstruktur (118, 120) bestimmt ist.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet,
    daß die Resonanz eine Resonanz erster Ordnung oder eine Resonanz höherer Ordnung ist.
  6. Verfahren nach einem der Ansprüche 1 bis 5, ferner gekennzeichnet durch folgenden Verfahrensschritt:
    Anlegen eines zweiten Treibersignals mit einer zweiten Erregerfrequenz an die Mikropumpe (100), wobei die zweite Erregerfrequenz in einem Bereich liegt, bei dem eine Phasendifferenz von etwa 0 Grad bis 90 Grad zwischen dem Treibersignal und der Auslenkung der Ventilstruktur (118, 120) auftritt, um das zu pumpende Fluid in die durch die Ventilstruktur (118, 120) definierte Förderrichtung zu pumpen.
  7. Vorrichtung zum Ansteuern einer Mikropumpe (510) mittels eines Treibersignals, wobei die Mikropumpe (100) eine durch eine Ventilstruktur (118, 120) definierte Förderrichtung hat,
    gekennzeichnet durch
    eine Einrichtung (500) zum Erzeugen des Treibersignals mit einer Erregerfrequenz, die im Bereich oberhalb einer Resonanz eines aus den beweglichen Teilen der Mikropumpe und dem zu pumpenden Fluid gebildeten Systems liegt, wodurch sich die durch die Ventilstruktur (118, 120) definierte Förderrichtung umkehrt.
  8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet,
    daß die Mikropumpe als eine Mikro-Membranpumpe (100) ausgebildet ist.
  9. Vorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet,
    daß die Treibersignalerzeugungseinrichtung (500) ferner ein zweites Treibersignal mit einer zweiten Erregerfrequenz erzeugt, die in einem Bereich liegt, bei dem eine Phasendifferenz von etwa 0 Grad bis 90 Grad zwischen dem Treibersignal und der Auslenkung der Ventilstruktur auftritt, um das zu pumpende Fluid in die durch die Ventilstruktur definierte Förderrichtung zu pumpen.
EP95112161A 1994-09-22 1995-08-02 Verfahren und Vorrichtung zur Ansteuerung einer Mikropumpe Expired - Lifetime EP0703364B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4433894A DE4433894A1 (de) 1994-09-22 1994-09-22 Verfahren und Vorrichtung zur Ansteuerung einer Mikropumpe
DE4433894 1994-09-22

Publications (2)

Publication Number Publication Date
EP0703364A1 true EP0703364A1 (de) 1996-03-27
EP0703364B1 EP0703364B1 (de) 1997-04-23

Family

ID=6528930

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95112161A Expired - Lifetime EP0703364B1 (de) 1994-09-22 1995-08-02 Verfahren und Vorrichtung zur Ansteuerung einer Mikropumpe

Country Status (2)

Country Link
EP (1) EP0703364B1 (de)
DE (2) DE4433894A1 (de)

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998051929A1 (de) * 1997-05-12 1998-11-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mikromembranpumpe
WO1998051928A1 (de) * 1997-05-12 1998-11-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum herstellen eines mikromembranpumpenkörpers
WO1999037400A1 (de) * 1998-01-22 1999-07-29 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Mikrodosiervorrichtung
WO2001001025A2 (en) * 1999-06-28 2001-01-04 California Institute Of Technology Microfabricated elastomeric valve and pump systems
EP0844395A3 (de) * 1996-11-25 2001-01-10 Vermes Mikrotechnik GmbH Bidirektionale dynamische Mikropumpe
DE19837434C2 (de) * 1997-08-20 2001-05-17 Hitachi Ltd Automatische chemische Analyseeinrichtung
EP1195523A2 (de) * 1999-06-28 2002-04-10 California Institute of Technology Elastisches Mikropumpen- oder Mikroventilsystem
US6818395B1 (en) 1999-06-28 2004-11-16 California Institute Of Technology Methods and apparatus for analyzing polynucleotide sequences
US6899137B2 (en) 1999-06-28 2005-05-31 California Institute Of Technology Microfabricated elastomeric valve and pump systems
EP1557565A2 (de) * 1999-06-28 2005-07-27 California Institute Of Technology Elastisches Mikropumpen- oder Mikroventilsystem
US6929030B2 (en) 1999-06-28 2005-08-16 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US6951632B2 (en) 2000-11-16 2005-10-04 Fluidigm Corporation Microfluidic devices for introducing and dispensing fluids from microfluidic systems
US7097809B2 (en) 2000-10-03 2006-08-29 California Institute Of Technology Combinatorial synthesis system
US7143785B2 (en) 2002-09-25 2006-12-05 California Institute Of Technology Microfluidic large scale integration
US7144616B1 (en) 1999-06-28 2006-12-05 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US7192629B2 (en) 2001-10-11 2007-03-20 California Institute Of Technology Devices utilizing self-assembled gel and method of manufacture
US7195670B2 (en) 2000-06-27 2007-03-27 California Institute Of Technology High throughput screening of crystallization of materials
US7217321B2 (en) 2001-04-06 2007-05-15 California Institute Of Technology Microfluidic protein crystallography techniques
US7217367B2 (en) 2001-04-06 2007-05-15 Fluidigm Corporation Microfluidic chromatography
US7232109B2 (en) 2000-11-06 2007-06-19 California Institute Of Technology Electrostatic valves for microfluidic devices
US7244402B2 (en) 2001-04-06 2007-07-17 California Institute Of Technology Microfluidic protein crystallography
US7258774B2 (en) 2000-10-03 2007-08-21 California Institute Of Technology Microfluidic devices and methods of use
US7279146B2 (en) 2003-04-17 2007-10-09 Fluidigm Corporation Crystal growth devices and systems, and methods for using same
US7291512B2 (en) 2001-08-30 2007-11-06 Fluidigm Corporation Electrostatic/electrostrictive actuation of elastomer structures using compliant electrodes
US7294503B2 (en) 2000-09-15 2007-11-13 California Institute Of Technology Microfabricated crossflow devices and methods
US7306672B2 (en) 2001-04-06 2007-12-11 California Institute Of Technology Microfluidic free interface diffusion techniques
US7326296B2 (en) 2001-04-06 2008-02-05 California Institute Of Technology High throughput screening of crystallization of materials
US7368163B2 (en) 2001-04-06 2008-05-06 Fluidigm Corporation Polymer surface modification
US7407799B2 (en) 2004-01-16 2008-08-05 California Institute Of Technology Microfluidic chemostat
US7459022B2 (en) 2001-04-06 2008-12-02 California Institute Of Technology Microfluidic protein crystallography
EP2027923A1 (de) * 2007-07-19 2009-02-25 Formulatrix, Inc. Dosiervorrichtung und Verfahren zur Abgabe von Fluiden
US7583853B2 (en) 2003-07-28 2009-09-01 Fluidigm Corporation Image processing method and system for microfluidic devices
US7645596B2 (en) 1998-05-01 2010-01-12 Arizona Board Of Regents Method of determining the nucleotide sequence of oligonucleotides and DNA molecules
US7666361B2 (en) 2003-04-03 2010-02-23 Fluidigm Corporation Microfluidic devices and methods of using same
US7691333B2 (en) 2001-11-30 2010-04-06 Fluidigm Corporation Microfluidic device and methods of using same
US7695683B2 (en) 2003-05-20 2010-04-13 Fluidigm Corporation Method and system for microfluidic device and imaging thereof
US7704735B2 (en) 2004-01-25 2010-04-27 Fluidigm Corporation Integrated chip carriers with thermocycler interfaces and methods of using the same
US7749737B2 (en) 2003-04-03 2010-07-06 Fluidigm Corporation Thermal reaction device and method for using the same
JP2010151717A (ja) * 2008-12-26 2010-07-08 Aida Eng Ltd マイクロ流路チップ
US7815868B1 (en) 2006-02-28 2010-10-19 Fluidigm Corporation Microfluidic reaction apparatus for high throughput screening
US7820427B2 (en) 2001-11-30 2010-10-26 Fluidigm Corporation Microfluidic device and methods of using same
US7833708B2 (en) 2001-04-06 2010-11-16 California Institute Of Technology Nucleic acid amplification using microfluidic devices
US7867454B2 (en) 2003-04-03 2011-01-11 Fluidigm Corporation Thermal reaction device and method for using the same
US7887753B2 (en) 2000-11-16 2011-02-15 California Institute Of Technology Apparatus and methods for conducting assays and high throughput screening
US7964139B2 (en) 2003-08-11 2011-06-21 California Institute Of Technology Microfluidic rotary flow reactor matrix
US7981604B2 (en) 2004-02-19 2011-07-19 California Institute Of Technology Methods and kits for analyzing polynucleotide sequences
US8007746B2 (en) 2003-04-03 2011-08-30 Fluidigm Corporation Microfluidic devices and methods of using same
US8052792B2 (en) 2001-04-06 2011-11-08 California Institute Of Technology Microfluidic protein crystallography techniques
US8105553B2 (en) 2004-01-25 2012-01-31 Fluidigm Corporation Crystal forming devices and systems and methods for using the same
US8129176B2 (en) 2000-06-05 2012-03-06 California Institute Of Technology Integrated active flux microfluidic devices and methods
US8282896B2 (en) 2003-11-26 2012-10-09 Fluidigm Corporation Devices and methods for holding microfluidic devices
US8440093B1 (en) 2001-10-26 2013-05-14 Fuidigm Corporation Methods and devices for electronic and magnetic sensing of the contents of microfluidic flow channels
US8550119B2 (en) 1999-06-28 2013-10-08 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US8709153B2 (en) 1999-06-28 2014-04-29 California Institute Of Technology Microfludic protein crystallography techniques
US8828663B2 (en) 2005-03-18 2014-09-09 Fluidigm Corporation Thermal reaction device and method for using the same
US8871446B2 (en) 2002-10-02 2014-10-28 California Institute Of Technology Microfluidic nucleic acid analysis
US9096898B2 (en) 1998-05-01 2015-08-04 Life Technologies Corporation Method of determining the nucleotide sequence of oligonucleotides and DNA molecules
US9657344B2 (en) 2003-11-12 2017-05-23 Fluidigm Corporation Short cycle methods for sequencing polynucleotides
US9868978B2 (en) 2005-08-26 2018-01-16 Fluidigm Corporation Single molecule sequencing of captured nucleic acids
US9926521B2 (en) 2000-06-27 2018-03-27 Fluidigm Corporation Microfluidic particle-analysis systems
WO2020064060A1 (de) 2018-09-26 2020-04-02 Trafag Ag Mikroaktuator sowie herstellverfahren und verwendungen
US11022470B2 (en) 2015-12-08 2021-06-01 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Free-jet dosing system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3543604B2 (ja) * 1998-03-04 2004-07-14 株式会社日立製作所 送液装置および自動分析装置
DE102006003744B3 (de) * 2006-01-26 2007-09-13 Albert-Ludwigs-Universität Freiburg Vorrichtung zur Bewegung von Flüssigkeiten und/oder Gasen
US8100293B2 (en) 2009-01-23 2012-01-24 Formulatrix, Inc. Microfluidic dispensing assembly
DE102013015453A1 (de) 2012-12-21 2014-07-10 Thomas Magnete Gmbh Hubkolbenpumpe mit zwei Förderrichtungen
US20220252062A1 (en) * 2019-07-23 2022-08-11 Q T Flow Ltd Tuned micro check valves and pumps
WO2022162651A1 (en) * 2021-01-27 2022-08-04 Q T Flow Ltd Fluid pumping arrangement

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4344743A (en) * 1979-12-04 1982-08-17 Bessman Samuel P Piezoelectric driven diaphragm micro-pump
JPH03217672A (ja) * 1990-01-23 1991-09-25 Seiko Epson Corp マイクロポンプの吐出量制御方法
WO1993005295A1 (de) 1991-09-11 1993-03-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mikrominiaturisierte, elektrostatisch betriebene mikromembranpumpe

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4200838C2 (de) * 1992-01-15 1994-12-22 Knf Neuberger Gmbh Pumpe mit vom Fördermedium gesteuerten Ventilen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4344743A (en) * 1979-12-04 1982-08-17 Bessman Samuel P Piezoelectric driven diaphragm micro-pump
JPH03217672A (ja) * 1990-01-23 1991-09-25 Seiko Epson Corp マイクロポンプの吐出量制御方法
WO1993005295A1 (de) 1991-09-11 1993-03-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mikrominiaturisierte, elektrostatisch betriebene mikromembranpumpe

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 15, no. 497 (M - 1192) 16 December 1991 (1991-12-16) *
ZENGERLE R: "a micro membrane pump with electrostatic actuation", 4 February 1992, IEEE, TRAVEMÜNDE (DE) *

Cited By (137)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0844395A3 (de) * 1996-11-25 2001-01-10 Vermes Mikrotechnik GmbH Bidirektionale dynamische Mikropumpe
US6261066B1 (en) 1997-05-12 2001-07-17 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Micromembrane pump
WO1998051928A1 (de) * 1997-05-12 1998-11-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum herstellen eines mikromembranpumpenkörpers
WO1998051929A1 (de) * 1997-05-12 1998-11-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mikromembranpumpe
US6395638B1 (en) * 1997-05-12 2002-05-28 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Method for producing a micromembrane pump body
US6599477B1 (en) 1997-08-20 2003-07-29 Hitachi, Ltd. Chemical analysis apparatus
DE19837434C2 (de) * 1997-08-20 2001-05-17 Hitachi Ltd Automatische chemische Analyseeinrichtung
US6416294B1 (en) 1998-01-22 2002-07-09 Hans-Schickard-Gesellschaft Fur Angewandte Forschung E.V. Microdosing device
WO1999037400A1 (de) * 1998-01-22 1999-07-29 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Mikrodosiervorrichtung
US9096898B2 (en) 1998-05-01 2015-08-04 Life Technologies Corporation Method of determining the nucleotide sequence of oligonucleotides and DNA molecules
US9212393B2 (en) 1998-05-01 2015-12-15 Life Technologies Corporation Method of determining the nucleotide sequence of oligonucleotides and DNA molecules
US7645596B2 (en) 1998-05-01 2010-01-12 Arizona Board Of Regents Method of determining the nucleotide sequence of oligonucleotides and DNA molecules
US9458500B2 (en) 1998-05-01 2016-10-04 Life Technologies Corporation Method of determining the nucleotide sequence of oligonucleotides and DNA molecules
US10214774B2 (en) 1998-05-01 2019-02-26 Life Technologies Corporation Method of determining the nucleotide sequence of oligonucleotides and DNA molecules
US9725764B2 (en) 1998-05-01 2017-08-08 Life Technologies Corporation Method of determining the nucleotide sequence of oligonucleotides and DNA molecules
US9957561B2 (en) 1998-05-01 2018-05-01 Life Technologies Corporation Method of determining the nucleotide sequence of oligonucleotides and DNA molecules
US10208341B2 (en) 1998-05-01 2019-02-19 Life Technologies Corporation Method of determining the nucleotide sequence of oligonucleotides and DNA molecules
US7144616B1 (en) 1999-06-28 2006-12-05 California Institute Of Technology Microfabricated elastomeric valve and pump systems
EP1557565A3 (de) * 1999-06-28 2013-02-27 California Institute Of Technology Elastisches Mikropumpen- oder Mikroventilsystem
US6929030B2 (en) 1999-06-28 2005-08-16 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US8124218B2 (en) 1999-06-28 2012-02-28 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US7040338B2 (en) 1999-06-28 2006-05-09 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US8709153B2 (en) 1999-06-28 2014-04-29 California Institute Of Technology Microfludic protein crystallography techniques
US8220487B2 (en) 1999-06-28 2012-07-17 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US8691010B2 (en) 1999-06-28 2014-04-08 California Institute Of Technology Microfluidic protein crystallography
US7169314B2 (en) 1999-06-28 2007-01-30 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US6899137B2 (en) 1999-06-28 2005-05-31 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US8002933B2 (en) 1999-06-28 2011-08-23 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US6818395B1 (en) 1999-06-28 2004-11-16 California Institute Of Technology Methods and apparatus for analyzing polynucleotide sequences
US6793753B2 (en) 1999-06-28 2004-09-21 California Institute Of Technology Method of making a microfabricated elastomeric valve
US7216671B2 (en) 1999-06-28 2007-05-15 California Institute Of Technology Microfabricated elastomeric valve and pump systems
WO2001001025A2 (en) * 1999-06-28 2001-01-04 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US7927422B2 (en) 1999-06-28 2011-04-19 National Institutes Of Health (Nih) Microfluidic protein crystallography
US7250128B2 (en) 1999-06-28 2007-07-31 California Institute Of Technology Method of forming a via in a microfabricated elastomer structure
EP1557565A2 (de) * 1999-06-28 2005-07-27 California Institute Of Technology Elastisches Mikropumpen- oder Mikroventilsystem
US8104497B2 (en) 1999-06-28 2012-01-31 California Institute Of Technology Microfabricated elastomeric valve and pump systems
EP1195523A3 (de) * 1999-06-28 2003-01-08 California Institute of Technology Elastisches Mikropumpen- oder Mikroventilsystem
US8550119B2 (en) 1999-06-28 2013-10-08 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US8846183B2 (en) 1999-06-28 2014-09-30 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US6408878B2 (en) 1999-06-28 2002-06-25 California Institute Of Technology Microfabricated elastomeric valve and pump systems
EP1195523A2 (de) * 1999-06-28 2002-04-10 California Institute of Technology Elastisches Mikropumpen- oder Mikroventilsystem
US8656958B2 (en) 1999-06-28 2014-02-25 California Institue Of Technology Microfabricated elastomeric valve and pump systems
US7766055B2 (en) 1999-06-28 2010-08-03 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US7494555B2 (en) 1999-06-28 2009-02-24 California Institute Of Technology Microfabricated elastomeric valve and pump systems
WO2001001025A3 (en) * 1999-06-28 2001-07-19 California Inst Of Techn Microfabricated elastomeric valve and pump systems
US7754010B2 (en) 1999-06-28 2010-07-13 California Institute Of Technology Microfabricated elastomeric valve and pump systems
EP1065378A3 (de) * 1999-06-28 2001-05-02 California Institute of Technology Elastisches Mikropumpen- oder Mikroventilsystem
US9623413B2 (en) 2000-04-05 2017-04-18 Fluidigm Corporation Integrated chip carriers with thermocycler interfaces and methods of using the same
US8257666B2 (en) 2000-06-05 2012-09-04 California Institute Of Technology Integrated active flux microfluidic devices and methods
US8129176B2 (en) 2000-06-05 2012-03-06 California Institute Of Technology Integrated active flux microfluidic devices and methods
US9926521B2 (en) 2000-06-27 2018-03-27 Fluidigm Corporation Microfluidic particle-analysis systems
US9205423B2 (en) 2000-06-27 2015-12-08 California Institute Of Technology High throughput screening of crystallization of materials
US7195670B2 (en) 2000-06-27 2007-03-27 California Institute Of Technology High throughput screening of crystallization of materials
US9932687B2 (en) 2000-06-27 2018-04-03 California Institute Of Technology High throughput screening of crystallization of materials
US8252539B2 (en) 2000-09-15 2012-08-28 California Institute Of Technology Microfabricated crossflow devices and methods
US8658368B2 (en) 2000-09-15 2014-02-25 California Institute Of Technology Microfabricated crossflow devices and methods
US8592215B2 (en) 2000-09-15 2013-11-26 California Institute Of Technology Microfabricated crossflow devices and methods
US7294503B2 (en) 2000-09-15 2007-11-13 California Institute Of Technology Microfabricated crossflow devices and methods
US8445210B2 (en) 2000-09-15 2013-05-21 California Institute Of Technology Microfabricated crossflow devices and methods
US8658367B2 (en) 2000-09-15 2014-02-25 California Institute Of Technology Microfabricated crossflow devices and methods
US8992858B2 (en) 2000-10-03 2015-03-31 The United States of America National Institute of Health (NIH), U.S. Dept. of Health and Human Services (DHHS) Microfluidic devices and methods of use
US7097809B2 (en) 2000-10-03 2006-08-29 California Institute Of Technology Combinatorial synthesis system
US7258774B2 (en) 2000-10-03 2007-08-21 California Institute Of Technology Microfluidic devices and methods of use
US7232109B2 (en) 2000-11-06 2007-06-19 California Institute Of Technology Electrostatic valves for microfluidic devices
US8455258B2 (en) 2000-11-16 2013-06-04 California Insitute Of Technology Apparatus and methods for conducting assays and high throughput screening
US7887753B2 (en) 2000-11-16 2011-02-15 California Institute Of Technology Apparatus and methods for conducting assays and high throughput screening
US8673645B2 (en) 2000-11-16 2014-03-18 California Institute Of Technology Apparatus and methods for conducting assays and high throughput screening
US8273574B2 (en) 2000-11-16 2012-09-25 California Institute Of Technology Apparatus and methods for conducting assays and high throughput screening
US10509018B2 (en) 2000-11-16 2019-12-17 California Institute Of Technology Apparatus and methods for conducting assays and high throughput screening
US9176137B2 (en) 2000-11-16 2015-11-03 California Institute Of Technology Apparatus and methods for conducting assays and high throughput screening
US6951632B2 (en) 2000-11-16 2005-10-04 Fluidigm Corporation Microfluidic devices for introducing and dispensing fluids from microfluidic systems
US8709152B2 (en) 2001-04-06 2014-04-29 California Institute Of Technology Microfluidic free interface diffusion techniques
US7704322B2 (en) 2001-04-06 2010-04-27 California Institute Of Technology Microfluidic free interface diffusion techniques
US7459022B2 (en) 2001-04-06 2008-12-02 California Institute Of Technology Microfluidic protein crystallography
US8936764B2 (en) 2001-04-06 2015-01-20 California Institute Of Technology Nucleic acid amplification using microfluidic devices
US7368163B2 (en) 2001-04-06 2008-05-06 Fluidigm Corporation Polymer surface modification
US8021480B2 (en) 2001-04-06 2011-09-20 California Institute Of Technology Microfluidic free interface diffusion techniques
US8052792B2 (en) 2001-04-06 2011-11-08 California Institute Of Technology Microfluidic protein crystallography techniques
US7326296B2 (en) 2001-04-06 2008-02-05 California Institute Of Technology High throughput screening of crystallization of materials
US7306672B2 (en) 2001-04-06 2007-12-11 California Institute Of Technology Microfluidic free interface diffusion techniques
US9643136B2 (en) 2001-04-06 2017-05-09 Fluidigm Corporation Microfluidic free interface diffusion techniques
US7217321B2 (en) 2001-04-06 2007-05-15 California Institute Of Technology Microfluidic protein crystallography techniques
US8486636B2 (en) 2001-04-06 2013-07-16 California Institute Of Technology Nucleic acid amplification using microfluidic devices
US7833708B2 (en) 2001-04-06 2010-11-16 California Institute Of Technology Nucleic acid amplification using microfluidic devices
US7217367B2 (en) 2001-04-06 2007-05-15 Fluidigm Corporation Microfluidic chromatography
US7244402B2 (en) 2001-04-06 2007-07-17 California Institute Of Technology Microfluidic protein crystallography
US7291512B2 (en) 2001-08-30 2007-11-06 Fluidigm Corporation Electrostatic/electrostrictive actuation of elastomer structures using compliant electrodes
US7192629B2 (en) 2001-10-11 2007-03-20 California Institute Of Technology Devices utilizing self-assembled gel and method of manufacture
US9103761B2 (en) 2001-10-26 2015-08-11 Fluidigm Corporation Methods and devices for electronic sensing
US8845914B2 (en) 2001-10-26 2014-09-30 Fluidigm Corporation Methods and devices for electronic sensing
US8440093B1 (en) 2001-10-26 2013-05-14 Fuidigm Corporation Methods and devices for electronic and magnetic sensing of the contents of microfluidic flow channels
US7820427B2 (en) 2001-11-30 2010-10-26 Fluidigm Corporation Microfluidic device and methods of using same
US8343442B2 (en) 2001-11-30 2013-01-01 Fluidigm Corporation Microfluidic device and methods of using same
US7837946B2 (en) 2001-11-30 2010-11-23 Fluidigm Corporation Microfluidic device and methods of using same
US9643178B2 (en) 2001-11-30 2017-05-09 Fluidigm Corporation Microfluidic device with reaction sites configured for blind filling
US8163492B2 (en) 2001-11-30 2012-04-24 Fluidign Corporation Microfluidic device and methods of using same
US7691333B2 (en) 2001-11-30 2010-04-06 Fluidigm Corporation Microfluidic device and methods of using same
US7143785B2 (en) 2002-09-25 2006-12-05 California Institute Of Technology Microfluidic large scale integration
US9714443B2 (en) 2002-09-25 2017-07-25 California Institute Of Technology Microfabricated structure having parallel and orthogonal flow channels controlled by row and column multiplexors
US8871446B2 (en) 2002-10-02 2014-10-28 California Institute Of Technology Microfluidic nucleic acid analysis
US10328428B2 (en) 2002-10-02 2019-06-25 California Institute Of Technology Apparatus for preparing cDNA libraries from single cells
US10940473B2 (en) 2002-10-02 2021-03-09 California Institute Of Technology Microfluidic nucleic acid analysis
US9579650B2 (en) 2002-10-02 2017-02-28 California Institute Of Technology Microfluidic nucleic acid analysis
US7867454B2 (en) 2003-04-03 2011-01-11 Fluidigm Corporation Thermal reaction device and method for using the same
US7749737B2 (en) 2003-04-03 2010-07-06 Fluidigm Corporation Thermal reaction device and method for using the same
US8007746B2 (en) 2003-04-03 2011-08-30 Fluidigm Corporation Microfluidic devices and methods of using same
US7666361B2 (en) 2003-04-03 2010-02-23 Fluidigm Corporation Microfluidic devices and methods of using same
US8247178B2 (en) 2003-04-03 2012-08-21 Fluidigm Corporation Thermal reaction device and method for using the same
US10131934B2 (en) 2003-04-03 2018-11-20 Fluidigm Corporation Thermal reaction device and method for using the same
US9150913B2 (en) 2003-04-03 2015-10-06 Fluidigm Corporation Thermal reaction device and method for using the same
US7279146B2 (en) 2003-04-17 2007-10-09 Fluidigm Corporation Crystal growth devices and systems, and methods for using same
US8808640B2 (en) 2003-05-20 2014-08-19 Fluidigm Corporation Method and system for microfluidic device and imaging thereof
US8367016B2 (en) 2003-05-20 2013-02-05 Fluidigm Corporation Method and system for microfluidic device and imaging thereof
US7695683B2 (en) 2003-05-20 2010-04-13 Fluidigm Corporation Method and system for microfluidic device and imaging thereof
US8105550B2 (en) 2003-05-20 2012-01-31 Fluidigm Corporation Method and system for microfluidic device and imaging thereof
US7792345B2 (en) 2003-07-28 2010-09-07 Fluidigm Corporation Image processing method and system for microfluidic devices
US7583853B2 (en) 2003-07-28 2009-09-01 Fluidigm Corporation Image processing method and system for microfluidic devices
US7964139B2 (en) 2003-08-11 2011-06-21 California Institute Of Technology Microfluidic rotary flow reactor matrix
US9657344B2 (en) 2003-11-12 2017-05-23 Fluidigm Corporation Short cycle methods for sequencing polynucleotides
US8282896B2 (en) 2003-11-26 2012-10-09 Fluidigm Corporation Devices and methods for holding microfluidic devices
US9340765B2 (en) 2004-01-16 2016-05-17 California Institute Of Technology Microfluidic chemostat
US8426159B2 (en) 2004-01-16 2013-04-23 California Institute Of Technology Microfluidic chemostat
US8017353B2 (en) 2004-01-16 2011-09-13 California Institute Of Technology Microfluidic chemostat
US7407799B2 (en) 2004-01-16 2008-08-05 California Institute Of Technology Microfluidic chemostat
US8105553B2 (en) 2004-01-25 2012-01-31 Fluidigm Corporation Crystal forming devices and systems and methods for using the same
US7704735B2 (en) 2004-01-25 2010-04-27 Fluidigm Corporation Integrated chip carriers with thermocycler interfaces and methods of using the same
US8105824B2 (en) 2004-01-25 2012-01-31 Fluidigm Corporation Integrated chip carriers with thermocycler interfaces and methods of using the same
US7867763B2 (en) 2004-01-25 2011-01-11 Fluidigm Corporation Integrated chip carriers with thermocycler interfaces and methods of using the same
US7981604B2 (en) 2004-02-19 2011-07-19 California Institute Of Technology Methods and kits for analyzing polynucleotide sequences
US8828663B2 (en) 2005-03-18 2014-09-09 Fluidigm Corporation Thermal reaction device and method for using the same
US9868978B2 (en) 2005-08-26 2018-01-16 Fluidigm Corporation Single molecule sequencing of captured nucleic acids
US8420017B2 (en) 2006-02-28 2013-04-16 Fluidigm Corporation Microfluidic reaction apparatus for high throughput screening
US7815868B1 (en) 2006-02-28 2010-10-19 Fluidigm Corporation Microfluidic reaction apparatus for high throughput screening
EP2027923A1 (de) * 2007-07-19 2009-02-25 Formulatrix, Inc. Dosiervorrichtung und Verfahren zur Abgabe von Fluiden
JP2010151717A (ja) * 2008-12-26 2010-07-08 Aida Eng Ltd マイクロ流路チップ
US11022470B2 (en) 2015-12-08 2021-06-01 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Free-jet dosing system
WO2020064060A1 (de) 2018-09-26 2020-04-02 Trafag Ag Mikroaktuator sowie herstellverfahren und verwendungen

Also Published As

Publication number Publication date
DE4433894A1 (de) 1996-03-28
DE59500196D1 (de) 1997-05-28
EP0703364B1 (de) 1997-04-23

Similar Documents

Publication Publication Date Title
EP0703364B1 (de) Verfahren und Vorrichtung zur Ansteuerung einer Mikropumpe
EP0835381B1 (de) Fluidpumpe
EP2205869B1 (de) Membranpumpe
EP0826109B1 (de) Rückschlagventillose fluidpumpe
EP2207963B1 (de) Pumpe und pumpenanordnung pumpenmodul
WO2011091943A1 (de) Mikrofluidisches bauelement zur handhabung eines fluids und mikrofluidischer chip
DE4241073C1 (de) Apparat für die dosierte Abgabe von einem Fluid, insbesondere von einem Schmiermittelfluid
DE2142956C3 (de) Steuereinrichtung für eine Verdrängerpumpe oder Verdrängungsmesskammer
EP3559463A1 (de) Verdrängerpumpe für medizinische flüssigkeiten und blutbehandlungsvorrichtung sowie verfahren zu deren steuerung
DE4223019C1 (de) Ventillose Mikropumpe
EP3814636B1 (de) Verbesserte mikropumpe
DE4239464A1 (de) Elektrothermische, statische Mikropumpe
WO2010106177A1 (de) Dosierpumpanordnung
EP3336351A1 (de) Kammerpumpe und verfahren zum betrieb einer kammerpumpe
DE102005044904A1 (de) Elektromagnetisch betreibbare Dosierpumpe
DE3826547C2 (de) Fluidbetätigter Motor
EP2010784B1 (de) Pumpelement und pumpe mit einem solchen pumpelement
EP3861238B1 (de) Hydraulisches mikroventil
EP2685104B1 (de) Pumpenmodul, sowie Verdrängerpumpe
EP3037662A1 (de) Pumpsystem für gasförmige und flüssige medien
EP3167192B1 (de) Einrichtung zur bereitstellung von unter einem vorgebbaren druck stehenden fluiden
DE102016112553B4 (de) Piezoelektrische pumpe und betriebsverfahren derselben
EP0844395A2 (de) Bidirektionale dynamische Mikropumpe
DE10313158A1 (de) Mikropumpe mit einem membranartigen Aktor
DE19847869A1 (de) Pipettiervorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19960304

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19960924

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970424

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59500196

Country of ref document: DE

Date of ref document: 19970528

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020821

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020822

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040301

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040722

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040819

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20041021

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050802

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060428

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060428